1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright(C) 2015 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 #include <linux/bitfield.h>
8 #include <linux/coresight.h>
9 #include <linux/coresight-pmu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/perf_event.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/stringhash.h>
19 #include <linux/types.h>
20 #include <linux/workqueue.h>
22 #include "coresight-config.h"
23 #include "coresight-etm-perf.h"
24 #include "coresight-priv.h"
25 #include "coresight-syscfg.h"
26 #include "coresight-trace-id.h"
28 static struct pmu etm_pmu
;
29 static bool etm_perf_up
;
32 * An ETM context for a running event includes the perf aux handle
33 * and aux_data. For ETM, the aux_data (etm_event_data), consists of
34 * the trace path and the sink configuration. The event data is accessible
35 * via perf_get_aux(handle). However, a sink could "end" a perf output
36 * handle via the IRQ handler. And if the "sink" encounters a failure
37 * to "begin" another session (e.g due to lack of space in the buffer),
38 * the handle will be cleared. Thus, the event_data may not be accessible
39 * from the handle when we get to the etm_event_stop(), which is required
40 * for stopping the trace path. The event_data is guaranteed to stay alive
41 * until "free_aux()", which cannot happen as long as the event is active on
42 * the ETM. Thus the event_data for the session must be part of the ETM context
43 * to make sure we can disable the trace path.
46 struct perf_output_handle handle
;
47 struct etm_event_data
*event_data
;
50 static DEFINE_PER_CPU(struct etm_ctxt
, etm_ctxt
);
51 static DEFINE_PER_CPU(struct coresight_device
*, csdev_src
);
54 * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
55 * now take them as general formats and apply on all ETMs.
57 PMU_FORMAT_ATTR(branch_broadcast
, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST
));
58 PMU_FORMAT_ATTR(cycacc
, "config:" __stringify(ETM_OPT_CYCACC
));
59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
60 PMU_FORMAT_ATTR(contextid1
, "config:" __stringify(ETM_OPT_CTXTID
));
61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
62 PMU_FORMAT_ATTR(contextid2
, "config:" __stringify(ETM_OPT_CTXTID2
));
63 PMU_FORMAT_ATTR(timestamp
, "config:" __stringify(ETM_OPT_TS
));
64 PMU_FORMAT_ATTR(retstack
, "config:" __stringify(ETM_OPT_RETSTK
));
65 /* preset - if sink ID is used as a configuration selector */
66 PMU_FORMAT_ATTR(preset
, "config:0-3");
67 /* Sink ID - same for all ETMs */
68 PMU_FORMAT_ATTR(sinkid
, "config2:0-31");
69 /* config ID - set if a system configuration is selected */
70 PMU_FORMAT_ATTR(configid
, "config2:32-63");
71 PMU_FORMAT_ATTR(cc_threshold
, "config3:0-11");
75 * contextid always traces the "PID". The PID is in CONTEXTIDR_EL1
76 * when the kernel is running at EL1; when the kernel is at EL2,
77 * the PID is in CONTEXTIDR_EL2.
79 static ssize_t
format_attr_contextid_show(struct device
*dev
,
80 struct device_attribute
*attr
,
83 int pid_fmt
= ETM_OPT_CTXTID
;
85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
86 pid_fmt
= is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2
: ETM_OPT_CTXTID
;
88 return sprintf(page
, "config:%d\n", pid_fmt
);
91 static struct device_attribute format_attr_contextid
=
92 __ATTR(contextid
, 0444, format_attr_contextid_show
, NULL
);
94 static struct attribute
*etm_config_formats_attr
[] = {
95 &format_attr_cycacc
.attr
,
96 &format_attr_contextid
.attr
,
97 &format_attr_contextid1
.attr
,
98 &format_attr_contextid2
.attr
,
99 &format_attr_timestamp
.attr
,
100 &format_attr_retstack
.attr
,
101 &format_attr_sinkid
.attr
,
102 &format_attr_preset
.attr
,
103 &format_attr_configid
.attr
,
104 &format_attr_branch_broadcast
.attr
,
105 &format_attr_cc_threshold
.attr
,
109 static const struct attribute_group etm_pmu_format_group
= {
111 .attrs
= etm_config_formats_attr
,
114 static struct attribute
*etm_config_sinks_attr
[] = {
118 static const struct attribute_group etm_pmu_sinks_group
= {
120 .attrs
= etm_config_sinks_attr
,
123 static struct attribute
*etm_config_events_attr
[] = {
127 static const struct attribute_group etm_pmu_events_group
= {
129 .attrs
= etm_config_events_attr
,
132 static const struct attribute_group
*etm_pmu_attr_groups
[] = {
133 &etm_pmu_format_group
,
134 &etm_pmu_sinks_group
,
135 &etm_pmu_events_group
,
139 static inline struct list_head
**
140 etm_event_cpu_path_ptr(struct etm_event_data
*data
, int cpu
)
142 return per_cpu_ptr(data
->path
, cpu
);
145 static inline struct list_head
*
146 etm_event_cpu_path(struct etm_event_data
*data
, int cpu
)
148 return *etm_event_cpu_path_ptr(data
, cpu
);
151 static void etm_event_read(struct perf_event
*event
) {}
153 static int etm_addr_filters_alloc(struct perf_event
*event
)
155 struct etm_filters
*filters
;
156 int node
= event
->cpu
== -1 ? -1 : cpu_to_node(event
->cpu
);
158 filters
= kzalloc_node(sizeof(struct etm_filters
), GFP_KERNEL
, node
);
163 memcpy(filters
, event
->parent
->hw
.addr_filters
,
166 event
->hw
.addr_filters
= filters
;
171 static void etm_event_destroy(struct perf_event
*event
)
173 kfree(event
->hw
.addr_filters
);
174 event
->hw
.addr_filters
= NULL
;
177 static int etm_event_init(struct perf_event
*event
)
181 if (event
->attr
.type
!= etm_pmu
.type
) {
186 ret
= etm_addr_filters_alloc(event
);
190 event
->destroy
= etm_event_destroy
;
195 static void free_sink_buffer(struct etm_event_data
*event_data
)
198 cpumask_t
*mask
= &event_data
->mask
;
199 struct coresight_device
*sink
;
201 if (!event_data
->snk_config
)
204 if (WARN_ON(cpumask_empty(mask
)))
207 cpu
= cpumask_first(mask
);
208 sink
= coresight_get_sink(etm_event_cpu_path(event_data
, cpu
));
209 sink_ops(sink
)->free_buffer(event_data
->snk_config
);
212 static void free_event_data(struct work_struct
*work
)
216 struct etm_event_data
*event_data
;
218 event_data
= container_of(work
, struct etm_event_data
, work
);
219 mask
= &event_data
->mask
;
221 /* Free the sink buffers, if there are any */
222 free_sink_buffer(event_data
);
224 /* clear any configuration we were using */
225 if (event_data
->cfg_hash
)
226 cscfg_deactivate_config(event_data
->cfg_hash
);
228 for_each_cpu(cpu
, mask
) {
229 struct list_head
**ppath
;
231 ppath
= etm_event_cpu_path_ptr(event_data
, cpu
);
232 if (!(IS_ERR_OR_NULL(*ppath
))) {
233 struct coresight_device
*sink
= coresight_get_sink(*ppath
);
236 * Mark perf event as done for trace id allocator, but don't call
237 * coresight_trace_id_put_cpu_id_map() on individual IDs. Perf sessions
238 * never free trace IDs to ensure that the ID associated with a CPU
239 * cannot change during their and other's concurrent sessions. Instead,
240 * a refcount is used so that the last event to call
241 * coresight_trace_id_perf_stop() frees all IDs.
243 coresight_trace_id_perf_stop(&sink
->perf_sink_id_map
);
245 coresight_release_path(*ppath
);
250 free_percpu(event_data
->path
);
254 static void *alloc_event_data(int cpu
)
257 struct etm_event_data
*event_data
;
259 /* First get memory for the session's data */
260 event_data
= kzalloc(sizeof(struct etm_event_data
), GFP_KERNEL
);
265 mask
= &event_data
->mask
;
267 cpumask_set_cpu(cpu
, mask
);
269 cpumask_copy(mask
, cpu_present_mask
);
272 * Each CPU has a single path between source and destination. As such
273 * allocate an array using CPU numbers as indexes. That way a path
274 * for any CPU can easily be accessed at any given time. We proceed
275 * the same way for sessions involving a single CPU. The cost of
276 * unused memory when dealing with single CPU trace scenarios is small
277 * compared to the cost of searching through an optimized array.
279 event_data
->path
= alloc_percpu(struct list_head
*);
281 if (!event_data
->path
) {
289 static void etm_free_aux(void *data
)
291 struct etm_event_data
*event_data
= data
;
293 schedule_work(&event_data
->work
);
297 * Check if two given sinks are compatible with each other,
298 * so that they can use the same sink buffers, when an event
301 static bool sinks_compatible(struct coresight_device
*a
,
302 struct coresight_device
*b
)
307 * If the sinks are of the same subtype and driven
308 * by the same driver, we can use the same buffer
311 return (a
->subtype
.sink_subtype
== b
->subtype
.sink_subtype
) &&
312 (sink_ops(a
) == sink_ops(b
));
315 static void *etm_setup_aux(struct perf_event
*event
, void **pages
,
316 int nr_pages
, bool overwrite
)
319 int cpu
= event
->cpu
;
322 struct coresight_device
*sink
= NULL
;
323 struct coresight_device
*user_sink
= NULL
, *last_sink
= NULL
;
324 struct etm_event_data
*event_data
= NULL
;
326 event_data
= alloc_event_data(cpu
);
329 INIT_WORK(&event_data
->work
, free_event_data
);
331 /* First get the selected sink from user space. */
332 if (event
->attr
.config2
& GENMASK_ULL(31, 0)) {
333 id
= (u32
)event
->attr
.config2
;
334 sink
= user_sink
= coresight_get_sink_by_id(id
);
337 /* check if user wants a coresight configuration selected */
338 cfg_hash
= (u32
)((event
->attr
.config2
& GENMASK_ULL(63, 32)) >> 32);
340 if (cscfg_activate_config(cfg_hash
))
342 event_data
->cfg_hash
= cfg_hash
;
345 mask
= &event_data
->mask
;
348 * Setup the path for each CPU in a trace session. We try to build
349 * trace path for each CPU in the mask. If we don't find an ETM
350 * for the CPU or fail to build a path, we clear the CPU from the
351 * mask and continue with the rest. If ever we try to trace on those
352 * CPUs, we can handle it and fail the session.
354 for_each_cpu(cpu
, mask
) {
355 struct list_head
*path
;
356 struct coresight_device
*csdev
;
358 csdev
= per_cpu(csdev_src
, cpu
);
360 * If there is no ETM associated with this CPU clear it from
361 * the mask and continue with the rest. If ever we try to trace
362 * on this CPU, we handle it accordingly.
365 cpumask_clear_cpu(cpu
, mask
);
370 * No sink provided - look for a default sink for all the ETMs,
371 * where this event can be scheduled.
372 * We allocate the sink specific buffers only once for this
373 * event. If the ETMs have different default sink devices, we
374 * can only use a single "type" of sink as the event can carry
375 * only one sink specific buffer. Thus we have to make sure
376 * that the sinks are of the same type and driven by the same
377 * driver, as the one we allocate the buffer for. As such
378 * we choose the first sink and check if the remaining ETMs
379 * have a compatible default sink. We don't trace on a CPU
380 * if the sink is not compatible.
383 /* Find the default sink for this ETM */
384 sink
= coresight_find_default_sink(csdev
);
386 cpumask_clear_cpu(cpu
, mask
);
390 /* Check if this sink compatible with the last sink */
391 if (last_sink
&& !sinks_compatible(last_sink
, sink
)) {
392 cpumask_clear_cpu(cpu
, mask
);
399 * Building a path doesn't enable it, it simply builds a
400 * list of devices from source to sink that can be
401 * referenced later when the path is actually needed.
403 path
= coresight_build_path(csdev
, sink
);
405 cpumask_clear_cpu(cpu
, mask
);
409 /* ensure we can allocate a trace ID for this CPU */
410 trace_id
= coresight_trace_id_get_cpu_id_map(cpu
, &sink
->perf_sink_id_map
);
411 if (!IS_VALID_CS_TRACE_ID(trace_id
)) {
412 cpumask_clear_cpu(cpu
, mask
);
413 coresight_release_path(path
);
417 coresight_trace_id_perf_start(&sink
->perf_sink_id_map
);
418 *etm_event_cpu_path_ptr(event_data
, cpu
) = path
;
421 /* no sink found for any CPU - cannot trace */
425 /* If we don't have any CPUs ready for tracing, abort */
426 cpu
= cpumask_first(mask
);
427 if (cpu
>= nr_cpu_ids
)
430 if (!sink_ops(sink
)->alloc_buffer
|| !sink_ops(sink
)->free_buffer
)
434 * Allocate the sink buffer for this session. All the sinks
435 * where this event can be scheduled are ensured to be of the
436 * same type. Thus the same sink configuration is used by the
439 event_data
->snk_config
=
440 sink_ops(sink
)->alloc_buffer(sink
, event
, pages
,
441 nr_pages
, overwrite
);
442 if (!event_data
->snk_config
)
449 etm_free_aux(event_data
);
454 static void etm_event_start(struct perf_event
*event
, int flags
)
456 int cpu
= smp_processor_id();
457 struct etm_event_data
*event_data
;
458 struct etm_ctxt
*ctxt
= this_cpu_ptr(&etm_ctxt
);
459 struct perf_output_handle
*handle
= &ctxt
->handle
;
460 struct coresight_device
*sink
, *csdev
= per_cpu(csdev_src
, cpu
);
461 struct list_head
*path
;
468 /* Have we messed up our tracking ? */
469 if (WARN_ON(ctxt
->event_data
))
473 * Deal with the ring buffer API and get a handle on the
474 * session's information.
476 event_data
= perf_aux_output_begin(handle
, event
);
481 * Check if this ETM is allowed to trace, as decided
482 * at etm_setup_aux(). This could be due to an unreachable
483 * sink from this ETM. We can't do much in this case if
484 * the sink was specified or hinted to the driver. For
485 * now, simply don't record anything on this ETM.
487 * As such we pretend that everything is fine, and let
488 * it continue without actually tracing. The event could
489 * continue tracing when it moves to a CPU where it is
490 * reachable to a sink.
492 if (!cpumask_test_cpu(cpu
, &event_data
->mask
))
495 path
= etm_event_cpu_path(event_data
, cpu
);
496 /* We need a sink, no need to continue without one */
497 sink
= coresight_get_sink(path
);
498 if (WARN_ON_ONCE(!sink
))
501 /* Nothing will happen without a path */
502 if (coresight_enable_path(path
, CS_MODE_PERF
, handle
))
505 /* Finally enable the tracer */
506 if (source_ops(csdev
)->enable(csdev
, event
, CS_MODE_PERF
,
507 &sink
->perf_sink_id_map
))
508 goto fail_disable_path
;
511 * output cpu / trace ID in perf record, once for the lifetime
514 if (!cpumask_test_cpu(cpu
, &event_data
->aux_hwid_done
)) {
515 cpumask_set_cpu(cpu
, &event_data
->aux_hwid_done
);
517 trace_id
= coresight_trace_id_read_cpu_id_map(cpu
, &sink
->perf_sink_id_map
);
519 hw_id
= FIELD_PREP(CS_AUX_HW_ID_MAJOR_VERSION_MASK
,
520 CS_AUX_HW_ID_MAJOR_VERSION
);
521 hw_id
|= FIELD_PREP(CS_AUX_HW_ID_MINOR_VERSION_MASK
,
522 CS_AUX_HW_ID_MINOR_VERSION
);
523 hw_id
|= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK
, trace_id
);
524 hw_id
|= FIELD_PREP(CS_AUX_HW_ID_SINK_ID_MASK
, coresight_get_sink_id(sink
));
526 perf_report_aux_output_id(event
, hw_id
);
530 /* Tell the perf core the event is alive */
532 /* Save the event_data for this ETM */
533 ctxt
->event_data
= event_data
;
537 coresight_disable_path(path
);
540 * Check if the handle is still associated with the event,
541 * to handle cases where if the sink failed to start the
542 * trace and TRUNCATED the handle already.
544 if (READ_ONCE(handle
->event
)) {
545 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
);
546 perf_aux_output_end(handle
, 0);
549 event
->hw
.state
= PERF_HES_STOPPED
;
553 static void etm_event_stop(struct perf_event
*event
, int mode
)
555 int cpu
= smp_processor_id();
557 struct coresight_device
*sink
, *csdev
= per_cpu(csdev_src
, cpu
);
558 struct etm_ctxt
*ctxt
= this_cpu_ptr(&etm_ctxt
);
559 struct perf_output_handle
*handle
= &ctxt
->handle
;
560 struct etm_event_data
*event_data
;
561 struct list_head
*path
;
564 * If we still have access to the event_data via handle,
565 * confirm that we haven't messed up the tracking.
568 WARN_ON(perf_get_aux(handle
) != ctxt
->event_data
))
571 event_data
= ctxt
->event_data
;
572 /* Clear the event_data as this ETM is stopping the trace. */
573 ctxt
->event_data
= NULL
;
575 if (event
->hw
.state
== PERF_HES_STOPPED
)
578 /* We must have a valid event_data for a running event */
579 if (WARN_ON(!event_data
))
583 * Check if this ETM was allowed to trace, as decided at
584 * etm_setup_aux(). If it wasn't allowed to trace, then
585 * nothing needs to be torn down other than outputting a
588 if (handle
->event
&& (mode
& PERF_EF_UPDATE
) &&
589 !cpumask_test_cpu(cpu
, &event_data
->mask
)) {
590 event
->hw
.state
= PERF_HES_STOPPED
;
591 perf_aux_output_end(handle
, 0);
598 path
= etm_event_cpu_path(event_data
, cpu
);
602 sink
= coresight_get_sink(path
);
607 coresight_disable_source(csdev
, event
);
610 event
->hw
.state
= PERF_HES_STOPPED
;
613 * If the handle is not bound to an event anymore
614 * (e.g, the sink driver was unable to restart the
615 * handle due to lack of buffer space), we don't
616 * have to do anything here.
618 if (handle
->event
&& (mode
& PERF_EF_UPDATE
)) {
619 if (WARN_ON_ONCE(handle
->event
!= event
))
622 /* update trace information */
623 if (!sink_ops(sink
)->update_buffer
)
626 size
= sink_ops(sink
)->update_buffer(sink
, handle
,
627 event_data
->snk_config
);
629 * Make sure the handle is still valid as the
630 * sink could have closed it from an IRQ.
631 * The sink driver must handle the race with
632 * update_buffer() and IRQ. Thus either we
633 * should get a valid handle and valid size
636 * But we should never get a non-zero size with
639 if (READ_ONCE(handle
->event
))
640 perf_aux_output_end(handle
, size
);
645 /* Disabling the path make its elements available to other sessions */
646 coresight_disable_path(path
);
649 static int etm_event_add(struct perf_event
*event
, int mode
)
652 struct hw_perf_event
*hwc
= &event
->hw
;
654 if (mode
& PERF_EF_START
) {
655 etm_event_start(event
, 0);
656 if (hwc
->state
& PERF_HES_STOPPED
)
659 hwc
->state
= PERF_HES_STOPPED
;
665 static void etm_event_del(struct perf_event
*event
, int mode
)
667 etm_event_stop(event
, PERF_EF_UPDATE
);
670 static int etm_addr_filters_validate(struct list_head
*filters
)
672 bool range
= false, address
= false;
674 struct perf_addr_filter
*filter
;
676 list_for_each_entry(filter
, filters
, entry
) {
678 * No need to go further if there's no more
681 if (++index
> ETM_ADDR_CMP_MAX
)
684 /* filter::size==0 means single address trigger */
687 * The existing code relies on START/STOP filters
688 * being address filters.
690 if (filter
->action
== PERF_ADDR_FILTER_ACTION_START
||
691 filter
->action
== PERF_ADDR_FILTER_ACTION_STOP
)
699 * At this time we don't allow range and start/stop filtering
700 * to cohabitate, they have to be mutually exclusive.
702 if (range
&& address
)
709 static void etm_addr_filters_sync(struct perf_event
*event
)
711 struct perf_addr_filters_head
*head
= perf_event_addr_filters(event
);
712 unsigned long start
, stop
;
713 struct perf_addr_filter_range
*fr
= event
->addr_filter_ranges
;
714 struct etm_filters
*filters
= event
->hw
.addr_filters
;
715 struct etm_filter
*etm_filter
;
716 struct perf_addr_filter
*filter
;
719 list_for_each_entry(filter
, &head
->list
, entry
) {
721 stop
= start
+ fr
[i
].size
;
722 etm_filter
= &filters
->etm_filter
[i
];
724 switch (filter
->action
) {
725 case PERF_ADDR_FILTER_ACTION_FILTER
:
726 etm_filter
->start_addr
= start
;
727 etm_filter
->stop_addr
= stop
;
728 etm_filter
->type
= ETM_ADDR_TYPE_RANGE
;
730 case PERF_ADDR_FILTER_ACTION_START
:
731 etm_filter
->start_addr
= start
;
732 etm_filter
->type
= ETM_ADDR_TYPE_START
;
734 case PERF_ADDR_FILTER_ACTION_STOP
:
735 etm_filter
->stop_addr
= stop
;
736 etm_filter
->type
= ETM_ADDR_TYPE_STOP
;
742 filters
->nr_filters
= i
;
745 int etm_perf_symlink(struct coresight_device
*csdev
, bool link
)
747 char entry
[sizeof("cpu9999999")];
748 int ret
= 0, cpu
= source_ops(csdev
)->cpu_id(csdev
);
749 struct device
*pmu_dev
= etm_pmu
.dev
;
750 struct device
*cs_dev
= &csdev
->dev
;
752 sprintf(entry
, "cpu%d", cpu
);
755 return -EPROBE_DEFER
;
758 ret
= sysfs_create_link(&pmu_dev
->kobj
, &cs_dev
->kobj
, entry
);
761 per_cpu(csdev_src
, cpu
) = csdev
;
763 sysfs_remove_link(&pmu_dev
->kobj
, entry
);
764 per_cpu(csdev_src
, cpu
) = NULL
;
769 EXPORT_SYMBOL_GPL(etm_perf_symlink
);
771 static ssize_t
etm_perf_sink_name_show(struct device
*dev
,
772 struct device_attribute
*dattr
,
775 struct dev_ext_attribute
*ea
;
777 ea
= container_of(dattr
, struct dev_ext_attribute
, attr
);
778 return scnprintf(buf
, PAGE_SIZE
, "0x%lx\n", (unsigned long)(ea
->var
));
781 static struct dev_ext_attribute
*
782 etm_perf_add_symlink_group(struct device
*dev
, const char *name
, const char *group_name
)
784 struct dev_ext_attribute
*ea
;
787 struct device
*pmu_dev
= etm_pmu
.dev
;
790 return ERR_PTR(-EPROBE_DEFER
);
792 ea
= devm_kzalloc(dev
, sizeof(*ea
), GFP_KERNEL
);
794 return ERR_PTR(-ENOMEM
);
797 * If this function is called adding a sink then the hash is used for
798 * sink selection - see function coresight_get_sink_by_id().
799 * If adding a configuration then the hash is used for selection in
800 * cscfg_activate_config()
802 hash
= hashlen_hash(hashlen_string(NULL
, name
));
804 sysfs_attr_init(&ea
->attr
.attr
);
805 ea
->attr
.attr
.name
= devm_kstrdup(dev
, name
, GFP_KERNEL
);
806 if (!ea
->attr
.attr
.name
)
807 return ERR_PTR(-ENOMEM
);
809 ea
->attr
.attr
.mode
= 0444;
810 ea
->var
= (unsigned long *)hash
;
812 ret
= sysfs_add_file_to_group(&pmu_dev
->kobj
,
813 &ea
->attr
.attr
, group_name
);
815 return ret
? ERR_PTR(ret
) : ea
;
818 int etm_perf_add_symlink_sink(struct coresight_device
*csdev
)
821 struct device
*dev
= &csdev
->dev
;
824 if (csdev
->type
!= CORESIGHT_DEV_TYPE_SINK
&&
825 csdev
->type
!= CORESIGHT_DEV_TYPE_LINKSINK
)
828 if (csdev
->ea
!= NULL
)
831 name
= dev_name(dev
);
832 csdev
->ea
= etm_perf_add_symlink_group(dev
, name
, "sinks");
833 if (IS_ERR(csdev
->ea
)) {
834 err
= PTR_ERR(csdev
->ea
);
837 csdev
->ea
->attr
.show
= etm_perf_sink_name_show
;
842 static void etm_perf_del_symlink_group(struct dev_ext_attribute
*ea
, const char *group_name
)
844 struct device
*pmu_dev
= etm_pmu
.dev
;
846 sysfs_remove_file_from_group(&pmu_dev
->kobj
,
847 &ea
->attr
.attr
, group_name
);
850 void etm_perf_del_symlink_sink(struct coresight_device
*csdev
)
852 if (csdev
->type
!= CORESIGHT_DEV_TYPE_SINK
&&
853 csdev
->type
!= CORESIGHT_DEV_TYPE_LINKSINK
)
859 etm_perf_del_symlink_group(csdev
->ea
, "sinks");
863 static ssize_t
etm_perf_cscfg_event_show(struct device
*dev
,
864 struct device_attribute
*dattr
,
867 struct dev_ext_attribute
*ea
;
869 ea
= container_of(dattr
, struct dev_ext_attribute
, attr
);
870 return scnprintf(buf
, PAGE_SIZE
, "configid=0x%lx\n", (unsigned long)(ea
->var
));
873 int etm_perf_add_symlink_cscfg(struct device
*dev
, struct cscfg_config_desc
*config_desc
)
877 if (config_desc
->event_ea
!= NULL
)
880 config_desc
->event_ea
= etm_perf_add_symlink_group(dev
, config_desc
->name
, "events");
882 /* set the show function to the custom cscfg event */
883 if (!IS_ERR(config_desc
->event_ea
))
884 config_desc
->event_ea
->attr
.show
= etm_perf_cscfg_event_show
;
886 err
= PTR_ERR(config_desc
->event_ea
);
887 config_desc
->event_ea
= NULL
;
893 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc
*config_desc
)
895 if (!config_desc
->event_ea
)
898 etm_perf_del_symlink_group(config_desc
->event_ea
, "events");
899 config_desc
->event_ea
= NULL
;
902 int __init
etm_perf_init(void)
906 etm_pmu
.capabilities
= (PERF_PMU_CAP_EXCLUSIVE
|
907 PERF_PMU_CAP_ITRACE
);
909 etm_pmu
.attr_groups
= etm_pmu_attr_groups
;
910 etm_pmu
.task_ctx_nr
= perf_sw_context
;
911 etm_pmu
.read
= etm_event_read
;
912 etm_pmu
.event_init
= etm_event_init
;
913 etm_pmu
.setup_aux
= etm_setup_aux
;
914 etm_pmu
.free_aux
= etm_free_aux
;
915 etm_pmu
.start
= etm_event_start
;
916 etm_pmu
.stop
= etm_event_stop
;
917 etm_pmu
.add
= etm_event_add
;
918 etm_pmu
.del
= etm_event_del
;
919 etm_pmu
.addr_filters_sync
= etm_addr_filters_sync
;
920 etm_pmu
.addr_filters_validate
= etm_addr_filters_validate
;
921 etm_pmu
.nr_addr_filters
= ETM_ADDR_CMP_MAX
;
922 etm_pmu
.module
= THIS_MODULE
;
924 ret
= perf_pmu_register(&etm_pmu
, CORESIGHT_ETM_PMU_NAME
, -1);
931 void etm_perf_exit(void)
933 perf_pmu_unregister(&etm_pmu
);