accel/ivpu: Move recovery work to system_unbound_wq
[drm/drm-misc.git] / drivers / iio / light / ltr501.c
blob604f5f900a2ecb8e0529b129ddca9e36ec292126
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors.
5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
7 * 7-bit I2C slave address 0x23
9 * TODO: IR LED characteristics
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/i2c.h>
15 #include <linux/err.h>
16 #include <linux/delay.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/triggered_buffer.h>
27 #define LTR501_DRV_NAME "ltr501"
29 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
30 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
31 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
32 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
33 #define LTR501_PART_ID 0x86
34 #define LTR501_MANUFAC_ID 0x87
35 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
36 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */
37 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
38 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */
39 #define LTR501_ALS_PS_STATUS 0x8c
40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */
42 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
43 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
44 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
45 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
46 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
47 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
48 #define LTR501_MAX_REG 0x9f
50 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
51 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
52 #define LTR501_CONTR_PS_GAIN_SHIFT 2
53 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
54 #define LTR501_CONTR_ACTIVE BIT(1)
56 #define LTR501_STATUS_ALS_INTR BIT(3)
57 #define LTR501_STATUS_ALS_RDY BIT(2)
58 #define LTR501_STATUS_PS_INTR BIT(1)
59 #define LTR501_STATUS_PS_RDY BIT(0)
61 #define LTR501_PS_DATA_MASK 0x7ff
62 #define LTR501_PS_THRESH_MASK 0x7ff
63 #define LTR501_ALS_THRESH_MASK 0xffff
65 #define LTR501_ALS_DEF_PERIOD 500000
66 #define LTR501_PS_DEF_PERIOD 100000
68 #define LTR501_REGMAP_NAME "ltr501_regmap"
70 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
71 ((vis_coeff * vis_data) - (ir_coeff * ir_data))
73 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
75 static const struct reg_field reg_field_it =
76 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
77 static const struct reg_field reg_field_als_intr =
78 REG_FIELD(LTR501_INTR, 1, 1);
79 static const struct reg_field reg_field_ps_intr =
80 REG_FIELD(LTR501_INTR, 0, 0);
81 static const struct reg_field reg_field_als_rate =
82 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
83 static const struct reg_field reg_field_ps_rate =
84 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
85 static const struct reg_field reg_field_als_prst =
86 REG_FIELD(LTR501_INTR_PRST, 0, 3);
87 static const struct reg_field reg_field_ps_prst =
88 REG_FIELD(LTR501_INTR_PRST, 4, 7);
90 struct ltr501_samp_table {
91 int freq_val; /* repetition frequency in micro HZ*/
92 int time_val; /* repetition rate in micro seconds */
95 #define LTR501_RESERVED_GAIN -1
97 enum {
98 ltr501 = 0,
99 ltr559,
100 ltr301,
101 ltr303,
104 struct ltr501_gain {
105 int scale;
106 int uscale;
109 static const struct ltr501_gain ltr501_als_gain_tbl[] = {
110 {1, 0},
111 {0, 5000},
114 static const struct ltr501_gain ltr559_als_gain_tbl[] = {
115 {1, 0},
116 {0, 500000},
117 {0, 250000},
118 {0, 125000},
119 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
120 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
121 {0, 20000},
122 {0, 10000},
125 static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
126 {1, 0},
127 {0, 250000},
128 {0, 125000},
129 {0, 62500},
132 static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
133 {0, 62500}, /* x16 gain */
134 {0, 31250}, /* x32 gain */
135 {0, 15625}, /* bits X1 are for x64 gain */
136 {0, 15624},
139 struct ltr501_chip_info {
140 u8 partid;
141 const struct ltr501_gain *als_gain;
142 int als_gain_tbl_size;
143 const struct ltr501_gain *ps_gain;
144 int ps_gain_tbl_size;
145 u8 als_mode_active;
146 u8 als_gain_mask;
147 u8 als_gain_shift;
148 struct iio_chan_spec const *channels;
149 const int no_channels;
150 const struct iio_info *info;
151 const struct iio_info *info_no_irq;
154 struct ltr501_data {
155 struct i2c_client *client;
156 struct mutex lock_als, lock_ps;
157 const struct ltr501_chip_info *chip_info;
158 u8 als_contr, ps_contr;
159 int als_period, ps_period; /* period in micro seconds */
160 struct regmap *regmap;
161 struct regmap_field *reg_it;
162 struct regmap_field *reg_als_intr;
163 struct regmap_field *reg_ps_intr;
164 struct regmap_field *reg_als_rate;
165 struct regmap_field *reg_ps_rate;
166 struct regmap_field *reg_als_prst;
167 struct regmap_field *reg_ps_prst;
168 uint32_t near_level;
171 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
172 {20000000, 50000}, {10000000, 100000},
173 {5000000, 200000}, {2000000, 500000},
174 {1000000, 1000000}, {500000, 2000000},
175 {500000, 2000000}, {500000, 2000000}
178 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
179 {20000000, 50000}, {14285714, 70000},
180 {10000000, 100000}, {5000000, 200000},
181 {2000000, 500000}, {1000000, 1000000},
182 {500000, 2000000}, {500000, 2000000},
183 {500000, 2000000}
186 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
187 int len, int val, int val2)
189 int i, freq;
191 freq = val * 1000000 + val2;
193 for (i = 0; i < len; i++) {
194 if (tab[i].freq_val == freq)
195 return i;
198 return -EINVAL;
201 static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
202 int *val, int *val2)
204 int ret, i;
206 ret = regmap_field_read(data->reg_als_rate, &i);
207 if (ret < 0)
208 return ret;
210 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
211 return -EINVAL;
213 *val = ltr501_als_samp_table[i].freq_val / 1000000;
214 *val2 = ltr501_als_samp_table[i].freq_val % 1000000;
216 return IIO_VAL_INT_PLUS_MICRO;
219 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
220 int *val, int *val2)
222 int ret, i;
224 ret = regmap_field_read(data->reg_ps_rate, &i);
225 if (ret < 0)
226 return ret;
228 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
229 return -EINVAL;
231 *val = ltr501_ps_samp_table[i].freq_val / 1000000;
232 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
234 return IIO_VAL_INT_PLUS_MICRO;
237 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
238 int val, int val2)
240 int i, ret;
242 i = ltr501_match_samp_freq(ltr501_als_samp_table,
243 ARRAY_SIZE(ltr501_als_samp_table),
244 val, val2);
246 if (i < 0)
247 return i;
249 mutex_lock(&data->lock_als);
250 ret = regmap_field_write(data->reg_als_rate, i);
251 mutex_unlock(&data->lock_als);
253 return ret;
256 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
257 int val, int val2)
259 int i, ret;
261 i = ltr501_match_samp_freq(ltr501_ps_samp_table,
262 ARRAY_SIZE(ltr501_ps_samp_table),
263 val, val2);
265 if (i < 0)
266 return i;
268 mutex_lock(&data->lock_ps);
269 ret = regmap_field_write(data->reg_ps_rate, i);
270 mutex_unlock(&data->lock_ps);
272 return ret;
275 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
277 int ret, i;
279 ret = regmap_field_read(data->reg_als_rate, &i);
280 if (ret < 0)
281 return ret;
283 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
284 return -EINVAL;
286 *val = ltr501_als_samp_table[i].time_val;
288 return IIO_VAL_INT;
291 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
293 int ret, i;
295 ret = regmap_field_read(data->reg_ps_rate, &i);
296 if (ret < 0)
297 return ret;
299 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
300 return -EINVAL;
302 *val = ltr501_ps_samp_table[i].time_val;
304 return IIO_VAL_INT;
307 /* IR and visible spectrum coeff's are given in data sheet */
308 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
310 unsigned long ratio, lux;
312 if (vis_data == 0)
313 return 0;
315 /* multiply numerator by 100 to avoid handling ratio < 1 */
316 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
318 if (ratio < 45)
319 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
320 else if (ratio >= 45 && ratio < 64)
321 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
322 else if (ratio >= 64 && ratio < 85)
323 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
324 else
325 lux = 0;
327 return lux / 1000;
330 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
332 int tries = 100;
333 int ret, status;
335 while (tries--) {
336 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
337 if (ret < 0)
338 return ret;
339 if ((status & drdy_mask) == drdy_mask)
340 return 0;
341 msleep(25);
344 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
345 return -EIO;
348 static int ltr501_set_it_time(struct ltr501_data *data, int it)
350 int ret, i, index = -1, status;
352 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
353 if (int_time_mapping[i] == it) {
354 index = i;
355 break;
358 /* Make sure integ time index is valid */
359 if (index < 0)
360 return -EINVAL;
362 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
363 if (ret < 0)
364 return ret;
366 if (status & LTR501_CONTR_ALS_GAIN_MASK) {
368 * 200 ms and 400 ms integ time can only be
369 * used in dynamic range 1
371 if (index > 1)
372 return -EINVAL;
373 } else
374 /* 50 ms integ time can only be used in dynamic range 2 */
375 if (index == 1)
376 return -EINVAL;
378 return regmap_field_write(data->reg_it, index);
381 /* read int time in micro seconds */
382 static int ltr501_read_it_time(const struct ltr501_data *data,
383 int *val, int *val2)
385 int ret, index;
387 ret = regmap_field_read(data->reg_it, &index);
388 if (ret < 0)
389 return ret;
391 /* Make sure integ time index is valid */
392 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
393 return -EINVAL;
395 *val2 = int_time_mapping[index];
396 *val = 0;
398 return IIO_VAL_INT_PLUS_MICRO;
401 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
403 int ret;
405 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
406 if (ret < 0)
407 return ret;
408 /* always read both ALS channels in given order */
409 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
410 buf, 2 * sizeof(__le16));
413 static int ltr501_read_ps(const struct ltr501_data *data)
415 __le16 status;
416 int ret;
418 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
419 if (ret < 0)
420 return ret;
422 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
423 &status, sizeof(status));
424 if (ret < 0)
425 return ret;
427 return le16_to_cpu(status);
430 static int ltr501_read_intr_prst(const struct ltr501_data *data,
431 enum iio_chan_type type,
432 int *val2)
434 int ret, samp_period, prst;
436 switch (type) {
437 case IIO_INTENSITY:
438 ret = regmap_field_read(data->reg_als_prst, &prst);
439 if (ret < 0)
440 return ret;
442 ret = ltr501_als_read_samp_period(data, &samp_period);
444 if (ret < 0)
445 return ret;
446 *val2 = samp_period * prst;
447 return IIO_VAL_INT_PLUS_MICRO;
448 case IIO_PROXIMITY:
449 ret = regmap_field_read(data->reg_ps_prst, &prst);
450 if (ret < 0)
451 return ret;
453 ret = ltr501_ps_read_samp_period(data, &samp_period);
455 if (ret < 0)
456 return ret;
458 *val2 = samp_period * prst;
459 return IIO_VAL_INT_PLUS_MICRO;
460 default:
461 return -EINVAL;
464 return -EINVAL;
467 static int ltr501_write_intr_prst(struct ltr501_data *data,
468 enum iio_chan_type type,
469 int val, int val2)
471 int ret, samp_period, new_val;
472 unsigned long period;
474 if (val < 0 || val2 < 0)
475 return -EINVAL;
477 /* period in microseconds */
478 period = ((val * 1000000) + val2);
480 switch (type) {
481 case IIO_INTENSITY:
482 ret = ltr501_als_read_samp_period(data, &samp_period);
483 if (ret < 0)
484 return ret;
486 /* period should be atleast equal to sampling period */
487 if (period < samp_period)
488 return -EINVAL;
490 new_val = DIV_ROUND_UP(period, samp_period);
491 if (new_val < 0 || new_val > 0x0f)
492 return -EINVAL;
494 mutex_lock(&data->lock_als);
495 ret = regmap_field_write(data->reg_als_prst, new_val);
496 mutex_unlock(&data->lock_als);
497 if (ret >= 0)
498 data->als_period = period;
500 return ret;
501 case IIO_PROXIMITY:
502 ret = ltr501_ps_read_samp_period(data, &samp_period);
503 if (ret < 0)
504 return ret;
506 /* period should be atleast equal to rate */
507 if (period < samp_period)
508 return -EINVAL;
510 new_val = DIV_ROUND_UP(period, samp_period);
511 if (new_val < 0 || new_val > 0x0f)
512 return -EINVAL;
514 mutex_lock(&data->lock_ps);
515 ret = regmap_field_write(data->reg_ps_prst, new_val);
516 mutex_unlock(&data->lock_ps);
517 if (ret >= 0)
518 data->ps_period = period;
520 return ret;
521 default:
522 return -EINVAL;
525 return -EINVAL;
528 static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev,
529 uintptr_t priv,
530 const struct iio_chan_spec *chan,
531 char *buf)
533 struct ltr501_data *data = iio_priv(indio_dev);
535 return sprintf(buf, "%u\n", data->near_level);
538 static const struct iio_chan_spec_ext_info ltr501_ext_info[] = {
540 .name = "nearlevel",
541 .shared = IIO_SEPARATE,
542 .read = ltr501_read_near_level,
544 { /* sentinel */ }
547 static const struct iio_event_spec ltr501_als_event_spec[] = {
549 .type = IIO_EV_TYPE_THRESH,
550 .dir = IIO_EV_DIR_RISING,
551 .mask_separate = BIT(IIO_EV_INFO_VALUE),
552 }, {
553 .type = IIO_EV_TYPE_THRESH,
554 .dir = IIO_EV_DIR_FALLING,
555 .mask_separate = BIT(IIO_EV_INFO_VALUE),
556 }, {
557 .type = IIO_EV_TYPE_THRESH,
558 .dir = IIO_EV_DIR_EITHER,
559 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
560 BIT(IIO_EV_INFO_PERIOD),
565 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
567 .type = IIO_EV_TYPE_THRESH,
568 .dir = IIO_EV_DIR_RISING,
569 .mask_separate = BIT(IIO_EV_INFO_VALUE),
570 }, {
571 .type = IIO_EV_TYPE_THRESH,
572 .dir = IIO_EV_DIR_FALLING,
573 .mask_separate = BIT(IIO_EV_INFO_VALUE),
574 }, {
575 .type = IIO_EV_TYPE_THRESH,
576 .dir = IIO_EV_DIR_EITHER,
577 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
578 BIT(IIO_EV_INFO_PERIOD),
582 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
583 _evspec, _evsize) { \
584 .type = IIO_INTENSITY, \
585 .modified = 1, \
586 .address = (_addr), \
587 .channel2 = (_mod), \
588 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
589 .info_mask_shared_by_type = (_shared), \
590 .scan_index = (_idx), \
591 .scan_type = { \
592 .sign = 'u', \
593 .realbits = 16, \
594 .storagebits = 16, \
595 .endianness = IIO_CPU, \
596 }, \
597 .event_spec = _evspec,\
598 .num_event_specs = _evsize,\
601 #define LTR501_LIGHT_CHANNEL() { \
602 .type = IIO_LIGHT, \
603 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
604 .scan_index = -1, \
607 static const struct iio_chan_spec ltr501_channels[] = {
608 LTR501_LIGHT_CHANNEL(),
609 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
610 ltr501_als_event_spec,
611 ARRAY_SIZE(ltr501_als_event_spec)),
612 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
613 BIT(IIO_CHAN_INFO_SCALE) |
614 BIT(IIO_CHAN_INFO_INT_TIME) |
615 BIT(IIO_CHAN_INFO_SAMP_FREQ),
616 NULL, 0),
618 .type = IIO_PROXIMITY,
619 .address = LTR501_PS_DATA,
620 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
621 BIT(IIO_CHAN_INFO_SCALE),
622 .scan_index = 2,
623 .scan_type = {
624 .sign = 'u',
625 .realbits = 11,
626 .storagebits = 16,
627 .endianness = IIO_CPU,
629 .event_spec = ltr501_pxs_event_spec,
630 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
631 .ext_info = ltr501_ext_info,
633 IIO_CHAN_SOFT_TIMESTAMP(3),
636 static const struct iio_chan_spec ltr301_channels[] = {
637 LTR501_LIGHT_CHANNEL(),
638 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
639 ltr501_als_event_spec,
640 ARRAY_SIZE(ltr501_als_event_spec)),
641 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
642 BIT(IIO_CHAN_INFO_SCALE) |
643 BIT(IIO_CHAN_INFO_INT_TIME) |
644 BIT(IIO_CHAN_INFO_SAMP_FREQ),
645 NULL, 0),
646 IIO_CHAN_SOFT_TIMESTAMP(2),
649 static int ltr501_read_raw(struct iio_dev *indio_dev,
650 struct iio_chan_spec const *chan,
651 int *val, int *val2, long mask)
653 struct ltr501_data *data = iio_priv(indio_dev);
654 __le16 buf[2];
655 int ret, i;
657 switch (mask) {
658 case IIO_CHAN_INFO_PROCESSED:
659 switch (chan->type) {
660 case IIO_LIGHT:
661 ret = iio_device_claim_direct_mode(indio_dev);
662 if (ret)
663 return ret;
665 mutex_lock(&data->lock_als);
666 ret = ltr501_read_als(data, buf);
667 mutex_unlock(&data->lock_als);
668 iio_device_release_direct_mode(indio_dev);
669 if (ret < 0)
670 return ret;
671 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
672 le16_to_cpu(buf[0]));
673 return IIO_VAL_INT;
674 default:
675 return -EINVAL;
677 case IIO_CHAN_INFO_RAW:
678 ret = iio_device_claim_direct_mode(indio_dev);
679 if (ret)
680 return ret;
682 switch (chan->type) {
683 case IIO_INTENSITY:
684 mutex_lock(&data->lock_als);
685 ret = ltr501_read_als(data, buf);
686 mutex_unlock(&data->lock_als);
687 if (ret < 0)
688 break;
689 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
690 buf[0] : buf[1]);
691 ret = IIO_VAL_INT;
692 break;
693 case IIO_PROXIMITY:
694 mutex_lock(&data->lock_ps);
695 ret = ltr501_read_ps(data);
696 mutex_unlock(&data->lock_ps);
697 if (ret < 0)
698 break;
699 *val = ret & LTR501_PS_DATA_MASK;
700 ret = IIO_VAL_INT;
701 break;
702 default:
703 ret = -EINVAL;
704 break;
707 iio_device_release_direct_mode(indio_dev);
708 return ret;
710 case IIO_CHAN_INFO_SCALE:
711 switch (chan->type) {
712 case IIO_INTENSITY:
713 i = (data->als_contr & data->chip_info->als_gain_mask)
714 >> data->chip_info->als_gain_shift;
715 *val = data->chip_info->als_gain[i].scale;
716 *val2 = data->chip_info->als_gain[i].uscale;
717 return IIO_VAL_INT_PLUS_MICRO;
718 case IIO_PROXIMITY:
719 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
720 LTR501_CONTR_PS_GAIN_SHIFT;
721 *val = data->chip_info->ps_gain[i].scale;
722 *val2 = data->chip_info->ps_gain[i].uscale;
723 return IIO_VAL_INT_PLUS_MICRO;
724 default:
725 return -EINVAL;
727 case IIO_CHAN_INFO_INT_TIME:
728 switch (chan->type) {
729 case IIO_INTENSITY:
730 return ltr501_read_it_time(data, val, val2);
731 default:
732 return -EINVAL;
734 case IIO_CHAN_INFO_SAMP_FREQ:
735 switch (chan->type) {
736 case IIO_INTENSITY:
737 return ltr501_als_read_samp_freq(data, val, val2);
738 case IIO_PROXIMITY:
739 return ltr501_ps_read_samp_freq(data, val, val2);
740 default:
741 return -EINVAL;
744 return -EINVAL;
747 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
748 int val, int val2)
750 int i;
752 for (i = 0; i < size; i++)
753 if (val == gain[i].scale && val2 == gain[i].uscale)
754 return i;
756 return -1;
759 static int ltr501_write_raw(struct iio_dev *indio_dev,
760 struct iio_chan_spec const *chan,
761 int val, int val2, long mask)
763 struct ltr501_data *data = iio_priv(indio_dev);
764 int i, ret, freq_val, freq_val2;
765 const struct ltr501_chip_info *info = data->chip_info;
767 ret = iio_device_claim_direct_mode(indio_dev);
768 if (ret)
769 return ret;
771 switch (mask) {
772 case IIO_CHAN_INFO_SCALE:
773 switch (chan->type) {
774 case IIO_INTENSITY:
775 i = ltr501_get_gain_index(info->als_gain,
776 info->als_gain_tbl_size,
777 val, val2);
778 if (i < 0) {
779 ret = -EINVAL;
780 break;
783 data->als_contr &= ~info->als_gain_mask;
784 data->als_contr |= i << info->als_gain_shift;
786 ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
787 data->als_contr);
788 break;
789 case IIO_PROXIMITY:
790 i = ltr501_get_gain_index(info->ps_gain,
791 info->ps_gain_tbl_size,
792 val, val2);
793 if (i < 0) {
794 ret = -EINVAL;
795 break;
797 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
798 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
800 ret = regmap_write(data->regmap, LTR501_PS_CONTR,
801 data->ps_contr);
802 break;
803 default:
804 ret = -EINVAL;
805 break;
807 break;
809 case IIO_CHAN_INFO_INT_TIME:
810 switch (chan->type) {
811 case IIO_INTENSITY:
812 if (val != 0) {
813 ret = -EINVAL;
814 break;
816 mutex_lock(&data->lock_als);
817 ret = ltr501_set_it_time(data, val2);
818 mutex_unlock(&data->lock_als);
819 break;
820 default:
821 ret = -EINVAL;
822 break;
824 break;
826 case IIO_CHAN_INFO_SAMP_FREQ:
827 switch (chan->type) {
828 case IIO_INTENSITY:
829 ret = ltr501_als_read_samp_freq(data, &freq_val,
830 &freq_val2);
831 if (ret < 0)
832 break;
834 ret = ltr501_als_write_samp_freq(data, val, val2);
835 if (ret < 0)
836 break;
838 /* update persistence count when changing frequency */
839 ret = ltr501_write_intr_prst(data, chan->type,
840 0, data->als_period);
842 if (ret < 0)
843 ret = ltr501_als_write_samp_freq(data, freq_val,
844 freq_val2);
845 break;
846 case IIO_PROXIMITY:
847 ret = ltr501_ps_read_samp_freq(data, &freq_val,
848 &freq_val2);
849 if (ret < 0)
850 break;
852 ret = ltr501_ps_write_samp_freq(data, val, val2);
853 if (ret < 0)
854 break;
856 /* update persistence count when changing frequency */
857 ret = ltr501_write_intr_prst(data, chan->type,
858 0, data->ps_period);
860 if (ret < 0)
861 ret = ltr501_ps_write_samp_freq(data, freq_val,
862 freq_val2);
863 break;
864 default:
865 ret = -EINVAL;
866 break;
868 break;
870 default:
871 ret = -EINVAL;
872 break;
875 iio_device_release_direct_mode(indio_dev);
876 return ret;
879 static int ltr501_read_thresh(const struct iio_dev *indio_dev,
880 const struct iio_chan_spec *chan,
881 enum iio_event_type type,
882 enum iio_event_direction dir,
883 enum iio_event_info info,
884 int *val, int *val2)
886 const struct ltr501_data *data = iio_priv(indio_dev);
887 int ret, thresh_data;
889 switch (chan->type) {
890 case IIO_INTENSITY:
891 switch (dir) {
892 case IIO_EV_DIR_RISING:
893 ret = regmap_bulk_read(data->regmap,
894 LTR501_ALS_THRESH_UP,
895 &thresh_data, 2);
896 if (ret < 0)
897 return ret;
898 *val = thresh_data & LTR501_ALS_THRESH_MASK;
899 return IIO_VAL_INT;
900 case IIO_EV_DIR_FALLING:
901 ret = regmap_bulk_read(data->regmap,
902 LTR501_ALS_THRESH_LOW,
903 &thresh_data, 2);
904 if (ret < 0)
905 return ret;
906 *val = thresh_data & LTR501_ALS_THRESH_MASK;
907 return IIO_VAL_INT;
908 default:
909 return -EINVAL;
911 case IIO_PROXIMITY:
912 switch (dir) {
913 case IIO_EV_DIR_RISING:
914 ret = regmap_bulk_read(data->regmap,
915 LTR501_PS_THRESH_UP,
916 &thresh_data, 2);
917 if (ret < 0)
918 return ret;
919 *val = thresh_data & LTR501_PS_THRESH_MASK;
920 return IIO_VAL_INT;
921 case IIO_EV_DIR_FALLING:
922 ret = regmap_bulk_read(data->regmap,
923 LTR501_PS_THRESH_LOW,
924 &thresh_data, 2);
925 if (ret < 0)
926 return ret;
927 *val = thresh_data & LTR501_PS_THRESH_MASK;
928 return IIO_VAL_INT;
929 default:
930 return -EINVAL;
932 default:
933 return -EINVAL;
936 return -EINVAL;
939 static int ltr501_write_thresh(struct iio_dev *indio_dev,
940 const struct iio_chan_spec *chan,
941 enum iio_event_type type,
942 enum iio_event_direction dir,
943 enum iio_event_info info,
944 int val, int val2)
946 struct ltr501_data *data = iio_priv(indio_dev);
947 int ret;
949 if (val < 0)
950 return -EINVAL;
952 switch (chan->type) {
953 case IIO_INTENSITY:
954 if (val > LTR501_ALS_THRESH_MASK)
955 return -EINVAL;
956 switch (dir) {
957 case IIO_EV_DIR_RISING:
958 mutex_lock(&data->lock_als);
959 ret = regmap_bulk_write(data->regmap,
960 LTR501_ALS_THRESH_UP,
961 &val, 2);
962 mutex_unlock(&data->lock_als);
963 return ret;
964 case IIO_EV_DIR_FALLING:
965 mutex_lock(&data->lock_als);
966 ret = regmap_bulk_write(data->regmap,
967 LTR501_ALS_THRESH_LOW,
968 &val, 2);
969 mutex_unlock(&data->lock_als);
970 return ret;
971 default:
972 return -EINVAL;
974 case IIO_PROXIMITY:
975 if (val > LTR501_PS_THRESH_MASK)
976 return -EINVAL;
977 switch (dir) {
978 case IIO_EV_DIR_RISING:
979 mutex_lock(&data->lock_ps);
980 ret = regmap_bulk_write(data->regmap,
981 LTR501_PS_THRESH_UP,
982 &val, 2);
983 mutex_unlock(&data->lock_ps);
984 return ret;
985 case IIO_EV_DIR_FALLING:
986 mutex_lock(&data->lock_ps);
987 ret = regmap_bulk_write(data->regmap,
988 LTR501_PS_THRESH_LOW,
989 &val, 2);
990 mutex_unlock(&data->lock_ps);
991 return ret;
992 default:
993 return -EINVAL;
995 default:
996 return -EINVAL;
999 return -EINVAL;
1002 static int ltr501_read_event(struct iio_dev *indio_dev,
1003 const struct iio_chan_spec *chan,
1004 enum iio_event_type type,
1005 enum iio_event_direction dir,
1006 enum iio_event_info info,
1007 int *val, int *val2)
1009 int ret;
1011 switch (info) {
1012 case IIO_EV_INFO_VALUE:
1013 return ltr501_read_thresh(indio_dev, chan, type, dir,
1014 info, val, val2);
1015 case IIO_EV_INFO_PERIOD:
1016 ret = ltr501_read_intr_prst(iio_priv(indio_dev),
1017 chan->type, val2);
1018 *val = *val2 / 1000000;
1019 *val2 = *val2 % 1000000;
1020 return ret;
1021 default:
1022 return -EINVAL;
1025 return -EINVAL;
1028 static int ltr501_write_event(struct iio_dev *indio_dev,
1029 const struct iio_chan_spec *chan,
1030 enum iio_event_type type,
1031 enum iio_event_direction dir,
1032 enum iio_event_info info,
1033 int val, int val2)
1035 switch (info) {
1036 case IIO_EV_INFO_VALUE:
1037 if (val2 != 0)
1038 return -EINVAL;
1039 return ltr501_write_thresh(indio_dev, chan, type, dir,
1040 info, val, val2);
1041 case IIO_EV_INFO_PERIOD:
1042 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1043 val, val2);
1044 default:
1045 return -EINVAL;
1048 return -EINVAL;
1051 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1052 const struct iio_chan_spec *chan,
1053 enum iio_event_type type,
1054 enum iio_event_direction dir)
1056 struct ltr501_data *data = iio_priv(indio_dev);
1057 int ret, status;
1059 switch (chan->type) {
1060 case IIO_INTENSITY:
1061 ret = regmap_field_read(data->reg_als_intr, &status);
1062 if (ret < 0)
1063 return ret;
1064 return status;
1065 case IIO_PROXIMITY:
1066 ret = regmap_field_read(data->reg_ps_intr, &status);
1067 if (ret < 0)
1068 return ret;
1069 return status;
1070 default:
1071 return -EINVAL;
1074 return -EINVAL;
1077 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1078 const struct iio_chan_spec *chan,
1079 enum iio_event_type type,
1080 enum iio_event_direction dir, bool state)
1082 struct ltr501_data *data = iio_priv(indio_dev);
1083 int ret;
1085 switch (chan->type) {
1086 case IIO_INTENSITY:
1087 mutex_lock(&data->lock_als);
1088 ret = regmap_field_write(data->reg_als_intr, state);
1089 mutex_unlock(&data->lock_als);
1090 return ret;
1091 case IIO_PROXIMITY:
1092 mutex_lock(&data->lock_ps);
1093 ret = regmap_field_write(data->reg_ps_intr, state);
1094 mutex_unlock(&data->lock_ps);
1095 return ret;
1096 default:
1097 return -EINVAL;
1100 return -EINVAL;
1103 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1104 struct device_attribute *attr,
1105 char *buf)
1107 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1108 const struct ltr501_chip_info *info = data->chip_info;
1109 ssize_t len = 0;
1110 int i;
1112 for (i = 0; i < info->ps_gain_tbl_size; i++) {
1113 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1114 continue;
1115 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1116 info->ps_gain[i].scale,
1117 info->ps_gain[i].uscale);
1120 buf[len - 1] = '\n';
1122 return len;
1125 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1126 struct device_attribute *attr,
1127 char *buf)
1129 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1130 const struct ltr501_chip_info *info = data->chip_info;
1131 ssize_t len = 0;
1132 int i;
1134 for (i = 0; i < info->als_gain_tbl_size; i++) {
1135 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1136 continue;
1137 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1138 info->als_gain[i].scale,
1139 info->als_gain[i].uscale);
1142 buf[len - 1] = '\n';
1144 return len;
1147 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1148 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1150 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1151 ltr501_show_proximity_scale_avail, NULL, 0);
1152 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1153 ltr501_show_intensity_scale_avail, NULL, 0);
1155 static struct attribute *ltr501_attributes[] = {
1156 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1157 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1158 &iio_const_attr_integration_time_available.dev_attr.attr,
1159 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1160 NULL
1163 static struct attribute *ltr301_attributes[] = {
1164 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1165 &iio_const_attr_integration_time_available.dev_attr.attr,
1166 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1167 NULL
1170 static const struct attribute_group ltr501_attribute_group = {
1171 .attrs = ltr501_attributes,
1174 static const struct attribute_group ltr301_attribute_group = {
1175 .attrs = ltr301_attributes,
1178 static const struct iio_info ltr501_info_no_irq = {
1179 .read_raw = ltr501_read_raw,
1180 .write_raw = ltr501_write_raw,
1181 .attrs = &ltr501_attribute_group,
1184 static const struct iio_info ltr501_info = {
1185 .read_raw = ltr501_read_raw,
1186 .write_raw = ltr501_write_raw,
1187 .attrs = &ltr501_attribute_group,
1188 .read_event_value = &ltr501_read_event,
1189 .write_event_value = &ltr501_write_event,
1190 .read_event_config = &ltr501_read_event_config,
1191 .write_event_config = &ltr501_write_event_config,
1194 static const struct iio_info ltr301_info_no_irq = {
1195 .read_raw = ltr501_read_raw,
1196 .write_raw = ltr501_write_raw,
1197 .attrs = &ltr301_attribute_group,
1200 static const struct iio_info ltr301_info = {
1201 .read_raw = ltr501_read_raw,
1202 .write_raw = ltr501_write_raw,
1203 .attrs = &ltr301_attribute_group,
1204 .read_event_value = &ltr501_read_event,
1205 .write_event_value = &ltr501_write_event,
1206 .read_event_config = &ltr501_read_event_config,
1207 .write_event_config = &ltr501_write_event_config,
1210 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1211 [ltr501] = {
1212 .partid = 0x08,
1213 .als_gain = ltr501_als_gain_tbl,
1214 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1215 .ps_gain = ltr501_ps_gain_tbl,
1216 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1217 .als_mode_active = BIT(0) | BIT(1),
1218 .als_gain_mask = BIT(3),
1219 .als_gain_shift = 3,
1220 .info = &ltr501_info,
1221 .info_no_irq = &ltr501_info_no_irq,
1222 .channels = ltr501_channels,
1223 .no_channels = ARRAY_SIZE(ltr501_channels),
1225 [ltr559] = {
1226 .partid = 0x09,
1227 .als_gain = ltr559_als_gain_tbl,
1228 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1229 .ps_gain = ltr559_ps_gain_tbl,
1230 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1231 .als_mode_active = BIT(0),
1232 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1233 .als_gain_shift = 2,
1234 .info = &ltr501_info,
1235 .info_no_irq = &ltr501_info_no_irq,
1236 .channels = ltr501_channels,
1237 .no_channels = ARRAY_SIZE(ltr501_channels),
1239 [ltr301] = {
1240 .partid = 0x08,
1241 .als_gain = ltr501_als_gain_tbl,
1242 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1243 .als_mode_active = BIT(0) | BIT(1),
1244 .als_gain_mask = BIT(3),
1245 .als_gain_shift = 3,
1246 .info = &ltr301_info,
1247 .info_no_irq = &ltr301_info_no_irq,
1248 .channels = ltr301_channels,
1249 .no_channels = ARRAY_SIZE(ltr301_channels),
1251 [ltr303] = {
1252 .partid = 0x0A,
1253 .als_gain = ltr559_als_gain_tbl,
1254 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1255 .als_mode_active = BIT(0),
1256 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1257 .als_gain_shift = 2,
1258 .info = &ltr301_info,
1259 .info_no_irq = &ltr301_info_no_irq,
1260 .channels = ltr301_channels,
1261 .no_channels = ARRAY_SIZE(ltr301_channels),
1265 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1267 int ret;
1269 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1270 if (ret < 0)
1271 return ret;
1273 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1276 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1278 struct iio_poll_func *pf = p;
1279 struct iio_dev *indio_dev = pf->indio_dev;
1280 struct ltr501_data *data = iio_priv(indio_dev);
1281 struct {
1282 u16 channels[3];
1283 s64 ts __aligned(8);
1284 } scan;
1285 __le16 als_buf[2];
1286 u8 mask = 0;
1287 int j = 0;
1288 int ret, psdata;
1290 memset(&scan, 0, sizeof(scan));
1292 /* figure out which data needs to be ready */
1293 if (test_bit(0, indio_dev->active_scan_mask) ||
1294 test_bit(1, indio_dev->active_scan_mask))
1295 mask |= LTR501_STATUS_ALS_RDY;
1296 if (test_bit(2, indio_dev->active_scan_mask))
1297 mask |= LTR501_STATUS_PS_RDY;
1299 ret = ltr501_drdy(data, mask);
1300 if (ret < 0)
1301 goto done;
1303 if (mask & LTR501_STATUS_ALS_RDY) {
1304 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1305 als_buf, sizeof(als_buf));
1306 if (ret < 0)
1307 goto done;
1308 if (test_bit(0, indio_dev->active_scan_mask))
1309 scan.channels[j++] = le16_to_cpu(als_buf[1]);
1310 if (test_bit(1, indio_dev->active_scan_mask))
1311 scan.channels[j++] = le16_to_cpu(als_buf[0]);
1314 if (mask & LTR501_STATUS_PS_RDY) {
1315 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1316 &psdata, 2);
1317 if (ret < 0)
1318 goto done;
1319 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1322 iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1323 iio_get_time_ns(indio_dev));
1325 done:
1326 iio_trigger_notify_done(indio_dev->trig);
1328 return IRQ_HANDLED;
1331 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1333 struct iio_dev *indio_dev = private;
1334 struct ltr501_data *data = iio_priv(indio_dev);
1335 int ret, status;
1337 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1338 if (ret < 0) {
1339 dev_err(&data->client->dev,
1340 "irq read int reg failed\n");
1341 return IRQ_HANDLED;
1344 if (status & LTR501_STATUS_ALS_INTR)
1345 iio_push_event(indio_dev,
1346 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1347 IIO_EV_TYPE_THRESH,
1348 IIO_EV_DIR_EITHER),
1349 iio_get_time_ns(indio_dev));
1351 if (status & LTR501_STATUS_PS_INTR)
1352 iio_push_event(indio_dev,
1353 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1354 IIO_EV_TYPE_THRESH,
1355 IIO_EV_DIR_EITHER),
1356 iio_get_time_ns(indio_dev));
1358 return IRQ_HANDLED;
1361 static int ltr501_init(struct ltr501_data *data)
1363 int ret, status;
1365 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1366 if (ret < 0)
1367 return ret;
1369 data->als_contr = status | data->chip_info->als_mode_active;
1371 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1372 if (ret < 0)
1373 return ret;
1375 data->ps_contr = status | LTR501_CONTR_ACTIVE;
1377 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1378 if (ret < 0)
1379 return ret;
1381 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1382 if (ret < 0)
1383 return ret;
1385 return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1388 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1390 switch (reg) {
1391 case LTR501_ALS_DATA1:
1392 case LTR501_ALS_DATA1_UPPER:
1393 case LTR501_ALS_DATA0:
1394 case LTR501_ALS_DATA0_UPPER:
1395 case LTR501_ALS_PS_STATUS:
1396 case LTR501_PS_DATA:
1397 case LTR501_PS_DATA_UPPER:
1398 return true;
1399 default:
1400 return false;
1404 static const struct regmap_config ltr501_regmap_config = {
1405 .name = LTR501_REGMAP_NAME,
1406 .reg_bits = 8,
1407 .val_bits = 8,
1408 .max_register = LTR501_MAX_REG,
1409 .cache_type = REGCACHE_RBTREE,
1410 .volatile_reg = ltr501_is_volatile_reg,
1413 static int ltr501_powerdown(struct ltr501_data *data)
1415 return ltr501_write_contr(data, data->als_contr &
1416 ~data->chip_info->als_mode_active,
1417 data->ps_contr & ~LTR501_CONTR_ACTIVE);
1420 static int ltr501_probe(struct i2c_client *client)
1422 const struct i2c_device_id *id = i2c_client_get_device_id(client);
1423 static const char * const regulator_names[] = { "vdd", "vddio" };
1424 struct ltr501_data *data;
1425 struct iio_dev *indio_dev;
1426 struct regmap *regmap;
1427 const void *ddata = NULL;
1428 int partid, chip_idx;
1429 const char *name;
1430 int ret;
1432 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1433 if (!indio_dev)
1434 return -ENOMEM;
1436 regmap = devm_regmap_init_i2c(client, &ltr501_regmap_config);
1437 if (IS_ERR(regmap)) {
1438 dev_err(&client->dev, "Regmap initialization failed.\n");
1439 return PTR_ERR(regmap);
1442 data = iio_priv(indio_dev);
1443 i2c_set_clientdata(client, indio_dev);
1444 data->client = client;
1445 data->regmap = regmap;
1446 mutex_init(&data->lock_als);
1447 mutex_init(&data->lock_ps);
1449 ret = devm_regulator_bulk_get_enable(&client->dev,
1450 ARRAY_SIZE(regulator_names),
1451 regulator_names);
1452 if (ret)
1453 return dev_err_probe(&client->dev, ret,
1454 "Failed to get regulators\n");
1456 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1457 reg_field_it);
1458 if (IS_ERR(data->reg_it)) {
1459 dev_err(&client->dev, "Integ time reg field init failed.\n");
1460 return PTR_ERR(data->reg_it);
1463 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1464 reg_field_als_intr);
1465 if (IS_ERR(data->reg_als_intr)) {
1466 dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1467 return PTR_ERR(data->reg_als_intr);
1470 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1471 reg_field_ps_intr);
1472 if (IS_ERR(data->reg_ps_intr)) {
1473 dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1474 return PTR_ERR(data->reg_ps_intr);
1477 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1478 reg_field_als_rate);
1479 if (IS_ERR(data->reg_als_rate)) {
1480 dev_err(&client->dev, "ALS samp rate field init failed.\n");
1481 return PTR_ERR(data->reg_als_rate);
1484 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1485 reg_field_ps_rate);
1486 if (IS_ERR(data->reg_ps_rate)) {
1487 dev_err(&client->dev, "PS samp rate field init failed.\n");
1488 return PTR_ERR(data->reg_ps_rate);
1491 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1492 reg_field_als_prst);
1493 if (IS_ERR(data->reg_als_prst)) {
1494 dev_err(&client->dev, "ALS prst reg field init failed\n");
1495 return PTR_ERR(data->reg_als_prst);
1498 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1499 reg_field_ps_prst);
1500 if (IS_ERR(data->reg_ps_prst)) {
1501 dev_err(&client->dev, "PS prst reg field init failed.\n");
1502 return PTR_ERR(data->reg_ps_prst);
1505 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1506 if (ret < 0)
1507 return ret;
1509 if (id) {
1510 name = id->name;
1511 chip_idx = id->driver_data;
1512 } else {
1513 name = iio_get_acpi_device_name_and_data(&client->dev, &ddata);
1514 chip_idx = (intptr_t)ddata;
1516 if (!name)
1517 return -ENODEV;
1519 data->chip_info = &ltr501_chip_info_tbl[chip_idx];
1521 if ((partid >> 4) != data->chip_info->partid)
1522 return -ENODEV;
1524 if (device_property_read_u32(&client->dev, "proximity-near-level",
1525 &data->near_level))
1526 data->near_level = 0;
1528 indio_dev->info = data->chip_info->info;
1529 indio_dev->channels = data->chip_info->channels;
1530 indio_dev->num_channels = data->chip_info->no_channels;
1531 indio_dev->name = name;
1532 indio_dev->modes = INDIO_DIRECT_MODE;
1534 ret = ltr501_init(data);
1535 if (ret < 0)
1536 return ret;
1538 if (client->irq > 0) {
1539 ret = devm_request_threaded_irq(&client->dev, client->irq,
1540 NULL, ltr501_interrupt_handler,
1541 IRQF_TRIGGER_FALLING |
1542 IRQF_ONESHOT,
1543 "ltr501_thresh_event",
1544 indio_dev);
1545 if (ret) {
1546 dev_err(&client->dev, "request irq (%d) failed\n",
1547 client->irq);
1548 return ret;
1550 } else {
1551 indio_dev->info = data->chip_info->info_no_irq;
1554 ret = iio_triggered_buffer_setup(indio_dev, NULL,
1555 ltr501_trigger_handler, NULL);
1556 if (ret)
1557 goto powerdown_on_error;
1559 ret = iio_device_register(indio_dev);
1560 if (ret)
1561 goto error_unreg_buffer;
1563 return 0;
1565 error_unreg_buffer:
1566 iio_triggered_buffer_cleanup(indio_dev);
1567 powerdown_on_error:
1568 ltr501_powerdown(data);
1569 return ret;
1572 static void ltr501_remove(struct i2c_client *client)
1574 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1576 iio_device_unregister(indio_dev);
1577 iio_triggered_buffer_cleanup(indio_dev);
1578 ltr501_powerdown(iio_priv(indio_dev));
1581 static int ltr501_suspend(struct device *dev)
1583 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1584 to_i2c_client(dev)));
1585 return ltr501_powerdown(data);
1588 static int ltr501_resume(struct device *dev)
1590 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1591 to_i2c_client(dev)));
1593 return ltr501_write_contr(data, data->als_contr,
1594 data->ps_contr);
1597 static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1599 static const struct acpi_device_id ltr_acpi_match[] = {
1600 { "LTER0301", ltr301 },
1601 /* https://www.catalog.update.microsoft.com/Search.aspx?q=lter0303 */
1602 { "LTER0303", ltr303 },
1603 { },
1605 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1607 static const struct i2c_device_id ltr501_id[] = {
1608 { "ltr501", ltr501 },
1609 { "ltr559", ltr559 },
1610 { "ltr301", ltr301 },
1611 { "ltr303", ltr303 },
1614 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1616 static const struct of_device_id ltr501_of_match[] = {
1617 { .compatible = "liteon,ltr501", },
1618 { .compatible = "liteon,ltr559", },
1619 { .compatible = "liteon,ltr301", },
1620 { .compatible = "liteon,ltr303", },
1623 MODULE_DEVICE_TABLE(of, ltr501_of_match);
1625 static struct i2c_driver ltr501_driver = {
1626 .driver = {
1627 .name = LTR501_DRV_NAME,
1628 .of_match_table = ltr501_of_match,
1629 .pm = pm_sleep_ptr(&ltr501_pm_ops),
1630 .acpi_match_table = ltr_acpi_match,
1632 .probe = ltr501_probe,
1633 .remove = ltr501_remove,
1634 .id_table = ltr501_id,
1637 module_i2c_driver(ltr501_driver);
1639 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1640 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1641 MODULE_LICENSE("GPL");