drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / drivers / i2c / busses / i2c-designware-master.c
blobc8cbe5b1aeb19775617e8db9caf01eb9c685cafc
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Synopsys DesignWare I2C adapter driver (master only).
5 * Based on the TI DAVINCI I2C adapter driver.
7 * Copyright (C) 2006 Texas Instruments.
8 * Copyright (C) 2007 MontaVista Software Inc.
9 * Copyright (C) 2009 Provigent Ltd.
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/regmap.h>
23 #include <linux/reset.h>
25 #define DEFAULT_SYMBOL_NAMESPACE "I2C_DW"
27 #include "i2c-designware-core.h"
29 #define AMD_TIMEOUT_MIN_US 25
30 #define AMD_TIMEOUT_MAX_US 250
31 #define AMD_MASTERCFG_MASK GENMASK(15, 0)
33 static void i2c_dw_configure_fifo_master(struct dw_i2c_dev *dev)
35 /* Configure Tx/Rx FIFO threshold levels */
36 regmap_write(dev->map, DW_IC_TX_TL, dev->tx_fifo_depth / 2);
37 regmap_write(dev->map, DW_IC_RX_TL, 0);
39 /* Configure the I2C master */
40 regmap_write(dev->map, DW_IC_CON, dev->master_cfg);
43 static int i2c_dw_set_timings_master(struct dw_i2c_dev *dev)
45 unsigned int comp_param1;
46 u32 sda_falling_time, scl_falling_time;
47 struct i2c_timings *t = &dev->timings;
48 const char *fp_str = "";
49 u32 ic_clk;
50 int ret;
52 ret = i2c_dw_acquire_lock(dev);
53 if (ret)
54 return ret;
56 ret = regmap_read(dev->map, DW_IC_COMP_PARAM_1, &comp_param1);
57 i2c_dw_release_lock(dev);
58 if (ret)
59 return ret;
61 /* Set standard and fast speed dividers for high/low periods */
62 sda_falling_time = t->sda_fall_ns ?: 300; /* ns */
63 scl_falling_time = t->scl_fall_ns ?: 300; /* ns */
65 /* Calculate SCL timing parameters for standard mode if not set */
66 if (!dev->ss_hcnt || !dev->ss_lcnt) {
67 ic_clk = i2c_dw_clk_rate(dev);
68 dev->ss_hcnt =
69 i2c_dw_scl_hcnt(dev,
70 DW_IC_SS_SCL_HCNT,
71 ic_clk,
72 4000, /* tHD;STA = tHIGH = 4.0 us */
73 sda_falling_time,
74 0); /* No offset */
75 dev->ss_lcnt =
76 i2c_dw_scl_lcnt(dev,
77 DW_IC_SS_SCL_LCNT,
78 ic_clk,
79 4700, /* tLOW = 4.7 us */
80 scl_falling_time,
81 0); /* No offset */
83 dev_dbg(dev->dev, "Standard Mode HCNT:LCNT = %d:%d\n",
84 dev->ss_hcnt, dev->ss_lcnt);
87 * Set SCL timing parameters for fast mode or fast mode plus. Only
88 * difference is the timing parameter values since the registers are
89 * the same.
91 if (t->bus_freq_hz == I2C_MAX_FAST_MODE_PLUS_FREQ) {
93 * Check are Fast Mode Plus parameters available. Calculate
94 * SCL timing parameters for Fast Mode Plus if not set.
96 if (dev->fp_hcnt && dev->fp_lcnt) {
97 dev->fs_hcnt = dev->fp_hcnt;
98 dev->fs_lcnt = dev->fp_lcnt;
99 } else {
100 ic_clk = i2c_dw_clk_rate(dev);
101 dev->fs_hcnt =
102 i2c_dw_scl_hcnt(dev,
103 DW_IC_FS_SCL_HCNT,
104 ic_clk,
105 260, /* tHIGH = 260 ns */
106 sda_falling_time,
107 0); /* No offset */
108 dev->fs_lcnt =
109 i2c_dw_scl_lcnt(dev,
110 DW_IC_FS_SCL_LCNT,
111 ic_clk,
112 500, /* tLOW = 500 ns */
113 scl_falling_time,
114 0); /* No offset */
116 fp_str = " Plus";
119 * Calculate SCL timing parameters for fast mode if not set. They are
120 * needed also in high speed mode.
122 if (!dev->fs_hcnt || !dev->fs_lcnt) {
123 ic_clk = i2c_dw_clk_rate(dev);
124 dev->fs_hcnt =
125 i2c_dw_scl_hcnt(dev,
126 DW_IC_FS_SCL_HCNT,
127 ic_clk,
128 600, /* tHD;STA = tHIGH = 0.6 us */
129 sda_falling_time,
130 0); /* No offset */
131 dev->fs_lcnt =
132 i2c_dw_scl_lcnt(dev,
133 DW_IC_FS_SCL_LCNT,
134 ic_clk,
135 1300, /* tLOW = 1.3 us */
136 scl_falling_time,
137 0); /* No offset */
139 dev_dbg(dev->dev, "Fast Mode%s HCNT:LCNT = %d:%d\n",
140 fp_str, dev->fs_hcnt, dev->fs_lcnt);
142 /* Check is high speed possible and fall back to fast mode if not */
143 if ((dev->master_cfg & DW_IC_CON_SPEED_MASK) ==
144 DW_IC_CON_SPEED_HIGH) {
145 if ((comp_param1 & DW_IC_COMP_PARAM_1_SPEED_MODE_MASK)
146 != DW_IC_COMP_PARAM_1_SPEED_MODE_HIGH) {
147 dev_err(dev->dev, "High Speed not supported!\n");
148 t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;
149 dev->master_cfg &= ~DW_IC_CON_SPEED_MASK;
150 dev->master_cfg |= DW_IC_CON_SPEED_FAST;
151 dev->hs_hcnt = 0;
152 dev->hs_lcnt = 0;
153 } else if (!dev->hs_hcnt || !dev->hs_lcnt) {
154 u32 t_high, t_low;
157 * The legal values stated in the databook for bus
158 * capacitance are only 100pF and 400pF.
159 * If dev->bus_capacitance_pF is greater than or equals
160 * to 400, t_high and t_low are assumed to be
161 * appropriate values for 400pF, otherwise 100pF.
163 if (dev->bus_capacitance_pF >= 400) {
164 /* assume bus capacitance is 400pF */
165 t_high = dev->clk_freq_optimized ? 160 : 120;
166 t_low = 320;
167 } else {
168 /* assume bus capacitance is 100pF */
169 t_high = 60;
170 t_low = dev->clk_freq_optimized ? 120 : 160;
173 ic_clk = i2c_dw_clk_rate(dev);
174 dev->hs_hcnt =
175 i2c_dw_scl_hcnt(dev,
176 DW_IC_HS_SCL_HCNT,
177 ic_clk,
178 t_high,
179 sda_falling_time,
180 0); /* No offset */
181 dev->hs_lcnt =
182 i2c_dw_scl_lcnt(dev,
183 DW_IC_HS_SCL_LCNT,
184 ic_clk,
185 t_low,
186 scl_falling_time,
187 0); /* No offset */
189 dev_dbg(dev->dev, "High Speed Mode HCNT:LCNT = %d:%d\n",
190 dev->hs_hcnt, dev->hs_lcnt);
193 ret = i2c_dw_set_sda_hold(dev);
194 if (ret)
195 return ret;
197 dev_dbg(dev->dev, "Bus speed: %s\n", i2c_freq_mode_string(t->bus_freq_hz));
198 return 0;
202 * i2c_dw_init_master() - Initialize the DesignWare I2C master hardware
203 * @dev: device private data
205 * This functions configures and enables the I2C master.
206 * This function is called during I2C init function, and in case of timeout at
207 * run time.
209 * Return: 0 on success, or negative errno otherwise.
211 static int i2c_dw_init_master(struct dw_i2c_dev *dev)
213 int ret;
215 ret = i2c_dw_acquire_lock(dev);
216 if (ret)
217 return ret;
219 /* Disable the adapter */
220 __i2c_dw_disable(dev);
222 /* Write standard speed timing parameters */
223 regmap_write(dev->map, DW_IC_SS_SCL_HCNT, dev->ss_hcnt);
224 regmap_write(dev->map, DW_IC_SS_SCL_LCNT, dev->ss_lcnt);
226 /* Write fast mode/fast mode plus timing parameters */
227 regmap_write(dev->map, DW_IC_FS_SCL_HCNT, dev->fs_hcnt);
228 regmap_write(dev->map, DW_IC_FS_SCL_LCNT, dev->fs_lcnt);
230 /* Write high speed timing parameters if supported */
231 if (dev->hs_hcnt && dev->hs_lcnt) {
232 regmap_write(dev->map, DW_IC_HS_SCL_HCNT, dev->hs_hcnt);
233 regmap_write(dev->map, DW_IC_HS_SCL_LCNT, dev->hs_lcnt);
236 /* Write SDA hold time if supported */
237 if (dev->sda_hold_time)
238 regmap_write(dev->map, DW_IC_SDA_HOLD, dev->sda_hold_time);
240 i2c_dw_configure_fifo_master(dev);
241 i2c_dw_release_lock(dev);
243 return 0;
246 static void i2c_dw_xfer_init(struct dw_i2c_dev *dev)
248 struct i2c_msg *msgs = dev->msgs;
249 u32 ic_con = 0, ic_tar = 0;
250 unsigned int dummy;
252 /* Disable the adapter */
253 __i2c_dw_disable(dev);
255 /* If the slave address is ten bit address, enable 10BITADDR */
256 if (msgs[dev->msg_write_idx].flags & I2C_M_TEN) {
257 ic_con = DW_IC_CON_10BITADDR_MASTER;
259 * If I2C_DYNAMIC_TAR_UPDATE is set, the 10-bit addressing
260 * mode has to be enabled via bit 12 of IC_TAR register.
261 * We set it always as I2C_DYNAMIC_TAR_UPDATE can't be
262 * detected from registers.
264 ic_tar = DW_IC_TAR_10BITADDR_MASTER;
267 regmap_update_bits(dev->map, DW_IC_CON, DW_IC_CON_10BITADDR_MASTER,
268 ic_con);
271 * Set the slave (target) address and enable 10-bit addressing mode
272 * if applicable.
274 regmap_write(dev->map, DW_IC_TAR,
275 msgs[dev->msg_write_idx].addr | ic_tar);
277 /* Enforce disabled interrupts (due to HW issues) */
278 __i2c_dw_write_intr_mask(dev, 0);
280 /* Enable the adapter */
281 __i2c_dw_enable(dev);
283 /* Dummy read to avoid the register getting stuck on Bay Trail */
284 regmap_read(dev->map, DW_IC_ENABLE_STATUS, &dummy);
286 /* Clear and enable interrupts */
287 regmap_read(dev->map, DW_IC_CLR_INTR, &dummy);
288 __i2c_dw_write_intr_mask(dev, DW_IC_INTR_MASTER_MASK);
292 * This function waits for the controller to be idle before disabling I2C
293 * When the controller is not in the IDLE state, the MST_ACTIVITY bit
294 * (IC_STATUS[5]) is set.
296 * Values:
297 * 0x1 (ACTIVE): Controller not idle
298 * 0x0 (IDLE): Controller is idle
300 * The function is called after completing the current transfer.
302 * Returns:
303 * False when the controller is in the IDLE state.
304 * True when the controller is in the ACTIVE state.
306 static bool i2c_dw_is_controller_active(struct dw_i2c_dev *dev)
308 u32 status;
310 regmap_read(dev->map, DW_IC_STATUS, &status);
311 if (!(status & DW_IC_STATUS_MASTER_ACTIVITY))
312 return false;
314 return regmap_read_poll_timeout(dev->map, DW_IC_STATUS, status,
315 !(status & DW_IC_STATUS_MASTER_ACTIVITY),
316 1100, 20000) != 0;
319 static int i2c_dw_check_stopbit(struct dw_i2c_dev *dev)
321 u32 val;
322 int ret;
324 ret = regmap_read_poll_timeout(dev->map, DW_IC_INTR_STAT, val,
325 !(val & DW_IC_INTR_STOP_DET),
326 1100, 20000);
327 if (ret)
328 dev_err(dev->dev, "i2c timeout error %d\n", ret);
330 return ret;
333 static int i2c_dw_status(struct dw_i2c_dev *dev)
335 int status;
337 status = i2c_dw_wait_bus_not_busy(dev);
338 if (status)
339 return status;
341 return i2c_dw_check_stopbit(dev);
345 * Initiate and continue master read/write transaction with polling
346 * based transfer routine afterward write messages into the Tx buffer.
348 static int amd_i2c_dw_xfer_quirk(struct i2c_adapter *adap, struct i2c_msg *msgs, int num_msgs)
350 struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
351 int msg_wrt_idx, msg_itr_lmt, buf_len, data_idx;
352 int cmd = 0, status;
353 u8 *tx_buf;
354 unsigned int val;
357 * In order to enable the interrupt for UCSI i.e. AMD NAVI GPU card,
358 * it is mandatory to set the right value in specific register
359 * (offset:0x474) as per the hardware IP specification.
361 regmap_write(dev->map, AMD_UCSI_INTR_REG, AMD_UCSI_INTR_EN);
363 dev->msgs = msgs;
364 dev->msgs_num = num_msgs;
365 i2c_dw_xfer_init(dev);
367 /* Initiate messages read/write transaction */
368 for (msg_wrt_idx = 0; msg_wrt_idx < num_msgs; msg_wrt_idx++) {
369 tx_buf = msgs[msg_wrt_idx].buf;
370 buf_len = msgs[msg_wrt_idx].len;
372 if (!(msgs[msg_wrt_idx].flags & I2C_M_RD))
373 regmap_write(dev->map, DW_IC_TX_TL, buf_len - 1);
375 * Initiate the i2c read/write transaction of buffer length,
376 * and poll for bus busy status. For the last message transfer,
377 * update the command with stop bit enable.
379 for (msg_itr_lmt = buf_len; msg_itr_lmt > 0; msg_itr_lmt--) {
380 if (msg_wrt_idx == num_msgs - 1 && msg_itr_lmt == 1)
381 cmd |= BIT(9);
383 if (msgs[msg_wrt_idx].flags & I2C_M_RD) {
384 /* Due to hardware bug, need to write the same command twice. */
385 regmap_write(dev->map, DW_IC_DATA_CMD, 0x100);
386 regmap_write(dev->map, DW_IC_DATA_CMD, 0x100 | cmd);
387 if (cmd) {
388 regmap_write(dev->map, DW_IC_TX_TL, 2 * (buf_len - 1));
389 regmap_write(dev->map, DW_IC_RX_TL, 2 * (buf_len - 1));
391 * Need to check the stop bit. However, it cannot be
392 * detected from the registers so we check it always
393 * when read/write the last byte.
395 status = i2c_dw_status(dev);
396 if (status)
397 return status;
399 for (data_idx = 0; data_idx < buf_len; data_idx++) {
400 regmap_read(dev->map, DW_IC_DATA_CMD, &val);
401 tx_buf[data_idx] = val;
403 status = i2c_dw_check_stopbit(dev);
404 if (status)
405 return status;
407 } else {
408 regmap_write(dev->map, DW_IC_DATA_CMD, *tx_buf++ | cmd);
409 usleep_range(AMD_TIMEOUT_MIN_US, AMD_TIMEOUT_MAX_US);
412 status = i2c_dw_check_stopbit(dev);
413 if (status)
414 return status;
417 return 0;
421 * Initiate (and continue) low level master read/write transaction.
422 * This function is only called from i2c_dw_isr(), and pumping i2c_msg
423 * messages into the tx buffer. Even if the size of i2c_msg data is
424 * longer than the size of the tx buffer, it handles everything.
426 static void
427 i2c_dw_xfer_msg(struct dw_i2c_dev *dev)
429 struct i2c_msg *msgs = dev->msgs;
430 u32 intr_mask;
431 int tx_limit, rx_limit;
432 u32 addr = msgs[dev->msg_write_idx].addr;
433 u32 buf_len = dev->tx_buf_len;
434 u8 *buf = dev->tx_buf;
435 bool need_restart = false;
436 unsigned int flr;
438 intr_mask = DW_IC_INTR_MASTER_MASK;
440 for (; dev->msg_write_idx < dev->msgs_num; dev->msg_write_idx++) {
441 u32 flags = msgs[dev->msg_write_idx].flags;
444 * If target address has changed, we need to
445 * reprogram the target address in the I2C
446 * adapter when we are done with this transfer.
448 if (msgs[dev->msg_write_idx].addr != addr) {
449 dev_err(dev->dev,
450 "%s: invalid target address\n", __func__);
451 dev->msg_err = -EINVAL;
452 break;
455 if (!(dev->status & STATUS_WRITE_IN_PROGRESS)) {
456 /* new i2c_msg */
457 buf = msgs[dev->msg_write_idx].buf;
458 buf_len = msgs[dev->msg_write_idx].len;
461 * If both IC_EMPTYFIFO_HOLD_MASTER_EN and
462 * IC_RESTART_EN are set, we must manually
463 * set restart bit between messages.
465 if ((dev->master_cfg & DW_IC_CON_RESTART_EN) &&
466 (dev->msg_write_idx > 0))
467 need_restart = true;
470 regmap_read(dev->map, DW_IC_TXFLR, &flr);
471 tx_limit = dev->tx_fifo_depth - flr;
473 regmap_read(dev->map, DW_IC_RXFLR, &flr);
474 rx_limit = dev->rx_fifo_depth - flr;
476 while (buf_len > 0 && tx_limit > 0 && rx_limit > 0) {
477 u32 cmd = 0;
480 * If IC_EMPTYFIFO_HOLD_MASTER_EN is set we must
481 * manually set the stop bit. However, it cannot be
482 * detected from the registers so we set it always
483 * when writing/reading the last byte.
487 * i2c-core always sets the buffer length of
488 * I2C_FUNC_SMBUS_BLOCK_DATA to 1. The length will
489 * be adjusted when receiving the first byte.
490 * Thus we can't stop the transaction here.
492 if (dev->msg_write_idx == dev->msgs_num - 1 &&
493 buf_len == 1 && !(flags & I2C_M_RECV_LEN))
494 cmd |= BIT(9);
496 if (need_restart) {
497 cmd |= BIT(10);
498 need_restart = false;
501 if (msgs[dev->msg_write_idx].flags & I2C_M_RD) {
503 /* Avoid rx buffer overrun */
504 if (dev->rx_outstanding >= dev->rx_fifo_depth)
505 break;
507 regmap_write(dev->map, DW_IC_DATA_CMD,
508 cmd | 0x100);
509 rx_limit--;
510 dev->rx_outstanding++;
511 } else {
512 regmap_write(dev->map, DW_IC_DATA_CMD,
513 cmd | *buf++);
515 tx_limit--; buf_len--;
518 dev->tx_buf = buf;
519 dev->tx_buf_len = buf_len;
522 * Because we don't know the buffer length in the
523 * I2C_FUNC_SMBUS_BLOCK_DATA case, we can't stop the
524 * transaction here. Also disable the TX_EMPTY IRQ
525 * while waiting for the data length byte to avoid the
526 * bogus interrupts flood.
528 if (flags & I2C_M_RECV_LEN) {
529 dev->status |= STATUS_WRITE_IN_PROGRESS;
530 intr_mask &= ~DW_IC_INTR_TX_EMPTY;
531 break;
532 } else if (buf_len > 0) {
533 /* more bytes to be written */
534 dev->status |= STATUS_WRITE_IN_PROGRESS;
535 break;
536 } else
537 dev->status &= ~STATUS_WRITE_IN_PROGRESS;
541 * If i2c_msg index search is completed, we don't need TX_EMPTY
542 * interrupt any more.
544 if (dev->msg_write_idx == dev->msgs_num)
545 intr_mask &= ~DW_IC_INTR_TX_EMPTY;
547 if (dev->msg_err)
548 intr_mask = 0;
550 __i2c_dw_write_intr_mask(dev, intr_mask);
553 static u8
554 i2c_dw_recv_len(struct dw_i2c_dev *dev, u8 len)
556 struct i2c_msg *msgs = dev->msgs;
557 u32 flags = msgs[dev->msg_read_idx].flags;
558 unsigned int intr_mask;
561 * Adjust the buffer length and mask the flag
562 * after receiving the first byte.
564 len += (flags & I2C_CLIENT_PEC) ? 2 : 1;
565 dev->tx_buf_len = len - min_t(u8, len, dev->rx_outstanding);
566 msgs[dev->msg_read_idx].len = len;
567 msgs[dev->msg_read_idx].flags &= ~I2C_M_RECV_LEN;
570 * Received buffer length, re-enable TX_EMPTY interrupt
571 * to resume the SMBUS transaction.
573 __i2c_dw_read_intr_mask(dev, &intr_mask);
574 intr_mask |= DW_IC_INTR_TX_EMPTY;
575 __i2c_dw_write_intr_mask(dev, intr_mask);
577 return len;
580 static void
581 i2c_dw_read(struct dw_i2c_dev *dev)
583 struct i2c_msg *msgs = dev->msgs;
584 unsigned int rx_valid;
586 for (; dev->msg_read_idx < dev->msgs_num; dev->msg_read_idx++) {
587 unsigned int tmp;
588 u32 len;
589 u8 *buf;
591 if (!(msgs[dev->msg_read_idx].flags & I2C_M_RD))
592 continue;
594 if (!(dev->status & STATUS_READ_IN_PROGRESS)) {
595 len = msgs[dev->msg_read_idx].len;
596 buf = msgs[dev->msg_read_idx].buf;
597 } else {
598 len = dev->rx_buf_len;
599 buf = dev->rx_buf;
602 regmap_read(dev->map, DW_IC_RXFLR, &rx_valid);
604 for (; len > 0 && rx_valid > 0; len--, rx_valid--) {
605 u32 flags = msgs[dev->msg_read_idx].flags;
607 regmap_read(dev->map, DW_IC_DATA_CMD, &tmp);
608 tmp &= DW_IC_DATA_CMD_DAT;
609 /* Ensure length byte is a valid value */
610 if (flags & I2C_M_RECV_LEN) {
612 * if IC_EMPTYFIFO_HOLD_MASTER_EN is set, which cannot be
613 * detected from the registers, the controller can be
614 * disabled if the STOP bit is set. But it is only set
615 * after receiving block data response length in
616 * I2C_FUNC_SMBUS_BLOCK_DATA case. That needs to read
617 * another byte with STOP bit set when the block data
618 * response length is invalid to complete the transaction.
620 if (!tmp || tmp > I2C_SMBUS_BLOCK_MAX)
621 tmp = 1;
623 len = i2c_dw_recv_len(dev, tmp);
625 *buf++ = tmp;
626 dev->rx_outstanding--;
629 if (len > 0) {
630 dev->status |= STATUS_READ_IN_PROGRESS;
631 dev->rx_buf_len = len;
632 dev->rx_buf = buf;
633 return;
634 } else
635 dev->status &= ~STATUS_READ_IN_PROGRESS;
639 static u32 i2c_dw_read_clear_intrbits(struct dw_i2c_dev *dev)
641 unsigned int stat, dummy;
644 * The IC_INTR_STAT register just indicates "enabled" interrupts.
645 * The unmasked raw version of interrupt status bits is available
646 * in the IC_RAW_INTR_STAT register.
648 * That is,
649 * stat = readl(IC_INTR_STAT);
650 * equals to,
651 * stat = readl(IC_RAW_INTR_STAT) & readl(IC_INTR_MASK);
653 * The raw version might be useful for debugging purposes.
655 if (!(dev->flags & ACCESS_POLLING)) {
656 regmap_read(dev->map, DW_IC_INTR_STAT, &stat);
657 } else {
658 regmap_read(dev->map, DW_IC_RAW_INTR_STAT, &stat);
659 stat &= dev->sw_mask;
663 * Do not use the IC_CLR_INTR register to clear interrupts, or
664 * you'll miss some interrupts, triggered during the period from
665 * readl(IC_INTR_STAT) to readl(IC_CLR_INTR).
667 * Instead, use the separately-prepared IC_CLR_* registers.
669 if (stat & DW_IC_INTR_RX_UNDER)
670 regmap_read(dev->map, DW_IC_CLR_RX_UNDER, &dummy);
671 if (stat & DW_IC_INTR_RX_OVER)
672 regmap_read(dev->map, DW_IC_CLR_RX_OVER, &dummy);
673 if (stat & DW_IC_INTR_TX_OVER)
674 regmap_read(dev->map, DW_IC_CLR_TX_OVER, &dummy);
675 if (stat & DW_IC_INTR_RD_REQ)
676 regmap_read(dev->map, DW_IC_CLR_RD_REQ, &dummy);
677 if (stat & DW_IC_INTR_TX_ABRT) {
679 * The IC_TX_ABRT_SOURCE register is cleared whenever
680 * the IC_CLR_TX_ABRT is read. Preserve it beforehand.
682 regmap_read(dev->map, DW_IC_TX_ABRT_SOURCE, &dev->abort_source);
683 regmap_read(dev->map, DW_IC_CLR_TX_ABRT, &dummy);
685 if (stat & DW_IC_INTR_RX_DONE)
686 regmap_read(dev->map, DW_IC_CLR_RX_DONE, &dummy);
687 if (stat & DW_IC_INTR_ACTIVITY)
688 regmap_read(dev->map, DW_IC_CLR_ACTIVITY, &dummy);
689 if ((stat & DW_IC_INTR_STOP_DET) &&
690 ((dev->rx_outstanding == 0) || (stat & DW_IC_INTR_RX_FULL)))
691 regmap_read(dev->map, DW_IC_CLR_STOP_DET, &dummy);
692 if (stat & DW_IC_INTR_START_DET)
693 regmap_read(dev->map, DW_IC_CLR_START_DET, &dummy);
694 if (stat & DW_IC_INTR_GEN_CALL)
695 regmap_read(dev->map, DW_IC_CLR_GEN_CALL, &dummy);
697 return stat;
700 static void i2c_dw_process_transfer(struct dw_i2c_dev *dev, unsigned int stat)
702 if (stat & DW_IC_INTR_TX_ABRT) {
703 dev->cmd_err |= DW_IC_ERR_TX_ABRT;
704 dev->status &= ~STATUS_MASK;
705 dev->rx_outstanding = 0;
708 * Anytime TX_ABRT is set, the contents of the tx/rx
709 * buffers are flushed. Make sure to skip them.
711 __i2c_dw_write_intr_mask(dev, 0);
712 goto tx_aborted;
715 if (stat & DW_IC_INTR_RX_FULL)
716 i2c_dw_read(dev);
718 if (stat & DW_IC_INTR_TX_EMPTY)
719 i2c_dw_xfer_msg(dev);
722 * No need to modify or disable the interrupt mask here.
723 * i2c_dw_xfer_msg() will take care of it according to
724 * the current transmit status.
727 tx_aborted:
728 if (((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || dev->msg_err) &&
729 (dev->rx_outstanding == 0))
730 complete(&dev->cmd_complete);
731 else if (unlikely(dev->flags & ACCESS_INTR_MASK)) {
732 /* Workaround to trigger pending interrupt */
733 __i2c_dw_read_intr_mask(dev, &stat);
734 __i2c_dw_write_intr_mask(dev, 0);
735 __i2c_dw_write_intr_mask(dev, stat);
740 * Interrupt service routine. This gets called whenever an I2C master interrupt
741 * occurs.
743 static irqreturn_t i2c_dw_isr(int this_irq, void *dev_id)
745 struct dw_i2c_dev *dev = dev_id;
746 unsigned int stat, enabled;
748 regmap_read(dev->map, DW_IC_ENABLE, &enabled);
749 regmap_read(dev->map, DW_IC_RAW_INTR_STAT, &stat);
750 if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY))
751 return IRQ_NONE;
752 if (pm_runtime_suspended(dev->dev) || stat == GENMASK(31, 0))
753 return IRQ_NONE;
754 dev_dbg(dev->dev, "enabled=%#x stat=%#x\n", enabled, stat);
756 stat = i2c_dw_read_clear_intrbits(dev);
758 if (!(dev->status & STATUS_ACTIVE)) {
760 * Unexpected interrupt in driver point of view. State
761 * variables are either unset or stale so acknowledge and
762 * disable interrupts for suppressing further interrupts if
763 * interrupt really came from this HW (E.g. firmware has left
764 * the HW active).
766 __i2c_dw_write_intr_mask(dev, 0);
767 return IRQ_HANDLED;
770 i2c_dw_process_transfer(dev, stat);
772 return IRQ_HANDLED;
775 static int i2c_dw_wait_transfer(struct dw_i2c_dev *dev)
777 unsigned long timeout = dev->adapter.timeout;
778 unsigned int stat;
779 int ret;
781 if (!(dev->flags & ACCESS_POLLING)) {
782 ret = wait_for_completion_timeout(&dev->cmd_complete, timeout);
783 } else {
784 timeout += jiffies;
785 do {
786 ret = try_wait_for_completion(&dev->cmd_complete);
787 if (ret)
788 break;
790 stat = i2c_dw_read_clear_intrbits(dev);
791 if (stat)
792 i2c_dw_process_transfer(dev, stat);
793 else
794 /* Try save some power */
795 usleep_range(3, 25);
796 } while (time_before(jiffies, timeout));
799 return ret ? 0 : -ETIMEDOUT;
803 * Prepare controller for a transaction and call i2c_dw_xfer_msg.
805 static int
806 i2c_dw_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
808 struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
809 int ret;
811 dev_dbg(dev->dev, "%s: msgs: %d\n", __func__, num);
813 pm_runtime_get_sync(dev->dev);
815 switch (dev->flags & MODEL_MASK) {
816 case MODEL_AMD_NAVI_GPU:
817 ret = amd_i2c_dw_xfer_quirk(adap, msgs, num);
818 goto done_nolock;
819 default:
820 break;
823 reinit_completion(&dev->cmd_complete);
824 dev->msgs = msgs;
825 dev->msgs_num = num;
826 dev->cmd_err = 0;
827 dev->msg_write_idx = 0;
828 dev->msg_read_idx = 0;
829 dev->msg_err = 0;
830 dev->status = 0;
831 dev->abort_source = 0;
832 dev->rx_outstanding = 0;
834 ret = i2c_dw_acquire_lock(dev);
835 if (ret)
836 goto done_nolock;
838 ret = i2c_dw_wait_bus_not_busy(dev);
839 if (ret < 0)
840 goto done;
842 /* Start the transfers */
843 i2c_dw_xfer_init(dev);
845 /* Wait for tx to complete */
846 ret = i2c_dw_wait_transfer(dev);
847 if (ret) {
848 dev_err(dev->dev, "controller timed out\n");
849 /* i2c_dw_init_master() implicitly disables the adapter */
850 i2c_recover_bus(&dev->adapter);
851 i2c_dw_init_master(dev);
852 goto done;
856 * This happens rarely (~1:500) and is hard to reproduce. Debug trace
857 * showed that IC_STATUS had value of 0x23 when STOP_DET occurred,
858 * if disable IC_ENABLE.ENABLE immediately that can result in
859 * IC_RAW_INTR_STAT.MASTER_ON_HOLD holding SCL low. Check if
860 * controller is still ACTIVE before disabling I2C.
862 if (i2c_dw_is_controller_active(dev))
863 dev_err(dev->dev, "controller active\n");
866 * We must disable the adapter before returning and signaling the end
867 * of the current transfer. Otherwise the hardware might continue
868 * generating interrupts which in turn causes a race condition with
869 * the following transfer. Needs some more investigation if the
870 * additional interrupts are a hardware bug or this driver doesn't
871 * handle them correctly yet.
873 __i2c_dw_disable_nowait(dev);
875 if (dev->msg_err) {
876 ret = dev->msg_err;
877 goto done;
880 /* No error */
881 if (likely(!dev->cmd_err && !dev->status)) {
882 ret = num;
883 goto done;
886 /* We have an error */
887 if (dev->cmd_err == DW_IC_ERR_TX_ABRT) {
888 ret = i2c_dw_handle_tx_abort(dev);
889 goto done;
892 if (dev->status)
893 dev_err(dev->dev,
894 "transfer terminated early - interrupt latency too high?\n");
896 ret = -EIO;
898 done:
899 i2c_dw_release_lock(dev);
901 done_nolock:
902 pm_runtime_mark_last_busy(dev->dev);
903 pm_runtime_put_autosuspend(dev->dev);
905 return ret;
908 static const struct i2c_algorithm i2c_dw_algo = {
909 .master_xfer = i2c_dw_xfer,
910 .functionality = i2c_dw_func,
913 static const struct i2c_adapter_quirks i2c_dw_quirks = {
914 .flags = I2C_AQ_NO_ZERO_LEN,
917 void i2c_dw_configure_master(struct dw_i2c_dev *dev)
919 struct i2c_timings *t = &dev->timings;
921 dev->functionality = I2C_FUNC_10BIT_ADDR | DW_IC_DEFAULT_FUNCTIONALITY;
923 dev->master_cfg = DW_IC_CON_MASTER | DW_IC_CON_SLAVE_DISABLE |
924 DW_IC_CON_RESTART_EN;
926 dev->mode = DW_IC_MASTER;
928 switch (t->bus_freq_hz) {
929 case I2C_MAX_STANDARD_MODE_FREQ:
930 dev->master_cfg |= DW_IC_CON_SPEED_STD;
931 break;
932 case I2C_MAX_HIGH_SPEED_MODE_FREQ:
933 dev->master_cfg |= DW_IC_CON_SPEED_HIGH;
934 break;
935 default:
936 dev->master_cfg |= DW_IC_CON_SPEED_FAST;
939 EXPORT_SYMBOL_GPL(i2c_dw_configure_master);
941 static void i2c_dw_prepare_recovery(struct i2c_adapter *adap)
943 struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
945 i2c_dw_disable(dev);
946 reset_control_assert(dev->rst);
947 i2c_dw_prepare_clk(dev, false);
950 static void i2c_dw_unprepare_recovery(struct i2c_adapter *adap)
952 struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
954 i2c_dw_prepare_clk(dev, true);
955 reset_control_deassert(dev->rst);
956 i2c_dw_init_master(dev);
959 static int i2c_dw_init_recovery_info(struct dw_i2c_dev *dev)
961 struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
962 struct i2c_adapter *adap = &dev->adapter;
963 struct gpio_desc *gpio;
965 gpio = devm_gpiod_get_optional(dev->dev, "scl", GPIOD_OUT_HIGH);
966 if (IS_ERR_OR_NULL(gpio))
967 return PTR_ERR_OR_ZERO(gpio);
969 rinfo->scl_gpiod = gpio;
971 gpio = devm_gpiod_get_optional(dev->dev, "sda", GPIOD_IN);
972 if (IS_ERR(gpio))
973 return PTR_ERR(gpio);
974 rinfo->sda_gpiod = gpio;
976 rinfo->pinctrl = devm_pinctrl_get(dev->dev);
977 if (IS_ERR(rinfo->pinctrl)) {
978 if (PTR_ERR(rinfo->pinctrl) == -EPROBE_DEFER)
979 return PTR_ERR(rinfo->pinctrl);
981 rinfo->pinctrl = NULL;
982 dev_err(dev->dev, "getting pinctrl info failed: bus recovery might not work\n");
983 } else if (!rinfo->pinctrl) {
984 dev_dbg(dev->dev, "pinctrl is disabled, bus recovery might not work\n");
987 rinfo->recover_bus = i2c_generic_scl_recovery;
988 rinfo->prepare_recovery = i2c_dw_prepare_recovery;
989 rinfo->unprepare_recovery = i2c_dw_unprepare_recovery;
990 adap->bus_recovery_info = rinfo;
992 dev_info(dev->dev, "running with GPIO recovery mode! scl%s",
993 rinfo->sda_gpiod ? ",sda" : "");
995 return 0;
998 int i2c_dw_probe_master(struct dw_i2c_dev *dev)
1000 struct i2c_adapter *adap = &dev->adapter;
1001 unsigned long irq_flags;
1002 unsigned int ic_con;
1003 int ret;
1005 init_completion(&dev->cmd_complete);
1007 dev->init = i2c_dw_init_master;
1009 ret = i2c_dw_init_regmap(dev);
1010 if (ret)
1011 return ret;
1013 ret = i2c_dw_set_timings_master(dev);
1014 if (ret)
1015 return ret;
1017 ret = i2c_dw_set_fifo_size(dev);
1018 if (ret)
1019 return ret;
1021 /* Lock the bus for accessing DW_IC_CON */
1022 ret = i2c_dw_acquire_lock(dev);
1023 if (ret)
1024 return ret;
1027 * On AMD platforms BIOS advertises the bus clear feature
1028 * and enables the SCL/SDA stuck low. SMU FW does the
1029 * bus recovery process. Driver should not ignore this BIOS
1030 * advertisement of bus clear feature.
1032 ret = regmap_read(dev->map, DW_IC_CON, &ic_con);
1033 i2c_dw_release_lock(dev);
1034 if (ret)
1035 return ret;
1037 if (ic_con & DW_IC_CON_BUS_CLEAR_CTRL)
1038 dev->master_cfg |= DW_IC_CON_BUS_CLEAR_CTRL;
1040 ret = dev->init(dev);
1041 if (ret)
1042 return ret;
1044 snprintf(adap->name, sizeof(adap->name),
1045 "Synopsys DesignWare I2C adapter");
1046 adap->retries = 3;
1047 adap->algo = &i2c_dw_algo;
1048 adap->quirks = &i2c_dw_quirks;
1049 adap->dev.parent = dev->dev;
1050 i2c_set_adapdata(adap, dev);
1052 if (dev->flags & ACCESS_NO_IRQ_SUSPEND) {
1053 irq_flags = IRQF_NO_SUSPEND;
1054 } else {
1055 irq_flags = IRQF_SHARED | IRQF_COND_SUSPEND;
1058 ret = i2c_dw_acquire_lock(dev);
1059 if (ret)
1060 return ret;
1062 __i2c_dw_write_intr_mask(dev, 0);
1063 i2c_dw_release_lock(dev);
1065 if (!(dev->flags & ACCESS_POLLING)) {
1066 ret = devm_request_irq(dev->dev, dev->irq, i2c_dw_isr,
1067 irq_flags, dev_name(dev->dev), dev);
1068 if (ret) {
1069 dev_err(dev->dev, "failure requesting irq %i: %d\n",
1070 dev->irq, ret);
1071 return ret;
1075 ret = i2c_dw_init_recovery_info(dev);
1076 if (ret)
1077 return ret;
1080 * Increment PM usage count during adapter registration in order to
1081 * avoid possible spurious runtime suspend when adapter device is
1082 * registered to the device core and immediate resume in case bus has
1083 * registered I2C slaves that do I2C transfers in their probe.
1085 pm_runtime_get_noresume(dev->dev);
1086 ret = i2c_add_numbered_adapter(adap);
1087 if (ret)
1088 dev_err(dev->dev, "failure adding adapter: %d\n", ret);
1089 pm_runtime_put_noidle(dev->dev);
1091 return ret;
1093 EXPORT_SYMBOL_GPL(i2c_dw_probe_master);
1095 MODULE_DESCRIPTION("Synopsys DesignWare I2C bus master adapter");
1096 MODULE_LICENSE("GPL");
1097 MODULE_IMPORT_NS("I2C_DW_COMMON");