1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for the Nuvoton NAU7802 ADC
5 * Copyright 2013 Free Electrons
8 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/module.h>
13 #include <linux/property.h>
14 #include <linux/wait.h>
15 #include <linux/log2.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
20 #define NAU7802_REG_PUCTRL 0x00
21 #define NAU7802_PUCTRL_RR(x) (x << 0)
22 #define NAU7802_PUCTRL_RR_BIT NAU7802_PUCTRL_RR(1)
23 #define NAU7802_PUCTRL_PUD(x) (x << 1)
24 #define NAU7802_PUCTRL_PUD_BIT NAU7802_PUCTRL_PUD(1)
25 #define NAU7802_PUCTRL_PUA(x) (x << 2)
26 #define NAU7802_PUCTRL_PUA_BIT NAU7802_PUCTRL_PUA(1)
27 #define NAU7802_PUCTRL_PUR(x) (x << 3)
28 #define NAU7802_PUCTRL_PUR_BIT NAU7802_PUCTRL_PUR(1)
29 #define NAU7802_PUCTRL_CS(x) (x << 4)
30 #define NAU7802_PUCTRL_CS_BIT NAU7802_PUCTRL_CS(1)
31 #define NAU7802_PUCTRL_CR(x) (x << 5)
32 #define NAU7802_PUCTRL_CR_BIT NAU7802_PUCTRL_CR(1)
33 #define NAU7802_PUCTRL_AVDDS(x) (x << 7)
34 #define NAU7802_PUCTRL_AVDDS_BIT NAU7802_PUCTRL_AVDDS(1)
35 #define NAU7802_REG_CTRL1 0x01
36 #define NAU7802_CTRL1_VLDO(x) (x << 3)
37 #define NAU7802_CTRL1_GAINS(x) (x)
38 #define NAU7802_CTRL1_GAINS_BITS 0x07
39 #define NAU7802_REG_CTRL2 0x02
40 #define NAU7802_CTRL2_CHS(x) (x << 7)
41 #define NAU7802_CTRL2_CRS(x) (x << 4)
42 #define NAU7802_SAMP_FREQ_320 0x07
43 #define NAU7802_CTRL2_CHS_BIT NAU7802_CTRL2_CHS(1)
44 #define NAU7802_REG_ADC_B2 0x12
45 #define NAU7802_REG_ADC_B1 0x13
46 #define NAU7802_REG_ADC_B0 0x14
47 #define NAU7802_REG_ADC_CTRL 0x15
49 #define NAU7802_MIN_CONVERSIONS 6
51 struct nau7802_state
{
52 struct i2c_client
*client
;
55 struct mutex data_lock
;
61 struct completion value_ok
;
64 #define NAU7802_CHANNEL(chan) { \
65 .type = IIO_VOLTAGE, \
68 .scan_index = (chan), \
69 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
70 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
71 BIT(IIO_CHAN_INFO_SAMP_FREQ) \
74 static const struct iio_chan_spec nau7802_chan_array
[] = {
79 static const u16 nau7802_sample_freq_avail
[] = {10, 20, 40, 80,
82 static ssize_t
nau7802_show_scales(struct device
*dev
,
83 struct device_attribute
*attr
, char *buf
)
85 struct nau7802_state
*st
= iio_priv(dev_to_iio_dev(dev
));
88 for (i
= 0; i
< ARRAY_SIZE(st
->scale_avail
); i
++)
89 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
, "0.%09d ",
97 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
99 static IIO_DEVICE_ATTR(in_voltage_scale_available
, S_IRUGO
, nau7802_show_scales
,
102 static struct attribute
*nau7802_attributes
[] = {
103 &iio_const_attr_sampling_frequency_available
.dev_attr
.attr
,
104 &iio_dev_attr_in_voltage_scale_available
.dev_attr
.attr
,
108 static const struct attribute_group nau7802_attribute_group
= {
109 .attrs
= nau7802_attributes
,
112 static int nau7802_set_gain(struct nau7802_state
*st
, int gain
)
116 mutex_lock(&st
->lock
);
117 st
->conversion_count
= 0;
119 ret
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_CTRL1
);
121 goto nau7802_sysfs_set_gain_out
;
122 ret
= i2c_smbus_write_byte_data(st
->client
, NAU7802_REG_CTRL1
,
123 (ret
& (~NAU7802_CTRL1_GAINS_BITS
)) |
126 nau7802_sysfs_set_gain_out
:
127 mutex_unlock(&st
->lock
);
132 static int nau7802_read_conversion(struct nau7802_state
*st
)
136 mutex_lock(&st
->data_lock
);
137 data
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_ADC_B2
);
139 goto nau7802_read_conversion_out
;
140 st
->last_value
= data
<< 16;
142 data
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_ADC_B1
);
144 goto nau7802_read_conversion_out
;
145 st
->last_value
|= data
<< 8;
147 data
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_ADC_B0
);
149 goto nau7802_read_conversion_out
;
150 st
->last_value
|= data
;
152 st
->last_value
= sign_extend32(st
->last_value
, 23);
154 nau7802_read_conversion_out
:
155 mutex_unlock(&st
->data_lock
);
161 * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
163 static int nau7802_sync(struct nau7802_state
*st
)
167 ret
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_PUCTRL
);
170 ret
= i2c_smbus_write_byte_data(st
->client
, NAU7802_REG_PUCTRL
,
171 ret
| NAU7802_PUCTRL_CS_BIT
);
176 static irqreturn_t
nau7802_eoc_trigger(int irq
, void *private)
178 struct iio_dev
*indio_dev
= private;
179 struct nau7802_state
*st
= iio_priv(indio_dev
);
182 status
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_PUCTRL
);
186 if (!(status
& NAU7802_PUCTRL_CR_BIT
))
189 if (nau7802_read_conversion(st
) < 0)
193 * Because there is actually only one ADC for both channels, we have to
194 * wait for enough conversions to happen before getting a significant
195 * value when changing channels and the values are far apart.
197 if (st
->conversion_count
< NAU7802_MIN_CONVERSIONS
)
198 st
->conversion_count
++;
199 if (st
->conversion_count
>= NAU7802_MIN_CONVERSIONS
)
200 complete(&st
->value_ok
);
205 static int nau7802_read_irq(struct iio_dev
*indio_dev
,
206 struct iio_chan_spec
const *chan
,
209 struct nau7802_state
*st
= iio_priv(indio_dev
);
212 reinit_completion(&st
->value_ok
);
213 enable_irq(st
->client
->irq
);
217 /* read registers to ensure we flush everything */
218 ret
= nau7802_read_conversion(st
);
220 goto read_chan_info_failure
;
222 /* Wait for a conversion to finish */
223 ret
= wait_for_completion_interruptible_timeout(&st
->value_ok
,
224 msecs_to_jiffies(1000));
229 goto read_chan_info_failure
;
231 disable_irq(st
->client
->irq
);
233 *val
= st
->last_value
;
237 read_chan_info_failure
:
238 disable_irq(st
->client
->irq
);
243 static int nau7802_read_poll(struct iio_dev
*indio_dev
,
244 struct iio_chan_spec
const *chan
,
247 struct nau7802_state
*st
= iio_priv(indio_dev
);
252 /* read registers to ensure we flush everything */
253 ret
= nau7802_read_conversion(st
);
258 * Because there is actually only one ADC for both channels, we have to
259 * wait for enough conversions to happen before getting a significant
260 * value when changing channels and the values are far appart.
263 ret
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_PUCTRL
);
267 while (!(ret
& NAU7802_PUCTRL_CR_BIT
)) {
268 if (st
->sample_rate
!= NAU7802_SAMP_FREQ_320
)
272 ret
= i2c_smbus_read_byte_data(st
->client
,
278 ret
= nau7802_read_conversion(st
);
281 if (st
->conversion_count
< NAU7802_MIN_CONVERSIONS
)
282 st
->conversion_count
++;
283 } while (st
->conversion_count
< NAU7802_MIN_CONVERSIONS
);
285 *val
= st
->last_value
;
290 static int nau7802_read_raw(struct iio_dev
*indio_dev
,
291 struct iio_chan_spec
const *chan
,
292 int *val
, int *val2
, long mask
)
294 struct nau7802_state
*st
= iio_priv(indio_dev
);
298 case IIO_CHAN_INFO_RAW
:
299 mutex_lock(&st
->lock
);
301 * Select the channel to use
302 * - Channel 1 is value 0 in the CHS register
303 * - Channel 2 is value 1 in the CHS register
305 ret
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_CTRL2
);
307 mutex_unlock(&st
->lock
);
311 if (((ret
& NAU7802_CTRL2_CHS_BIT
) && !chan
->channel
) ||
312 (!(ret
& NAU7802_CTRL2_CHS_BIT
) &&
314 st
->conversion_count
= 0;
315 ret
= i2c_smbus_write_byte_data(st
->client
,
317 NAU7802_CTRL2_CHS(chan
->channel
) |
318 NAU7802_CTRL2_CRS(st
->sample_rate
));
321 mutex_unlock(&st
->lock
);
327 ret
= nau7802_read_irq(indio_dev
, chan
, val
);
329 ret
= nau7802_read_poll(indio_dev
, chan
, val
);
331 mutex_unlock(&st
->lock
);
334 case IIO_CHAN_INFO_SCALE
:
335 ret
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_CTRL1
);
340 * We have 24 bits of signed data, that means 23 bits of data
344 *val2
= 23 + (ret
& NAU7802_CTRL1_GAINS_BITS
);
346 return IIO_VAL_FRACTIONAL_LOG2
;
348 case IIO_CHAN_INFO_SAMP_FREQ
:
349 *val
= nau7802_sample_freq_avail
[st
->sample_rate
];
360 static int nau7802_write_raw(struct iio_dev
*indio_dev
,
361 struct iio_chan_spec
const *chan
,
362 int val
, int val2
, long mask
)
364 struct nau7802_state
*st
= iio_priv(indio_dev
);
368 case IIO_CHAN_INFO_SCALE
:
369 for (i
= 0; i
< ARRAY_SIZE(st
->scale_avail
); i
++)
370 if (val2
== st
->scale_avail
[i
])
371 return nau7802_set_gain(st
, i
);
375 case IIO_CHAN_INFO_SAMP_FREQ
:
376 for (i
= 0; i
< ARRAY_SIZE(nau7802_sample_freq_avail
); i
++)
377 if (val
== nau7802_sample_freq_avail
[i
]) {
378 mutex_lock(&st
->lock
);
380 st
->conversion_count
= 0;
381 ret
= i2c_smbus_write_byte_data(st
->client
,
383 NAU7802_CTRL2_CRS(st
->sample_rate
));
384 mutex_unlock(&st
->lock
);
397 static int nau7802_write_raw_get_fmt(struct iio_dev
*indio_dev
,
398 struct iio_chan_spec
const *chan
,
401 return IIO_VAL_INT_PLUS_NANO
;
404 static const struct iio_info nau7802_info
= {
405 .read_raw
= &nau7802_read_raw
,
406 .write_raw
= &nau7802_write_raw
,
407 .write_raw_get_fmt
= nau7802_write_raw_get_fmt
,
408 .attrs
= &nau7802_attribute_group
,
411 static int nau7802_probe(struct i2c_client
*client
)
413 struct iio_dev
*indio_dev
;
414 struct nau7802_state
*st
;
419 indio_dev
= devm_iio_device_alloc(&client
->dev
, sizeof(*st
));
420 if (indio_dev
== NULL
)
423 st
= iio_priv(indio_dev
);
425 indio_dev
->name
= dev_name(&client
->dev
);
426 indio_dev
->modes
= INDIO_DIRECT_MODE
;
427 indio_dev
->info
= &nau7802_info
;
431 /* Reset the device */
432 ret
= i2c_smbus_write_byte_data(st
->client
, NAU7802_REG_PUCTRL
,
433 NAU7802_PUCTRL_RR_BIT
);
437 /* Enter normal operation mode */
438 ret
= i2c_smbus_write_byte_data(st
->client
, NAU7802_REG_PUCTRL
,
439 NAU7802_PUCTRL_PUD_BIT
);
444 * After about 200 usecs, the device should be ready and then
445 * the Power Up bit will be set to 1. If not, wait for it.
448 ret
= i2c_smbus_read_byte_data(st
->client
, NAU7802_REG_PUCTRL
);
451 if (!(ret
& NAU7802_PUCTRL_PUR_BIT
))
454 device_property_read_u32(&client
->dev
, "nuvoton,vldo", &tmp
);
457 data
= NAU7802_PUCTRL_PUD_BIT
| NAU7802_PUCTRL_PUA_BIT
|
458 NAU7802_PUCTRL_CS_BIT
;
460 data
|= NAU7802_PUCTRL_AVDDS_BIT
;
462 ret
= i2c_smbus_write_byte_data(st
->client
, NAU7802_REG_PUCTRL
, data
);
465 ret
= i2c_smbus_write_byte_data(st
->client
, NAU7802_REG_ADC_CTRL
, 0x30);
470 data
= NAU7802_CTRL1_VLDO((4500 - tmp
) / 300);
471 ret
= i2c_smbus_write_byte_data(st
->client
, NAU7802_REG_CTRL1
,
477 /* Populate available ADC input ranges */
478 for (i
= 0; i
< ARRAY_SIZE(st
->scale_avail
); i
++)
479 st
->scale_avail
[i
] = (((u64
)st
->vref_mv
) * 1000000000ULL)
482 init_completion(&st
->value_ok
);
485 * The ADC fires continuously and we can't do anything about
486 * it. So we need to have the IRQ disabled by default, and we
487 * will enable them back when we will need them..
490 ret
= devm_request_threaded_irq(&client
->dev
, client
->irq
,
493 IRQF_TRIGGER_HIGH
| IRQF_ONESHOT
|
495 client
->dev
.driver
->name
,
499 * What may happen here is that our IRQ controller is
500 * not able to get level interrupt but this is required
501 * by this ADC as when going over 40 sample per second,
502 * the interrupt line may stay high between conversions.
503 * So, we continue no matter what but we switch to
506 dev_info(&client
->dev
,
507 "Failed to allocate IRQ, using polling mode\n");
514 * We are polling, use the fastest sample rate by
517 st
->sample_rate
= NAU7802_SAMP_FREQ_320
;
518 ret
= i2c_smbus_write_byte_data(st
->client
, NAU7802_REG_CTRL2
,
519 NAU7802_CTRL2_CRS(st
->sample_rate
));
524 /* Setup the ADC channels available on the board */
525 indio_dev
->num_channels
= ARRAY_SIZE(nau7802_chan_array
);
526 indio_dev
->channels
= nau7802_chan_array
;
528 mutex_init(&st
->lock
);
529 mutex_init(&st
->data_lock
);
531 return devm_iio_device_register(&client
->dev
, indio_dev
);
534 static const struct i2c_device_id nau7802_i2c_id
[] = {
538 MODULE_DEVICE_TABLE(i2c
, nau7802_i2c_id
);
540 static const struct of_device_id nau7802_dt_ids
[] = {
541 { .compatible
= "nuvoton,nau7802" },
544 MODULE_DEVICE_TABLE(of
, nau7802_dt_ids
);
546 static struct i2c_driver nau7802_driver
= {
547 .probe
= nau7802_probe
,
548 .id_table
= nau7802_i2c_id
,
551 .of_match_table
= nau7802_dt_ids
,
555 module_i2c_driver(nau7802_driver
);
557 MODULE_LICENSE("GPL");
558 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
559 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
560 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");