drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / hwtracing / coresight / coresight-etm-perf.c
blobad6a8f4b70b6fc37d9340bcdd4e0569a38fe1c36
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
7 #include <linux/bitfield.h>
8 #include <linux/coresight.h>
9 #include <linux/coresight-pmu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/perf_event.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/stringhash.h>
19 #include <linux/types.h>
20 #include <linux/workqueue.h>
22 #include "coresight-config.h"
23 #include "coresight-etm-perf.h"
24 #include "coresight-priv.h"
25 #include "coresight-syscfg.h"
26 #include "coresight-trace-id.h"
28 static struct pmu etm_pmu;
29 static bool etm_perf_up;
32 * An ETM context for a running event includes the perf aux handle
33 * and aux_data. For ETM, the aux_data (etm_event_data), consists of
34 * the trace path and the sink configuration. The event data is accessible
35 * via perf_get_aux(handle). However, a sink could "end" a perf output
36 * handle via the IRQ handler. And if the "sink" encounters a failure
37 * to "begin" another session (e.g due to lack of space in the buffer),
38 * the handle will be cleared. Thus, the event_data may not be accessible
39 * from the handle when we get to the etm_event_stop(), which is required
40 * for stopping the trace path. The event_data is guaranteed to stay alive
41 * until "free_aux()", which cannot happen as long as the event is active on
42 * the ETM. Thus the event_data for the session must be part of the ETM context
43 * to make sure we can disable the trace path.
45 struct etm_ctxt {
46 struct perf_output_handle handle;
47 struct etm_event_data *event_data;
50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
54 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
55 * now take them as general formats and apply on all ETMs.
57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
58 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
60 PMU_FORMAT_ATTR(contextid1, "config:" __stringify(ETM_OPT_CTXTID));
61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
62 PMU_FORMAT_ATTR(contextid2, "config:" __stringify(ETM_OPT_CTXTID2));
63 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
64 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
65 /* preset - if sink ID is used as a configuration selector */
66 PMU_FORMAT_ATTR(preset, "config:0-3");
67 /* Sink ID - same for all ETMs */
68 PMU_FORMAT_ATTR(sinkid, "config2:0-31");
69 /* config ID - set if a system configuration is selected */
70 PMU_FORMAT_ATTR(configid, "config2:32-63");
71 PMU_FORMAT_ATTR(cc_threshold, "config3:0-11");
75 * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1
76 * when the kernel is running at EL1; when the kernel is at EL2,
77 * the PID is in CONTEXTIDR_EL2.
79 static ssize_t format_attr_contextid_show(struct device *dev,
80 struct device_attribute *attr,
81 char *page)
83 int pid_fmt = ETM_OPT_CTXTID;
85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
86 pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
87 #endif
88 return sprintf(page, "config:%d\n", pid_fmt);
91 static struct device_attribute format_attr_contextid =
92 __ATTR(contextid, 0444, format_attr_contextid_show, NULL);
94 static struct attribute *etm_config_formats_attr[] = {
95 &format_attr_cycacc.attr,
96 &format_attr_contextid.attr,
97 &format_attr_contextid1.attr,
98 &format_attr_contextid2.attr,
99 &format_attr_timestamp.attr,
100 &format_attr_retstack.attr,
101 &format_attr_sinkid.attr,
102 &format_attr_preset.attr,
103 &format_attr_configid.attr,
104 &format_attr_branch_broadcast.attr,
105 &format_attr_cc_threshold.attr,
106 NULL,
109 static const struct attribute_group etm_pmu_format_group = {
110 .name = "format",
111 .attrs = etm_config_formats_attr,
114 static struct attribute *etm_config_sinks_attr[] = {
115 NULL,
118 static const struct attribute_group etm_pmu_sinks_group = {
119 .name = "sinks",
120 .attrs = etm_config_sinks_attr,
123 static struct attribute *etm_config_events_attr[] = {
124 NULL,
127 static const struct attribute_group etm_pmu_events_group = {
128 .name = "events",
129 .attrs = etm_config_events_attr,
132 static const struct attribute_group *etm_pmu_attr_groups[] = {
133 &etm_pmu_format_group,
134 &etm_pmu_sinks_group,
135 &etm_pmu_events_group,
136 NULL,
139 static inline struct list_head **
140 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
142 return per_cpu_ptr(data->path, cpu);
145 static inline struct list_head *
146 etm_event_cpu_path(struct etm_event_data *data, int cpu)
148 return *etm_event_cpu_path_ptr(data, cpu);
151 static void etm_event_read(struct perf_event *event) {}
153 static int etm_addr_filters_alloc(struct perf_event *event)
155 struct etm_filters *filters;
156 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
158 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
159 if (!filters)
160 return -ENOMEM;
162 if (event->parent)
163 memcpy(filters, event->parent->hw.addr_filters,
164 sizeof(*filters));
166 event->hw.addr_filters = filters;
168 return 0;
171 static void etm_event_destroy(struct perf_event *event)
173 kfree(event->hw.addr_filters);
174 event->hw.addr_filters = NULL;
177 static int etm_event_init(struct perf_event *event)
179 int ret = 0;
181 if (event->attr.type != etm_pmu.type) {
182 ret = -ENOENT;
183 goto out;
186 ret = etm_addr_filters_alloc(event);
187 if (ret)
188 goto out;
190 event->destroy = etm_event_destroy;
191 out:
192 return ret;
195 static void free_sink_buffer(struct etm_event_data *event_data)
197 int cpu;
198 cpumask_t *mask = &event_data->mask;
199 struct coresight_device *sink;
201 if (!event_data->snk_config)
202 return;
204 if (WARN_ON(cpumask_empty(mask)))
205 return;
207 cpu = cpumask_first(mask);
208 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
209 sink_ops(sink)->free_buffer(event_data->snk_config);
212 static void free_event_data(struct work_struct *work)
214 int cpu;
215 cpumask_t *mask;
216 struct etm_event_data *event_data;
218 event_data = container_of(work, struct etm_event_data, work);
219 mask = &event_data->mask;
221 /* Free the sink buffers, if there are any */
222 free_sink_buffer(event_data);
224 /* clear any configuration we were using */
225 if (event_data->cfg_hash)
226 cscfg_deactivate_config(event_data->cfg_hash);
228 for_each_cpu(cpu, mask) {
229 struct list_head **ppath;
231 ppath = etm_event_cpu_path_ptr(event_data, cpu);
232 if (!(IS_ERR_OR_NULL(*ppath))) {
233 struct coresight_device *sink = coresight_get_sink(*ppath);
236 * Mark perf event as done for trace id allocator, but don't call
237 * coresight_trace_id_put_cpu_id_map() on individual IDs. Perf sessions
238 * never free trace IDs to ensure that the ID associated with a CPU
239 * cannot change during their and other's concurrent sessions. Instead,
240 * a refcount is used so that the last event to call
241 * coresight_trace_id_perf_stop() frees all IDs.
243 coresight_trace_id_perf_stop(&sink->perf_sink_id_map);
245 coresight_release_path(*ppath);
247 *ppath = NULL;
250 free_percpu(event_data->path);
251 kfree(event_data);
254 static void *alloc_event_data(int cpu)
256 cpumask_t *mask;
257 struct etm_event_data *event_data;
259 /* First get memory for the session's data */
260 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
261 if (!event_data)
262 return NULL;
265 mask = &event_data->mask;
266 if (cpu != -1)
267 cpumask_set_cpu(cpu, mask);
268 else
269 cpumask_copy(mask, cpu_present_mask);
272 * Each CPU has a single path between source and destination. As such
273 * allocate an array using CPU numbers as indexes. That way a path
274 * for any CPU can easily be accessed at any given time. We proceed
275 * the same way for sessions involving a single CPU. The cost of
276 * unused memory when dealing with single CPU trace scenarios is small
277 * compared to the cost of searching through an optimized array.
279 event_data->path = alloc_percpu(struct list_head *);
281 if (!event_data->path) {
282 kfree(event_data);
283 return NULL;
286 return event_data;
289 static void etm_free_aux(void *data)
291 struct etm_event_data *event_data = data;
293 schedule_work(&event_data->work);
297 * Check if two given sinks are compatible with each other,
298 * so that they can use the same sink buffers, when an event
299 * moves around.
301 static bool sinks_compatible(struct coresight_device *a,
302 struct coresight_device *b)
304 if (!a || !b)
305 return false;
307 * If the sinks are of the same subtype and driven
308 * by the same driver, we can use the same buffer
309 * on these sinks.
311 return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
312 (sink_ops(a) == sink_ops(b));
315 static void *etm_setup_aux(struct perf_event *event, void **pages,
316 int nr_pages, bool overwrite)
318 u32 id, cfg_hash;
319 int cpu = event->cpu;
320 int trace_id;
321 cpumask_t *mask;
322 struct coresight_device *sink = NULL;
323 struct coresight_device *user_sink = NULL, *last_sink = NULL;
324 struct etm_event_data *event_data = NULL;
326 event_data = alloc_event_data(cpu);
327 if (!event_data)
328 return NULL;
329 INIT_WORK(&event_data->work, free_event_data);
331 /* First get the selected sink from user space. */
332 if (event->attr.config2 & GENMASK_ULL(31, 0)) {
333 id = (u32)event->attr.config2;
334 sink = user_sink = coresight_get_sink_by_id(id);
337 /* check if user wants a coresight configuration selected */
338 cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
339 if (cfg_hash) {
340 if (cscfg_activate_config(cfg_hash))
341 goto err;
342 event_data->cfg_hash = cfg_hash;
345 mask = &event_data->mask;
348 * Setup the path for each CPU in a trace session. We try to build
349 * trace path for each CPU in the mask. If we don't find an ETM
350 * for the CPU or fail to build a path, we clear the CPU from the
351 * mask and continue with the rest. If ever we try to trace on those
352 * CPUs, we can handle it and fail the session.
354 for_each_cpu(cpu, mask) {
355 struct list_head *path;
356 struct coresight_device *csdev;
358 csdev = per_cpu(csdev_src, cpu);
360 * If there is no ETM associated with this CPU clear it from
361 * the mask and continue with the rest. If ever we try to trace
362 * on this CPU, we handle it accordingly.
364 if (!csdev) {
365 cpumask_clear_cpu(cpu, mask);
366 continue;
370 * No sink provided - look for a default sink for all the ETMs,
371 * where this event can be scheduled.
372 * We allocate the sink specific buffers only once for this
373 * event. If the ETMs have different default sink devices, we
374 * can only use a single "type" of sink as the event can carry
375 * only one sink specific buffer. Thus we have to make sure
376 * that the sinks are of the same type and driven by the same
377 * driver, as the one we allocate the buffer for. As such
378 * we choose the first sink and check if the remaining ETMs
379 * have a compatible default sink. We don't trace on a CPU
380 * if the sink is not compatible.
382 if (!user_sink) {
383 /* Find the default sink for this ETM */
384 sink = coresight_find_default_sink(csdev);
385 if (!sink) {
386 cpumask_clear_cpu(cpu, mask);
387 continue;
390 /* Check if this sink compatible with the last sink */
391 if (last_sink && !sinks_compatible(last_sink, sink)) {
392 cpumask_clear_cpu(cpu, mask);
393 continue;
395 last_sink = sink;
399 * Building a path doesn't enable it, it simply builds a
400 * list of devices from source to sink that can be
401 * referenced later when the path is actually needed.
403 path = coresight_build_path(csdev, sink);
404 if (IS_ERR(path)) {
405 cpumask_clear_cpu(cpu, mask);
406 continue;
409 /* ensure we can allocate a trace ID for this CPU */
410 trace_id = coresight_trace_id_get_cpu_id_map(cpu, &sink->perf_sink_id_map);
411 if (!IS_VALID_CS_TRACE_ID(trace_id)) {
412 cpumask_clear_cpu(cpu, mask);
413 coresight_release_path(path);
414 continue;
417 coresight_trace_id_perf_start(&sink->perf_sink_id_map);
418 *etm_event_cpu_path_ptr(event_data, cpu) = path;
421 /* no sink found for any CPU - cannot trace */
422 if (!sink)
423 goto err;
425 /* If we don't have any CPUs ready for tracing, abort */
426 cpu = cpumask_first(mask);
427 if (cpu >= nr_cpu_ids)
428 goto err;
430 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
431 goto err;
434 * Allocate the sink buffer for this session. All the sinks
435 * where this event can be scheduled are ensured to be of the
436 * same type. Thus the same sink configuration is used by the
437 * sinks.
439 event_data->snk_config =
440 sink_ops(sink)->alloc_buffer(sink, event, pages,
441 nr_pages, overwrite);
442 if (!event_data->snk_config)
443 goto err;
445 out:
446 return event_data;
448 err:
449 etm_free_aux(event_data);
450 event_data = NULL;
451 goto out;
454 static void etm_event_start(struct perf_event *event, int flags)
456 int cpu = smp_processor_id();
457 struct etm_event_data *event_data;
458 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
459 struct perf_output_handle *handle = &ctxt->handle;
460 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
461 struct list_head *path;
462 u64 hw_id;
463 u8 trace_id;
465 if (!csdev)
466 goto fail;
468 /* Have we messed up our tracking ? */
469 if (WARN_ON(ctxt->event_data))
470 goto fail;
473 * Deal with the ring buffer API and get a handle on the
474 * session's information.
476 event_data = perf_aux_output_begin(handle, event);
477 if (!event_data)
478 goto fail;
481 * Check if this ETM is allowed to trace, as decided
482 * at etm_setup_aux(). This could be due to an unreachable
483 * sink from this ETM. We can't do much in this case if
484 * the sink was specified or hinted to the driver. For
485 * now, simply don't record anything on this ETM.
487 * As such we pretend that everything is fine, and let
488 * it continue without actually tracing. The event could
489 * continue tracing when it moves to a CPU where it is
490 * reachable to a sink.
492 if (!cpumask_test_cpu(cpu, &event_data->mask))
493 goto out;
495 path = etm_event_cpu_path(event_data, cpu);
496 /* We need a sink, no need to continue without one */
497 sink = coresight_get_sink(path);
498 if (WARN_ON_ONCE(!sink))
499 goto fail_end_stop;
501 /* Nothing will happen without a path */
502 if (coresight_enable_path(path, CS_MODE_PERF, handle))
503 goto fail_end_stop;
505 /* Finally enable the tracer */
506 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF,
507 &sink->perf_sink_id_map))
508 goto fail_disable_path;
511 * output cpu / trace ID in perf record, once for the lifetime
512 * of the event.
514 if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) {
515 cpumask_set_cpu(cpu, &event_data->aux_hwid_done);
517 trace_id = coresight_trace_id_read_cpu_id_map(cpu, &sink->perf_sink_id_map);
519 hw_id = FIELD_PREP(CS_AUX_HW_ID_MAJOR_VERSION_MASK,
520 CS_AUX_HW_ID_MAJOR_VERSION);
521 hw_id |= FIELD_PREP(CS_AUX_HW_ID_MINOR_VERSION_MASK,
522 CS_AUX_HW_ID_MINOR_VERSION);
523 hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, trace_id);
524 hw_id |= FIELD_PREP(CS_AUX_HW_ID_SINK_ID_MASK, coresight_get_sink_id(sink));
526 perf_report_aux_output_id(event, hw_id);
529 out:
530 /* Tell the perf core the event is alive */
531 event->hw.state = 0;
532 /* Save the event_data for this ETM */
533 ctxt->event_data = event_data;
534 return;
536 fail_disable_path:
537 coresight_disable_path(path);
538 fail_end_stop:
540 * Check if the handle is still associated with the event,
541 * to handle cases where if the sink failed to start the
542 * trace and TRUNCATED the handle already.
544 if (READ_ONCE(handle->event)) {
545 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
546 perf_aux_output_end(handle, 0);
548 fail:
549 event->hw.state = PERF_HES_STOPPED;
550 return;
553 static void etm_event_stop(struct perf_event *event, int mode)
555 int cpu = smp_processor_id();
556 unsigned long size;
557 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
558 struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
559 struct perf_output_handle *handle = &ctxt->handle;
560 struct etm_event_data *event_data;
561 struct list_head *path;
564 * If we still have access to the event_data via handle,
565 * confirm that we haven't messed up the tracking.
567 if (handle->event &&
568 WARN_ON(perf_get_aux(handle) != ctxt->event_data))
569 return;
571 event_data = ctxt->event_data;
572 /* Clear the event_data as this ETM is stopping the trace. */
573 ctxt->event_data = NULL;
575 if (event->hw.state == PERF_HES_STOPPED)
576 return;
578 /* We must have a valid event_data for a running event */
579 if (WARN_ON(!event_data))
580 return;
583 * Check if this ETM was allowed to trace, as decided at
584 * etm_setup_aux(). If it wasn't allowed to trace, then
585 * nothing needs to be torn down other than outputting a
586 * zero sized record.
588 if (handle->event && (mode & PERF_EF_UPDATE) &&
589 !cpumask_test_cpu(cpu, &event_data->mask)) {
590 event->hw.state = PERF_HES_STOPPED;
591 perf_aux_output_end(handle, 0);
592 return;
595 if (!csdev)
596 return;
598 path = etm_event_cpu_path(event_data, cpu);
599 if (!path)
600 return;
602 sink = coresight_get_sink(path);
603 if (!sink)
604 return;
606 /* stop tracer */
607 coresight_disable_source(csdev, event);
609 /* tell the core */
610 event->hw.state = PERF_HES_STOPPED;
613 * If the handle is not bound to an event anymore
614 * (e.g, the sink driver was unable to restart the
615 * handle due to lack of buffer space), we don't
616 * have to do anything here.
618 if (handle->event && (mode & PERF_EF_UPDATE)) {
619 if (WARN_ON_ONCE(handle->event != event))
620 return;
622 /* update trace information */
623 if (!sink_ops(sink)->update_buffer)
624 return;
626 size = sink_ops(sink)->update_buffer(sink, handle,
627 event_data->snk_config);
629 * Make sure the handle is still valid as the
630 * sink could have closed it from an IRQ.
631 * The sink driver must handle the race with
632 * update_buffer() and IRQ. Thus either we
633 * should get a valid handle and valid size
634 * (which may be 0).
636 * But we should never get a non-zero size with
637 * an invalid handle.
639 if (READ_ONCE(handle->event))
640 perf_aux_output_end(handle, size);
641 else
642 WARN_ON(size);
645 /* Disabling the path make its elements available to other sessions */
646 coresight_disable_path(path);
649 static int etm_event_add(struct perf_event *event, int mode)
651 int ret = 0;
652 struct hw_perf_event *hwc = &event->hw;
654 if (mode & PERF_EF_START) {
655 etm_event_start(event, 0);
656 if (hwc->state & PERF_HES_STOPPED)
657 ret = -EINVAL;
658 } else {
659 hwc->state = PERF_HES_STOPPED;
662 return ret;
665 static void etm_event_del(struct perf_event *event, int mode)
667 etm_event_stop(event, PERF_EF_UPDATE);
670 static int etm_addr_filters_validate(struct list_head *filters)
672 bool range = false, address = false;
673 int index = 0;
674 struct perf_addr_filter *filter;
676 list_for_each_entry(filter, filters, entry) {
678 * No need to go further if there's no more
679 * room for filters.
681 if (++index > ETM_ADDR_CMP_MAX)
682 return -EOPNOTSUPP;
684 /* filter::size==0 means single address trigger */
685 if (filter->size) {
687 * The existing code relies on START/STOP filters
688 * being address filters.
690 if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
691 filter->action == PERF_ADDR_FILTER_ACTION_STOP)
692 return -EOPNOTSUPP;
694 range = true;
695 } else
696 address = true;
699 * At this time we don't allow range and start/stop filtering
700 * to cohabitate, they have to be mutually exclusive.
702 if (range && address)
703 return -EOPNOTSUPP;
706 return 0;
709 static void etm_addr_filters_sync(struct perf_event *event)
711 struct perf_addr_filters_head *head = perf_event_addr_filters(event);
712 unsigned long start, stop;
713 struct perf_addr_filter_range *fr = event->addr_filter_ranges;
714 struct etm_filters *filters = event->hw.addr_filters;
715 struct etm_filter *etm_filter;
716 struct perf_addr_filter *filter;
717 int i = 0;
719 list_for_each_entry(filter, &head->list, entry) {
720 start = fr[i].start;
721 stop = start + fr[i].size;
722 etm_filter = &filters->etm_filter[i];
724 switch (filter->action) {
725 case PERF_ADDR_FILTER_ACTION_FILTER:
726 etm_filter->start_addr = start;
727 etm_filter->stop_addr = stop;
728 etm_filter->type = ETM_ADDR_TYPE_RANGE;
729 break;
730 case PERF_ADDR_FILTER_ACTION_START:
731 etm_filter->start_addr = start;
732 etm_filter->type = ETM_ADDR_TYPE_START;
733 break;
734 case PERF_ADDR_FILTER_ACTION_STOP:
735 etm_filter->stop_addr = stop;
736 etm_filter->type = ETM_ADDR_TYPE_STOP;
737 break;
739 i++;
742 filters->nr_filters = i;
745 int etm_perf_symlink(struct coresight_device *csdev, bool link)
747 char entry[sizeof("cpu9999999")];
748 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
749 struct device *pmu_dev = etm_pmu.dev;
750 struct device *cs_dev = &csdev->dev;
752 sprintf(entry, "cpu%d", cpu);
754 if (!etm_perf_up)
755 return -EPROBE_DEFER;
757 if (link) {
758 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
759 if (ret)
760 return ret;
761 per_cpu(csdev_src, cpu) = csdev;
762 } else {
763 sysfs_remove_link(&pmu_dev->kobj, entry);
764 per_cpu(csdev_src, cpu) = NULL;
767 return 0;
769 EXPORT_SYMBOL_GPL(etm_perf_symlink);
771 static ssize_t etm_perf_sink_name_show(struct device *dev,
772 struct device_attribute *dattr,
773 char *buf)
775 struct dev_ext_attribute *ea;
777 ea = container_of(dattr, struct dev_ext_attribute, attr);
778 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
781 static struct dev_ext_attribute *
782 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
784 struct dev_ext_attribute *ea;
785 unsigned long hash;
786 int ret;
787 struct device *pmu_dev = etm_pmu.dev;
789 if (!etm_perf_up)
790 return ERR_PTR(-EPROBE_DEFER);
792 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
793 if (!ea)
794 return ERR_PTR(-ENOMEM);
797 * If this function is called adding a sink then the hash is used for
798 * sink selection - see function coresight_get_sink_by_id().
799 * If adding a configuration then the hash is used for selection in
800 * cscfg_activate_config()
802 hash = hashlen_hash(hashlen_string(NULL, name));
804 sysfs_attr_init(&ea->attr.attr);
805 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
806 if (!ea->attr.attr.name)
807 return ERR_PTR(-ENOMEM);
809 ea->attr.attr.mode = 0444;
810 ea->var = (unsigned long *)hash;
812 ret = sysfs_add_file_to_group(&pmu_dev->kobj,
813 &ea->attr.attr, group_name);
815 return ret ? ERR_PTR(ret) : ea;
818 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
820 const char *name;
821 struct device *dev = &csdev->dev;
822 int err = 0;
824 if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
825 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
826 return -EINVAL;
828 if (csdev->ea != NULL)
829 return -EINVAL;
831 name = dev_name(dev);
832 csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
833 if (IS_ERR(csdev->ea)) {
834 err = PTR_ERR(csdev->ea);
835 csdev->ea = NULL;
836 } else
837 csdev->ea->attr.show = etm_perf_sink_name_show;
839 return err;
842 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
844 struct device *pmu_dev = etm_pmu.dev;
846 sysfs_remove_file_from_group(&pmu_dev->kobj,
847 &ea->attr.attr, group_name);
850 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
852 if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
853 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
854 return;
856 if (!csdev->ea)
857 return;
859 etm_perf_del_symlink_group(csdev->ea, "sinks");
860 csdev->ea = NULL;
863 static ssize_t etm_perf_cscfg_event_show(struct device *dev,
864 struct device_attribute *dattr,
865 char *buf)
867 struct dev_ext_attribute *ea;
869 ea = container_of(dattr, struct dev_ext_attribute, attr);
870 return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
873 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
875 int err = 0;
877 if (config_desc->event_ea != NULL)
878 return 0;
880 config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
882 /* set the show function to the custom cscfg event */
883 if (!IS_ERR(config_desc->event_ea))
884 config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
885 else {
886 err = PTR_ERR(config_desc->event_ea);
887 config_desc->event_ea = NULL;
890 return err;
893 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
895 if (!config_desc->event_ea)
896 return;
898 etm_perf_del_symlink_group(config_desc->event_ea, "events");
899 config_desc->event_ea = NULL;
902 int __init etm_perf_init(void)
904 int ret;
906 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE |
907 PERF_PMU_CAP_ITRACE);
909 etm_pmu.attr_groups = etm_pmu_attr_groups;
910 etm_pmu.task_ctx_nr = perf_sw_context;
911 etm_pmu.read = etm_event_read;
912 etm_pmu.event_init = etm_event_init;
913 etm_pmu.setup_aux = etm_setup_aux;
914 etm_pmu.free_aux = etm_free_aux;
915 etm_pmu.start = etm_event_start;
916 etm_pmu.stop = etm_event_stop;
917 etm_pmu.add = etm_event_add;
918 etm_pmu.del = etm_event_del;
919 etm_pmu.addr_filters_sync = etm_addr_filters_sync;
920 etm_pmu.addr_filters_validate = etm_addr_filters_validate;
921 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
922 etm_pmu.module = THIS_MODULE;
924 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
925 if (ret == 0)
926 etm_perf_up = true;
928 return ret;
931 void etm_perf_exit(void)
933 perf_pmu_unregister(&etm_pmu);