1 // SPDX-License-Identifier: GPL-2.0
3 * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
6 * Copyright 2019 Analog Devices Inc.
8 #include <linux/bitfield.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/errno.h>
13 #include <linux/kernel.h>
14 #include <linux/iio/iio.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/module.h>
19 #include <linux/property.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/spi/spi.h>
24 #include <asm/byteorder.h>
25 #include <linux/unaligned.h>
28 #define LTC2983_STATUS_REG 0x0000
29 #define LTC2983_TEMP_RES_START_REG 0x0010
30 #define LTC2983_TEMP_RES_END_REG 0x005F
31 #define LTC2983_EEPROM_KEY_REG 0x00B0
32 #define LTC2983_EEPROM_READ_STATUS_REG 0x00D0
33 #define LTC2983_GLOBAL_CONFIG_REG 0x00F0
34 #define LTC2983_MULT_CHANNEL_START_REG 0x00F4
35 #define LTC2983_MULT_CHANNEL_END_REG 0x00F7
36 #define LTC2986_EEPROM_STATUS_REG 0x00F9
37 #define LTC2983_MUX_CONFIG_REG 0x00FF
38 #define LTC2983_CHAN_ASSIGN_START_REG 0x0200
39 #define LTC2983_CHAN_ASSIGN_END_REG 0x024F
40 #define LTC2983_CUST_SENS_TBL_START_REG 0x0250
41 #define LTC2983_CUST_SENS_TBL_END_REG 0x03CF
43 #define LTC2983_DIFFERENTIAL_CHAN_MIN 2
44 #define LTC2983_MIN_CHANNELS_NR 1
45 #define LTC2983_SLEEP 0x97
46 #define LTC2983_CUSTOM_STEINHART_SIZE 24
47 #define LTC2983_CUSTOM_SENSOR_ENTRY_SZ 6
48 #define LTC2983_CUSTOM_STEINHART_ENTRY_SZ 4
50 #define LTC2983_EEPROM_KEY 0xA53C0F5A
51 #define LTC2983_EEPROM_WRITE_CMD 0x15
52 #define LTC2983_EEPROM_READ_CMD 0x16
53 #define LTC2983_EEPROM_STATUS_FAILURE_MASK GENMASK(3, 1)
54 #define LTC2983_EEPROM_READ_FAILURE_MASK GENMASK(7, 0)
56 #define LTC2983_EEPROM_WRITE_TIME_MS 2600
57 #define LTC2983_EEPROM_READ_TIME_MS 20
59 #define LTC2983_CHAN_START_ADDR(chan) \
60 (((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
61 #define LTC2983_CHAN_RES_ADDR(chan) \
62 (((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
63 #define LTC2983_THERMOCOUPLE_DIFF_MASK BIT(3)
64 #define LTC2983_THERMOCOUPLE_SGL(x) \
65 FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
66 #define LTC2983_THERMOCOUPLE_OC_CURR_MASK GENMASK(1, 0)
67 #define LTC2983_THERMOCOUPLE_OC_CURR(x) \
68 FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
69 #define LTC2983_THERMOCOUPLE_OC_CHECK_MASK BIT(2)
70 #define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
71 FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
73 #define LTC2983_THERMISTOR_DIFF_MASK BIT(2)
74 #define LTC2983_THERMISTOR_SGL(x) \
75 FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
76 #define LTC2983_THERMISTOR_R_SHARE_MASK BIT(1)
77 #define LTC2983_THERMISTOR_R_SHARE(x) \
78 FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
79 #define LTC2983_THERMISTOR_C_ROTATE_MASK BIT(0)
80 #define LTC2983_THERMISTOR_C_ROTATE(x) \
81 FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
83 #define LTC2983_DIODE_DIFF_MASK BIT(2)
84 #define LTC2983_DIODE_SGL(x) \
85 FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
86 #define LTC2983_DIODE_3_CONV_CYCLE_MASK BIT(1)
87 #define LTC2983_DIODE_3_CONV_CYCLE(x) \
88 FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
89 #define LTC2983_DIODE_AVERAGE_ON_MASK BIT(0)
90 #define LTC2983_DIODE_AVERAGE_ON(x) \
91 FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
93 #define LTC2983_RTD_4_WIRE_MASK BIT(3)
94 #define LTC2983_RTD_ROTATION_MASK BIT(1)
95 #define LTC2983_RTD_C_ROTATE(x) \
96 FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
97 #define LTC2983_RTD_KELVIN_R_SENSE_MASK GENMASK(3, 2)
98 #define LTC2983_RTD_N_WIRES_MASK GENMASK(3, 2)
99 #define LTC2983_RTD_N_WIRES(x) \
100 FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
101 #define LTC2983_RTD_R_SHARE_MASK BIT(0)
102 #define LTC2983_RTD_R_SHARE(x) \
103 FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
105 #define LTC2983_COMMON_HARD_FAULT_MASK GENMASK(31, 30)
106 #define LTC2983_COMMON_SOFT_FAULT_MASK GENMASK(27, 25)
108 #define LTC2983_STATUS_START_MASK BIT(7)
109 #define LTC2983_STATUS_START(x) FIELD_PREP(LTC2983_STATUS_START_MASK, x)
110 #define LTC2983_STATUS_UP_MASK GENMASK(7, 6)
111 #define LTC2983_STATUS_UP(reg) FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
113 #define LTC2983_STATUS_CHAN_SEL_MASK GENMASK(4, 0)
114 #define LTC2983_STATUS_CHAN_SEL(x) \
115 FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
117 #define LTC2983_TEMP_UNITS_MASK BIT(2)
118 #define LTC2983_TEMP_UNITS(x) FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
120 #define LTC2983_NOTCH_FREQ_MASK GENMASK(1, 0)
121 #define LTC2983_NOTCH_FREQ(x) FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
123 #define LTC2983_RES_VALID_MASK BIT(24)
124 #define LTC2983_DATA_MASK GENMASK(23, 0)
125 #define LTC2983_DATA_SIGN_BIT 23
127 #define LTC2983_CHAN_TYPE_MASK GENMASK(31, 27)
128 #define LTC2983_CHAN_TYPE(x) FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
130 /* cold junction for thermocouples and rsense for rtd's and thermistor's */
131 #define LTC2983_CHAN_ASSIGN_MASK GENMASK(26, 22)
132 #define LTC2983_CHAN_ASSIGN(x) FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
134 #define LTC2983_CUSTOM_LEN_MASK GENMASK(5, 0)
135 #define LTC2983_CUSTOM_LEN(x) FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
137 #define LTC2983_CUSTOM_ADDR_MASK GENMASK(11, 6)
138 #define LTC2983_CUSTOM_ADDR(x) FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
140 #define LTC2983_THERMOCOUPLE_CFG_MASK GENMASK(21, 18)
141 #define LTC2983_THERMOCOUPLE_CFG(x) \
142 FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
143 #define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK GENMASK(31, 29)
144 #define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK GENMASK(28, 25)
146 #define LTC2983_RTD_CFG_MASK GENMASK(21, 18)
147 #define LTC2983_RTD_CFG(x) FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
148 #define LTC2983_RTD_EXC_CURRENT_MASK GENMASK(17, 14)
149 #define LTC2983_RTD_EXC_CURRENT(x) \
150 FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
151 #define LTC2983_RTD_CURVE_MASK GENMASK(13, 12)
152 #define LTC2983_RTD_CURVE(x) FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
154 #define LTC2983_THERMISTOR_CFG_MASK GENMASK(21, 19)
155 #define LTC2983_THERMISTOR_CFG(x) \
156 FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
157 #define LTC2983_THERMISTOR_EXC_CURRENT_MASK GENMASK(18, 15)
158 #define LTC2983_THERMISTOR_EXC_CURRENT(x) \
159 FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
161 #define LTC2983_DIODE_CFG_MASK GENMASK(26, 24)
162 #define LTC2983_DIODE_CFG(x) FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
163 #define LTC2983_DIODE_EXC_CURRENT_MASK GENMASK(23, 22)
164 #define LTC2983_DIODE_EXC_CURRENT(x) \
165 FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
166 #define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0)
167 #define LTC2983_DIODE_IDEAL_FACTOR(x) \
168 FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
170 #define LTC2983_R_SENSE_VAL_MASK GENMASK(26, 0)
171 #define LTC2983_R_SENSE_VAL(x) FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
173 #define LTC2983_ADC_SINGLE_ENDED_MASK BIT(26)
174 #define LTC2983_ADC_SINGLE_ENDED(x) \
175 FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
178 LTC2983_SENSOR_THERMOCOUPLE
= 1,
179 LTC2983_SENSOR_THERMOCOUPLE_CUSTOM
= 9,
180 LTC2983_SENSOR_RTD
= 10,
181 LTC2983_SENSOR_RTD_CUSTOM
= 18,
182 LTC2983_SENSOR_THERMISTOR
= 19,
183 LTC2983_SENSOR_THERMISTOR_STEINHART
= 26,
184 LTC2983_SENSOR_THERMISTOR_CUSTOM
= 27,
185 LTC2983_SENSOR_DIODE
= 28,
186 LTC2983_SENSOR_SENSE_RESISTOR
= 29,
187 LTC2983_SENSOR_DIRECT_ADC
= 30,
188 LTC2983_SENSOR_ACTIVE_TEMP
= 31,
191 #define to_thermocouple(_sensor) \
192 container_of(_sensor, struct ltc2983_thermocouple, sensor)
194 #define to_rtd(_sensor) \
195 container_of(_sensor, struct ltc2983_rtd, sensor)
197 #define to_thermistor(_sensor) \
198 container_of(_sensor, struct ltc2983_thermistor, sensor)
200 #define to_diode(_sensor) \
201 container_of(_sensor, struct ltc2983_diode, sensor)
203 #define to_rsense(_sensor) \
204 container_of(_sensor, struct ltc2983_rsense, sensor)
206 #define to_adc(_sensor) \
207 container_of(_sensor, struct ltc2983_adc, sensor)
209 #define to_temp(_sensor) \
210 container_of(_sensor, struct ltc2983_temp, sensor)
212 struct ltc2983_chip_info
{
214 unsigned int max_channels_nr
;
219 struct ltc2983_data
{
220 const struct ltc2983_chip_info
*info
;
221 struct regmap
*regmap
;
222 struct spi_device
*spi
;
224 struct completion completion
;
225 struct iio_chan_spec
*iio_chan
;
226 struct ltc2983_sensor
**sensors
;
227 u32 mux_delay_config
;
228 u32 filter_notch_freq
;
229 u16 custom_table_size
;
233 * DMA (thus cache coherency maintenance) may require the
234 * transfer buffers to live in their own cache lines.
235 * Holds the converted temperature
237 __be32 temp
__aligned(IIO_DMA_MINALIGN
);
242 struct ltc2983_sensor
{
243 int (*fault_handler
)(const struct ltc2983_data
*st
, const u32 result
);
244 int (*assign_chan
)(struct ltc2983_data
*st
,
245 const struct ltc2983_sensor
*sensor
);
246 /* specifies the sensor channel */
252 struct ltc2983_custom_sensor
{
253 /* raw table sensor data */
261 struct ltc2983_thermocouple
{
262 struct ltc2983_sensor sensor
;
263 struct ltc2983_custom_sensor
*custom
;
265 u32 cold_junction_chan
;
269 struct ltc2983_sensor sensor
;
270 struct ltc2983_custom_sensor
*custom
;
273 u32 excitation_current
;
277 struct ltc2983_thermistor
{
278 struct ltc2983_sensor sensor
;
279 struct ltc2983_custom_sensor
*custom
;
282 u32 excitation_current
;
285 struct ltc2983_diode
{
286 struct ltc2983_sensor sensor
;
288 u32 excitation_current
;
289 u32 ideal_factor_value
;
292 struct ltc2983_rsense
{
293 struct ltc2983_sensor sensor
;
298 struct ltc2983_sensor sensor
;
302 struct ltc2983_temp
{
303 struct ltc2983_sensor sensor
;
304 struct ltc2983_custom_sensor
*custom
;
309 * Convert to Q format numbers. These number's are integers where
310 * the number of integer and fractional bits are specified. The resolution
311 * is given by 1/@resolution and tell us the number of fractional bits. For
312 * instance a resolution of 2^-10 means we have 10 fractional bits.
314 static u32
__convert_to_raw(const u64 val
, const u32 resolution
)
316 u64 __res
= val
* resolution
;
318 /* all values are multiplied by 1000000 to remove the fraction */
319 do_div(__res
, 1000000);
324 static u32
__convert_to_raw_sign(const u64 val
, const u32 resolution
)
326 s64 __res
= -(s32
)val
;
328 __res
= __convert_to_raw(__res
, resolution
);
333 static int __ltc2983_fault_handler(const struct ltc2983_data
*st
,
334 const u32 result
, const u32 hard_mask
,
337 const struct device
*dev
= &st
->spi
->dev
;
339 if (result
& hard_mask
) {
340 dev_err(dev
, "Invalid conversion: Sensor HARD fault\n");
342 } else if (result
& soft_mask
) {
343 /* just print a warning */
344 dev_warn(dev
, "Suspicious conversion: Sensor SOFT fault\n");
350 static int __ltc2983_chan_assign_common(struct ltc2983_data
*st
,
351 const struct ltc2983_sensor
*sensor
,
354 u32 reg
= LTC2983_CHAN_START_ADDR(sensor
->chan
);
356 chan_val
|= LTC2983_CHAN_TYPE(sensor
->type
);
357 dev_dbg(&st
->spi
->dev
, "Assign reg:0x%04X, val:0x%08X\n", reg
,
359 st
->chan_val
= cpu_to_be32(chan_val
);
360 return regmap_bulk_write(st
->regmap
, reg
, &st
->chan_val
,
361 sizeof(st
->chan_val
));
364 static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data
*st
,
365 struct ltc2983_custom_sensor
*custom
,
369 u8 mult
= custom
->is_steinhart
? LTC2983_CUSTOM_STEINHART_ENTRY_SZ
:
370 LTC2983_CUSTOM_SENSOR_ENTRY_SZ
;
371 const struct device
*dev
= &st
->spi
->dev
;
373 * custom->size holds the raw size of the table. However, when
374 * configuring the sensor channel, we must write the number of
375 * entries of the table minus 1. For steinhart sensors 0 is written
376 * since the size is constant!
378 const u8 len
= custom
->is_steinhart
? 0 :
379 (custom
->size
/ LTC2983_CUSTOM_SENSOR_ENTRY_SZ
) - 1;
381 * Check if the offset was assigned already. It should be for steinhart
382 * sensors. When coming from sleep, it should be assigned for all.
384 if (custom
->offset
< 0) {
386 * This needs to be done again here because, from the moment
387 * when this test was done (successfully) for this custom
388 * sensor, a steinhart sensor might have been added changing
389 * custom_table_size...
391 if (st
->custom_table_size
+ custom
->size
>
392 (LTC2983_CUST_SENS_TBL_END_REG
-
393 LTC2983_CUST_SENS_TBL_START_REG
) + 1) {
395 "Not space left(%d) for new custom sensor(%zu)",
396 st
->custom_table_size
,
401 custom
->offset
= st
->custom_table_size
/
402 LTC2983_CUSTOM_SENSOR_ENTRY_SZ
;
403 st
->custom_table_size
+= custom
->size
;
406 reg
= (custom
->offset
* mult
) + LTC2983_CUST_SENS_TBL_START_REG
;
408 *chan_val
|= LTC2983_CUSTOM_LEN(len
);
409 *chan_val
|= LTC2983_CUSTOM_ADDR(custom
->offset
);
410 dev_dbg(dev
, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
413 /* write custom sensor table */
414 return regmap_bulk_write(st
->regmap
, reg
, custom
->table
, custom
->size
);
417 static struct ltc2983_custom_sensor
*
418 __ltc2983_custom_sensor_new(struct ltc2983_data
*st
, const struct fwnode_handle
*fn
,
419 const char *propname
, const bool is_steinhart
,
420 const u32 resolution
, const bool has_signed
)
422 struct ltc2983_custom_sensor
*new_custom
;
423 struct device
*dev
= &st
->spi
->dev
;
425 * For custom steinhart, the full u32 is taken. For all the others
426 * the MSB is discarded.
428 const u8 n_size
= is_steinhart
? 4 : 3;
433 n_entries
= fwnode_property_count_u32(fn
, propname
);
435 n_entries
= fwnode_property_count_u64(fn
, propname
);
436 /* n_entries must be an even number */
437 if (!n_entries
|| (n_entries
% 2) != 0)
438 return dev_err_ptr_probe(dev
, -EINVAL
,
439 "Number of entries either 0 or not even\n");
441 new_custom
= devm_kzalloc(dev
, sizeof(*new_custom
), GFP_KERNEL
);
443 return ERR_PTR(-ENOMEM
);
445 new_custom
->size
= n_entries
* n_size
;
446 /* check Steinhart size */
447 if (is_steinhart
&& new_custom
->size
!= LTC2983_CUSTOM_STEINHART_SIZE
)
448 return dev_err_ptr_probe(dev
, -EINVAL
,
449 "Steinhart sensors size(%zu) must be %u\n",
450 new_custom
->size
, LTC2983_CUSTOM_STEINHART_SIZE
);
452 /* Check space on the table. */
453 if (st
->custom_table_size
+ new_custom
->size
>
454 (LTC2983_CUST_SENS_TBL_END_REG
- LTC2983_CUST_SENS_TBL_START_REG
) + 1)
455 return dev_err_ptr_probe(dev
, -EINVAL
,
456 "No space left(%d) for new custom sensor(%zu)\n",
457 st
->custom_table_size
, new_custom
->size
);
459 /* allocate the table */
461 new_custom
->table
= devm_kcalloc(dev
, n_entries
, sizeof(u32
), GFP_KERNEL
);
463 new_custom
->table
= devm_kcalloc(dev
, n_entries
, sizeof(u64
), GFP_KERNEL
);
464 if (!new_custom
->table
)
465 return ERR_PTR(-ENOMEM
);
468 * Steinhart sensors are configured with raw values in the firmware
469 * node. For the other sensors we must convert the value to raw.
470 * The odd index's correspond to temperatures and always have 1/1024
471 * of resolution. Temperatures also come in Kelvin, so signed values
475 ret
= fwnode_property_read_u32_array(fn
, propname
, new_custom
->table
, n_entries
);
479 cpu_to_be32_array(new_custom
->table
, new_custom
->table
, n_entries
);
481 ret
= fwnode_property_read_u64_array(fn
, propname
, new_custom
->table
, n_entries
);
485 for (index
= 0; index
< n_entries
; index
++) {
486 u64 temp
= ((u64
*)new_custom
->table
)[index
];
488 if ((index
% 2) != 0)
489 temp
= __convert_to_raw(temp
, 1024);
490 else if (has_signed
&& (s64
)temp
< 0)
491 temp
= __convert_to_raw_sign(temp
, resolution
);
493 temp
= __convert_to_raw(temp
, resolution
);
495 put_unaligned_be24(temp
, new_custom
->table
+ index
* 3);
499 new_custom
->is_steinhart
= is_steinhart
;
501 * This is done to first add all the steinhart sensors to the table,
502 * in order to maximize the table usage. If we mix adding steinhart
503 * with the other sensors, we might have to do some roundup to make
504 * sure that sensor_addr - 0x250(start address) is a multiple of 4
505 * (for steinhart), and a multiple of 6 for all the other sensors.
506 * Since we have const 24 bytes for steinhart sensors and 24 is
507 * also a multiple of 6, we guarantee that the first non-steinhart
508 * sensor will sit in a correct address without the need of filling
512 new_custom
->offset
= st
->custom_table_size
/
513 LTC2983_CUSTOM_STEINHART_ENTRY_SZ
;
514 st
->custom_table_size
+= new_custom
->size
;
516 /* mark as unset. This is checked later on the assign phase */
517 new_custom
->offset
= -1;
523 static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data
*st
,
526 return __ltc2983_fault_handler(st
, result
,
527 LTC2983_THERMOCOUPLE_HARD_FAULT_MASK
,
528 LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK
);
531 static int ltc2983_common_fault_handler(const struct ltc2983_data
*st
,
534 return __ltc2983_fault_handler(st
, result
,
535 LTC2983_COMMON_HARD_FAULT_MASK
,
536 LTC2983_COMMON_SOFT_FAULT_MASK
);
539 static int ltc2983_thermocouple_assign_chan(struct ltc2983_data
*st
,
540 const struct ltc2983_sensor
*sensor
)
542 struct ltc2983_thermocouple
*thermo
= to_thermocouple(sensor
);
545 chan_val
= LTC2983_CHAN_ASSIGN(thermo
->cold_junction_chan
);
546 chan_val
|= LTC2983_THERMOCOUPLE_CFG(thermo
->sensor_config
);
548 if (thermo
->custom
) {
551 ret
= __ltc2983_chan_custom_sensor_assign(st
, thermo
->custom
,
556 return __ltc2983_chan_assign_common(st
, sensor
, chan_val
);
559 static int ltc2983_rtd_assign_chan(struct ltc2983_data
*st
,
560 const struct ltc2983_sensor
*sensor
)
562 struct ltc2983_rtd
*rtd
= to_rtd(sensor
);
565 chan_val
= LTC2983_CHAN_ASSIGN(rtd
->r_sense_chan
);
566 chan_val
|= LTC2983_RTD_CFG(rtd
->sensor_config
);
567 chan_val
|= LTC2983_RTD_EXC_CURRENT(rtd
->excitation_current
);
568 chan_val
|= LTC2983_RTD_CURVE(rtd
->rtd_curve
);
573 ret
= __ltc2983_chan_custom_sensor_assign(st
, rtd
->custom
,
578 return __ltc2983_chan_assign_common(st
, sensor
, chan_val
);
581 static int ltc2983_thermistor_assign_chan(struct ltc2983_data
*st
,
582 const struct ltc2983_sensor
*sensor
)
584 struct ltc2983_thermistor
*thermistor
= to_thermistor(sensor
);
587 chan_val
= LTC2983_CHAN_ASSIGN(thermistor
->r_sense_chan
);
588 chan_val
|= LTC2983_THERMISTOR_CFG(thermistor
->sensor_config
);
590 LTC2983_THERMISTOR_EXC_CURRENT(thermistor
->excitation_current
);
592 if (thermistor
->custom
) {
595 ret
= __ltc2983_chan_custom_sensor_assign(st
,
601 return __ltc2983_chan_assign_common(st
, sensor
, chan_val
);
604 static int ltc2983_diode_assign_chan(struct ltc2983_data
*st
,
605 const struct ltc2983_sensor
*sensor
)
607 struct ltc2983_diode
*diode
= to_diode(sensor
);
610 chan_val
= LTC2983_DIODE_CFG(diode
->sensor_config
);
611 chan_val
|= LTC2983_DIODE_EXC_CURRENT(diode
->excitation_current
);
612 chan_val
|= LTC2983_DIODE_IDEAL_FACTOR(diode
->ideal_factor_value
);
614 return __ltc2983_chan_assign_common(st
, sensor
, chan_val
);
617 static int ltc2983_r_sense_assign_chan(struct ltc2983_data
*st
,
618 const struct ltc2983_sensor
*sensor
)
620 struct ltc2983_rsense
*rsense
= to_rsense(sensor
);
623 chan_val
= LTC2983_R_SENSE_VAL(rsense
->r_sense_val
);
625 return __ltc2983_chan_assign_common(st
, sensor
, chan_val
);
628 static int ltc2983_adc_assign_chan(struct ltc2983_data
*st
,
629 const struct ltc2983_sensor
*sensor
)
631 struct ltc2983_adc
*adc
= to_adc(sensor
);
634 chan_val
= LTC2983_ADC_SINGLE_ENDED(adc
->single_ended
);
636 return __ltc2983_chan_assign_common(st
, sensor
, chan_val
);
639 static int ltc2983_temp_assign_chan(struct ltc2983_data
*st
,
640 const struct ltc2983_sensor
*sensor
)
642 struct ltc2983_temp
*temp
= to_temp(sensor
);
646 chan_val
= LTC2983_ADC_SINGLE_ENDED(temp
->single_ended
);
648 ret
= __ltc2983_chan_custom_sensor_assign(st
, temp
->custom
, &chan_val
);
652 return __ltc2983_chan_assign_common(st
, sensor
, chan_val
);
655 static struct ltc2983_sensor
*
656 ltc2983_thermocouple_new(const struct fwnode_handle
*child
, struct ltc2983_data
*st
,
657 const struct ltc2983_sensor
*sensor
)
659 struct ltc2983_thermocouple
*thermo
;
663 thermo
= devm_kzalloc(&st
->spi
->dev
, sizeof(*thermo
), GFP_KERNEL
);
665 return ERR_PTR(-ENOMEM
);
667 if (fwnode_property_read_bool(child
, "adi,single-ended"))
668 thermo
->sensor_config
= LTC2983_THERMOCOUPLE_SGL(1);
670 ret
= fwnode_property_read_u32(child
, "adi,sensor-oc-current-microamp", &oc_current
);
672 switch (oc_current
) {
674 thermo
->sensor_config
|=
675 LTC2983_THERMOCOUPLE_OC_CURR(0);
678 thermo
->sensor_config
|=
679 LTC2983_THERMOCOUPLE_OC_CURR(1);
682 thermo
->sensor_config
|=
683 LTC2983_THERMOCOUPLE_OC_CURR(2);
686 thermo
->sensor_config
|=
687 LTC2983_THERMOCOUPLE_OC_CURR(3);
690 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
691 "Invalid open circuit current:%u\n",
695 thermo
->sensor_config
|= LTC2983_THERMOCOUPLE_OC_CHECK(1);
697 /* validate channel index */
698 if (!(thermo
->sensor_config
& LTC2983_THERMOCOUPLE_DIFF_MASK
) &&
699 sensor
->chan
< LTC2983_DIFFERENTIAL_CHAN_MIN
)
700 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
701 "Invalid chann:%d for differential thermocouple\n",
704 struct fwnode_handle
*ref
__free(fwnode_handle
) =
705 fwnode_find_reference(child
, "adi,cold-junction-handle", 0);
709 ret
= fwnode_property_read_u32(ref
, "reg", &thermo
->cold_junction_chan
);
712 * This would be catched later but we can just return
713 * the error right away.
715 return dev_err_ptr_probe(&st
->spi
->dev
, ret
,
716 "Property reg must be given\n");
719 /* check custom sensor */
720 if (sensor
->type
== LTC2983_SENSOR_THERMOCOUPLE_CUSTOM
) {
721 const char *propname
= "adi,custom-thermocouple";
723 thermo
->custom
= __ltc2983_custom_sensor_new(st
, child
,
726 if (IS_ERR(thermo
->custom
))
727 return ERR_CAST(thermo
->custom
);
730 /* set common parameters */
731 thermo
->sensor
.fault_handler
= ltc2983_thermocouple_fault_handler
;
732 thermo
->sensor
.assign_chan
= ltc2983_thermocouple_assign_chan
;
734 return &thermo
->sensor
;
737 static struct ltc2983_sensor
*
738 ltc2983_rtd_new(const struct fwnode_handle
*child
, struct ltc2983_data
*st
,
739 const struct ltc2983_sensor
*sensor
)
741 struct ltc2983_rtd
*rtd
;
743 struct device
*dev
= &st
->spi
->dev
;
744 u32 excitation_current
= 0, n_wires
= 0;
746 rtd
= devm_kzalloc(dev
, sizeof(*rtd
), GFP_KERNEL
);
748 return ERR_PTR(-ENOMEM
);
750 struct fwnode_handle
*ref
__free(fwnode_handle
) =
751 fwnode_find_reference(child
, "adi,rsense-handle", 0);
753 return dev_err_cast_probe(dev
, ref
,
754 "Property adi,rsense-handle missing or invalid\n");
756 ret
= fwnode_property_read_u32(ref
, "reg", &rtd
->r_sense_chan
);
758 return dev_err_ptr_probe(dev
, ret
,
759 "Property reg must be given\n");
761 ret
= fwnode_property_read_u32(child
, "adi,number-of-wires", &n_wires
);
765 rtd
->sensor_config
= LTC2983_RTD_N_WIRES(0);
768 rtd
->sensor_config
= LTC2983_RTD_N_WIRES(1);
771 rtd
->sensor_config
= LTC2983_RTD_N_WIRES(2);
774 /* 4 wires, Kelvin Rsense */
775 rtd
->sensor_config
= LTC2983_RTD_N_WIRES(3);
778 return dev_err_ptr_probe(dev
, -EINVAL
,
779 "Invalid number of wires:%u\n",
784 if (fwnode_property_read_bool(child
, "adi,rsense-share")) {
785 /* Current rotation is only available with rsense sharing */
786 if (fwnode_property_read_bool(child
, "adi,current-rotate")) {
787 if (n_wires
== 2 || n_wires
== 3)
788 return dev_err_ptr_probe(dev
, -EINVAL
,
789 "Rotation not allowed for 2/3 Wire RTDs\n");
791 rtd
->sensor_config
|= LTC2983_RTD_C_ROTATE(1);
793 rtd
->sensor_config
|= LTC2983_RTD_R_SHARE(1);
797 * rtd channel indexes are a bit more complicated to validate.
798 * For 4wire RTD with rotation, the channel selection cannot be
799 * >=19 since the chann + 1 is used in this configuration.
800 * For 4wire RTDs with kelvin rsense, the rsense channel cannot be
801 * <=1 since chanel - 1 and channel - 2 are used.
803 if (rtd
->sensor_config
& LTC2983_RTD_4_WIRE_MASK
) {
805 u8 min
= LTC2983_DIFFERENTIAL_CHAN_MIN
,
806 max
= st
->info
->max_channels_nr
;
808 if (rtd
->sensor_config
& LTC2983_RTD_ROTATION_MASK
)
809 max
= st
->info
->max_channels_nr
- 1;
811 if (((rtd
->sensor_config
& LTC2983_RTD_KELVIN_R_SENSE_MASK
)
812 == LTC2983_RTD_KELVIN_R_SENSE_MASK
) &&
813 (rtd
->r_sense_chan
<= min
))
815 return dev_err_ptr_probe(dev
, -EINVAL
,
816 "Invalid rsense chann:%d to use in kelvin rsense\n",
819 if (sensor
->chan
< min
|| sensor
->chan
> max
)
820 return dev_err_ptr_probe(dev
, -EINVAL
,
821 "Invalid chann:%d for the rtd config\n",
824 /* same as differential case */
825 if (sensor
->chan
< LTC2983_DIFFERENTIAL_CHAN_MIN
)
826 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
827 "Invalid chann:%d for RTD\n",
831 /* check custom sensor */
832 if (sensor
->type
== LTC2983_SENSOR_RTD_CUSTOM
) {
833 rtd
->custom
= __ltc2983_custom_sensor_new(st
, child
,
836 if (IS_ERR(rtd
->custom
))
837 return ERR_CAST(rtd
->custom
);
840 /* set common parameters */
841 rtd
->sensor
.fault_handler
= ltc2983_common_fault_handler
;
842 rtd
->sensor
.assign_chan
= ltc2983_rtd_assign_chan
;
844 ret
= fwnode_property_read_u32(child
, "adi,excitation-current-microamp",
845 &excitation_current
);
848 rtd
->excitation_current
= 1;
850 switch (excitation_current
) {
852 rtd
->excitation_current
= 0x01;
855 rtd
->excitation_current
= 0x02;
858 rtd
->excitation_current
= 0x03;
861 rtd
->excitation_current
= 0x04;
864 rtd
->excitation_current
= 0x05;
867 rtd
->excitation_current
= 0x06;
870 rtd
->excitation_current
= 0x07;
873 rtd
->excitation_current
= 0x08;
876 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
877 "Invalid value for excitation current(%u)\n",
882 fwnode_property_read_u32(child
, "adi,rtd-curve", &rtd
->rtd_curve
);
887 static struct ltc2983_sensor
*
888 ltc2983_thermistor_new(const struct fwnode_handle
*child
, struct ltc2983_data
*st
,
889 const struct ltc2983_sensor
*sensor
)
891 struct ltc2983_thermistor
*thermistor
;
892 struct device
*dev
= &st
->spi
->dev
;
893 u32 excitation_current
= 0;
896 thermistor
= devm_kzalloc(dev
, sizeof(*thermistor
), GFP_KERNEL
);
898 return ERR_PTR(-ENOMEM
);
900 struct fwnode_handle
*ref
__free(fwnode_handle
) =
901 fwnode_find_reference(child
, "adi,rsense-handle", 0);
903 return dev_err_cast_probe(dev
, ref
,
904 "Property adi,rsense-handle missing or invalid\n");
906 ret
= fwnode_property_read_u32(ref
, "reg", &thermistor
->r_sense_chan
);
908 return dev_err_ptr_probe(dev
, ret
,
909 "rsense channel must be configured...\n");
911 if (fwnode_property_read_bool(child
, "adi,single-ended")) {
912 thermistor
->sensor_config
= LTC2983_THERMISTOR_SGL(1);
913 } else if (fwnode_property_read_bool(child
, "adi,rsense-share")) {
914 /* rotation is only possible if sharing rsense */
915 if (fwnode_property_read_bool(child
, "adi,current-rotate"))
916 thermistor
->sensor_config
=
917 LTC2983_THERMISTOR_C_ROTATE(1);
919 thermistor
->sensor_config
=
920 LTC2983_THERMISTOR_R_SHARE(1);
922 /* validate channel index */
923 if (!(thermistor
->sensor_config
& LTC2983_THERMISTOR_DIFF_MASK
) &&
924 sensor
->chan
< LTC2983_DIFFERENTIAL_CHAN_MIN
)
925 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
926 "Invalid chann:%d for differential thermistor\n",
929 /* check custom sensor */
930 if (sensor
->type
>= LTC2983_SENSOR_THERMISTOR_STEINHART
) {
931 bool steinhart
= false;
932 const char *propname
;
934 if (sensor
->type
== LTC2983_SENSOR_THERMISTOR_STEINHART
) {
936 propname
= "adi,custom-steinhart";
938 propname
= "adi,custom-thermistor";
941 thermistor
->custom
= __ltc2983_custom_sensor_new(st
, child
,
945 if (IS_ERR(thermistor
->custom
))
946 return ERR_CAST(thermistor
->custom
);
948 /* set common parameters */
949 thermistor
->sensor
.fault_handler
= ltc2983_common_fault_handler
;
950 thermistor
->sensor
.assign_chan
= ltc2983_thermistor_assign_chan
;
952 ret
= fwnode_property_read_u32(child
, "adi,excitation-current-nanoamp",
953 &excitation_current
);
955 /* Auto range is not allowed for custom sensors */
956 if (sensor
->type
>= LTC2983_SENSOR_THERMISTOR_STEINHART
)
958 thermistor
->excitation_current
= 0x03;
960 /* default to auto-range */
961 thermistor
->excitation_current
= 0x0c;
963 switch (excitation_current
) {
966 if (sensor
->type
>= LTC2983_SENSOR_THERMISTOR_STEINHART
)
967 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
968 "Auto Range not allowed for custom sensors\n");
970 thermistor
->excitation_current
= 0x0c;
973 thermistor
->excitation_current
= 0x01;
976 thermistor
->excitation_current
= 0x02;
979 thermistor
->excitation_current
= 0x03;
982 thermistor
->excitation_current
= 0x04;
985 thermistor
->excitation_current
= 0x05;
988 thermistor
->excitation_current
= 0x06;
991 thermistor
->excitation_current
= 0x07;
994 thermistor
->excitation_current
= 0x08;
997 thermistor
->excitation_current
= 0x09;
1000 thermistor
->excitation_current
= 0x0a;
1003 thermistor
->excitation_current
= 0x0b;
1006 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
1007 "Invalid value for excitation current(%u)\n",
1008 excitation_current
);
1012 return &thermistor
->sensor
;
1015 static struct ltc2983_sensor
*
1016 ltc2983_diode_new(const struct fwnode_handle
*child
, const struct ltc2983_data
*st
,
1017 const struct ltc2983_sensor
*sensor
)
1019 struct ltc2983_diode
*diode
;
1020 u32 temp
= 0, excitation_current
= 0;
1023 diode
= devm_kzalloc(&st
->spi
->dev
, sizeof(*diode
), GFP_KERNEL
);
1025 return ERR_PTR(-ENOMEM
);
1027 if (fwnode_property_read_bool(child
, "adi,single-ended"))
1028 diode
->sensor_config
= LTC2983_DIODE_SGL(1);
1030 if (fwnode_property_read_bool(child
, "adi,three-conversion-cycles"))
1031 diode
->sensor_config
|= LTC2983_DIODE_3_CONV_CYCLE(1);
1033 if (fwnode_property_read_bool(child
, "adi,average-on"))
1034 diode
->sensor_config
|= LTC2983_DIODE_AVERAGE_ON(1);
1036 /* validate channel index */
1037 if (!(diode
->sensor_config
& LTC2983_DIODE_DIFF_MASK
) &&
1038 sensor
->chan
< LTC2983_DIFFERENTIAL_CHAN_MIN
)
1039 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
1040 "Invalid chann:%d for differential thermistor\n",
1043 /* set common parameters */
1044 diode
->sensor
.fault_handler
= ltc2983_common_fault_handler
;
1045 diode
->sensor
.assign_chan
= ltc2983_diode_assign_chan
;
1047 ret
= fwnode_property_read_u32(child
, "adi,excitation-current-microamp",
1048 &excitation_current
);
1050 switch (excitation_current
) {
1052 diode
->excitation_current
= 0x00;
1055 diode
->excitation_current
= 0x01;
1058 diode
->excitation_current
= 0x02;
1061 diode
->excitation_current
= 0x03;
1064 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
1065 "Invalid value for excitation current(%u)\n",
1066 excitation_current
);
1070 fwnode_property_read_u32(child
, "adi,ideal-factor-value", &temp
);
1072 /* 2^20 resolution */
1073 diode
->ideal_factor_value
= __convert_to_raw(temp
, 1048576);
1075 return &diode
->sensor
;
1078 static struct ltc2983_sensor
*ltc2983_r_sense_new(struct fwnode_handle
*child
,
1079 struct ltc2983_data
*st
,
1080 const struct ltc2983_sensor
*sensor
)
1082 struct ltc2983_rsense
*rsense
;
1086 rsense
= devm_kzalloc(&st
->spi
->dev
, sizeof(*rsense
), GFP_KERNEL
);
1088 return ERR_PTR(-ENOMEM
);
1090 /* validate channel index */
1091 if (sensor
->chan
< LTC2983_DIFFERENTIAL_CHAN_MIN
)
1092 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
1093 "Invalid chann:%d for r_sense\n",
1096 ret
= fwnode_property_read_u32(child
, "adi,rsense-val-milli-ohms", &temp
);
1098 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
1099 "Property adi,rsense-val-milli-ohms missing\n");
1101 * Times 1000 because we have milli-ohms and __convert_to_raw
1102 * expects scales of 1000000 which are used for all other
1106 rsense
->r_sense_val
= __convert_to_raw((u64
)temp
* 1000, 1024);
1108 /* set common parameters */
1109 rsense
->sensor
.assign_chan
= ltc2983_r_sense_assign_chan
;
1111 return &rsense
->sensor
;
1114 static struct ltc2983_sensor
*ltc2983_adc_new(struct fwnode_handle
*child
,
1115 struct ltc2983_data
*st
,
1116 const struct ltc2983_sensor
*sensor
)
1118 struct ltc2983_adc
*adc
;
1120 adc
= devm_kzalloc(&st
->spi
->dev
, sizeof(*adc
), GFP_KERNEL
);
1122 return ERR_PTR(-ENOMEM
);
1124 if (fwnode_property_read_bool(child
, "adi,single-ended"))
1125 adc
->single_ended
= true;
1127 if (!adc
->single_ended
&& sensor
->chan
< LTC2983_DIFFERENTIAL_CHAN_MIN
)
1128 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
1129 "Invalid chan:%d for differential adc\n",
1132 /* set common parameters */
1133 adc
->sensor
.assign_chan
= ltc2983_adc_assign_chan
;
1134 adc
->sensor
.fault_handler
= ltc2983_common_fault_handler
;
1136 return &adc
->sensor
;
1139 static struct ltc2983_sensor
*ltc2983_temp_new(struct fwnode_handle
*child
,
1140 struct ltc2983_data
*st
,
1141 const struct ltc2983_sensor
*sensor
)
1143 struct ltc2983_temp
*temp
;
1145 temp
= devm_kzalloc(&st
->spi
->dev
, sizeof(*temp
), GFP_KERNEL
);
1147 return ERR_PTR(-ENOMEM
);
1149 if (fwnode_property_read_bool(child
, "adi,single-ended"))
1150 temp
->single_ended
= true;
1152 if (!temp
->single_ended
&& sensor
->chan
< LTC2983_DIFFERENTIAL_CHAN_MIN
)
1153 return dev_err_ptr_probe(&st
->spi
->dev
, -EINVAL
,
1154 "Invalid chan:%d for differential temp\n",
1157 temp
->custom
= __ltc2983_custom_sensor_new(st
, child
, "adi,custom-temp",
1159 if (IS_ERR(temp
->custom
))
1160 return ERR_CAST(temp
->custom
);
1162 /* set common parameters */
1163 temp
->sensor
.assign_chan
= ltc2983_temp_assign_chan
;
1164 temp
->sensor
.fault_handler
= ltc2983_common_fault_handler
;
1166 return &temp
->sensor
;
1169 static int ltc2983_chan_read(struct ltc2983_data
*st
,
1170 const struct ltc2983_sensor
*sensor
, int *val
)
1172 u32 start_conversion
= 0;
1176 start_conversion
= LTC2983_STATUS_START(true);
1177 start_conversion
|= LTC2983_STATUS_CHAN_SEL(sensor
->chan
);
1178 dev_dbg(&st
->spi
->dev
, "Start conversion on chan:%d, status:%02X\n",
1179 sensor
->chan
, start_conversion
);
1180 /* start conversion */
1181 ret
= regmap_write(st
->regmap
, LTC2983_STATUS_REG
, start_conversion
);
1185 reinit_completion(&st
->completion
);
1187 * wait for conversion to complete.
1188 * 300 ms should be more than enough to complete the conversion.
1189 * Depending on the sensor configuration, there are 2/3 conversions
1192 time
= wait_for_completion_timeout(&st
->completion
,
1193 msecs_to_jiffies(300));
1195 dev_warn(&st
->spi
->dev
, "Conversion timed out\n");
1199 /* read the converted data */
1200 ret
= regmap_bulk_read(st
->regmap
, LTC2983_CHAN_RES_ADDR(sensor
->chan
),
1201 &st
->temp
, sizeof(st
->temp
));
1205 *val
= __be32_to_cpu(st
->temp
);
1207 if (!(LTC2983_RES_VALID_MASK
& *val
)) {
1208 dev_err(&st
->spi
->dev
, "Invalid conversion detected\n");
1212 ret
= sensor
->fault_handler(st
, *val
);
1216 *val
= sign_extend32((*val
) & LTC2983_DATA_MASK
, LTC2983_DATA_SIGN_BIT
);
1220 static int ltc2983_read_raw(struct iio_dev
*indio_dev
,
1221 struct iio_chan_spec
const *chan
,
1222 int *val
, int *val2
, long mask
)
1224 struct ltc2983_data
*st
= iio_priv(indio_dev
);
1228 if (chan
->address
>= st
->num_channels
) {
1229 dev_err(&st
->spi
->dev
, "Invalid chan address:%ld",
1235 case IIO_CHAN_INFO_RAW
:
1236 mutex_lock(&st
->lock
);
1237 ret
= ltc2983_chan_read(st
, st
->sensors
[chan
->address
], val
);
1238 mutex_unlock(&st
->lock
);
1239 return ret
?: IIO_VAL_INT
;
1240 case IIO_CHAN_INFO_SCALE
:
1241 switch (chan
->type
) {
1243 /* value in milli degrees */
1247 return IIO_VAL_FRACTIONAL
;
1249 /* value in millivolt */
1253 return IIO_VAL_FRACTIONAL
;
1262 static int ltc2983_reg_access(struct iio_dev
*indio_dev
,
1264 unsigned int writeval
,
1265 unsigned int *readval
)
1267 struct ltc2983_data
*st
= iio_priv(indio_dev
);
1270 return regmap_read(st
->regmap
, reg
, readval
);
1272 return regmap_write(st
->regmap
, reg
, writeval
);
1275 static irqreturn_t
ltc2983_irq_handler(int irq
, void *data
)
1277 struct ltc2983_data
*st
= data
;
1279 complete(&st
->completion
);
1283 #define LTC2983_CHAN(__type, index, __address) ({ \
1284 struct iio_chan_spec __chan = { \
1288 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1289 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1290 .address = __address, \
1295 static int ltc2983_parse_fw(struct ltc2983_data
*st
)
1297 struct device
*dev
= &st
->spi
->dev
;
1298 int ret
, chan
= 0, channel_avail_mask
= 0;
1300 device_property_read_u32(dev
, "adi,mux-delay-config-us", &st
->mux_delay_config
);
1302 device_property_read_u32(dev
, "adi,filter-notch-freq", &st
->filter_notch_freq
);
1304 st
->num_channels
= device_get_child_node_count(dev
);
1305 if (!st
->num_channels
)
1306 return dev_err_probe(&st
->spi
->dev
, -EINVAL
,
1307 "At least one channel must be given!\n");
1309 st
->sensors
= devm_kcalloc(dev
, st
->num_channels
, sizeof(*st
->sensors
),
1314 st
->iio_channels
= st
->num_channels
;
1315 device_for_each_child_node_scoped(dev
, child
) {
1316 struct ltc2983_sensor sensor
;
1318 ret
= fwnode_property_read_u32(child
, "reg", &sensor
.chan
);
1320 return dev_err_probe(dev
, ret
,
1321 "reg property must given for child nodes\n");
1323 /* check if we have a valid channel */
1324 if (sensor
.chan
< LTC2983_MIN_CHANNELS_NR
||
1325 sensor
.chan
> st
->info
->max_channels_nr
)
1326 return dev_err_probe(dev
, -EINVAL
,
1327 "chan:%d must be from %u to %u\n",
1329 LTC2983_MIN_CHANNELS_NR
,
1330 st
->info
->max_channels_nr
);
1332 if (channel_avail_mask
& BIT(sensor
.chan
))
1333 return dev_err_probe(dev
, -EINVAL
,
1334 "chan:%d already in use\n",
1337 ret
= fwnode_property_read_u32(child
, "adi,sensor-type", &sensor
.type
);
1339 return dev_err_probe(dev
, ret
,
1340 "adi,sensor-type property must given for child nodes\n");
1342 dev_dbg(dev
, "Create new sensor, type %u, chann %u",
1343 sensor
.type
, sensor
.chan
);
1345 if (sensor
.type
>= LTC2983_SENSOR_THERMOCOUPLE
&&
1346 sensor
.type
<= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM
) {
1347 st
->sensors
[chan
] = ltc2983_thermocouple_new(child
, st
,
1349 } else if (sensor
.type
>= LTC2983_SENSOR_RTD
&&
1350 sensor
.type
<= LTC2983_SENSOR_RTD_CUSTOM
) {
1351 st
->sensors
[chan
] = ltc2983_rtd_new(child
, st
, &sensor
);
1352 } else if (sensor
.type
>= LTC2983_SENSOR_THERMISTOR
&&
1353 sensor
.type
<= LTC2983_SENSOR_THERMISTOR_CUSTOM
) {
1354 st
->sensors
[chan
] = ltc2983_thermistor_new(child
, st
,
1356 } else if (sensor
.type
== LTC2983_SENSOR_DIODE
) {
1357 st
->sensors
[chan
] = ltc2983_diode_new(child
, st
,
1359 } else if (sensor
.type
== LTC2983_SENSOR_SENSE_RESISTOR
) {
1360 st
->sensors
[chan
] = ltc2983_r_sense_new(child
, st
,
1362 /* don't add rsense to iio */
1364 } else if (sensor
.type
== LTC2983_SENSOR_DIRECT_ADC
) {
1365 st
->sensors
[chan
] = ltc2983_adc_new(child
, st
, &sensor
);
1366 } else if (st
->info
->has_temp
&&
1367 sensor
.type
== LTC2983_SENSOR_ACTIVE_TEMP
) {
1368 st
->sensors
[chan
] = ltc2983_temp_new(child
, st
, &sensor
);
1370 return dev_err_probe(dev
, -EINVAL
,
1371 "Unknown sensor type %d\n",
1375 if (IS_ERR(st
->sensors
[chan
]))
1376 return dev_err_probe(dev
, PTR_ERR(st
->sensors
[chan
]),
1377 "Failed to create sensor\n");
1379 /* set generic sensor parameters */
1380 st
->sensors
[chan
]->chan
= sensor
.chan
;
1381 st
->sensors
[chan
]->type
= sensor
.type
;
1383 channel_avail_mask
|= BIT(sensor
.chan
);
1390 static int ltc2983_eeprom_cmd(struct ltc2983_data
*st
, unsigned int cmd
,
1391 unsigned int wait_time
, unsigned int status_reg
,
1392 unsigned long status_fail_mask
)
1398 ret
= regmap_bulk_write(st
->regmap
, LTC2983_EEPROM_KEY_REG
,
1399 &st
->eeprom_key
, sizeof(st
->eeprom_key
));
1403 reinit_completion(&st
->completion
);
1405 ret
= regmap_write(st
->regmap
, LTC2983_STATUS_REG
,
1406 LTC2983_STATUS_START(true) | cmd
);
1410 time
= wait_for_completion_timeout(&st
->completion
,
1411 msecs_to_jiffies(wait_time
));
1413 return dev_err_probe(&st
->spi
->dev
, -ETIMEDOUT
,
1414 "EEPROM command timed out\n");
1416 ret
= regmap_read(st
->regmap
, status_reg
, &val
);
1420 if (val
& status_fail_mask
)
1421 return dev_err_probe(&st
->spi
->dev
, -EINVAL
,
1422 "EEPROM command failed: 0x%02X\n", val
);
1427 static int ltc2983_setup(struct ltc2983_data
*st
, bool assign_iio
)
1429 u32 iio_chan_t
= 0, iio_chan_v
= 0, chan
, iio_idx
= 0, status
;
1432 /* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
1433 ret
= regmap_read_poll_timeout(st
->regmap
, LTC2983_STATUS_REG
, status
,
1434 LTC2983_STATUS_UP(status
) == 1, 25000,
1437 return dev_err_probe(&st
->spi
->dev
, ret
,
1438 "Device startup timed out\n");
1440 ret
= regmap_update_bits(st
->regmap
, LTC2983_GLOBAL_CONFIG_REG
,
1441 LTC2983_NOTCH_FREQ_MASK
,
1442 LTC2983_NOTCH_FREQ(st
->filter_notch_freq
));
1446 ret
= regmap_write(st
->regmap
, LTC2983_MUX_CONFIG_REG
,
1447 st
->mux_delay_config
);
1451 if (st
->info
->has_eeprom
&& !assign_iio
) {
1452 ret
= ltc2983_eeprom_cmd(st
, LTC2983_EEPROM_READ_CMD
,
1453 LTC2983_EEPROM_READ_TIME_MS
,
1454 LTC2983_EEPROM_READ_STATUS_REG
,
1455 LTC2983_EEPROM_READ_FAILURE_MASK
);
1460 for (chan
= 0; chan
< st
->num_channels
; chan
++) {
1461 u32 chan_type
= 0, *iio_chan
;
1463 ret
= st
->sensors
[chan
]->assign_chan(st
, st
->sensors
[chan
]);
1467 * The assign_iio flag is necessary for when the device is
1468 * coming out of sleep. In that case, we just need to
1469 * re-configure the device channels.
1470 * We also don't assign iio channels for rsense.
1472 if (st
->sensors
[chan
]->type
== LTC2983_SENSOR_SENSE_RESISTOR
||
1476 /* assign iio channel */
1477 if (st
->sensors
[chan
]->type
!= LTC2983_SENSOR_DIRECT_ADC
) {
1478 chan_type
= IIO_TEMP
;
1479 iio_chan
= &iio_chan_t
;
1481 chan_type
= IIO_VOLTAGE
;
1482 iio_chan
= &iio_chan_v
;
1486 * add chan as the iio .address so that, we can directly
1487 * reference the sensor given the iio_chan_spec
1489 st
->iio_chan
[iio_idx
++] = LTC2983_CHAN(chan_type
, (*iio_chan
)++,
1496 static const struct regmap_range ltc2983_reg_ranges
[] = {
1497 regmap_reg_range(LTC2983_STATUS_REG
, LTC2983_STATUS_REG
),
1498 regmap_reg_range(LTC2983_TEMP_RES_START_REG
, LTC2983_TEMP_RES_END_REG
),
1499 regmap_reg_range(LTC2983_EEPROM_KEY_REG
, LTC2983_EEPROM_KEY_REG
),
1500 regmap_reg_range(LTC2983_EEPROM_READ_STATUS_REG
,
1501 LTC2983_EEPROM_READ_STATUS_REG
),
1502 regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG
, LTC2983_GLOBAL_CONFIG_REG
),
1503 regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG
,
1504 LTC2983_MULT_CHANNEL_END_REG
),
1505 regmap_reg_range(LTC2986_EEPROM_STATUS_REG
, LTC2986_EEPROM_STATUS_REG
),
1506 regmap_reg_range(LTC2983_MUX_CONFIG_REG
, LTC2983_MUX_CONFIG_REG
),
1507 regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG
,
1508 LTC2983_CHAN_ASSIGN_END_REG
),
1509 regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG
,
1510 LTC2983_CUST_SENS_TBL_END_REG
),
1513 static const struct regmap_access_table ltc2983_reg_table
= {
1514 .yes_ranges
= ltc2983_reg_ranges
,
1515 .n_yes_ranges
= ARRAY_SIZE(ltc2983_reg_ranges
),
1519 * The reg_bits are actually 12 but the device needs the first *complete*
1520 * byte for the command (R/W).
1522 static const struct regmap_config ltc2983_regmap_config
= {
1525 .wr_table
= <c2983_reg_table
,
1526 .rd_table
= <c2983_reg_table
,
1527 .read_flag_mask
= GENMASK(1, 0),
1528 .write_flag_mask
= BIT(1),
1531 static const struct iio_info ltc2983_iio_info
= {
1532 .read_raw
= ltc2983_read_raw
,
1533 .debugfs_reg_access
= ltc2983_reg_access
,
1536 static int ltc2983_probe(struct spi_device
*spi
)
1538 struct ltc2983_data
*st
;
1539 struct iio_dev
*indio_dev
;
1540 struct gpio_desc
*gpio
;
1543 indio_dev
= devm_iio_device_alloc(&spi
->dev
, sizeof(*st
));
1547 st
= iio_priv(indio_dev
);
1549 st
->info
= spi_get_device_match_data(spi
);
1553 st
->regmap
= devm_regmap_init_spi(spi
, <c2983_regmap_config
);
1554 if (IS_ERR(st
->regmap
))
1555 return dev_err_probe(&spi
->dev
, PTR_ERR(st
->regmap
),
1556 "Failed to initialize regmap\n");
1558 mutex_init(&st
->lock
);
1559 init_completion(&st
->completion
);
1561 st
->eeprom_key
= cpu_to_be32(LTC2983_EEPROM_KEY
);
1562 spi_set_drvdata(spi
, st
);
1564 ret
= ltc2983_parse_fw(st
);
1568 ret
= devm_regulator_get_enable(&spi
->dev
, "vdd");
1572 gpio
= devm_gpiod_get_optional(&st
->spi
->dev
, "reset", GPIOD_OUT_HIGH
);
1574 return PTR_ERR(gpio
);
1577 /* bring the device out of reset */
1578 usleep_range(1000, 1200);
1579 gpiod_set_value_cansleep(gpio
, 0);
1582 st
->iio_chan
= devm_kzalloc(&spi
->dev
,
1583 st
->iio_channels
* sizeof(*st
->iio_chan
),
1588 ret
= ltc2983_setup(st
, true);
1592 ret
= devm_request_irq(&spi
->dev
, spi
->irq
, ltc2983_irq_handler
,
1593 IRQF_TRIGGER_RISING
, st
->info
->name
, st
);
1595 return dev_err_probe(&spi
->dev
, ret
,
1596 "failed to request an irq\n");
1598 if (st
->info
->has_eeprom
) {
1599 ret
= ltc2983_eeprom_cmd(st
, LTC2983_EEPROM_WRITE_CMD
,
1600 LTC2983_EEPROM_WRITE_TIME_MS
,
1601 LTC2986_EEPROM_STATUS_REG
,
1602 LTC2983_EEPROM_STATUS_FAILURE_MASK
);
1607 indio_dev
->name
= st
->info
->name
;
1608 indio_dev
->num_channels
= st
->iio_channels
;
1609 indio_dev
->channels
= st
->iio_chan
;
1610 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1611 indio_dev
->info
= <c2983_iio_info
;
1613 return devm_iio_device_register(&spi
->dev
, indio_dev
);
1616 static int ltc2983_resume(struct device
*dev
)
1618 struct ltc2983_data
*st
= spi_get_drvdata(to_spi_device(dev
));
1621 /* dummy read to bring the device out of sleep */
1622 regmap_read(st
->regmap
, LTC2983_STATUS_REG
, &dummy
);
1623 /* we need to re-assign the channels */
1624 return ltc2983_setup(st
, false);
1627 static int ltc2983_suspend(struct device
*dev
)
1629 struct ltc2983_data
*st
= spi_get_drvdata(to_spi_device(dev
));
1631 return regmap_write(st
->regmap
, LTC2983_STATUS_REG
, LTC2983_SLEEP
);
1634 static DEFINE_SIMPLE_DEV_PM_OPS(ltc2983_pm_ops
, ltc2983_suspend
,
1637 static const struct ltc2983_chip_info ltc2983_chip_info_data
= {
1639 .max_channels_nr
= 20,
1642 static const struct ltc2983_chip_info ltc2984_chip_info_data
= {
1644 .max_channels_nr
= 20,
1648 static const struct ltc2983_chip_info ltc2986_chip_info_data
= {
1650 .max_channels_nr
= 10,
1655 static const struct ltc2983_chip_info ltm2985_chip_info_data
= {
1657 .max_channels_nr
= 10,
1662 static const struct spi_device_id ltc2983_id_table
[] = {
1663 { "ltc2983", (kernel_ulong_t
)<c2983_chip_info_data
},
1664 { "ltc2984", (kernel_ulong_t
)<c2984_chip_info_data
},
1665 { "ltc2986", (kernel_ulong_t
)<c2986_chip_info_data
},
1666 { "ltm2985", (kernel_ulong_t
)<m2985_chip_info_data
},
1669 MODULE_DEVICE_TABLE(spi
, ltc2983_id_table
);
1671 static const struct of_device_id ltc2983_of_match
[] = {
1672 { .compatible
= "adi,ltc2983", .data
= <c2983_chip_info_data
},
1673 { .compatible
= "adi,ltc2984", .data
= <c2984_chip_info_data
},
1674 { .compatible
= "adi,ltc2986", .data
= <c2986_chip_info_data
},
1675 { .compatible
= "adi,ltm2985", .data
= <m2985_chip_info_data
},
1678 MODULE_DEVICE_TABLE(of
, ltc2983_of_match
);
1680 static struct spi_driver ltc2983_driver
= {
1683 .of_match_table
= ltc2983_of_match
,
1684 .pm
= pm_sleep_ptr(<c2983_pm_ops
),
1686 .probe
= ltc2983_probe
,
1687 .id_table
= ltc2983_id_table
,
1690 module_spi_driver(ltc2983_driver
);
1692 MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1693 MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
1694 MODULE_LICENSE("GPL");