1 // SPDX-License-Identifier: GPL-2.0
3 // Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
5 // Refer to drivers/dma/imx-sdma.c
7 #include <linux/init.h>
8 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/clk.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/semaphore.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/slab.h>
18 #include <linux/platform_device.h>
19 #include <linux/dmaengine.h>
20 #include <linux/delay.h>
21 #include <linux/module.h>
22 #include <linux/stmp_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/list.h>
26 #include <linux/dma/mxs-dma.h>
30 #include "dmaengine.h"
33 * NOTE: The term "PIO" throughout the mxs-dma implementation means
34 * PIO mode of mxs apbh-dma and apbx-dma. With this working mode,
35 * dma can program the controller registers of peripheral devices.
38 #define dma_is_apbh(mxs_dma) ((mxs_dma)->type == MXS_DMA_APBH)
39 #define apbh_is_old(mxs_dma) ((mxs_dma)->dev_id == IMX23_DMA)
41 #define HW_APBHX_CTRL0 0x000
42 #define BM_APBH_CTRL0_APB_BURST8_EN (1 << 29)
43 #define BM_APBH_CTRL0_APB_BURST_EN (1 << 28)
44 #define BP_APBH_CTRL0_RESET_CHANNEL 16
45 #define HW_APBHX_CTRL1 0x010
46 #define HW_APBHX_CTRL2 0x020
47 #define HW_APBHX_CHANNEL_CTRL 0x030
48 #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL 16
50 * The offset of NXTCMDAR register is different per both dma type and version,
51 * while stride for each channel is all the same 0x70.
53 #define HW_APBHX_CHn_NXTCMDAR(d, n) \
54 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
55 #define HW_APBHX_CHn_SEMA(d, n) \
56 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
57 #define HW_APBHX_CHn_BAR(d, n) \
58 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
59 #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
62 * ccw bits definitions
67 * NAND_LOCK: 4 (1) - not implemented
68 * NAND_WAIT4READY: 5 (1) - not implemented
71 * HALT_ON_TERMINATE: 8 (1)
72 * TERMINATE_FLUSH: 9 (1)
73 * RESERVED: 10..11 (2)
76 #define BP_CCW_COMMAND 0
77 #define BM_CCW_COMMAND (3 << 0)
78 #define CCW_CHAIN (1 << 2)
79 #define CCW_IRQ (1 << 3)
80 #define CCW_WAIT4RDY (1 << 5)
81 #define CCW_DEC_SEM (1 << 6)
82 #define CCW_WAIT4END (1 << 7)
83 #define CCW_HALT_ON_TERM (1 << 8)
84 #define CCW_TERM_FLUSH (1 << 9)
85 #define BP_CCW_PIO_NUM 12
86 #define BM_CCW_PIO_NUM (0xf << 12)
88 #define BF_CCW(value, field) (((value) << BP_CCW_##field) & BM_CCW_##field)
90 #define MXS_DMA_CMD_NO_XFER 0
91 #define MXS_DMA_CMD_WRITE 1
92 #define MXS_DMA_CMD_READ 2
93 #define MXS_DMA_CMD_DMA_SENSE 3 /* not implemented */
99 #define MAX_XFER_BYTES 0xff00
101 #define MXS_PIO_WORDS 16
102 u32 pio_words
[MXS_PIO_WORDS
];
105 #define CCW_BLOCK_SIZE (4 * PAGE_SIZE)
106 #define NUM_CCW (int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
108 struct mxs_dma_chan
{
109 struct mxs_dma_engine
*mxs_dma
;
110 struct dma_chan chan
;
111 struct dma_async_tx_descriptor desc
;
112 struct tasklet_struct tasklet
;
113 unsigned int chan_irq
;
114 struct mxs_dma_ccw
*ccw
;
117 enum dma_status status
;
120 #define MXS_DMA_SG_LOOP (1 << 0)
121 #define MXS_DMA_USE_SEMAPHORE (1 << 1)
124 #define MXS_DMA_CHANNELS 16
125 #define MXS_DMA_CHANNELS_MASK 0xffff
127 enum mxs_dma_devtype
{
137 struct mxs_dma_engine
{
138 enum mxs_dma_id dev_id
;
139 enum mxs_dma_devtype type
;
142 struct dma_device dma_device
;
143 struct mxs_dma_chan mxs_chans
[MXS_DMA_CHANNELS
];
144 struct platform_device
*pdev
;
145 unsigned int nr_channels
;
148 struct mxs_dma_type
{
150 enum mxs_dma_devtype type
;
153 static struct mxs_dma_type mxs_dma_types
[] = {
156 .type
= MXS_DMA_APBH
,
159 .type
= MXS_DMA_APBX
,
162 .type
= MXS_DMA_APBH
,
165 .type
= MXS_DMA_APBX
,
169 static const struct of_device_id mxs_dma_dt_ids
[] = {
170 { .compatible
= "fsl,imx23-dma-apbh", .data
= &mxs_dma_types
[0], },
171 { .compatible
= "fsl,imx23-dma-apbx", .data
= &mxs_dma_types
[1], },
172 { .compatible
= "fsl,imx28-dma-apbh", .data
= &mxs_dma_types
[2], },
173 { .compatible
= "fsl,imx28-dma-apbx", .data
= &mxs_dma_types
[3], },
176 MODULE_DEVICE_TABLE(of
, mxs_dma_dt_ids
);
178 static struct mxs_dma_chan
*to_mxs_dma_chan(struct dma_chan
*chan
)
180 return container_of(chan
, struct mxs_dma_chan
, chan
);
183 static void mxs_dma_reset_chan(struct dma_chan
*chan
)
185 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
186 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
187 int chan_id
= mxs_chan
->chan
.chan_id
;
190 * mxs dma channel resets can cause a channel stall. To recover from a
191 * channel stall, we have to reset the whole DMA engine. To avoid this,
192 * we use cyclic DMA with semaphores, that are enhanced in
193 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
194 * into the semaphore counter.
196 if (mxs_chan
->flags
& MXS_DMA_USE_SEMAPHORE
&&
197 mxs_chan
->flags
& MXS_DMA_SG_LOOP
) {
198 mxs_chan
->reset
= true;
199 } else if (dma_is_apbh(mxs_dma
) && apbh_is_old(mxs_dma
)) {
200 writel(1 << (chan_id
+ BP_APBH_CTRL0_RESET_CHANNEL
),
201 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_SET
);
203 unsigned long elapsed
= 0;
204 const unsigned long max_wait
= 50000; /* 50ms */
205 void __iomem
*reg_dbg1
= mxs_dma
->base
+
206 HW_APBX_CHn_DEBUG1(mxs_dma
, chan_id
);
209 * On i.MX28 APBX, the DMA channel can stop working if we reset
210 * the channel while it is in READ_FLUSH (0x08) state.
211 * We wait here until we leave the state. Then we trigger the
212 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
215 while ((readl(reg_dbg1
) & 0xf) == 0x8 && elapsed
< max_wait
) {
220 if (elapsed
>= max_wait
)
221 dev_err(&mxs_chan
->mxs_dma
->pdev
->dev
,
222 "Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
225 writel(1 << (chan_id
+ BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL
),
226 mxs_dma
->base
+ HW_APBHX_CHANNEL_CTRL
+ STMP_OFFSET_REG_SET
);
229 mxs_chan
->status
= DMA_COMPLETE
;
232 static void mxs_dma_enable_chan(struct dma_chan
*chan
)
234 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
235 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
236 int chan_id
= mxs_chan
->chan
.chan_id
;
238 /* set cmd_addr up */
239 writel(mxs_chan
->ccw_phys
,
240 mxs_dma
->base
+ HW_APBHX_CHn_NXTCMDAR(mxs_dma
, chan_id
));
242 /* write 1 to SEMA to kick off the channel */
243 if (mxs_chan
->flags
& MXS_DMA_USE_SEMAPHORE
&&
244 mxs_chan
->flags
& MXS_DMA_SG_LOOP
) {
245 /* A cyclic DMA consists of at least 2 segments, so initialize
246 * the semaphore with 2 so we have enough time to add 1 to the
247 * semaphore if we need to */
248 writel(2, mxs_dma
->base
+ HW_APBHX_CHn_SEMA(mxs_dma
, chan_id
));
250 writel(1, mxs_dma
->base
+ HW_APBHX_CHn_SEMA(mxs_dma
, chan_id
));
252 mxs_chan
->reset
= false;
255 static void mxs_dma_disable_chan(struct dma_chan
*chan
)
257 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
259 mxs_chan
->status
= DMA_COMPLETE
;
262 static int mxs_dma_pause_chan(struct dma_chan
*chan
)
264 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
265 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
266 int chan_id
= mxs_chan
->chan
.chan_id
;
268 /* freeze the channel */
269 if (dma_is_apbh(mxs_dma
) && apbh_is_old(mxs_dma
))
271 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_SET
);
274 mxs_dma
->base
+ HW_APBHX_CHANNEL_CTRL
+ STMP_OFFSET_REG_SET
);
276 mxs_chan
->status
= DMA_PAUSED
;
280 static int mxs_dma_resume_chan(struct dma_chan
*chan
)
282 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
283 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
284 int chan_id
= mxs_chan
->chan
.chan_id
;
286 /* unfreeze the channel */
287 if (dma_is_apbh(mxs_dma
) && apbh_is_old(mxs_dma
))
289 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_CLR
);
292 mxs_dma
->base
+ HW_APBHX_CHANNEL_CTRL
+ STMP_OFFSET_REG_CLR
);
294 mxs_chan
->status
= DMA_IN_PROGRESS
;
298 static dma_cookie_t
mxs_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
300 return dma_cookie_assign(tx
);
303 static void mxs_dma_tasklet(struct tasklet_struct
*t
)
305 struct mxs_dma_chan
*mxs_chan
= from_tasklet(mxs_chan
, t
, tasklet
);
307 dmaengine_desc_get_callback_invoke(&mxs_chan
->desc
, NULL
);
310 static int mxs_dma_irq_to_chan(struct mxs_dma_engine
*mxs_dma
, int irq
)
314 for (i
= 0; i
!= mxs_dma
->nr_channels
; ++i
)
315 if (mxs_dma
->mxs_chans
[i
].chan_irq
== irq
)
321 static irqreturn_t
mxs_dma_int_handler(int irq
, void *dev_id
)
323 struct mxs_dma_engine
*mxs_dma
= dev_id
;
324 struct mxs_dma_chan
*mxs_chan
;
327 int chan
= mxs_dma_irq_to_chan(mxs_dma
, irq
);
332 /* completion status */
333 completed
= readl(mxs_dma
->base
+ HW_APBHX_CTRL1
);
334 completed
= (completed
>> chan
) & 0x1;
336 /* Clear interrupt */
338 mxs_dma
->base
+ HW_APBHX_CTRL1
+ STMP_OFFSET_REG_CLR
);
341 err
= readl(mxs_dma
->base
+ HW_APBHX_CTRL2
);
342 err
&= (1 << (MXS_DMA_CHANNELS
+ chan
)) | (1 << chan
);
345 * error status bit is in the upper 16 bits, error irq bit in the lower
346 * 16 bits. We transform it into a simpler error code:
347 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
349 err
= (err
>> (MXS_DMA_CHANNELS
+ chan
)) + (err
>> chan
);
351 /* Clear error irq */
353 mxs_dma
->base
+ HW_APBHX_CTRL2
+ STMP_OFFSET_REG_CLR
);
356 * When both completion and error of termination bits set at the
357 * same time, we do not take it as an error. IOW, it only becomes
358 * an error we need to handle here in case of either it's a bus
359 * error or a termination error with no completion. 0x01 is termination
360 * error, so we can subtract err & completed to get the real error case.
362 err
-= err
& completed
;
364 mxs_chan
= &mxs_dma
->mxs_chans
[chan
];
367 dev_dbg(mxs_dma
->dma_device
.dev
,
368 "%s: error in channel %d\n", __func__
,
370 mxs_chan
->status
= DMA_ERROR
;
371 mxs_dma_reset_chan(&mxs_chan
->chan
);
372 } else if (mxs_chan
->status
!= DMA_COMPLETE
) {
373 if (mxs_chan
->flags
& MXS_DMA_SG_LOOP
) {
374 mxs_chan
->status
= DMA_IN_PROGRESS
;
375 if (mxs_chan
->flags
& MXS_DMA_USE_SEMAPHORE
)
376 writel(1, mxs_dma
->base
+
377 HW_APBHX_CHn_SEMA(mxs_dma
, chan
));
379 mxs_chan
->status
= DMA_COMPLETE
;
383 if (mxs_chan
->status
== DMA_COMPLETE
) {
386 dma_cookie_complete(&mxs_chan
->desc
);
389 /* schedule tasklet on this channel */
390 tasklet_schedule(&mxs_chan
->tasklet
);
395 static int mxs_dma_alloc_chan_resources(struct dma_chan
*chan
)
397 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
398 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
401 mxs_chan
->ccw
= dma_alloc_coherent(mxs_dma
->dma_device
.dev
,
403 &mxs_chan
->ccw_phys
, GFP_KERNEL
);
404 if (!mxs_chan
->ccw
) {
409 ret
= request_irq(mxs_chan
->chan_irq
, mxs_dma_int_handler
,
410 0, "mxs-dma", mxs_dma
);
414 ret
= clk_prepare_enable(mxs_dma
->clk
);
418 mxs_dma_reset_chan(chan
);
420 dma_async_tx_descriptor_init(&mxs_chan
->desc
, chan
);
421 mxs_chan
->desc
.tx_submit
= mxs_dma_tx_submit
;
423 /* the descriptor is ready */
424 async_tx_ack(&mxs_chan
->desc
);
429 free_irq(mxs_chan
->chan_irq
, mxs_dma
);
431 dma_free_coherent(mxs_dma
->dma_device
.dev
, CCW_BLOCK_SIZE
,
432 mxs_chan
->ccw
, mxs_chan
->ccw_phys
);
437 static void mxs_dma_free_chan_resources(struct dma_chan
*chan
)
439 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
440 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
442 mxs_dma_disable_chan(chan
);
444 free_irq(mxs_chan
->chan_irq
, mxs_dma
);
446 dma_free_coherent(mxs_dma
->dma_device
.dev
, CCW_BLOCK_SIZE
,
447 mxs_chan
->ccw
, mxs_chan
->ccw_phys
);
449 clk_disable_unprepare(mxs_dma
->clk
);
453 * How to use the flags for ->device_prep_slave_sg() :
454 * [1] If there is only one DMA command in the DMA chain, the code should be:
456 * ->device_prep_slave_sg(DMA_CTRL_ACK);
458 * [2] If there are two DMA commands in the DMA chain, the code should be
460 * ->device_prep_slave_sg(0);
462 * ->device_prep_slave_sg(DMA_CTRL_ACK);
464 * [3] If there are more than two DMA commands in the DMA chain, the code
467 * ->device_prep_slave_sg(0); // First
469 * ->device_prep_slave_sg(DMA_CTRL_ACK]);
471 * ->device_prep_slave_sg(DMA_CTRL_ACK); // Last
474 static struct dma_async_tx_descriptor
*mxs_dma_prep_slave_sg(
475 struct dma_chan
*chan
, struct scatterlist
*sgl
,
476 unsigned int sg_len
, enum dma_transfer_direction direction
,
477 unsigned long flags
, void *context
)
479 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
480 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
481 struct mxs_dma_ccw
*ccw
;
482 struct scatterlist
*sg
;
487 if (mxs_chan
->status
== DMA_IN_PROGRESS
)
488 idx
= mxs_chan
->desc_count
;
490 if (sg_len
+ idx
> NUM_CCW
) {
491 dev_err(mxs_dma
->dma_device
.dev
,
492 "maximum number of sg exceeded: %d > %d\n",
497 mxs_chan
->status
= DMA_IN_PROGRESS
;
501 * If the sg is prepared with append flag set, the sg
502 * will be appended to the last prepared sg.
506 ccw
= &mxs_chan
->ccw
[idx
- 1];
507 ccw
->next
= mxs_chan
->ccw_phys
+ sizeof(*ccw
) * idx
;
508 ccw
->bits
|= CCW_CHAIN
;
509 ccw
->bits
&= ~CCW_IRQ
;
510 ccw
->bits
&= ~CCW_DEC_SEM
;
515 if (direction
== DMA_TRANS_NONE
) {
516 ccw
= &mxs_chan
->ccw
[idx
++];
519 for (j
= 0; j
< sg_len
;)
520 ccw
->pio_words
[j
++] = *pio
++;
523 ccw
->bits
|= CCW_IRQ
;
524 ccw
->bits
|= CCW_DEC_SEM
;
525 if (flags
& MXS_DMA_CTRL_WAIT4END
)
526 ccw
->bits
|= CCW_WAIT4END
;
527 ccw
->bits
|= CCW_HALT_ON_TERM
;
528 ccw
->bits
|= CCW_TERM_FLUSH
;
529 ccw
->bits
|= BF_CCW(sg_len
, PIO_NUM
);
530 ccw
->bits
|= BF_CCW(MXS_DMA_CMD_NO_XFER
, COMMAND
);
531 if (flags
& MXS_DMA_CTRL_WAIT4RDY
)
532 ccw
->bits
|= CCW_WAIT4RDY
;
534 for_each_sg(sgl
, sg
, sg_len
, i
) {
535 if (sg_dma_len(sg
) > MAX_XFER_BYTES
) {
536 dev_err(mxs_dma
->dma_device
.dev
, "maximum bytes for sg entry exceeded: %d > %d\n",
537 sg_dma_len(sg
), MAX_XFER_BYTES
);
541 ccw
= &mxs_chan
->ccw
[idx
++];
543 ccw
->next
= mxs_chan
->ccw_phys
+ sizeof(*ccw
) * idx
;
544 ccw
->bufaddr
= sg
->dma_address
;
545 ccw
->xfer_bytes
= sg_dma_len(sg
);
548 ccw
->bits
|= CCW_CHAIN
;
549 ccw
->bits
|= CCW_HALT_ON_TERM
;
550 ccw
->bits
|= CCW_TERM_FLUSH
;
551 ccw
->bits
|= BF_CCW(direction
== DMA_DEV_TO_MEM
?
552 MXS_DMA_CMD_WRITE
: MXS_DMA_CMD_READ
,
555 if (i
+ 1 == sg_len
) {
556 ccw
->bits
&= ~CCW_CHAIN
;
557 ccw
->bits
|= CCW_IRQ
;
558 ccw
->bits
|= CCW_DEC_SEM
;
559 if (flags
& MXS_DMA_CTRL_WAIT4END
)
560 ccw
->bits
|= CCW_WAIT4END
;
564 mxs_chan
->desc_count
= idx
;
566 return &mxs_chan
->desc
;
569 mxs_chan
->status
= DMA_ERROR
;
573 static struct dma_async_tx_descriptor
*mxs_dma_prep_dma_cyclic(
574 struct dma_chan
*chan
, dma_addr_t dma_addr
, size_t buf_len
,
575 size_t period_len
, enum dma_transfer_direction direction
,
578 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
579 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
580 u32 num_periods
= buf_len
/ period_len
;
583 if (mxs_chan
->status
== DMA_IN_PROGRESS
)
586 mxs_chan
->status
= DMA_IN_PROGRESS
;
587 mxs_chan
->flags
|= MXS_DMA_SG_LOOP
;
588 mxs_chan
->flags
|= MXS_DMA_USE_SEMAPHORE
;
590 if (num_periods
> NUM_CCW
) {
591 dev_err(mxs_dma
->dma_device
.dev
,
592 "maximum number of sg exceeded: %d > %d\n",
593 num_periods
, NUM_CCW
);
597 if (period_len
> MAX_XFER_BYTES
) {
598 dev_err(mxs_dma
->dma_device
.dev
,
599 "maximum period size exceeded: %zu > %d\n",
600 period_len
, MAX_XFER_BYTES
);
604 while (buf
< buf_len
) {
605 struct mxs_dma_ccw
*ccw
= &mxs_chan
->ccw
[i
];
607 if (i
+ 1 == num_periods
)
608 ccw
->next
= mxs_chan
->ccw_phys
;
610 ccw
->next
= mxs_chan
->ccw_phys
+ sizeof(*ccw
) * (i
+ 1);
612 ccw
->bufaddr
= dma_addr
;
613 ccw
->xfer_bytes
= period_len
;
616 ccw
->bits
|= CCW_CHAIN
;
617 ccw
->bits
|= CCW_IRQ
;
618 ccw
->bits
|= CCW_HALT_ON_TERM
;
619 ccw
->bits
|= CCW_TERM_FLUSH
;
620 ccw
->bits
|= CCW_DEC_SEM
;
621 ccw
->bits
|= BF_CCW(direction
== DMA_DEV_TO_MEM
?
622 MXS_DMA_CMD_WRITE
: MXS_DMA_CMD_READ
, COMMAND
);
624 dma_addr
+= period_len
;
629 mxs_chan
->desc_count
= i
;
631 return &mxs_chan
->desc
;
634 mxs_chan
->status
= DMA_ERROR
;
638 static int mxs_dma_terminate_all(struct dma_chan
*chan
)
640 mxs_dma_reset_chan(chan
);
641 mxs_dma_disable_chan(chan
);
646 static enum dma_status
mxs_dma_tx_status(struct dma_chan
*chan
,
647 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
649 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
650 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
653 if (mxs_chan
->status
== DMA_IN_PROGRESS
&&
654 mxs_chan
->flags
& MXS_DMA_SG_LOOP
) {
655 struct mxs_dma_ccw
*last_ccw
;
658 last_ccw
= &mxs_chan
->ccw
[mxs_chan
->desc_count
- 1];
659 residue
= last_ccw
->xfer_bytes
+ last_ccw
->bufaddr
;
661 bar
= readl(mxs_dma
->base
+
662 HW_APBHX_CHn_BAR(mxs_dma
, chan
->chan_id
));
666 dma_set_tx_state(txstate
, chan
->completed_cookie
, chan
->cookie
,
669 return mxs_chan
->status
;
672 static int mxs_dma_init(struct mxs_dma_engine
*mxs_dma
)
676 ret
= clk_prepare_enable(mxs_dma
->clk
);
680 ret
= stmp_reset_block(mxs_dma
->base
);
684 /* enable apbh burst */
685 if (dma_is_apbh(mxs_dma
)) {
686 writel(BM_APBH_CTRL0_APB_BURST_EN
,
687 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_SET
);
688 writel(BM_APBH_CTRL0_APB_BURST8_EN
,
689 mxs_dma
->base
+ HW_APBHX_CTRL0
+ STMP_OFFSET_REG_SET
);
692 /* enable irq for all the channels */
693 writel(MXS_DMA_CHANNELS_MASK
<< MXS_DMA_CHANNELS
,
694 mxs_dma
->base
+ HW_APBHX_CTRL1
+ STMP_OFFSET_REG_SET
);
697 clk_disable_unprepare(mxs_dma
->clk
);
701 struct mxs_dma_filter_param
{
702 unsigned int chan_id
;
705 static bool mxs_dma_filter_fn(struct dma_chan
*chan
, void *fn_param
)
707 struct mxs_dma_filter_param
*param
= fn_param
;
708 struct mxs_dma_chan
*mxs_chan
= to_mxs_dma_chan(chan
);
709 struct mxs_dma_engine
*mxs_dma
= mxs_chan
->mxs_dma
;
712 if (chan
->chan_id
!= param
->chan_id
)
715 chan_irq
= platform_get_irq(mxs_dma
->pdev
, param
->chan_id
);
719 mxs_chan
->chan_irq
= chan_irq
;
724 static struct dma_chan
*mxs_dma_xlate(struct of_phandle_args
*dma_spec
,
725 struct of_dma
*ofdma
)
727 struct mxs_dma_engine
*mxs_dma
= ofdma
->of_dma_data
;
728 dma_cap_mask_t mask
= mxs_dma
->dma_device
.cap_mask
;
729 struct mxs_dma_filter_param param
;
731 if (dma_spec
->args_count
!= 1)
734 param
.chan_id
= dma_spec
->args
[0];
736 if (param
.chan_id
>= mxs_dma
->nr_channels
)
739 return __dma_request_channel(&mask
, mxs_dma_filter_fn
, ¶m
,
743 static int mxs_dma_probe(struct platform_device
*pdev
)
745 struct device_node
*np
= pdev
->dev
.of_node
;
746 const struct mxs_dma_type
*dma_type
;
747 struct mxs_dma_engine
*mxs_dma
;
750 mxs_dma
= devm_kzalloc(&pdev
->dev
, sizeof(*mxs_dma
), GFP_KERNEL
);
754 ret
= of_property_read_u32(np
, "dma-channels", &mxs_dma
->nr_channels
);
756 dev_err(&pdev
->dev
, "failed to read dma-channels\n");
760 dma_type
= (struct mxs_dma_type
*)of_device_get_match_data(&pdev
->dev
);
761 mxs_dma
->type
= dma_type
->type
;
762 mxs_dma
->dev_id
= dma_type
->id
;
764 mxs_dma
->base
= devm_platform_ioremap_resource(pdev
, 0);
765 if (IS_ERR(mxs_dma
->base
))
766 return PTR_ERR(mxs_dma
->base
);
768 mxs_dma
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
769 if (IS_ERR(mxs_dma
->clk
))
770 return PTR_ERR(mxs_dma
->clk
);
772 dma_cap_set(DMA_SLAVE
, mxs_dma
->dma_device
.cap_mask
);
773 dma_cap_set(DMA_CYCLIC
, mxs_dma
->dma_device
.cap_mask
);
775 INIT_LIST_HEAD(&mxs_dma
->dma_device
.channels
);
777 /* Initialize channel parameters */
778 for (i
= 0; i
< MXS_DMA_CHANNELS
; i
++) {
779 struct mxs_dma_chan
*mxs_chan
= &mxs_dma
->mxs_chans
[i
];
781 mxs_chan
->mxs_dma
= mxs_dma
;
782 mxs_chan
->chan
.device
= &mxs_dma
->dma_device
;
783 dma_cookie_init(&mxs_chan
->chan
);
785 tasklet_setup(&mxs_chan
->tasklet
, mxs_dma_tasklet
);
788 /* Add the channel to mxs_chan list */
789 list_add_tail(&mxs_chan
->chan
.device_node
,
790 &mxs_dma
->dma_device
.channels
);
793 ret
= mxs_dma_init(mxs_dma
);
797 mxs_dma
->pdev
= pdev
;
798 mxs_dma
->dma_device
.dev
= &pdev
->dev
;
800 /* mxs_dma gets 65535 bytes maximum sg size */
801 dma_set_max_seg_size(mxs_dma
->dma_device
.dev
, MAX_XFER_BYTES
);
803 mxs_dma
->dma_device
.device_alloc_chan_resources
= mxs_dma_alloc_chan_resources
;
804 mxs_dma
->dma_device
.device_free_chan_resources
= mxs_dma_free_chan_resources
;
805 mxs_dma
->dma_device
.device_tx_status
= mxs_dma_tx_status
;
806 mxs_dma
->dma_device
.device_prep_slave_sg
= mxs_dma_prep_slave_sg
;
807 mxs_dma
->dma_device
.device_prep_dma_cyclic
= mxs_dma_prep_dma_cyclic
;
808 mxs_dma
->dma_device
.device_pause
= mxs_dma_pause_chan
;
809 mxs_dma
->dma_device
.device_resume
= mxs_dma_resume_chan
;
810 mxs_dma
->dma_device
.device_terminate_all
= mxs_dma_terminate_all
;
811 mxs_dma
->dma_device
.src_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
812 mxs_dma
->dma_device
.dst_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
813 mxs_dma
->dma_device
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
814 mxs_dma
->dma_device
.residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
815 mxs_dma
->dma_device
.device_issue_pending
= mxs_dma_enable_chan
;
817 ret
= dmaenginem_async_device_register(&mxs_dma
->dma_device
);
819 dev_err(mxs_dma
->dma_device
.dev
, "unable to register\n");
823 ret
= of_dma_controller_register(np
, mxs_dma_xlate
, mxs_dma
);
825 dev_err(mxs_dma
->dma_device
.dev
,
826 "failed to register controller\n");
829 dev_info(mxs_dma
->dma_device
.dev
, "initialized\n");
834 static struct platform_driver mxs_dma_driver
= {
837 .of_match_table
= mxs_dma_dt_ids
,
839 .probe
= mxs_dma_probe
,
842 builtin_platform_driver(mxs_dma_driver
);