dma-fence: Add some more fence-merge-unwrap tests
[drm/drm-misc.git] / drivers / hv / ring_buffer.c
blob3c9b02471760a33d340c1f50914ab305e5bec0eb
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
4 * Copyright (c) 2009, Microsoft Corporation.
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20 #include <linux/io.h>
21 #include <asm/mshyperv.h>
23 #include "hyperv_vmbus.h"
25 #define VMBUS_PKT_TRAILER 8
28 * When we write to the ring buffer, check if the host needs to
29 * be signaled. Here is the details of this protocol:
31 * 1. The host guarantees that while it is draining the
32 * ring buffer, it will set the interrupt_mask to
33 * indicate it does not need to be interrupted when
34 * new data is placed.
36 * 2. The host guarantees that it will completely drain
37 * the ring buffer before exiting the read loop. Further,
38 * once the ring buffer is empty, it will clear the
39 * interrupt_mask and re-check to see if new data has
40 * arrived.
42 * KYS: Oct. 30, 2016:
43 * It looks like Windows hosts have logic to deal with DOS attacks that
44 * can be triggered if it receives interrupts when it is not expecting
45 * the interrupt. The host expects interrupts only when the ring
46 * transitions from empty to non-empty (or full to non full on the guest
47 * to host ring).
48 * So, base the signaling decision solely on the ring state until the
49 * host logic is fixed.
52 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
54 struct hv_ring_buffer_info *rbi = &channel->outbound;
56 virt_mb();
57 if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
58 return;
60 /* check interrupt_mask before read_index */
61 virt_rmb();
63 * This is the only case we need to signal when the
64 * ring transitions from being empty to non-empty.
66 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
67 ++channel->intr_out_empty;
68 vmbus_setevent(channel);
72 /* Get the next write location for the specified ring buffer. */
73 static inline u32
74 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
76 u32 next = ring_info->ring_buffer->write_index;
78 return next;
81 /* Set the next write location for the specified ring buffer. */
82 static inline void
83 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
84 u32 next_write_location)
86 ring_info->ring_buffer->write_index = next_write_location;
89 /* Get the size of the ring buffer. */
90 static inline u32
91 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
93 return ring_info->ring_datasize;
96 /* Get the read and write indices as u64 of the specified ring buffer. */
97 static inline u64
98 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
100 return (u64)ring_info->ring_buffer->write_index << 32;
104 * Helper routine to copy from source to ring buffer.
105 * Assume there is enough room. Handles wrap-around in dest case only!!
107 static u32 hv_copyto_ringbuffer(
108 struct hv_ring_buffer_info *ring_info,
109 u32 start_write_offset,
110 const void *src,
111 u32 srclen)
113 void *ring_buffer = hv_get_ring_buffer(ring_info);
114 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
116 memcpy(ring_buffer + start_write_offset, src, srclen);
118 start_write_offset += srclen;
119 if (start_write_offset >= ring_buffer_size)
120 start_write_offset -= ring_buffer_size;
122 return start_write_offset;
127 * hv_get_ringbuffer_availbytes()
129 * Get number of bytes available to read and to write to
130 * for the specified ring buffer
132 static void
133 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
134 u32 *read, u32 *write)
136 u32 read_loc, write_loc, dsize;
138 /* Capture the read/write indices before they changed */
139 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
140 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
141 dsize = rbi->ring_datasize;
143 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
144 read_loc - write_loc;
145 *read = dsize - *write;
148 /* Get various debug metrics for the specified ring buffer. */
149 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
150 struct hv_ring_buffer_debug_info *debug_info)
152 u32 bytes_avail_towrite;
153 u32 bytes_avail_toread;
155 mutex_lock(&ring_info->ring_buffer_mutex);
157 if (!ring_info->ring_buffer) {
158 mutex_unlock(&ring_info->ring_buffer_mutex);
159 return -EINVAL;
162 hv_get_ringbuffer_availbytes(ring_info,
163 &bytes_avail_toread,
164 &bytes_avail_towrite);
165 debug_info->bytes_avail_toread = bytes_avail_toread;
166 debug_info->bytes_avail_towrite = bytes_avail_towrite;
167 debug_info->current_read_index = ring_info->ring_buffer->read_index;
168 debug_info->current_write_index = ring_info->ring_buffer->write_index;
169 debug_info->current_interrupt_mask
170 = ring_info->ring_buffer->interrupt_mask;
171 mutex_unlock(&ring_info->ring_buffer_mutex);
173 return 0;
175 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
177 /* Initialize a channel's ring buffer info mutex locks */
178 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
180 mutex_init(&channel->inbound.ring_buffer_mutex);
181 mutex_init(&channel->outbound.ring_buffer_mutex);
184 /* Initialize the ring buffer. */
185 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
186 struct page *pages, u32 page_cnt, u32 max_pkt_size)
188 struct page **pages_wraparound;
189 int i;
191 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
194 * First page holds struct hv_ring_buffer, do wraparound mapping for
195 * the rest.
197 pages_wraparound = kcalloc(page_cnt * 2 - 1,
198 sizeof(struct page *),
199 GFP_KERNEL);
200 if (!pages_wraparound)
201 return -ENOMEM;
203 pages_wraparound[0] = pages;
204 for (i = 0; i < 2 * (page_cnt - 1); i++)
205 pages_wraparound[i + 1] =
206 &pages[i % (page_cnt - 1) + 1];
208 ring_info->ring_buffer = (struct hv_ring_buffer *)
209 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
210 pgprot_decrypted(PAGE_KERNEL));
212 kfree(pages_wraparound);
213 if (!ring_info->ring_buffer)
214 return -ENOMEM;
217 * Ensure the header page is zero'ed since
218 * encryption status may have changed.
220 memset(ring_info->ring_buffer, 0, HV_HYP_PAGE_SIZE);
222 ring_info->ring_buffer->read_index =
223 ring_info->ring_buffer->write_index = 0;
225 /* Set the feature bit for enabling flow control. */
226 ring_info->ring_buffer->feature_bits.value = 1;
228 ring_info->ring_size = page_cnt << PAGE_SHIFT;
229 ring_info->ring_size_div10_reciprocal =
230 reciprocal_value(ring_info->ring_size / 10);
231 ring_info->ring_datasize = ring_info->ring_size -
232 sizeof(struct hv_ring_buffer);
233 ring_info->priv_read_index = 0;
235 /* Initialize buffer that holds copies of incoming packets */
236 if (max_pkt_size) {
237 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
238 if (!ring_info->pkt_buffer)
239 return -ENOMEM;
240 ring_info->pkt_buffer_size = max_pkt_size;
243 spin_lock_init(&ring_info->ring_lock);
245 return 0;
248 /* Cleanup the ring buffer. */
249 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
251 mutex_lock(&ring_info->ring_buffer_mutex);
252 vunmap(ring_info->ring_buffer);
253 ring_info->ring_buffer = NULL;
254 mutex_unlock(&ring_info->ring_buffer_mutex);
256 kfree(ring_info->pkt_buffer);
257 ring_info->pkt_buffer = NULL;
258 ring_info->pkt_buffer_size = 0;
262 * Check if the ring buffer spinlock is available to take or not; used on
263 * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
266 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
268 struct hv_ring_buffer_info *rinfo = &channel->outbound;
270 return spin_is_locked(&rinfo->ring_lock);
272 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
274 /* Write to the ring buffer. */
275 int hv_ringbuffer_write(struct vmbus_channel *channel,
276 const struct kvec *kv_list, u32 kv_count,
277 u64 requestid, u64 *trans_id)
279 int i;
280 u32 bytes_avail_towrite;
281 u32 totalbytes_towrite = sizeof(u64);
282 u32 next_write_location;
283 u32 old_write;
284 u64 prev_indices;
285 unsigned long flags;
286 struct hv_ring_buffer_info *outring_info = &channel->outbound;
287 struct vmpacket_descriptor *desc = kv_list[0].iov_base;
288 u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
290 if (channel->rescind)
291 return -ENODEV;
293 for (i = 0; i < kv_count; i++)
294 totalbytes_towrite += kv_list[i].iov_len;
296 spin_lock_irqsave(&outring_info->ring_lock, flags);
298 bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
301 * If there is only room for the packet, assume it is full.
302 * Otherwise, the next time around, we think the ring buffer
303 * is empty since the read index == write index.
305 if (bytes_avail_towrite <= totalbytes_towrite) {
306 ++channel->out_full_total;
308 if (!channel->out_full_flag) {
309 ++channel->out_full_first;
310 channel->out_full_flag = true;
313 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
314 return -EAGAIN;
317 channel->out_full_flag = false;
319 /* Write to the ring buffer */
320 next_write_location = hv_get_next_write_location(outring_info);
322 old_write = next_write_location;
324 for (i = 0; i < kv_count; i++) {
325 next_write_location = hv_copyto_ringbuffer(outring_info,
326 next_write_location,
327 kv_list[i].iov_base,
328 kv_list[i].iov_len);
332 * Allocate the request ID after the data has been copied into the
333 * ring buffer. Once this request ID is allocated, the completion
334 * path could find the data and free it.
337 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
338 if (channel->next_request_id_callback != NULL) {
339 rqst_id = channel->next_request_id_callback(channel, requestid);
340 if (rqst_id == VMBUS_RQST_ERROR) {
341 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
342 return -EAGAIN;
346 desc = hv_get_ring_buffer(outring_info) + old_write;
347 __trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
349 * Ensure the compiler doesn't generate code that reads the value of
350 * the transaction ID from the ring buffer, which is shared with the
351 * Hyper-V host and subject to being changed at any time.
353 WRITE_ONCE(desc->trans_id, __trans_id);
354 if (trans_id)
355 *trans_id = __trans_id;
357 /* Set previous packet start */
358 prev_indices = hv_get_ring_bufferindices(outring_info);
360 next_write_location = hv_copyto_ringbuffer(outring_info,
361 next_write_location,
362 &prev_indices,
363 sizeof(u64));
365 /* Issue a full memory barrier before updating the write index */
366 virt_mb();
368 /* Now, update the write location */
369 hv_set_next_write_location(outring_info, next_write_location);
372 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
374 hv_signal_on_write(old_write, channel);
376 if (channel->rescind) {
377 if (rqst_id != VMBUS_NO_RQSTOR) {
378 /* Reclaim request ID to avoid leak of IDs */
379 if (channel->request_addr_callback != NULL)
380 channel->request_addr_callback(channel, rqst_id);
382 return -ENODEV;
385 return 0;
388 int hv_ringbuffer_read(struct vmbus_channel *channel,
389 void *buffer, u32 buflen, u32 *buffer_actual_len,
390 u64 *requestid, bool raw)
392 struct vmpacket_descriptor *desc;
393 u32 packetlen, offset;
395 if (unlikely(buflen == 0))
396 return -EINVAL;
398 *buffer_actual_len = 0;
399 *requestid = 0;
401 /* Make sure there is something to read */
402 desc = hv_pkt_iter_first(channel);
403 if (desc == NULL) {
405 * No error is set when there is even no header, drivers are
406 * supposed to analyze buffer_actual_len.
408 return 0;
411 offset = raw ? 0 : (desc->offset8 << 3);
412 packetlen = (desc->len8 << 3) - offset;
413 *buffer_actual_len = packetlen;
414 *requestid = desc->trans_id;
416 if (unlikely(packetlen > buflen))
417 return -ENOBUFS;
419 /* since ring is double mapped, only one copy is necessary */
420 memcpy(buffer, (const char *)desc + offset, packetlen);
422 /* Advance ring index to next packet descriptor */
423 __hv_pkt_iter_next(channel, desc);
425 /* Notify host of update */
426 hv_pkt_iter_close(channel);
428 return 0;
432 * Determine number of bytes available in ring buffer after
433 * the current iterator (priv_read_index) location.
435 * This is similar to hv_get_bytes_to_read but with private
436 * read index instead.
438 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
440 u32 priv_read_loc = rbi->priv_read_index;
441 u32 write_loc;
444 * The Hyper-V host writes the packet data, then uses
445 * store_release() to update the write_index. Use load_acquire()
446 * here to prevent loads of the packet data from being re-ordered
447 * before the read of the write_index and potentially getting
448 * stale data.
450 write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
452 if (write_loc >= priv_read_loc)
453 return write_loc - priv_read_loc;
454 else
455 return (rbi->ring_datasize - priv_read_loc) + write_loc;
459 * Get first vmbus packet from ring buffer after read_index
461 * If ring buffer is empty, returns NULL and no other action needed.
463 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
465 struct hv_ring_buffer_info *rbi = &channel->inbound;
466 struct vmpacket_descriptor *desc, *desc_copy;
467 u32 bytes_avail, pkt_len, pkt_offset;
469 hv_debug_delay_test(channel, MESSAGE_DELAY);
471 bytes_avail = hv_pkt_iter_avail(rbi);
472 if (bytes_avail < sizeof(struct vmpacket_descriptor))
473 return NULL;
474 bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
476 desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
479 * Ensure the compiler does not use references to incoming Hyper-V values (which
480 * could change at any moment) when reading local variables later in the code
482 pkt_len = READ_ONCE(desc->len8) << 3;
483 pkt_offset = READ_ONCE(desc->offset8) << 3;
486 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
487 * rbi->pkt_buffer_size
489 if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
490 pkt_len = bytes_avail;
493 * If pkt_offset is invalid, arbitrarily set it to
494 * the size of vmpacket_descriptor
496 if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
497 pkt_offset = sizeof(struct vmpacket_descriptor);
499 /* Copy the Hyper-V packet out of the ring buffer */
500 desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
501 memcpy(desc_copy, desc, pkt_len);
504 * Hyper-V could still change len8 and offset8 after the earlier read.
505 * Ensure that desc_copy has legal values for len8 and offset8 that
506 * are consistent with the copy we just made
508 desc_copy->len8 = pkt_len >> 3;
509 desc_copy->offset8 = pkt_offset >> 3;
511 return desc_copy;
513 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
516 * Get next vmbus packet from ring buffer.
518 * Advances the current location (priv_read_index) and checks for more
519 * data. If the end of the ring buffer is reached, then return NULL.
521 struct vmpacket_descriptor *
522 __hv_pkt_iter_next(struct vmbus_channel *channel,
523 const struct vmpacket_descriptor *desc)
525 struct hv_ring_buffer_info *rbi = &channel->inbound;
526 u32 packetlen = desc->len8 << 3;
527 u32 dsize = rbi->ring_datasize;
529 hv_debug_delay_test(channel, MESSAGE_DELAY);
530 /* bump offset to next potential packet */
531 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
532 if (rbi->priv_read_index >= dsize)
533 rbi->priv_read_index -= dsize;
535 /* more data? */
536 return hv_pkt_iter_first(channel);
538 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
540 /* How many bytes were read in this iterator cycle */
541 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
542 u32 start_read_index)
544 if (rbi->priv_read_index >= start_read_index)
545 return rbi->priv_read_index - start_read_index;
546 else
547 return rbi->ring_datasize - start_read_index +
548 rbi->priv_read_index;
552 * Update host ring buffer after iterating over packets. If the host has
553 * stopped queuing new entries because it found the ring buffer full, and
554 * sufficient space is being freed up, signal the host. But be careful to
555 * only signal the host when necessary, both for performance reasons and
556 * because Hyper-V protects itself by throttling guests that signal
557 * inappropriately.
559 * Determining when to signal is tricky. There are three key data inputs
560 * that must be handled in this order to avoid race conditions:
562 * 1. Update the read_index
563 * 2. Read the pending_send_sz
564 * 3. Read the current write_index
566 * The interrupt_mask is not used to determine when to signal. The
567 * interrupt_mask is used only on the guest->host ring buffer when
568 * sending requests to the host. The host does not use it on the host->
569 * guest ring buffer to indicate whether it should be signaled.
571 void hv_pkt_iter_close(struct vmbus_channel *channel)
573 struct hv_ring_buffer_info *rbi = &channel->inbound;
574 u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
577 * Make sure all reads are done before we update the read index since
578 * the writer may start writing to the read area once the read index
579 * is updated.
581 virt_rmb();
582 start_read_index = rbi->ring_buffer->read_index;
583 rbi->ring_buffer->read_index = rbi->priv_read_index;
586 * Older versions of Hyper-V (before WS2102 and Win8) do not
587 * implement pending_send_sz and simply poll if the host->guest
588 * ring buffer is full. No signaling is needed or expected.
590 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
591 return;
594 * Issue a full memory barrier before making the signaling decision.
595 * If reading pending_send_sz were to be reordered and happen
596 * before we commit the new read_index, a race could occur. If the
597 * host were to set the pending_send_sz after we have sampled
598 * pending_send_sz, and the ring buffer blocks before we commit the
599 * read index, we could miss sending the interrupt. Issue a full
600 * memory barrier to address this.
602 virt_mb();
605 * If the pending_send_sz is zero, then the ring buffer is not
606 * blocked and there is no need to signal. This is far by the
607 * most common case, so exit quickly for best performance.
609 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
610 if (!pending_sz)
611 return;
614 * Ensure the read of write_index in hv_get_bytes_to_write()
615 * happens after the read of pending_send_sz.
617 virt_rmb();
618 curr_write_sz = hv_get_bytes_to_write(rbi);
619 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
622 * We want to signal the host only if we're transitioning
623 * from a "not enough free space" state to a "enough free
624 * space" state. For example, it's possible that this function
625 * could run and free up enough space to signal the host, and then
626 * run again and free up additional space before the host has a
627 * chance to clear the pending_send_sz. The 2nd invocation would
628 * be a null transition from "enough free space" to "enough free
629 * space", which doesn't warrant a signal.
631 * Exactly filling the ring buffer is treated as "not enough
632 * space". The ring buffer always must have at least one byte
633 * empty so the empty and full conditions are distinguishable.
634 * hv_get_bytes_to_write() doesn't fully tell the truth in
635 * this regard.
637 * So first check if we were in the "enough free space" state
638 * before we began the iteration. If so, the host was not
639 * blocked, and there's no need to signal.
641 if (curr_write_sz - bytes_read > pending_sz)
642 return;
645 * Similarly, if the new state is "not enough space", then
646 * there's no need to signal.
648 if (curr_write_sz <= pending_sz)
649 return;
651 ++channel->intr_in_full;
652 vmbus_setevent(channel);
654 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);