1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
4 * This driver supports the memory controllers found on the Intel
5 * processor family Sandy Bridge.
7 * Copyright (c) 2011 by:
8 * Mauro Carvalho Chehab
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
28 #include "edac_module.h"
31 static LIST_HEAD(sbridge_edac_list
);
32 static char sb_msg
[256];
33 static char sb_msg_full
[512];
36 * Alter this version for the module when modifications are made
38 #define SBRIDGE_REVISION " Ver: 1.1.2 "
39 #define EDAC_MOD_STR "sb_edac"
44 #define sbridge_printk(level, fmt, arg...) \
45 edac_printk(level, "sbridge", fmt, ##arg)
47 #define sbridge_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
53 #define GET_BITFIELD(v, lo, hi) \
54 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule
[] = {
58 0x80, 0x88, 0x90, 0x98, 0xa0,
59 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
62 static const u32 ibridge_dram_rule
[] = {
63 0x60, 0x68, 0x70, 0x78, 0x80,
64 0x88, 0x90, 0x98, 0xa0, 0xa8,
65 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
69 static const u32 knl_dram_rule
[] = {
70 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 0x100, 0x108, 0x110, 0x118, /* 20-23 */
77 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
78 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
80 static char *show_dram_attr(u32 attr
)
94 static const u32 sbridge_interleave_list
[] = {
95 0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
99 static const u32 ibridge_interleave_list
[] = {
100 0x64, 0x6c, 0x74, 0x7c, 0x84,
101 0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
106 static const u32 knl_interleave_list
[] = {
107 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
113 #define MAX_INTERLEAVE \
114 (MAX_T(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
115 MAX_T(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
116 ARRAY_SIZE(knl_interleave_list))))
118 struct interleave_pkg
{
123 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
134 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
145 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
148 return GET_BITFIELD(reg
, table
[interleave
].start
,
149 table
[interleave
].end
);
152 /* Devices 12 Function 7 */
156 #define HASWELL_TOLM 0xd0
157 #define HASWELL_TOHM_0 0xd4
158 #define HASWELL_TOHM_1 0xd8
159 #define KNL_TOLM 0xd0
160 #define KNL_TOHM_0 0xd4
161 #define KNL_TOHM_1 0xd8
163 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
164 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
166 /* Device 13 Function 6 */
168 #define SAD_TARGET 0xf0
170 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
172 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
174 #define SAD_CONTROL 0xf4
176 /* Device 14 function 0 */
178 static const u32 tad_dram_rule
[] = {
179 0x40, 0x44, 0x48, 0x4c,
180 0x50, 0x54, 0x58, 0x5c,
181 0x60, 0x64, 0x68, 0x6c,
183 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
185 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
187 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
188 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
189 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
190 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
191 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
193 /* Device 15, function 0 */
196 #define KNL_MCMTR 0x624
198 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
199 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
200 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
202 /* Device 15, function 1 */
204 #define RASENABLES 0xac
205 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
207 /* Device 15, functions 2-5 */
209 static const int mtr_regs
[] = {
213 static const int knl_mtr_reg
= 0xb60;
215 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
221 static const u32 tad_ch_nilv_offset
[] = {
222 0x90, 0x94, 0x98, 0x9c,
223 0xa0, 0xa4, 0xa8, 0xac,
224 0xb0, 0xb4, 0xb8, 0xbc,
226 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
229 static const u32 rir_way_limit
[] = {
230 0x108, 0x10c, 0x110, 0x114, 0x118,
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
234 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
237 #define MAX_RIR_WAY 8
239 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
240 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
247 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
250 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
253 /* Device 16, functions 2-7 */
256 * FIXME: Implement the error count reads directly
259 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
264 #if 0 /* Currently unused*/
265 static const u32 correrrcnt
[] = {
266 0x104, 0x108, 0x10c, 0x110,
269 static const u32 correrrthrsld
[] = {
270 0x11c, 0x120, 0x124, 0x128,
274 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
275 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
278 /* Device 17, function 0 */
280 #define SB_RANK_CFG_A 0x0328
282 #define IB_RANK_CFG_A 0x0320
288 #define NUM_CHANNELS 6 /* Max channels per MC */
289 #define MAX_DIMMS 3 /* Max DIMMS per channel */
290 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
291 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
292 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
293 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
309 enum mirroring_mode
{
311 ADDR_RANGE_MIRRORING
,
316 struct sbridge_info
{
320 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
321 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
322 u64 (*rir_limit
)(u32 reg
);
323 u64 (*sad_limit
)(u32 reg
);
324 u32 (*interleave_mode
)(u32 reg
);
325 u32 (*dram_attr
)(u32 reg
);
326 const u32
*dram_rule
;
327 const u32
*interleave_list
;
328 const struct interleave_pkg
*interleave_pkg
;
330 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
331 u8 (*get_ha
)(u8 bank
);
332 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
333 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
334 struct pci_dev
*pci_vtd
;
337 struct sbridge_channel
{
348 struct pci_id_descr
{
354 struct pci_id_table
{
355 const struct pci_id_descr
*descr
;
363 struct list_head list
;
366 u8 node_id
, source_id
;
367 struct pci_dev
**pdev
;
371 struct mem_ctl_info
*mci
;
375 struct pci_dev
*pci_cha
[KNL_MAX_CHAS
];
376 struct pci_dev
*pci_channel
[KNL_MAX_CHANNELS
];
377 struct pci_dev
*pci_mc0
;
378 struct pci_dev
*pci_mc1
;
379 struct pci_dev
*pci_mc0_misc
;
380 struct pci_dev
*pci_mc1_misc
;
381 struct pci_dev
*pci_mc_info
; /* tolm, tohm */
385 /* Devices per socket */
386 struct pci_dev
*pci_ddrio
;
387 struct pci_dev
*pci_sad0
, *pci_sad1
;
388 struct pci_dev
*pci_br0
, *pci_br1
;
389 /* Devices per memory controller */
390 struct pci_dev
*pci_ha
, *pci_ta
, *pci_ras
;
391 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
393 struct sbridge_dev
*sbridge_dev
;
395 struct sbridge_info info
;
396 struct sbridge_channel channel
[NUM_CHANNELS
];
398 /* Memory type detection */
399 bool is_cur_addr_mirrored
, is_lockstep
, is_close_pg
;
401 enum mirroring_mode mirror_mode
;
403 /* Memory description */
408 #define PCI_DESCR(device_id, opt, domain) \
409 .dev_id = (device_id), \
413 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
414 /* Processor Home Agent */
415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0, IMC0
) },
417 /* Memory controller */
418 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0, IMC0
) },
419 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0, IMC0
) },
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0, IMC0
) },
421 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0, IMC0
) },
422 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0, IMC0
) },
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0, IMC0
) },
424 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1, SOCK
) },
426 /* System Address Decoder */
427 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0, SOCK
) },
428 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0, SOCK
) },
430 /* Broadcast Registers */
431 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0, SOCK
) },
434 #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
436 .n_devs_per_imc = N, \
437 .n_devs_per_sock = ARRAY_SIZE(A), \
438 .n_imcs_per_sock = M, \
442 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
443 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
, ARRAY_SIZE(pci_dev_descr_sbridge
), 1, SANDY_BRIDGE
),
447 /* This changes depending if 1HA or 2HA:
449 * 0x0eb8 (17.0) is DDRIO0
451 * 0x0ebc (17.4) is DDRIO0
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
466 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
467 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
468 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
469 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
470 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
471 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
472 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
473 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
475 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
476 /* Processor Home Agent */
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0, IMC0
) },
478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1, IMC1
) },
480 /* Memory controller */
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0, IMC0
) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0, IMC0
) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0, IMC0
) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0, IMC0
) },
485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0, IMC0
) },
486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0, IMC0
) },
488 /* Optional, mode 2HA */
489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1, IMC1
) },
490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1, IMC1
) },
491 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1, IMC1
) },
492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1, IMC1
) },
493 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1, IMC1
) },
494 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1, IMC1
) },
496 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1, SOCK
) },
497 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1, SOCK
) },
499 /* System Address Decoder */
500 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0, SOCK
) },
502 /* Broadcast Registers */
503 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1, SOCK
) },
504 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0, SOCK
) },
508 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
509 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
, 12, 2, IVY_BRIDGE
),
513 /* Haswell support */
516 * - 3 DDR3 channels, 2 DPC per channel
519 * - 4 DDR4 channels, 3 DPC per channel
522 * - 4 DDR4 channels, 3 DPC per channel
525 * - each IMC interfaces with a SMI 2 channel
526 * - each SMI channel interfaces with a scalable memory buffer
527 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
529 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
530 #define HASWELL_HASYSDEFEATURE2 0x84
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
544 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
545 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
546 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
547 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
548 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
549 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
550 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
551 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
552 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
553 /* first item must be the HA */
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0, IMC0
) },
555 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1, IMC1
) },
557 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0, IMC0
) },
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
, 0, IMC0
) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0, IMC0
) },
560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0, IMC0
) },
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1, IMC0
) },
562 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1, IMC0
) },
564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1, IMC1
) },
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
, 1, IMC1
) },
566 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1, IMC1
) },
567 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1, IMC1
) },
568 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1, IMC1
) },
569 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1, IMC1
) },
571 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0, SOCK
) },
572 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0, SOCK
) },
573 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1, SOCK
) },
574 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1, SOCK
) },
575 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1, SOCK
) },
576 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1, SOCK
) },
579 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
580 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
, 13, 2, HASWELL
),
584 /* Knight's Landing Support */
586 * KNL's memory channels are swizzled between memory controllers.
587 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
589 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
591 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
593 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
595 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
597 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
598 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
599 /* SAD target - 1-29-1 (1 of these) */
600 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
601 /* Caching / Home Agent */
602 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
603 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
604 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
607 * KNL differs from SB, IB, and Haswell in that it has multiple
608 * instances of the same device with the same device ID, so we handle that
609 * by creating as many copies in the table as we expect to find.
610 * (Like device ID must be grouped together.)
613 static const struct pci_id_descr pci_dev_descr_knl
[] = {
614 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC
, 0, IMC0
)},
615 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
, 0, IMC0
) },
616 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA
, 0, IMC0
) },
617 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
, 0, IMC0
) },
618 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
, 0, SOCK
) },
619 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
, 0, SOCK
) },
620 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
, 0, SOCK
) },
623 static const struct pci_id_table pci_dev_descr_knl_table
[] = {
624 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl
, ARRAY_SIZE(pci_dev_descr_knl
), 1, KNIGHTS_LANDING
),
633 * - 2 DDR3 channels, 2 DPC per channel
636 * - 4 DDR4 channels, 3 DPC per channel
639 * - 4 DDR4 channels, 3 DPC per channel
642 * - each IMC interfaces with a SMI 2 channel
643 * - each SMI channel interfaces with a scalable memory buffer
644 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
656 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
657 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
658 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
659 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
660 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
661 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
662 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
663 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
665 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
666 /* first item must be the HA */
667 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0, IMC0
) },
668 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1, IMC1
) },
670 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0, IMC0
) },
671 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
, 0, IMC0
) },
672 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0, IMC0
) },
673 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0, IMC0
) },
674 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1, IMC0
) },
675 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1, IMC0
) },
677 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1, IMC1
) },
678 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
, 1, IMC1
) },
679 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1, IMC1
) },
680 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1, IMC1
) },
681 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1, IMC1
) },
682 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1, IMC1
) },
684 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0, SOCK
) },
685 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0, SOCK
) },
686 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1, SOCK
) },
689 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
690 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
, 10, 2, BROADWELL
),
695 /****************************************************************************
696 Ancillary status routines
697 ****************************************************************************/
699 static inline int numrank(enum type type
, u32 mtr
)
701 int ranks
= (1 << RANK_CNT_BITS(mtr
));
704 if (type
== HASWELL
|| type
== BROADWELL
|| type
== KNIGHTS_LANDING
)
708 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
709 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
716 static inline int numrow(u32 mtr
)
718 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
720 if (rows
< 13 || rows
> 18) {
721 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
722 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
729 static inline int numcol(u32 mtr
)
731 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
734 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
735 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
742 static struct sbridge_dev
*get_sbridge_dev(int seg
, u8 bus
, enum domain dom
,
744 struct sbridge_dev
*prev
)
746 struct sbridge_dev
*sbridge_dev
;
749 * If we have devices scattered across several busses that pertain
750 * to the same memory controller, we'll lump them all together.
753 return list_first_entry_or_null(&sbridge_edac_list
,
754 struct sbridge_dev
, list
);
757 sbridge_dev
= list_entry(prev
? prev
->list
.next
758 : sbridge_edac_list
.next
, struct sbridge_dev
, list
);
760 list_for_each_entry_from(sbridge_dev
, &sbridge_edac_list
, list
) {
761 if ((sbridge_dev
->seg
== seg
) && (sbridge_dev
->bus
== bus
) &&
762 (dom
== SOCK
|| dom
== sbridge_dev
->dom
))
769 static struct sbridge_dev
*alloc_sbridge_dev(int seg
, u8 bus
, enum domain dom
,
770 const struct pci_id_table
*table
)
772 struct sbridge_dev
*sbridge_dev
;
774 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
778 sbridge_dev
->pdev
= kcalloc(table
->n_devs_per_imc
,
779 sizeof(*sbridge_dev
->pdev
),
781 if (!sbridge_dev
->pdev
) {
786 sbridge_dev
->seg
= seg
;
787 sbridge_dev
->bus
= bus
;
788 sbridge_dev
->dom
= dom
;
789 sbridge_dev
->n_devs
= table
->n_devs_per_imc
;
790 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
795 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
797 list_del(&sbridge_dev
->list
);
798 kfree(sbridge_dev
->pdev
);
802 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
806 /* Address range is 32:28 */
807 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
808 return GET_TOLM(reg
);
811 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
815 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
816 return GET_TOHM(reg
);
819 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
823 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
825 return GET_TOLM(reg
);
828 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
832 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
834 return GET_TOHM(reg
);
837 static u64
rir_limit(u32 reg
)
839 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
842 static u64
sad_limit(u32 reg
)
844 return (GET_BITFIELD(reg
, 6, 25) << 26) | 0x3ffffff;
847 static u32
interleave_mode(u32 reg
)
849 return GET_BITFIELD(reg
, 1, 1);
852 static u32
dram_attr(u32 reg
)
854 return GET_BITFIELD(reg
, 2, 3);
857 static u64
knl_sad_limit(u32 reg
)
859 return (GET_BITFIELD(reg
, 7, 26) << 26) | 0x3ffffff;
862 static u32
knl_interleave_mode(u32 reg
)
864 return GET_BITFIELD(reg
, 1, 2);
867 static const char * const knl_intlv_mode
[] = {
868 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
871 static const char *get_intlv_mode_str(u32 reg
, enum type t
)
873 if (t
== KNIGHTS_LANDING
)
874 return knl_intlv_mode
[knl_interleave_mode(reg
)];
876 return interleave_mode(reg
) ? "[8:6]" : "[8:6]XOR[18:16]";
879 static u32
dram_attr_knl(u32 reg
)
881 return GET_BITFIELD(reg
, 3, 4);
885 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
890 if (pvt
->pci_ddrio
) {
891 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
893 if (GET_BITFIELD(reg
, 11, 11))
894 /* FIXME: Can also be LRDIMM */
904 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
907 bool registered
= false;
908 enum mem_type mtype
= MEM_UNKNOWN
;
913 pci_read_config_dword(pvt
->pci_ddrio
,
914 HASWELL_DDRCRCLKCONTROLS
, ®
);
916 if (GET_BITFIELD(reg
, 16, 16))
919 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
920 if (GET_BITFIELD(reg
, 14, 14)) {
936 static enum dev_type
knl_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
938 /* for KNL value is fixed */
942 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
944 /* there's no way to figure out */
948 static enum dev_type
__ibridge_get_width(u32 mtr
)
950 enum dev_type type
= DEV_UNKNOWN
;
967 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
970 * ddr3_width on the documentation but also valid for DDR4 on
973 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
976 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
978 /* ddr3_width on the documentation but also valid for DDR4 */
979 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
982 static enum mem_type
knl_get_memory_type(struct sbridge_pvt
*pvt
)
984 /* DDR4 RDIMMS and LRDIMMS are supported */
988 static u8
get_node_id(struct sbridge_pvt
*pvt
)
991 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
992 return GET_BITFIELD(reg
, 0, 2);
995 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
999 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
1000 return GET_BITFIELD(reg
, 0, 3);
1003 static u8
knl_get_node_id(struct sbridge_pvt
*pvt
)
1007 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
1008 return GET_BITFIELD(reg
, 0, 2);
1012 * Use the reporting bank number to determine which memory
1013 * controller (also known as "ha" for "home agent"). Sandy
1014 * Bridge only has one memory controller per socket, so the
1015 * answer is always zero.
1017 static u8
sbridge_get_ha(u8 bank
)
1023 * On Ivy Bridge, Haswell and Broadwell the error may be in a
1024 * home agent bank (7, 8), or one of the per-channel memory
1025 * controller banks (9 .. 16).
1027 static u8
ibridge_get_ha(u8 bank
)
1033 return (bank
- 9) / 4;
1039 /* Not used, but included for safety/symmetry */
1040 static u8
knl_get_ha(u8 bank
)
1045 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
1049 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
1050 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1053 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
1058 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
1059 rc
= GET_BITFIELD(reg
, 26, 31);
1060 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
1061 rc
= ((reg
<< 6) | rc
) << 26;
1063 return rc
| 0x3ffffff;
1066 static u64
knl_get_tolm(struct sbridge_pvt
*pvt
)
1070 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOLM
, ®
);
1071 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1074 static u64
knl_get_tohm(struct sbridge_pvt
*pvt
)
1079 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_0
, ®_lo
);
1080 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_1
, ®_hi
);
1081 rc
= ((u64
)reg_hi
<< 32) | reg_lo
;
1082 return rc
| 0x3ffffff;
1086 static u64
haswell_rir_limit(u32 reg
)
1088 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
1091 static inline u8
sad_pkg_socket(u8 pkg
)
1093 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1094 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
1097 static inline u8
sad_pkg_ha(u8 pkg
)
1099 return (pkg
>> 2) & 0x1;
1102 static int haswell_chan_hash(int idx
, u64 addr
)
1107 * XOR even bits from 12:26 to bit0 of idx,
1108 * odd bits from 13:27 to bit1
1110 for (i
= 12; i
< 28; i
+= 2)
1111 idx
^= (addr
>> i
) & 3;
1116 /* Low bits of TAD limit, and some metadata. */
1117 static const u32 knl_tad_dram_limit_lo
[] = {
1118 0x400, 0x500, 0x600, 0x700,
1119 0x800, 0x900, 0xa00, 0xb00,
1122 /* Low bits of TAD offset. */
1123 static const u32 knl_tad_dram_offset_lo
[] = {
1124 0x404, 0x504, 0x604, 0x704,
1125 0x804, 0x904, 0xa04, 0xb04,
1128 /* High 16 bits of TAD limit and offset. */
1129 static const u32 knl_tad_dram_hi
[] = {
1130 0x408, 0x508, 0x608, 0x708,
1131 0x808, 0x908, 0xa08, 0xb08,
1134 /* Number of ways a tad entry is interleaved. */
1135 static const u32 knl_tad_ways
[] = {
1140 * Retrieve the n'th Target Address Decode table entry
1141 * from the memory controller's TAD table.
1143 * @pvt: driver private data
1144 * @entry: which entry you want to retrieve
1145 * @mc: which memory controller (0 or 1)
1146 * @offset: output tad range offset
1147 * @limit: output address of first byte above tad range
1148 * @ways: output number of interleave ways
1150 * The offset value has curious semantics. It's a sort of running total
1151 * of the sizes of all the memory regions that aren't mapped in this
1154 static int knl_get_tad(const struct sbridge_pvt
*pvt
,
1161 u32 reg_limit_lo
, reg_offset_lo
, reg_hi
;
1162 struct pci_dev
*pci_mc
;
1167 pci_mc
= pvt
->knl
.pci_mc0
;
1170 pci_mc
= pvt
->knl
.pci_mc1
;
1177 pci_read_config_dword(pci_mc
,
1178 knl_tad_dram_limit_lo
[entry
], ®_limit_lo
);
1179 pci_read_config_dword(pci_mc
,
1180 knl_tad_dram_offset_lo
[entry
], ®_offset_lo
);
1181 pci_read_config_dword(pci_mc
,
1182 knl_tad_dram_hi
[entry
], ®_hi
);
1184 /* Is this TAD entry enabled? */
1185 if (!GET_BITFIELD(reg_limit_lo
, 0, 0))
1188 way_id
= GET_BITFIELD(reg_limit_lo
, 3, 5);
1190 if (way_id
< ARRAY_SIZE(knl_tad_ways
)) {
1191 *ways
= knl_tad_ways
[way_id
];
1194 sbridge_printk(KERN_ERR
,
1195 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1201 * The least significant 6 bits of base and limit are truncated.
1202 * For limit, we fill the missing bits with 1s.
1204 *offset
= ((u64
) GET_BITFIELD(reg_offset_lo
, 6, 31) << 6) |
1205 ((u64
) GET_BITFIELD(reg_hi
, 0, 15) << 32);
1206 *limit
= ((u64
) GET_BITFIELD(reg_limit_lo
, 6, 31) << 6) | 63 |
1207 ((u64
) GET_BITFIELD(reg_hi
, 16, 31) << 32);
1212 /* Determine which memory controller is responsible for a given channel. */
1213 static int knl_channel_mc(int channel
)
1215 WARN_ON(channel
< 0 || channel
>= 6);
1217 return channel
< 3 ? 1 : 0;
1221 * Get the Nth entry from EDC_ROUTE_TABLE register.
1222 * (This is the per-tile mapping of logical interleave targets to
1223 * physical EDC modules.)
1235 static u32
knl_get_edc_route(int entry
, u32 reg
)
1237 WARN_ON(entry
>= KNL_MAX_EDCS
);
1238 return GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1242 * Get the Nth entry from MC_ROUTE_TABLE register.
1243 * (This is the per-tile mapping of logical interleave targets to
1244 * physical DRAM channels modules.)
1246 * entry 0: mc 0:2 channel 18:19
1247 * 1: mc 3:5 channel 20:21
1248 * 2: mc 6:8 channel 22:23
1249 * 3: mc 9:11 channel 24:25
1250 * 4: mc 12:14 channel 26:27
1251 * 5: mc 15:17 channel 28:29
1254 * Though we have 3 bits to identify the MC, we should only see
1255 * the values 0 or 1.
1258 static u32
knl_get_mc_route(int entry
, u32 reg
)
1262 WARN_ON(entry
>= KNL_MAX_CHANNELS
);
1264 mc
= GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1265 chan
= GET_BITFIELD(reg
, (entry
*2) + 18, (entry
*2) + 18 + 1);
1267 return knl_channel_remap(mc
, chan
);
1271 * Render the EDC_ROUTE register in human-readable form.
1272 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1274 static void knl_show_edc_route(u32 reg
, char *s
)
1278 for (i
= 0; i
< KNL_MAX_EDCS
; i
++) {
1279 s
[i
*2] = knl_get_edc_route(i
, reg
) + '0';
1283 s
[KNL_MAX_EDCS
*2 - 1] = '\0';
1287 * Render the MC_ROUTE register in human-readable form.
1288 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1290 static void knl_show_mc_route(u32 reg
, char *s
)
1294 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
1295 s
[i
*2] = knl_get_mc_route(i
, reg
) + '0';
1299 s
[KNL_MAX_CHANNELS
*2 - 1] = '\0';
1302 #define KNL_EDC_ROUTE 0xb8
1303 #define KNL_MC_ROUTE 0xb4
1305 /* Is this dram rule backed by regular DRAM in flat mode? */
1306 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1308 /* Is this dram rule cached? */
1309 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1311 /* Is this rule backed by edc ? */
1312 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1314 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1315 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1317 /* Is this rule mod3? */
1318 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1321 * Figure out how big our RAM modules are.
1323 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1324 * have to figure this out from the SAD rules, interleave lists, route tables,
1327 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1328 * inspect the TAD rules to figure out how large the SAD regions really are.
1330 * When we know the real size of a SAD region and how many ways it's
1331 * interleaved, we know the individual contribution of each channel to
1334 * Finally, we have to check whether each channel participates in each SAD
1337 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1338 * much memory the channel uses, we know the DIMM is at least that large.
1339 * (The BIOS might possibly choose not to map all available memory, in which
1340 * case we will underreport the size of the DIMM.)
1342 * In theory, we could try to determine the EDC sizes as well, but that would
1343 * only work in flat mode, not in cache mode.
1345 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1348 static int knl_get_dimm_capacity(struct sbridge_pvt
*pvt
, u64
*mc_sizes
)
1350 u64 sad_base
, sad_limit
= 0;
1351 u64 tad_base
, tad_size
, tad_limit
, tad_deadspace
, tad_livespace
;
1354 int intrlv_ways
, tad_ways
;
1357 u64 sad_actual_size
[2]; /* sad size accounting for holes, per mc */
1358 u32 dram_rule
, interleave_reg
;
1359 u32 mc_route_reg
[KNL_MAX_CHAS
];
1360 u32 edc_route_reg
[KNL_MAX_CHAS
];
1362 char edc_route_string
[KNL_MAX_EDCS
*2];
1363 char mc_route_string
[KNL_MAX_CHANNELS
*2];
1367 int participants
[KNL_MAX_CHANNELS
];
1369 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++)
1372 /* Read the EDC route table in each CHA. */
1374 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1375 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1376 KNL_EDC_ROUTE
, &edc_route_reg
[i
]);
1378 if (i
> 0 && edc_route_reg
[i
] != edc_route_reg
[i
-1]) {
1379 knl_show_edc_route(edc_route_reg
[i
-1],
1381 if (cur_reg_start
== i
-1)
1382 edac_dbg(0, "edc route table for CHA %d: %s\n",
1383 cur_reg_start
, edc_route_string
);
1385 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1386 cur_reg_start
, i
-1, edc_route_string
);
1390 knl_show_edc_route(edc_route_reg
[i
-1], edc_route_string
);
1391 if (cur_reg_start
== i
-1)
1392 edac_dbg(0, "edc route table for CHA %d: %s\n",
1393 cur_reg_start
, edc_route_string
);
1395 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1396 cur_reg_start
, i
-1, edc_route_string
);
1398 /* Read the MC route table in each CHA. */
1400 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1401 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1402 KNL_MC_ROUTE
, &mc_route_reg
[i
]);
1404 if (i
> 0 && mc_route_reg
[i
] != mc_route_reg
[i
-1]) {
1405 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1406 if (cur_reg_start
== i
-1)
1407 edac_dbg(0, "mc route table for CHA %d: %s\n",
1408 cur_reg_start
, mc_route_string
);
1410 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1411 cur_reg_start
, i
-1, mc_route_string
);
1415 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1416 if (cur_reg_start
== i
-1)
1417 edac_dbg(0, "mc route table for CHA %d: %s\n",
1418 cur_reg_start
, mc_route_string
);
1420 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1421 cur_reg_start
, i
-1, mc_route_string
);
1423 /* Process DRAM rules */
1424 for (sad_rule
= 0; sad_rule
< pvt
->info
.max_sad
; sad_rule
++) {
1425 /* previous limit becomes the new base */
1426 sad_base
= sad_limit
;
1428 pci_read_config_dword(pvt
->pci_sad0
,
1429 pvt
->info
.dram_rule
[sad_rule
], &dram_rule
);
1431 if (!DRAM_RULE_ENABLE(dram_rule
))
1434 edram_only
= KNL_EDRAM_ONLY(dram_rule
);
1436 sad_limit
= pvt
->info
.sad_limit(dram_rule
)+1;
1438 pci_read_config_dword(pvt
->pci_sad0
,
1439 pvt
->info
.interleave_list
[sad_rule
], &interleave_reg
);
1442 * Find out how many ways this dram rule is interleaved.
1443 * We stop when we see the first channel again.
1445 first_pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1447 for (intrlv_ways
= 1; intrlv_ways
< 8; intrlv_ways
++) {
1448 pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1449 interleave_reg
, intrlv_ways
);
1451 if ((pkg
& 0x8) == 0) {
1453 * 0 bit means memory is non-local,
1454 * which KNL doesn't support
1456 edac_dbg(0, "Unexpected interleave target %d\n",
1461 if (pkg
== first_pkg
)
1464 if (KNL_MOD3(dram_rule
))
1467 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1472 edram_only
? ", EDRAM" : "");
1475 * Find out how big the SAD region really is by iterating
1476 * over TAD tables (SAD regions may contain holes).
1477 * Each memory controller might have a different TAD table, so
1478 * we have to look at both.
1480 * Livespace is the memory that's mapped in this TAD table,
1481 * deadspace is the holes (this could be the MMIO hole, or it
1482 * could be memory that's mapped by the other TAD table but
1485 for (mc
= 0; mc
< 2; mc
++) {
1486 sad_actual_size
[mc
] = 0;
1489 tad_rule
< ARRAY_SIZE(
1490 knl_tad_dram_limit_lo
);
1492 if (knl_get_tad(pvt
,
1500 tad_size
= (tad_limit
+1) -
1501 (tad_livespace
+ tad_deadspace
);
1502 tad_livespace
+= tad_size
;
1503 tad_base
= (tad_limit
+1) - tad_size
;
1505 if (tad_base
< sad_base
) {
1506 if (tad_limit
> sad_base
)
1507 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1508 } else if (tad_base
< sad_limit
) {
1509 if (tad_limit
+1 > sad_limit
) {
1510 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1512 /* TAD region is completely inside SAD region */
1513 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1515 tad_limit
, tad_size
,
1517 sad_actual_size
[mc
] += tad_size
;
1523 for (mc
= 0; mc
< 2; mc
++) {
1524 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1525 mc
, sad_actual_size
[mc
], sad_actual_size
[mc
]);
1528 /* Ignore EDRAM rule */
1532 /* Figure out which channels participate in interleave. */
1533 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++)
1534 participants
[channel
] = 0;
1536 /* For each channel, does at least one CHA have
1537 * this channel mapped to the given target?
1539 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1543 for (target
= 0; target
< KNL_MAX_CHANNELS
; target
++) {
1544 for (cha
= 0; cha
< KNL_MAX_CHAS
; cha
++) {
1545 if (knl_get_mc_route(target
,
1546 mc_route_reg
[cha
]) == channel
1547 && !participants
[channel
]) {
1548 participants
[channel
] = 1;
1555 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1556 mc
= knl_channel_mc(channel
);
1557 if (participants
[channel
]) {
1558 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1560 sad_actual_size
[mc
]/intrlv_ways
,
1562 mc_sizes
[channel
] +=
1563 sad_actual_size
[mc
]/intrlv_ways
;
1571 static void get_source_id(struct mem_ctl_info
*mci
)
1573 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1576 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
||
1577 pvt
->info
.type
== KNIGHTS_LANDING
)
1578 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
1580 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
1582 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1583 pvt
->sbridge_dev
->source_id
= SOURCE_ID_KNL(reg
);
1585 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
1588 static int __populate_dimms(struct mem_ctl_info
*mci
,
1589 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
],
1590 enum edac_type mode
)
1592 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1593 int channels
= pvt
->info
.type
== KNIGHTS_LANDING
? KNL_MAX_CHANNELS
1595 unsigned int i
, j
, banks
, ranks
, rows
, cols
, npages
;
1596 struct dimm_info
*dimm
;
1597 enum mem_type mtype
;
1600 mtype
= pvt
->info
.get_memory_type(pvt
);
1601 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
1602 edac_dbg(0, "Memory is registered\n");
1603 else if (mtype
== MEM_UNKNOWN
)
1604 edac_dbg(0, "Cannot determine memory type\n");
1606 edac_dbg(0, "Memory is unregistered\n");
1608 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
1613 for (i
= 0; i
< channels
; i
++) {
1616 int max_dimms_per_channel
;
1618 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1619 max_dimms_per_channel
= 1;
1620 if (!pvt
->knl
.pci_channel
[i
])
1623 max_dimms_per_channel
= ARRAY_SIZE(mtr_regs
);
1624 if (!pvt
->pci_tad
[i
])
1626 pci_read_config_dword(pvt
->pci_tad
[i
], 0x8c, &amap
);
1629 for (j
= 0; j
< max_dimms_per_channel
; j
++) {
1630 dimm
= edac_get_dimm(mci
, i
, j
, 0);
1631 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1632 pci_read_config_dword(pvt
->knl
.pci_channel
[i
],
1635 pci_read_config_dword(pvt
->pci_tad
[i
],
1638 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1640 if (IS_DIMM_PRESENT(mtr
)) {
1641 if (!IS_ECC_ENABLED(pvt
->info
.mcmtr
)) {
1642 sbridge_printk(KERN_ERR
, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1643 pvt
->sbridge_dev
->source_id
,
1644 pvt
->sbridge_dev
->dom
, i
);
1647 pvt
->channel
[i
].dimms
++;
1649 ranks
= numrank(pvt
->info
.type
, mtr
);
1651 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1652 /* For DDR4, this is fixed. */
1654 rows
= knl_mc_sizes
[i
] /
1655 ((u64
) cols
* ranks
* banks
* 8);
1661 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1662 npages
= MiB_TO_PAGES(size
);
1664 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1665 pvt
->sbridge_dev
->mc
, pvt
->sbridge_dev
->dom
, i
, j
,
1667 banks
, ranks
, rows
, cols
);
1669 dimm
->nr_pages
= npages
;
1671 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1672 dimm
->mtype
= mtype
;
1673 dimm
->edac_mode
= mode
;
1674 pvt
->channel
[i
].dimm
[j
].rowbits
= order_base_2(rows
);
1675 pvt
->channel
[i
].dimm
[j
].colbits
= order_base_2(cols
);
1676 pvt
->channel
[i
].dimm
[j
].bank_xor_enable
=
1677 GET_BITFIELD(pvt
->info
.mcmtr
, 9, 9);
1678 pvt
->channel
[i
].dimm
[j
].amap_fine
= GET_BITFIELD(amap
, 0, 0);
1679 snprintf(dimm
->label
, sizeof(dimm
->label
),
1680 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1681 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
, i
, j
);
1689 static int get_dimm_config(struct mem_ctl_info
*mci
)
1691 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1692 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
];
1693 enum edac_type mode
;
1696 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
1697 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1698 pvt
->sbridge_dev
->mc
,
1699 pvt
->sbridge_dev
->node_id
,
1700 pvt
->sbridge_dev
->source_id
);
1702 /* KNL doesn't support mirroring or lockstep,
1703 * and is always closed page
1705 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1706 mode
= EDAC_S4ECD4ED
;
1707 pvt
->mirror_mode
= NON_MIRRORING
;
1708 pvt
->is_cur_addr_mirrored
= false;
1710 if (knl_get_dimm_capacity(pvt
, knl_mc_sizes
) != 0)
1712 if (pci_read_config_dword(pvt
->pci_ta
, KNL_MCMTR
, &pvt
->info
.mcmtr
)) {
1713 edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1717 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1718 if (pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
)) {
1719 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1722 pvt
->is_chan_hash
= GET_BITFIELD(reg
, 21, 21);
1723 if (GET_BITFIELD(reg
, 28, 28)) {
1724 pvt
->mirror_mode
= ADDR_RANGE_MIRRORING
;
1725 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1729 if (pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
)) {
1730 edac_dbg(0, "Failed to read RASENABLES register\n");
1733 if (IS_MIRROR_ENABLED(reg
)) {
1734 pvt
->mirror_mode
= FULL_MIRRORING
;
1735 edac_dbg(0, "Full memory mirroring is enabled\n");
1737 pvt
->mirror_mode
= NON_MIRRORING
;
1738 edac_dbg(0, "Memory mirroring is disabled\n");
1742 if (pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
)) {
1743 edac_dbg(0, "Failed to read MCMTR register\n");
1746 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
1747 edac_dbg(0, "Lockstep is enabled\n");
1748 mode
= EDAC_S8ECD8ED
;
1749 pvt
->is_lockstep
= true;
1751 edac_dbg(0, "Lockstep is disabled\n");
1752 mode
= EDAC_S4ECD4ED
;
1753 pvt
->is_lockstep
= false;
1755 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
1756 edac_dbg(0, "address map is on closed page mode\n");
1757 pvt
->is_close_pg
= true;
1759 edac_dbg(0, "address map is on open page mode\n");
1760 pvt
->is_close_pg
= false;
1764 return __populate_dimms(mci
, knl_mc_sizes
, mode
);
1767 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1769 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1770 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1778 * Step 1) Get TOLM/TOHM ranges
1781 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1782 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1784 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1785 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1786 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1788 /* Address range is already 45:25 */
1789 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1790 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1792 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1793 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1794 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1797 * Step 2) Get SAD range and SAD Interleave list
1798 * TAD registers contain the interleave wayness. However, it
1799 * seems simpler to just discover it indirectly, with the
1803 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1804 /* SAD_LIMIT Address range is 45:26 */
1805 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1807 limit
= pvt
->info
.sad_limit(reg
);
1809 if (!DRAM_RULE_ENABLE(reg
))
1815 tmp_mb
= (limit
+ 1) >> 20;
1816 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1817 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1819 show_dram_attr(pvt
->info
.dram_attr(reg
)),
1821 ((u64
)tmp_mb
) << 20L,
1822 get_intlv_mode_str(reg
, pvt
->info
.type
),
1826 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1828 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1829 for (j
= 0; j
< 8; j
++) {
1830 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1831 if (j
> 0 && sad_interl
== pkg
)
1834 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1839 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1843 * Step 3) Get TAD range
1846 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1847 pci_read_config_dword(pvt
->pci_ha
, tad_dram_rule
[n_tads
], ®
);
1848 limit
= TAD_LIMIT(reg
);
1851 tmp_mb
= (limit
+ 1) >> 20;
1853 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1854 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1855 n_tads
, gb
, (mb
*1000)/1024,
1856 ((u64
)tmp_mb
) << 20L,
1857 (u32
)(1 << TAD_SOCK(reg
)),
1858 (u32
)TAD_CH(reg
) + 1,
1868 * Step 4) Get TAD offsets, per each channel
1870 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1871 if (!pvt
->channel
[i
].dimms
)
1873 for (j
= 0; j
< n_tads
; j
++) {
1874 pci_read_config_dword(pvt
->pci_tad
[i
],
1875 tad_ch_nilv_offset
[j
],
1877 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1878 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1879 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1882 ((u64
)tmp_mb
) << 20L,
1888 * Step 6) Get RIR Wayness/Limit, per each channel
1890 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1891 if (!pvt
->channel
[i
].dimms
)
1893 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1894 pci_read_config_dword(pvt
->pci_tad
[i
],
1898 if (!IS_RIR_VALID(reg
))
1901 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1902 rir_way
= 1 << RIR_WAY(reg
);
1903 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1904 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1907 ((u64
)tmp_mb
) << 20L,
1911 for (k
= 0; k
< rir_way
; k
++) {
1912 pci_read_config_dword(pvt
->pci_tad
[i
],
1915 tmp_mb
= RIR_OFFSET(pvt
->info
.type
, reg
) << 6;
1917 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1918 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1921 ((u64
)tmp_mb
) << 20L,
1922 (u32
)RIR_RNK_TGT(pvt
->info
.type
, reg
),
1929 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
, u8 ha
)
1931 struct sbridge_dev
*sbridge_dev
;
1933 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1934 if (sbridge_dev
->node_id
== node_id
&& sbridge_dev
->dom
== ha
)
1935 return sbridge_dev
->mci
;
1940 static u8 sb_close_row
[] = {
1941 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
1944 static u8 sb_close_column
[] = {
1945 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
1948 static u8 sb_open_row
[] = {
1949 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
1952 static u8 sb_open_column
[] = {
1953 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1956 static u8 sb_open_fine_column
[] = {
1957 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
1960 static int sb_bits(u64 addr
, int nbits
, u8
*bits
)
1964 for (i
= 0; i
< nbits
; i
++)
1965 res
|= ((addr
>> bits
[i
]) & 1) << i
;
1969 static int sb_bank_bits(u64 addr
, int b0
, int b1
, int do_xor
, int x0
, int x1
)
1971 int ret
= GET_BITFIELD(addr
, b0
, b0
) | (GET_BITFIELD(addr
, b1
, b1
) << 1);
1974 ret
^= GET_BITFIELD(addr
, x0
, x0
) | (GET_BITFIELD(addr
, x1
, x1
) << 1);
1979 static bool sb_decode_ddr4(struct mem_ctl_info
*mci
, int ch
, u8 rank
,
1980 u64 rank_addr
, char *msg
)
1983 int row
, col
, bank_address
, bank_group
;
1984 struct sbridge_pvt
*pvt
;
1985 u32 bg0
= 0, rowbits
= 0, colbits
= 0;
1986 u32 amap_fine
= 0, bank_xor_enable
= 0;
1988 dimmno
= (rank
< 12) ? rank
/ 4 : 2;
1989 pvt
= mci
->pvt_info
;
1990 amap_fine
= pvt
->channel
[ch
].dimm
[dimmno
].amap_fine
;
1991 bg0
= amap_fine
? 6 : 13;
1992 rowbits
= pvt
->channel
[ch
].dimm
[dimmno
].rowbits
;
1993 colbits
= pvt
->channel
[ch
].dimm
[dimmno
].colbits
;
1994 bank_xor_enable
= pvt
->channel
[ch
].dimm
[dimmno
].bank_xor_enable
;
1996 if (pvt
->is_lockstep
) {
1997 pr_warn_once("LockStep row/column decode is not supported yet!\n");
2002 if (pvt
->is_close_pg
) {
2003 row
= sb_bits(rank_addr
, rowbits
, sb_close_row
);
2004 col
= sb_bits(rank_addr
, colbits
, sb_close_column
);
2005 col
|= 0x400; /* C10 is autoprecharge, always set */
2006 bank_address
= sb_bank_bits(rank_addr
, 8, 9, bank_xor_enable
, 22, 28);
2007 bank_group
= sb_bank_bits(rank_addr
, 6, 7, bank_xor_enable
, 20, 21);
2009 row
= sb_bits(rank_addr
, rowbits
, sb_open_row
);
2011 col
= sb_bits(rank_addr
, colbits
, sb_open_fine_column
);
2013 col
= sb_bits(rank_addr
, colbits
, sb_open_column
);
2014 bank_address
= sb_bank_bits(rank_addr
, 18, 19, bank_xor_enable
, 22, 23);
2015 bank_group
= sb_bank_bits(rank_addr
, bg0
, 17, bank_xor_enable
, 20, 21);
2018 row
&= (1u << rowbits
) - 1;
2020 sprintf(msg
, "row:0x%x col:0x%x bank_addr:%d bank_group:%d",
2021 row
, col
, bank_address
, bank_group
);
2025 static bool sb_decode_ddr3(struct mem_ctl_info
*mci
, int ch
, u8 rank
,
2026 u64 rank_addr
, char *msg
)
2028 pr_warn_once("DDR3 row/column decode not support yet!\n");
2033 static int get_memory_error_data(struct mem_ctl_info
*mci
,
2038 char **area_type
, char *msg
)
2040 struct mem_ctl_info
*new_mci
;
2041 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2042 struct pci_dev
*pci_ha
;
2043 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
2044 int sad_interl
, idx
, base_ch
;
2045 int interleave_mode
, shiftup
= 0;
2046 unsigned int sad_interleave
[MAX_INTERLEAVE
];
2048 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0, rankid
= 0;
2052 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
2054 enum mem_type mtype
;
2057 * Step 0) Check if the address is at special memory ranges
2058 * The check bellow is probably enough to fill all cases where
2059 * the error is not inside a memory, except for the legacy
2060 * range (e. g. VGA addresses). It is unlikely, however, that the
2061 * memory controller would generate an error on that range.
2063 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
2064 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
2067 if (addr
>= (u64
)pvt
->tohm
) {
2068 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
2073 * Step 1) Get socket
2075 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
2076 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
2079 if (!DRAM_RULE_ENABLE(reg
))
2082 limit
= pvt
->info
.sad_limit(reg
);
2084 sprintf(msg
, "Can't discover the memory socket");
2091 if (n_sads
== pvt
->info
.max_sad
) {
2092 sprintf(msg
, "Can't discover the memory socket");
2096 *area_type
= show_dram_attr(pvt
->info
.dram_attr(dram_rule
));
2097 interleave_mode
= pvt
->info
.interleave_mode(dram_rule
);
2099 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
2102 if (pvt
->info
.type
== SANDY_BRIDGE
) {
2103 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
2104 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
2105 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
2106 if (sad_way
> 0 && sad_interl
== pkg
)
2108 sad_interleave
[sad_way
] = pkg
;
2109 edac_dbg(0, "SAD interleave #%d: %d\n",
2110 sad_way
, sad_interleave
[sad_way
]);
2112 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2113 pvt
->sbridge_dev
->mc
,
2118 !interleave_mode
? "" : "XOR[18:16]");
2119 if (interleave_mode
)
2120 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
2122 idx
= (addr
>> 6) & 7;
2136 sprintf(msg
, "Can't discover socket interleave");
2139 *socket
= sad_interleave
[idx
];
2140 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2141 idx
, sad_way
, *socket
);
2142 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
2143 int bits
, a7mode
= A7MODE(dram_rule
);
2146 /* A7 mode swaps P9 with P6 */
2147 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
2148 bits
|= GET_BITFIELD(addr
, 9, 9);
2150 bits
= GET_BITFIELD(addr
, 6, 8);
2152 if (interleave_mode
== 0) {
2153 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2154 idx
= GET_BITFIELD(addr
, 16, 18);
2159 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2160 *socket
= sad_pkg_socket(pkg
);
2161 sad_ha
= sad_pkg_ha(pkg
);
2164 /* MCChanShiftUpEnable */
2165 pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
);
2166 shiftup
= GET_BITFIELD(reg
, 22, 22);
2169 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2170 idx
, *socket
, sad_ha
, shiftup
);
2172 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2173 idx
= (addr
>> 6) & 7;
2174 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2175 *socket
= sad_pkg_socket(pkg
);
2176 sad_ha
= sad_pkg_ha(pkg
);
2177 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2178 idx
, *socket
, sad_ha
);
2184 * Move to the proper node structure, in order to access the
2185 * right PCI registers
2187 new_mci
= get_mci_for_node_id(*socket
, sad_ha
);
2189 sprintf(msg
, "Struct for socket #%u wasn't initialized",
2194 pvt
= mci
->pvt_info
;
2197 * Step 2) Get memory channel
2200 pci_ha
= pvt
->pci_ha
;
2201 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
2202 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
2203 limit
= TAD_LIMIT(reg
);
2205 sprintf(msg
, "Can't discover the memory channel");
2212 if (n_tads
== MAX_TAD
) {
2213 sprintf(msg
, "Can't discover the memory channel");
2217 ch_way
= TAD_CH(reg
) + 1;
2218 sck_way
= TAD_SOCK(reg
);
2223 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
2224 if (pvt
->is_chan_hash
)
2225 idx
= haswell_chan_hash(idx
, addr
);
2230 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2234 base_ch
= TAD_TGT0(reg
);
2237 base_ch
= TAD_TGT1(reg
);
2240 base_ch
= TAD_TGT2(reg
);
2243 base_ch
= TAD_TGT3(reg
);
2246 sprintf(msg
, "Can't discover the TAD target");
2249 *channel_mask
= 1 << base_ch
;
2251 pci_read_config_dword(pvt
->pci_tad
[base_ch
], tad_ch_nilv_offset
[n_tads
], &tad_offset
);
2253 if (pvt
->mirror_mode
== FULL_MIRRORING
||
2254 (pvt
->mirror_mode
== ADDR_RANGE_MIRRORING
&& n_tads
== 0)) {
2255 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
2259 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
2262 sprintf(msg
, "Invalid mirror set. Can't decode addr");
2266 pvt
->is_cur_addr_mirrored
= true;
2268 sck_xch
= (1 << sck_way
) * ch_way
;
2269 pvt
->is_cur_addr_mirrored
= false;
2272 if (pvt
->is_lockstep
)
2273 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
2275 offset
= TAD_OFFSET(tad_offset
);
2277 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2288 /* Calculate channel address */
2289 /* Remove the TAD offset */
2291 if (offset
> addr
) {
2292 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2297 ch_addr
= addr
- offset
;
2298 ch_addr
>>= (6 + shiftup
);
2300 ch_addr
<<= (6 + shiftup
);
2301 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
2304 * Step 3) Decode rank
2306 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
2307 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_way_limit
[n_rir
], ®
);
2309 if (!IS_RIR_VALID(reg
))
2312 limit
= pvt
->info
.rir_limit(reg
);
2313 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
2314 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2319 if (ch_addr
<= limit
)
2322 if (n_rir
== MAX_RIR_RANGES
) {
2323 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
2327 rir_way
= RIR_WAY(reg
);
2329 if (pvt
->is_close_pg
)
2330 idx
= (ch_addr
>> 6);
2332 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
2333 idx
%= 1 << rir_way
;
2335 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_offset
[n_rir
][idx
], ®
);
2336 *rank
= RIR_RNK_TGT(pvt
->info
.type
, reg
);
2338 if (pvt
->info
.type
== BROADWELL
) {
2339 if (pvt
->is_close_pg
)
2344 rank_addr
= ch_addr
>> shiftup
;
2345 rank_addr
/= (1 << rir_way
);
2346 rank_addr
<<= shiftup
;
2347 rank_addr
|= ch_addr
& GENMASK_ULL(shiftup
- 1, 0);
2348 rank_addr
-= RIR_OFFSET(pvt
->info
.type
, reg
);
2350 mtype
= pvt
->info
.get_memory_type(pvt
);
2352 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
2353 sb_decode_ddr4(mci
, base_ch
, rankid
, rank_addr
, msg
);
2355 sb_decode_ddr3(mci
, base_ch
, rankid
, rank_addr
, msg
);
2360 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2370 static int get_memory_error_data_from_mce(struct mem_ctl_info
*mci
,
2371 const struct mce
*m
, u8
*socket
,
2372 u8
*ha
, long *channel_mask
,
2375 u32 reg
, channel
= GET_BITFIELD(m
->status
, 0, 3);
2376 struct mem_ctl_info
*new_mci
;
2377 struct sbridge_pvt
*pvt
;
2378 struct pci_dev
*pci_ha
;
2381 if (channel
>= NUM_CHANNELS
) {
2382 sprintf(msg
, "Invalid channel 0x%x", channel
);
2386 pvt
= mci
->pvt_info
;
2387 if (!pvt
->info
.get_ha
) {
2388 sprintf(msg
, "No get_ha()");
2391 *ha
= pvt
->info
.get_ha(m
->bank
);
2392 if (*ha
!= 0 && *ha
!= 1) {
2393 sprintf(msg
, "Impossible bank %d", m
->bank
);
2397 *socket
= m
->socketid
;
2398 new_mci
= get_mci_for_node_id(*socket
, *ha
);
2400 strcpy(msg
, "mci socket got corrupted!");
2404 pvt
= new_mci
->pvt_info
;
2405 pci_ha
= pvt
->pci_ha
;
2406 pci_read_config_dword(pci_ha
, tad_dram_rule
[0], ®
);
2407 tad0
= m
->addr
<= TAD_LIMIT(reg
);
2409 *channel_mask
= 1 << channel
;
2410 if (pvt
->mirror_mode
== FULL_MIRRORING
||
2411 (pvt
->mirror_mode
== ADDR_RANGE_MIRRORING
&& tad0
)) {
2412 *channel_mask
|= 1 << ((channel
+ 2) % 4);
2413 pvt
->is_cur_addr_mirrored
= true;
2415 pvt
->is_cur_addr_mirrored
= false;
2418 if (pvt
->is_lockstep
)
2419 *channel_mask
|= 1 << ((channel
+ 1) % 4);
2424 /****************************************************************************
2425 Device initialization routines: put/get, init/exit
2426 ****************************************************************************/
2429 * sbridge_put_all_devices 'put' all the devices that we have
2430 * reserved via 'get'
2432 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
2437 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2438 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
2441 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2443 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
2448 static void sbridge_put_all_devices(void)
2450 struct sbridge_dev
*sbridge_dev
, *tmp
;
2452 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
2453 sbridge_put_devices(sbridge_dev
);
2454 free_sbridge_dev(sbridge_dev
);
2458 static int sbridge_get_onedevice(struct pci_dev
**prev
,
2460 const struct pci_id_table
*table
,
2461 const unsigned devno
,
2462 const int multi_bus
)
2464 struct sbridge_dev
*sbridge_dev
= NULL
;
2465 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
2466 struct pci_dev
*pdev
= NULL
;
2471 sbridge_printk(KERN_DEBUG
,
2472 "Seeking for: PCI ID %04x:%04x\n",
2473 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2475 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2476 dev_descr
->dev_id
, *prev
);
2484 if (dev_descr
->optional
)
2487 /* if the HA wasn't found */
2491 sbridge_printk(KERN_INFO
,
2492 "Device not found: %04x:%04x\n",
2493 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2495 /* End of list, leave */
2498 seg
= pci_domain_nr(pdev
->bus
);
2499 bus
= pdev
->bus
->number
;
2502 sbridge_dev
= get_sbridge_dev(seg
, bus
, dev_descr
->dom
,
2503 multi_bus
, sbridge_dev
);
2505 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2506 if (dev_descr
->dom
== IMC1
&& devno
!= 1) {
2507 edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2508 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2513 if (dev_descr
->dom
== SOCK
)
2516 sbridge_dev
= alloc_sbridge_dev(seg
, bus
, dev_descr
->dom
, table
);
2524 if (sbridge_dev
->pdev
[sbridge_dev
->i_devs
]) {
2525 sbridge_printk(KERN_ERR
,
2526 "Duplicated device for %04x:%04x\n",
2527 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2532 sbridge_dev
->pdev
[sbridge_dev
->i_devs
++] = pdev
;
2534 /* pdev belongs to more than one IMC, do extra gets */
2538 if (dev_descr
->dom
== SOCK
&& i
< table
->n_imcs_per_sock
)
2542 /* Be sure that the device is enabled */
2543 if (unlikely(pci_enable_device(pdev
) < 0)) {
2544 sbridge_printk(KERN_ERR
,
2545 "Couldn't enable %04x:%04x\n",
2546 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2550 edac_dbg(0, "Detected %04x:%04x\n",
2551 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2554 * As stated on drivers/pci/search.c, the reference count for
2555 * @from is always decremented if it is not %NULL. So, as we need
2556 * to get all devices up to null, we need to do a get for the device
2566 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2567 * devices we want to reference for this driver.
2568 * @num_mc: pointer to the memory controllers count, to be incremented in case
2570 * @table: model specific table
2572 * returns 0 in case of success or error code
2574 static int sbridge_get_all_devices(u8
*num_mc
,
2575 const struct pci_id_table
*table
)
2578 struct pci_dev
*pdev
= NULL
;
2582 if (table
->type
== KNIGHTS_LANDING
)
2583 allow_dups
= multi_bus
= 1;
2584 while (table
&& table
->descr
) {
2585 for (i
= 0; i
< table
->n_devs_per_sock
; i
++) {
2586 if (!allow_dups
|| i
== 0 ||
2587 table
->descr
[i
].dev_id
!=
2588 table
->descr
[i
-1].dev_id
) {
2592 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
2593 table
, i
, multi_bus
);
2596 i
= table
->n_devs_per_sock
;
2599 sbridge_put_all_devices();
2602 } while (pdev
&& !allow_dups
);
2611 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2612 * the format: XXXa. So we can convert from a device to the corresponding
2615 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2617 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2618 struct sbridge_dev
*sbridge_dev
)
2620 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2621 struct pci_dev
*pdev
;
2622 u8 saw_chan_mask
= 0;
2625 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2626 pdev
= sbridge_dev
->pdev
[i
];
2630 switch (pdev
->device
) {
2631 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
2632 pvt
->pci_sad0
= pdev
;
2634 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
2635 pvt
->pci_sad1
= pdev
;
2637 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
2638 pvt
->pci_br0
= pdev
;
2640 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2643 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2646 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
2647 pvt
->pci_ras
= pdev
;
2649 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
2650 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
2651 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
2652 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
2654 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2655 pvt
->pci_tad
[id
] = pdev
;
2656 saw_chan_mask
|= 1 << id
;
2659 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
2660 pvt
->pci_ddrio
= pdev
;
2666 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2667 pdev
->vendor
, pdev
->device
,
2672 /* Check if everything were registered */
2673 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha
||
2674 !pvt
->pci_ras
|| !pvt
->pci_ta
)
2677 if (saw_chan_mask
!= 0x0f)
2682 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2686 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
2687 PCI_VENDOR_ID_INTEL
, pdev
->device
);
2691 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2692 struct sbridge_dev
*sbridge_dev
)
2694 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2695 struct pci_dev
*pdev
;
2696 u8 saw_chan_mask
= 0;
2699 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2700 pdev
= sbridge_dev
->pdev
[i
];
2704 switch (pdev
->device
) {
2705 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
2706 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
2709 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2710 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
:
2713 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
2714 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
:
2715 pvt
->pci_ras
= pdev
;
2717 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
2718 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
2719 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
2720 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
2721 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
2722 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
2723 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
2724 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
2726 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2727 pvt
->pci_tad
[id
] = pdev
;
2728 saw_chan_mask
|= 1 << id
;
2731 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
2732 pvt
->pci_ddrio
= pdev
;
2734 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
2735 pvt
->pci_ddrio
= pdev
;
2737 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
2738 pvt
->pci_sad0
= pdev
;
2740 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
2741 pvt
->pci_br0
= pdev
;
2743 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
2744 pvt
->pci_br1
= pdev
;
2750 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2752 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2756 /* Check if everything were registered */
2757 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_br0
||
2758 !pvt
->pci_br1
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
2761 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2762 saw_chan_mask
!= 0x03) /* -EP */
2767 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2771 sbridge_printk(KERN_ERR
,
2772 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
2777 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
2778 struct sbridge_dev
*sbridge_dev
)
2780 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2781 struct pci_dev
*pdev
;
2782 u8 saw_chan_mask
= 0;
2785 /* there's only one device per system; not tied to any bus */
2786 if (pvt
->info
.pci_vtd
== NULL
)
2787 /* result will be checked later */
2788 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2789 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
2792 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2793 pdev
= sbridge_dev
->pdev
[i
];
2797 switch (pdev
->device
) {
2798 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
2799 pvt
->pci_sad0
= pdev
;
2801 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
2802 pvt
->pci_sad1
= pdev
;
2804 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2805 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
2808 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
2809 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
2812 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
:
2813 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
:
2814 pvt
->pci_ras
= pdev
;
2816 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
2817 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
2818 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
2819 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
2820 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
2821 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
2822 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
2823 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
2825 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2826 pvt
->pci_tad
[id
] = pdev
;
2827 saw_chan_mask
|= 1 << id
;
2830 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
2831 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
2832 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
2833 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
2834 if (!pvt
->pci_ddrio
)
2835 pvt
->pci_ddrio
= pdev
;
2841 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2843 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2847 /* Check if everything were registered */
2848 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2849 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2852 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2853 saw_chan_mask
!= 0x03) /* -EP */
2858 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2862 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
2863 struct sbridge_dev
*sbridge_dev
)
2865 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2866 struct pci_dev
*pdev
;
2867 u8 saw_chan_mask
= 0;
2870 /* there's only one device per system; not tied to any bus */
2871 if (pvt
->info
.pci_vtd
== NULL
)
2872 /* result will be checked later */
2873 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2874 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
2877 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2878 pdev
= sbridge_dev
->pdev
[i
];
2882 switch (pdev
->device
) {
2883 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
2884 pvt
->pci_sad0
= pdev
;
2886 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
2887 pvt
->pci_sad1
= pdev
;
2889 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2890 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2893 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
2894 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2897 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
:
2898 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
:
2899 pvt
->pci_ras
= pdev
;
2901 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
2902 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
2903 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
2904 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
2905 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
2906 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
2907 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
2908 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2910 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2911 pvt
->pci_tad
[id
] = pdev
;
2912 saw_chan_mask
|= 1 << id
;
2915 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2916 pvt
->pci_ddrio
= pdev
;
2922 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2924 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2928 /* Check if everything were registered */
2929 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2930 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2933 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2934 saw_chan_mask
!= 0x03) /* -EP */
2939 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2943 static int knl_mci_bind_devs(struct mem_ctl_info
*mci
,
2944 struct sbridge_dev
*sbridge_dev
)
2946 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2947 struct pci_dev
*pdev
;
2953 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2954 pdev
= sbridge_dev
->pdev
[i
];
2958 /* Extract PCI device and function. */
2959 dev
= (pdev
->devfn
>> 3) & 0x1f;
2960 func
= pdev
->devfn
& 0x7;
2962 switch (pdev
->device
) {
2963 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC
:
2965 pvt
->knl
.pci_mc0
= pdev
;
2967 pvt
->knl
.pci_mc1
= pdev
;
2969 sbridge_printk(KERN_ERR
,
2970 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2976 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
2977 pvt
->pci_sad0
= pdev
;
2980 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
:
2981 pvt
->pci_sad1
= pdev
;
2984 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
:
2985 /* There are one of these per tile, and range from
2988 devidx
= ((dev
-14)*8)+func
;
2990 if (devidx
< 0 || devidx
>= KNL_MAX_CHAS
) {
2991 sbridge_printk(KERN_ERR
,
2992 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2997 WARN_ON(pvt
->knl
.pci_cha
[devidx
] != NULL
);
2999 pvt
->knl
.pci_cha
[devidx
] = pdev
;
3002 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
:
3006 * MC0 channels 0-2 are device 9 function 2-4,
3007 * MC1 channels 3-5 are device 8 function 2-4.
3013 devidx
= 3 + (func
-2);
3015 if (devidx
< 0 || devidx
>= KNL_MAX_CHANNELS
) {
3016 sbridge_printk(KERN_ERR
,
3017 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
3022 WARN_ON(pvt
->knl
.pci_channel
[devidx
] != NULL
);
3023 pvt
->knl
.pci_channel
[devidx
] = pdev
;
3026 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
:
3027 pvt
->knl
.pci_mc_info
= pdev
;
3030 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA
:
3035 sbridge_printk(KERN_ERR
, "Unexpected device %d\n",
3041 if (!pvt
->knl
.pci_mc0
|| !pvt
->knl
.pci_mc1
||
3042 !pvt
->pci_sad0
|| !pvt
->pci_sad1
||
3047 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
3048 if (!pvt
->knl
.pci_channel
[i
]) {
3049 sbridge_printk(KERN_ERR
, "Missing channel %d\n", i
);
3054 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
3055 if (!pvt
->knl
.pci_cha
[i
]) {
3056 sbridge_printk(KERN_ERR
, "Missing CHA %d\n", i
);
3064 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
3068 /****************************************************************************
3069 Error check routines
3070 ****************************************************************************/
3073 * While Sandy Bridge has error count registers, SMI BIOS read values from
3074 * and resets the counters. So, they are not reliable for the OS to read
3075 * from them. So, we have no option but to just trust on whatever MCE is
3076 * telling us about the errors.
3078 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
3079 const struct mce
*m
)
3081 struct mem_ctl_info
*new_mci
;
3082 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
3083 enum hw_event_mc_err_type tp_event
;
3084 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
3085 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
3086 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
3088 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
3089 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
3090 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
3091 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
3092 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
3094 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
3095 * A value 6 is for cache line aligned address, a value 12 is for page
3096 * aligned address reported by patrol scrubber.
3098 u32 lsb
= GET_BITFIELD(m
->misc
, 0, 5);
3099 char *optype
, *area_type
= "DRAM";
3100 long channel_mask
, first_channel
;
3101 u8 rank
= 0xff, socket
, ha
;
3104 if (pvt
->info
.type
!= SANDY_BRIDGE
)
3107 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
3109 if (uncorrected_error
) {
3112 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
3114 tp_event
= HW_EVENT_ERR_FATAL
;
3117 tp_event
= HW_EVENT_ERR_CORRECTED
;
3121 * According with Table 15-9 of the Intel Architecture spec vol 3A,
3122 * memory errors should fit in this mask:
3123 * 000f 0000 1mmm cccc (binary)
3125 * f = Correction Report Filtering Bit. If 1, subsequent errors
3129 * If the mask doesn't match, report an error to the parsing logic
3131 switch (optypenum
) {
3133 optype
= "generic undef request error";
3136 optype
= "memory read error";
3139 optype
= "memory write error";
3142 optype
= "addr/cmd error";
3145 optype
= "memory scrubbing error";
3148 optype
= "reserved";
3152 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
3153 if (channel
== 14) {
3154 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3155 overflow
? " OVERFLOW" : "",
3156 (uncorrected_error
&& recoverable
)
3157 ? " recoverable" : "",
3164 * Reported channel is in range 0-2, so we can't map it
3165 * back to mc. To figure out mc we check machine check
3166 * bank register that reported this error.
3167 * bank15 means mc0 and bank16 means mc1.
3169 channel
= knl_channel_remap(m
->bank
== 16, channel
);
3170 channel_mask
= 1 << channel
;
3172 snprintf(sb_msg
, sizeof(sb_msg
),
3173 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3174 overflow
? " OVERFLOW" : "",
3175 (uncorrected_error
&& recoverable
)
3176 ? " recoverable" : " ",
3177 mscod
, errcode
, channel
, A
+ channel
);
3178 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3179 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3184 } else if (lsb
< 12) {
3185 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
3186 &channel_mask
, &rank
,
3187 &area_type
, sb_msg
);
3189 rc
= get_memory_error_data_from_mce(mci
, m
, &socket
, &ha
,
3190 &channel_mask
, sb_msg
);
3195 new_mci
= get_mci_for_node_id(socket
, ha
);
3197 strscpy(sb_msg
, "Error: socket got corrupted!");
3201 pvt
= mci
->pvt_info
;
3203 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
3215 * FIXME: On some memory configurations (mirror, lockstep), the
3216 * Memory Controller can't point the error to a single DIMM. The
3217 * EDAC core should be handling the channel mask, in order to point
3218 * to the group of dimm's where the error may be happening.
3220 if (!pvt
->is_lockstep
&& !pvt
->is_cur_addr_mirrored
&& !pvt
->is_close_pg
)
3221 channel
= first_channel
;
3222 snprintf(sb_msg_full
, sizeof(sb_msg_full
),
3223 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s",
3224 overflow
? " OVERFLOW" : "",
3225 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
3232 edac_dbg(0, "%s\n", sb_msg_full
);
3234 /* FIXME: need support for channel mask */
3236 if (channel
== CHANNEL_UNSPECIFIED
)
3239 /* Call the helper to output message */
3240 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3241 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3243 optype
, sb_msg_full
);
3246 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
3253 * Check that logging is enabled and that this is the right type
3254 * of error for us to handle.
3256 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
3259 struct mce
*mce
= (struct mce
*)data
;
3260 struct mem_ctl_info
*mci
;
3263 if (mce
->kflags
& MCE_HANDLED_CEC
)
3267 * Just let mcelog handle it if the error is
3268 * outside the memory controller. A memory error
3269 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3270 * bit 12 has an special meaning.
3272 if ((mce
->status
& 0xefff) >> 7 != 1)
3275 /* Check ADDRV bit in STATUS */
3276 if (!GET_BITFIELD(mce
->status
, 58, 58))
3279 /* Check MISCV bit in STATUS */
3280 if (!GET_BITFIELD(mce
->status
, 59, 59))
3283 /* Check address type in MISC (physical address only) */
3284 if (GET_BITFIELD(mce
->misc
, 6, 8) != 2)
3287 mci
= get_mci_for_node_id(mce
->socketid
, IMC0
);
3291 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
3296 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
3298 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
3299 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
3300 mce
->mcgstatus
, mce
->bank
, mce
->status
);
3301 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
3302 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
3303 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
3305 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
3306 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
3307 mce
->time
, mce
->socketid
, mce
->apicid
);
3309 sbridge_mce_output_error(mci
, mce
);
3311 /* Advice mcelog that the error were handled */
3312 mce
->kflags
|= MCE_HANDLED_EDAC
;
3316 static struct notifier_block sbridge_mce_dec
= {
3317 .notifier_call
= sbridge_mce_check_error
,
3318 .priority
= MCE_PRIO_EDAC
,
3321 /****************************************************************************
3322 EDAC register/unregister logic
3323 ****************************************************************************/
3325 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
3327 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
3329 if (unlikely(!mci
|| !mci
->pvt_info
)) {
3330 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
3332 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
3336 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3337 mci
, &sbridge_dev
->pdev
[0]->dev
);
3339 /* Remove MC sysfs nodes */
3340 edac_mc_del_mc(mci
->pdev
);
3342 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
3343 kfree(mci
->ctl_name
);
3345 sbridge_dev
->mci
= NULL
;
3348 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
3350 struct mem_ctl_info
*mci
;
3351 struct edac_mc_layer layers
[2];
3352 struct sbridge_pvt
*pvt
;
3353 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
3356 /* allocate a new MC control structure */
3357 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
3358 layers
[0].size
= type
== KNIGHTS_LANDING
?
3359 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
3360 layers
[0].is_virt_csrow
= false;
3361 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
3362 layers
[1].size
= type
== KNIGHTS_LANDING
? 1 : MAX_DIMMS
;
3363 layers
[1].is_virt_csrow
= true;
3364 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
3370 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3373 pvt
= mci
->pvt_info
;
3374 memset(pvt
, 0, sizeof(*pvt
));
3376 /* Associate sbridge_dev and mci for future usage */
3377 pvt
->sbridge_dev
= sbridge_dev
;
3378 sbridge_dev
->mci
= mci
;
3380 mci
->mtype_cap
= type
== KNIGHTS_LANDING
?
3381 MEM_FLAG_DDR4
: MEM_FLAG_DDR3
;
3382 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3383 mci
->edac_cap
= EDAC_FLAG_NONE
;
3384 mci
->mod_name
= EDAC_MOD_STR
;
3385 mci
->dev_name
= pci_name(pdev
);
3386 mci
->ctl_page_to_phys
= NULL
;
3388 pvt
->info
.type
= type
;
3391 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
3392 pvt
->info
.get_tolm
= ibridge_get_tolm
;
3393 pvt
->info
.get_tohm
= ibridge_get_tohm
;
3394 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3395 pvt
->info
.get_memory_type
= get_memory_type
;
3396 pvt
->info
.get_node_id
= get_node_id
;
3397 pvt
->info
.get_ha
= ibridge_get_ha
;
3398 pvt
->info
.rir_limit
= rir_limit
;
3399 pvt
->info
.sad_limit
= sad_limit
;
3400 pvt
->info
.interleave_mode
= interleave_mode
;
3401 pvt
->info
.dram_attr
= dram_attr
;
3402 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3403 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3404 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3405 pvt
->info
.get_width
= ibridge_get_width
;
3407 /* Store pci devices at mci for faster access */
3408 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
3409 if (unlikely(rc
< 0))
3412 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge SrcID#%d_Ha#%d",
3413 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3416 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
3417 pvt
->info
.get_tolm
= sbridge_get_tolm
;
3418 pvt
->info
.get_tohm
= sbridge_get_tohm
;
3419 pvt
->info
.dram_rule
= sbridge_dram_rule
;
3420 pvt
->info
.get_memory_type
= get_memory_type
;
3421 pvt
->info
.get_node_id
= get_node_id
;
3422 pvt
->info
.get_ha
= sbridge_get_ha
;
3423 pvt
->info
.rir_limit
= rir_limit
;
3424 pvt
->info
.sad_limit
= sad_limit
;
3425 pvt
->info
.interleave_mode
= interleave_mode
;
3426 pvt
->info
.dram_attr
= dram_attr
;
3427 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
3428 pvt
->info
.interleave_list
= sbridge_interleave_list
;
3429 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
3430 pvt
->info
.get_width
= sbridge_get_width
;
3432 /* Store pci devices at mci for faster access */
3433 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
3434 if (unlikely(rc
< 0))
3437 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge SrcID#%d_Ha#%d",
3438 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3441 /* rankcfgr isn't used */
3442 pvt
->info
.get_tolm
= haswell_get_tolm
;
3443 pvt
->info
.get_tohm
= haswell_get_tohm
;
3444 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3445 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3446 pvt
->info
.get_node_id
= haswell_get_node_id
;
3447 pvt
->info
.get_ha
= ibridge_get_ha
;
3448 pvt
->info
.rir_limit
= haswell_rir_limit
;
3449 pvt
->info
.sad_limit
= sad_limit
;
3450 pvt
->info
.interleave_mode
= interleave_mode
;
3451 pvt
->info
.dram_attr
= dram_attr
;
3452 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3453 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3454 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3455 pvt
->info
.get_width
= ibridge_get_width
;
3457 /* Store pci devices at mci for faster access */
3458 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
3459 if (unlikely(rc
< 0))
3462 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell SrcID#%d_Ha#%d",
3463 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3466 /* rankcfgr isn't used */
3467 pvt
->info
.get_tolm
= haswell_get_tolm
;
3468 pvt
->info
.get_tohm
= haswell_get_tohm
;
3469 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3470 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3471 pvt
->info
.get_node_id
= haswell_get_node_id
;
3472 pvt
->info
.get_ha
= ibridge_get_ha
;
3473 pvt
->info
.rir_limit
= haswell_rir_limit
;
3474 pvt
->info
.sad_limit
= sad_limit
;
3475 pvt
->info
.interleave_mode
= interleave_mode
;
3476 pvt
->info
.dram_attr
= dram_attr
;
3477 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3478 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3479 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3480 pvt
->info
.get_width
= broadwell_get_width
;
3482 /* Store pci devices at mci for faster access */
3483 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
3484 if (unlikely(rc
< 0))
3487 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell SrcID#%d_Ha#%d",
3488 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3490 case KNIGHTS_LANDING
:
3491 /* pvt->info.rankcfgr == ??? */
3492 pvt
->info
.get_tolm
= knl_get_tolm
;
3493 pvt
->info
.get_tohm
= knl_get_tohm
;
3494 pvt
->info
.dram_rule
= knl_dram_rule
;
3495 pvt
->info
.get_memory_type
= knl_get_memory_type
;
3496 pvt
->info
.get_node_id
= knl_get_node_id
;
3497 pvt
->info
.get_ha
= knl_get_ha
;
3498 pvt
->info
.rir_limit
= NULL
;
3499 pvt
->info
.sad_limit
= knl_sad_limit
;
3500 pvt
->info
.interleave_mode
= knl_interleave_mode
;
3501 pvt
->info
.dram_attr
= dram_attr_knl
;
3502 pvt
->info
.max_sad
= ARRAY_SIZE(knl_dram_rule
);
3503 pvt
->info
.interleave_list
= knl_interleave_list
;
3504 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3505 pvt
->info
.get_width
= knl_get_width
;
3507 rc
= knl_mci_bind_devs(mci
, sbridge_dev
);
3508 if (unlikely(rc
< 0))
3511 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Knights Landing SrcID#%d_Ha#%d",
3512 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3516 if (!mci
->ctl_name
) {
3521 /* Get dimm basic config and the memory layout */
3522 rc
= get_dimm_config(mci
);
3524 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3527 get_memory_layout(mci
);
3529 /* record ptr to the generic device */
3530 mci
->pdev
= &pdev
->dev
;
3532 /* add this new MC control structure to EDAC's list of MCs */
3533 if (unlikely(edac_mc_add_mc(mci
))) {
3534 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3542 kfree(mci
->ctl_name
);
3545 sbridge_dev
->mci
= NULL
;
3549 static const struct x86_cpu_id sbridge_cpuids
[] = {
3550 X86_MATCH_VFM(INTEL_SANDYBRIDGE_X
, &pci_dev_descr_sbridge_table
),
3551 X86_MATCH_VFM(INTEL_IVYBRIDGE_X
, &pci_dev_descr_ibridge_table
),
3552 X86_MATCH_VFM(INTEL_HASWELL_X
, &pci_dev_descr_haswell_table
),
3553 X86_MATCH_VFM(INTEL_BROADWELL_X
, &pci_dev_descr_broadwell_table
),
3554 X86_MATCH_VFM(INTEL_BROADWELL_D
, &pci_dev_descr_broadwell_table
),
3555 X86_MATCH_VFM(INTEL_XEON_PHI_KNL
, &pci_dev_descr_knl_table
),
3556 X86_MATCH_VFM(INTEL_XEON_PHI_KNM
, &pci_dev_descr_knl_table
),
3559 MODULE_DEVICE_TABLE(x86cpu
, sbridge_cpuids
);
3562 * sbridge_probe Get all devices and register memory controllers
3565 * 0 for FOUND a device
3566 * < 0 for error code
3569 static int sbridge_probe(const struct x86_cpu_id
*id
)
3573 struct sbridge_dev
*sbridge_dev
;
3574 struct pci_id_table
*ptable
= (struct pci_id_table
*)id
->driver_data
;
3576 /* get the pci devices we want to reserve for our use */
3577 rc
= sbridge_get_all_devices(&num_mc
, ptable
);
3579 if (unlikely(rc
< 0)) {
3580 edac_dbg(0, "couldn't get all devices\n");
3586 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
3587 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3588 mc
, mc
+ 1, num_mc
);
3590 sbridge_dev
->mc
= mc
++;
3591 rc
= sbridge_register_mci(sbridge_dev
, ptable
->type
);
3592 if (unlikely(rc
< 0))
3596 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
3601 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3602 sbridge_unregister_mci(sbridge_dev
);
3604 sbridge_put_all_devices();
3610 * sbridge_remove cleanup
3613 static void sbridge_remove(void)
3615 struct sbridge_dev
*sbridge_dev
;
3619 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3620 sbridge_unregister_mci(sbridge_dev
);
3622 /* Release PCI resources */
3623 sbridge_put_all_devices();
3627 * sbridge_init Module entry function
3628 * Try to initialize this module for its devices
3630 static int __init
sbridge_init(void)
3632 const struct x86_cpu_id
*id
;
3638 if (ghes_get_devices())
3641 owner
= edac_get_owner();
3642 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
3645 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR
))
3648 id
= x86_match_cpu(sbridge_cpuids
);
3652 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3655 rc
= sbridge_probe(id
);
3658 mce_register_decode_chain(&sbridge_mce_dec
);
3662 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
3669 * sbridge_exit() Module exit function
3670 * Unregister the driver
3672 static void __exit
sbridge_exit(void)
3676 mce_unregister_decode_chain(&sbridge_mce_dec
);
3679 module_init(sbridge_init
);
3680 module_exit(sbridge_exit
);
3682 module_param(edac_op_state
, int, 0444);
3683 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
3685 MODULE_LICENSE("GPL");
3686 MODULE_AUTHOR("Mauro Carvalho Chehab");
3687 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3688 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "