drm/nouveau: consume the return of large GSP message
[drm/drm-misc.git] / drivers / infiniband / hw / bnxt_re / qplib_sp.c
blob7e20ae3d2c4fe1965be04f658d0741ad25c9cf98
1 /*
2 * Broadcom NetXtreme-E RoCE driver.
4 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term
5 * Broadcom refers to Broadcom Limited and/or its subsidiaries.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * BSD license below:
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 * Description: Slow Path Operators
39 #define dev_fmt(fmt) "QPLIB: " fmt
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/sched.h>
44 #include <linux/pci.h>
46 #include "roce_hsi.h"
48 #include "qplib_res.h"
49 #include "qplib_rcfw.h"
50 #include "qplib_sp.h"
51 #include "qplib_tlv.h"
53 const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
54 0, 0, 0, 0, 0, 0, 0, 0 } };
56 /* Device */
58 static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
60 u16 pcie_ctl2 = 0;
62 if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx))
63 return false;
65 pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
66 return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
69 static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw,
70 char *fw_ver)
72 struct creq_query_version_resp resp = {};
73 struct bnxt_qplib_cmdqmsg msg = {};
74 struct cmdq_query_version req = {};
75 int rc;
77 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
78 CMDQ_BASE_OPCODE_QUERY_VERSION,
79 sizeof(req));
81 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0);
82 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
83 if (rc)
84 return;
85 fw_ver[0] = resp.fw_maj;
86 fw_ver[1] = resp.fw_minor;
87 fw_ver[2] = resp.fw_bld;
88 fw_ver[3] = resp.fw_rsvd;
91 int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw,
92 struct bnxt_qplib_dev_attr *attr)
94 struct creq_query_func_resp resp = {};
95 struct bnxt_qplib_cmdqmsg msg = {};
96 struct creq_query_func_resp_sb *sb;
97 struct bnxt_qplib_rcfw_sbuf sbuf;
98 struct bnxt_qplib_chip_ctx *cctx;
99 struct cmdq_query_func req = {};
100 u8 *tqm_alloc;
101 int i, rc;
102 u32 temp;
104 cctx = rcfw->res->cctx;
105 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
106 CMDQ_BASE_OPCODE_QUERY_FUNC,
107 sizeof(req));
109 sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
110 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
111 &sbuf.dma_addr, GFP_KERNEL);
112 if (!sbuf.sb)
113 return -ENOMEM;
114 sb = sbuf.sb;
115 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
116 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
117 sizeof(resp), 0);
118 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
119 if (rc)
120 goto bail;
122 /* Extract the context from the side buffer */
123 attr->max_qp = le32_to_cpu(sb->max_qp);
124 /* max_qp value reported by FW doesn't include the QP1 */
125 attr->max_qp += 1;
126 attr->max_qp_rd_atom =
127 sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
128 BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
129 attr->max_qp_init_rd_atom =
130 sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
131 BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
132 attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr);
134 * 128 WQEs needs to be reserved for the HW (8916). Prevent
135 * reporting the max number
137 attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
139 attr->max_qp_sges = cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE ?
140 min_t(u32, sb->max_sge_var_wqe, BNXT_VAR_MAX_SGE) : 6;
141 attr->max_cq = le32_to_cpu(sb->max_cq);
142 attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
143 if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
144 attr->max_cq_wqes = min_t(u32, BNXT_QPLIB_MAX_CQ_WQES, attr->max_cq_wqes);
145 attr->max_cq_sges = attr->max_qp_sges;
146 attr->max_mr = le32_to_cpu(sb->max_mr);
147 attr->max_mw = le32_to_cpu(sb->max_mw);
149 attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
150 attr->max_pd = 64 * 1024;
151 attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
152 attr->max_ah = le32_to_cpu(sb->max_ah);
154 attr->max_srq = le16_to_cpu(sb->max_srq);
155 attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
156 attr->max_srq_sges = sb->max_srq_sge;
157 attr->max_pkey = 1;
158 attr->max_inline_data = le32_to_cpu(sb->max_inline_data);
159 if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
160 attr->l2_db_size = (sb->l2_db_space_size + 1) *
161 (0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
163 * Read the max gid supported by HW.
164 * For each entry in HW GID in HW table, we consume 2
165 * GID entries in the kernel GID table. So max_gid reported
166 * to stack can be up to twice the value reported by the HW, up to 256 gids.
168 attr->max_sgid = le32_to_cpu(sb->max_gid);
169 attr->max_sgid = min_t(u32, BNXT_QPLIB_NUM_GIDS_SUPPORTED, 2 * attr->max_sgid);
170 attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
171 attr->dev_cap_flags2 = le16_to_cpu(sb->dev_cap_ext_flags_2);
173 bnxt_qplib_query_version(rcfw, attr->fw_ver);
175 for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
176 temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
177 tqm_alloc = (u8 *)&temp;
178 attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
179 attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
180 attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
181 attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
184 if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI)
185 attr->max_dpi = le32_to_cpu(sb->max_dpi);
187 attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
188 bail:
189 dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
190 sbuf.sb, sbuf.dma_addr);
191 return rc;
194 int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
195 struct bnxt_qplib_rcfw *rcfw,
196 struct bnxt_qplib_ctx *ctx)
198 struct creq_set_func_resources_resp resp = {};
199 struct cmdq_set_func_resources req = {};
200 struct bnxt_qplib_cmdqmsg msg = {};
201 int rc;
203 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
204 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES,
205 sizeof(req));
207 req.number_of_qp = cpu_to_le32(ctx->qpc_count);
208 req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
209 req.number_of_srq = cpu_to_le32(ctx->srqc_count);
210 req.number_of_cq = cpu_to_le32(ctx->cq_count);
212 req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
213 req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
214 req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
215 req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
216 req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
218 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
219 sizeof(resp), 0);
220 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
221 if (rc) {
222 dev_err(&res->pdev->dev, "Failed to set function resources\n");
224 return rc;
227 /* SGID */
228 int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
229 struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
230 struct bnxt_qplib_gid *gid)
232 if (index >= sgid_tbl->max) {
233 dev_err(&res->pdev->dev,
234 "Index %d exceeded SGID table max (%d)\n",
235 index, sgid_tbl->max);
236 return -EINVAL;
238 memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
239 return 0;
242 int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
243 struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
245 struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
246 struct bnxt_qplib_res,
247 sgid_tbl);
248 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
249 int index;
251 /* Do we need a sgid_lock here? */
252 if (!sgid_tbl->active) {
253 dev_err(&res->pdev->dev, "SGID table has no active entries\n");
254 return -ENOMEM;
256 for (index = 0; index < sgid_tbl->max; index++) {
257 if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
258 vlan_id == sgid_tbl->tbl[index].vlan_id)
259 break;
261 if (index == sgid_tbl->max) {
262 dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
263 return 0;
265 /* Remove GID from the SGID table */
266 if (update) {
267 struct creq_delete_gid_resp resp = {};
268 struct bnxt_qplib_cmdqmsg msg = {};
269 struct cmdq_delete_gid req = {};
270 int rc;
272 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
273 CMDQ_BASE_OPCODE_DELETE_GID,
274 sizeof(req));
275 if (sgid_tbl->hw_id[index] == 0xFFFF) {
276 dev_err(&res->pdev->dev,
277 "GID entry contains an invalid HW id\n");
278 return -EINVAL;
280 req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
281 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
282 sizeof(resp), 0);
283 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
284 if (rc)
285 return rc;
287 memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
288 sizeof(bnxt_qplib_gid_zero));
289 sgid_tbl->tbl[index].vlan_id = 0xFFFF;
290 sgid_tbl->vlan[index] = 0;
291 sgid_tbl->active--;
292 dev_dbg(&res->pdev->dev,
293 "SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
294 index, sgid_tbl->hw_id[index], sgid_tbl->active);
295 sgid_tbl->hw_id[index] = (u16)-1;
297 /* unlock */
298 return 0;
301 int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
302 struct bnxt_qplib_gid *gid, const u8 *smac,
303 u16 vlan_id, bool update, u32 *index)
305 struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
306 struct bnxt_qplib_res,
307 sgid_tbl);
308 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
309 int i, free_idx;
311 /* Do we need a sgid_lock here? */
312 if (sgid_tbl->active == sgid_tbl->max) {
313 dev_err(&res->pdev->dev, "SGID table is full\n");
314 return -ENOMEM;
316 free_idx = sgid_tbl->max;
317 for (i = 0; i < sgid_tbl->max; i++) {
318 if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
319 sgid_tbl->tbl[i].vlan_id == vlan_id) {
320 dev_dbg(&res->pdev->dev,
321 "SGID entry already exist in entry %d!\n", i);
322 *index = i;
323 return -EALREADY;
324 } else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
325 sizeof(bnxt_qplib_gid_zero)) &&
326 free_idx == sgid_tbl->max) {
327 free_idx = i;
330 if (free_idx == sgid_tbl->max) {
331 dev_err(&res->pdev->dev,
332 "SGID table is FULL but count is not MAX??\n");
333 return -ENOMEM;
335 if (update) {
336 struct creq_add_gid_resp resp = {};
337 struct bnxt_qplib_cmdqmsg msg = {};
338 struct cmdq_add_gid req = {};
339 int rc;
341 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
342 CMDQ_BASE_OPCODE_ADD_GID,
343 sizeof(req));
345 req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
346 req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
347 req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
348 req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
350 * driver should ensure that all RoCE traffic is always VLAN
351 * tagged if RoCE traffic is running on non-zero VLAN ID or
352 * RoCE traffic is running on non-zero Priority.
354 if ((vlan_id != 0xFFFF) || res->prio) {
355 if (vlan_id != 0xFFFF)
356 req.vlan = cpu_to_le16
357 (vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
358 req.vlan |= cpu_to_le16
359 (CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
360 CMDQ_ADD_GID_VLAN_VLAN_EN);
363 /* MAC in network format */
364 req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
365 req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
366 req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
368 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
369 sizeof(resp), 0);
370 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
371 if (rc)
372 return rc;
373 sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
375 /* Add GID to the sgid_tbl */
376 memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
377 sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
378 sgid_tbl->active++;
379 if (vlan_id != 0xFFFF)
380 sgid_tbl->vlan[free_idx] = 1;
382 dev_dbg(&res->pdev->dev,
383 "SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
384 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
386 *index = free_idx;
387 /* unlock */
388 return 0;
391 int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
392 struct bnxt_qplib_gid *gid, u16 gid_idx,
393 const u8 *smac)
395 struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
396 struct bnxt_qplib_res,
397 sgid_tbl);
398 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
399 struct creq_modify_gid_resp resp = {};
400 struct bnxt_qplib_cmdqmsg msg = {};
401 struct cmdq_modify_gid req = {};
402 int rc;
404 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
405 CMDQ_BASE_OPCODE_MODIFY_GID,
406 sizeof(req));
408 req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
409 req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
410 req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
411 req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
412 if (res->prio) {
413 req.vlan |= cpu_to_le16
414 (CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
415 CMDQ_ADD_GID_VLAN_VLAN_EN);
418 /* MAC in network format */
419 req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
420 req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
421 req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
423 req.gid_index = cpu_to_le16(gid_idx);
425 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
426 sizeof(resp), 0);
427 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
428 return rc;
431 /* AH */
432 int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
433 bool block)
435 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
436 struct creq_create_ah_resp resp = {};
437 struct bnxt_qplib_cmdqmsg msg = {};
438 struct cmdq_create_ah req = {};
439 u32 temp32[4];
440 u16 temp16[3];
441 int rc;
443 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
444 CMDQ_BASE_OPCODE_CREATE_AH,
445 sizeof(req));
447 memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
448 req.dgid[0] = cpu_to_le32(temp32[0]);
449 req.dgid[1] = cpu_to_le32(temp32[1]);
450 req.dgid[2] = cpu_to_le32(temp32[2]);
451 req.dgid[3] = cpu_to_le32(temp32[3]);
453 req.type = ah->nw_type;
454 req.hop_limit = ah->hop_limit;
455 req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
456 req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
457 CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
458 CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
459 req.pd_id = cpu_to_le32(ah->pd->id);
460 req.traffic_class = ah->traffic_class;
462 /* MAC in network format */
463 memcpy(temp16, ah->dmac, 6);
464 req.dest_mac[0] = cpu_to_le16(temp16[0]);
465 req.dest_mac[1] = cpu_to_le16(temp16[1]);
466 req.dest_mac[2] = cpu_to_le16(temp16[2]);
468 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
469 sizeof(resp), block);
470 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
471 if (rc)
472 return rc;
474 ah->id = le32_to_cpu(resp.xid);
475 return 0;
478 int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
479 bool block)
481 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
482 struct creq_destroy_ah_resp resp = {};
483 struct bnxt_qplib_cmdqmsg msg = {};
484 struct cmdq_destroy_ah req = {};
485 int rc;
487 /* Clean up the AH table in the device */
488 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
489 CMDQ_BASE_OPCODE_DESTROY_AH,
490 sizeof(req));
492 req.ah_cid = cpu_to_le32(ah->id);
494 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
495 sizeof(resp), block);
496 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
497 return rc;
500 /* MRW */
501 int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
503 struct creq_deallocate_key_resp resp = {};
504 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
505 struct cmdq_deallocate_key req = {};
506 struct bnxt_qplib_cmdqmsg msg = {};
507 int rc;
509 if (mrw->lkey == 0xFFFFFFFF) {
510 dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
511 return 0;
514 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
515 CMDQ_BASE_OPCODE_DEALLOCATE_KEY,
516 sizeof(req));
518 req.mrw_flags = mrw->type;
520 if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) ||
521 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
522 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
523 req.key = cpu_to_le32(mrw->rkey);
524 else
525 req.key = cpu_to_le32(mrw->lkey);
527 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
528 sizeof(resp), 0);
529 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
530 if (rc)
531 return rc;
533 /* Free the qplib's MRW memory */
534 if (mrw->hwq.max_elements)
535 bnxt_qplib_free_hwq(res, &mrw->hwq);
537 return 0;
540 int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
542 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
543 struct creq_allocate_mrw_resp resp = {};
544 struct bnxt_qplib_cmdqmsg msg = {};
545 struct cmdq_allocate_mrw req = {};
546 unsigned long tmp;
547 int rc;
549 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
550 CMDQ_BASE_OPCODE_ALLOCATE_MRW,
551 sizeof(req));
553 req.pd_id = cpu_to_le32(mrw->pd->id);
554 req.mrw_flags = mrw->type;
555 if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
556 mrw->access_flags & BNXT_QPLIB_FR_PMR) ||
557 mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
558 mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
559 req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
560 tmp = (unsigned long)mrw;
561 req.mrw_handle = cpu_to_le64(tmp);
563 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
564 sizeof(resp), 0);
565 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
566 if (rc)
567 return rc;
569 if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) ||
570 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
571 (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
572 mrw->rkey = le32_to_cpu(resp.xid);
573 else
574 mrw->lkey = le32_to_cpu(resp.xid);
575 return 0;
578 int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
579 bool block)
581 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
582 struct creq_deregister_mr_resp resp = {};
583 struct bnxt_qplib_cmdqmsg msg = {};
584 struct cmdq_deregister_mr req = {};
585 int rc;
587 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
588 CMDQ_BASE_OPCODE_DEREGISTER_MR,
589 sizeof(req));
591 req.lkey = cpu_to_le32(mrw->lkey);
592 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
593 sizeof(resp), block);
594 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
595 if (rc)
596 return rc;
598 /* Free the qplib's MR memory */
599 if (mrw->hwq.max_elements) {
600 mrw->va = 0;
601 mrw->total_size = 0;
602 bnxt_qplib_free_hwq(res, &mrw->hwq);
605 return 0;
608 int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
609 struct ib_umem *umem, int num_pbls, u32 buf_pg_size)
611 struct bnxt_qplib_rcfw *rcfw = res->rcfw;
612 struct bnxt_qplib_hwq_attr hwq_attr = {};
613 struct bnxt_qplib_sg_info sginfo = {};
614 struct creq_register_mr_resp resp = {};
615 struct bnxt_qplib_cmdqmsg msg = {};
616 struct cmdq_register_mr req = {};
617 int pages, rc;
618 u32 pg_size;
619 u16 level;
621 if (num_pbls) {
622 pages = roundup_pow_of_two(num_pbls);
623 /* Allocate memory for the non-leaf pages to store buf ptrs.
624 * Non-leaf pages always uses system PAGE_SIZE
626 /* Free the hwq if it already exist, must be a rereg */
627 if (mr->hwq.max_elements)
628 bnxt_qplib_free_hwq(res, &mr->hwq);
629 hwq_attr.res = res;
630 hwq_attr.depth = pages;
631 hwq_attr.stride = sizeof(dma_addr_t);
632 hwq_attr.type = HWQ_TYPE_MR;
633 hwq_attr.sginfo = &sginfo;
634 hwq_attr.sginfo->umem = umem;
635 hwq_attr.sginfo->npages = pages;
636 hwq_attr.sginfo->pgsize = buf_pg_size;
637 hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
638 rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
639 if (rc) {
640 dev_err(&res->pdev->dev,
641 "SP: Reg MR memory allocation failed\n");
642 return -ENOMEM;
646 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
647 CMDQ_BASE_OPCODE_REGISTER_MR,
648 sizeof(req));
650 /* Configure the request */
651 if (mr->hwq.level == PBL_LVL_MAX) {
652 /* No PBL provided, just use system PAGE_SIZE */
653 level = 0;
654 req.pbl = 0;
655 pg_size = PAGE_SIZE;
656 } else {
657 level = mr->hwq.level;
658 req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
660 pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
661 req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
662 ((ilog2(pg_size) <<
663 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
664 CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
665 req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
666 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
667 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
668 req.access = (mr->access_flags & 0xFFFF);
669 req.va = cpu_to_le64(mr->va);
670 req.key = cpu_to_le32(mr->lkey);
671 if (_is_alloc_mr_unified(res->dattr->dev_cap_flags))
672 req.key = cpu_to_le32(mr->pd->id);
673 req.flags = cpu_to_le16(mr->flags);
674 req.mr_size = cpu_to_le64(mr->total_size);
676 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
677 sizeof(resp), 0);
678 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
679 if (rc)
680 goto fail;
682 if (_is_alloc_mr_unified(res->dattr->dev_cap_flags)) {
683 mr->lkey = le32_to_cpu(resp.xid);
684 mr->rkey = mr->lkey;
687 return 0;
689 fail:
690 if (mr->hwq.max_elements)
691 bnxt_qplib_free_hwq(res, &mr->hwq);
692 return rc;
695 int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
696 struct bnxt_qplib_frpl *frpl,
697 int max_pg_ptrs)
699 struct bnxt_qplib_hwq_attr hwq_attr = {};
700 struct bnxt_qplib_sg_info sginfo = {};
701 int pg_ptrs, pages, rc;
703 /* Re-calculate the max to fit the HWQ allocation model */
704 pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
705 pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
706 if (!pages)
707 pages++;
709 if (pages > MAX_PBL_LVL_1_PGS)
710 return -ENOMEM;
712 sginfo.pgsize = PAGE_SIZE;
713 sginfo.nopte = true;
715 hwq_attr.res = res;
716 hwq_attr.depth = pg_ptrs;
717 hwq_attr.stride = PAGE_SIZE;
718 hwq_attr.sginfo = &sginfo;
719 hwq_attr.type = HWQ_TYPE_CTX;
720 rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
721 if (!rc)
722 frpl->max_pg_ptrs = pg_ptrs;
724 return rc;
727 int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
728 struct bnxt_qplib_frpl *frpl)
730 bnxt_qplib_free_hwq(res, &frpl->hwq);
731 return 0;
734 int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
735 struct bnxt_qplib_roce_stats *stats)
737 struct creq_query_roce_stats_resp resp = {};
738 struct creq_query_roce_stats_resp_sb *sb;
739 struct cmdq_query_roce_stats req = {};
740 struct bnxt_qplib_cmdqmsg msg = {};
741 struct bnxt_qplib_rcfw_sbuf sbuf;
742 int rc;
744 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
745 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS,
746 sizeof(req));
748 sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
749 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
750 &sbuf.dma_addr, GFP_KERNEL);
751 if (!sbuf.sb)
752 return -ENOMEM;
753 sb = sbuf.sb;
755 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
756 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
757 sizeof(resp), 0);
758 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
759 if (rc)
760 goto bail;
761 /* Extract the context from the side buffer */
762 stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
763 stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
764 stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
765 stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
766 stats->missing_resp = le64_to_cpu(sb->missing_resp);
767 stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
768 stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
769 stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
770 stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
771 stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
772 stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
773 stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
774 stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
775 stats->dup_req = le64_to_cpu(sb->dup_req);
776 stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
777 stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
778 stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
779 stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
780 stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
781 stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
782 stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
783 stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
784 stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
785 stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
786 stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
787 stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
788 stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
789 stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
790 stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
791 stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
792 stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
793 stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
794 stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
795 stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
796 stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
797 stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
798 stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
799 stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
800 stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
801 if (!rcfw->init_oos_stats) {
802 rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
803 rcfw->init_oos_stats = 1;
804 } else {
805 stats->res_oos_drop_count +=
806 (le64_to_cpu(sb->res_oos_drop_count) -
807 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
808 rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
811 bail:
812 dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
813 sbuf.sb, sbuf.dma_addr);
814 return rc;
817 int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
818 struct bnxt_qplib_ext_stat *estat)
820 struct creq_query_roce_stats_ext_resp resp = {};
821 struct creq_query_roce_stats_ext_resp_sb *sb;
822 struct cmdq_query_roce_stats_ext req = {};
823 struct bnxt_qplib_cmdqmsg msg = {};
824 struct bnxt_qplib_rcfw_sbuf sbuf;
825 int rc;
827 sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
828 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
829 &sbuf.dma_addr, GFP_KERNEL);
830 if (!sbuf.sb)
831 return -ENOMEM;
833 sb = sbuf.sb;
834 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
835 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS,
836 sizeof(req));
838 req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
839 req.resp_addr = cpu_to_le64(sbuf.dma_addr);
840 req.function_id = cpu_to_le32(fid);
841 req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
843 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
844 sizeof(resp), 0);
845 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
846 if (rc)
847 goto bail;
849 estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
850 estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
851 estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
852 estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
853 estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
854 estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts);
855 estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes);
856 estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
857 estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
858 estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
859 estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
860 estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
861 estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts);
862 estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes);
863 estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
864 estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
865 estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
866 estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
867 estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts);
868 estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts);
869 estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts);
871 bail:
872 dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
873 sbuf.sb, sbuf.dma_addr);
874 return rc;
877 static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req,
878 struct bnxt_qplib_cc_param_ext *cc_ext)
880 ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask);
881 cc_ext->ext_mask = 0;
882 ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi);
883 ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp);
884 ext_req->init_cp = cpu_to_le16(cc_ext->init_cp);
885 ext_req->tr_update_mode = cc_ext->tr_update_mode;
886 ext_req->tr_update_cycles = cc_ext->tr_update_cyls;
887 ext_req->fr_num_rtts = cc_ext->fr_rtt;
888 ext_req->ai_rate_increase = cc_ext->ai_rate_incr;
889 ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th);
890 ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th);
891 ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th);
892 ext_req->bw_avg_weight = cc_ext->bw_avg_weight;
893 ext_req->actual_cr_factor = cc_ext->cr_factor;
894 ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp);
895 ext_req->cp_bias_en = cc_ext->cp_bias_en;
896 ext_req->cp_bias = cc_ext->cp_bias;
897 ext_req->cnp_ecn = cc_ext->cnp_ecn;
898 ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en;
899 ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec);
900 ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th);
901 ext_req->cr_width = cc_ext->cr_width;
902 ext_req->quota_period_min = cc_ext->min_quota;
903 ext_req->quota_period_max = cc_ext->max_quota;
904 ext_req->quota_period_abs_max = cc_ext->abs_max_quota;
905 ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb);
906 ext_req->cr_prob_factor = cc_ext->cr_prob_fac;
907 ext_req->tr_prob_factor = cc_ext->tr_prob_fac;
908 ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th);
909 ext_req->red_div = cc_ext->red_div;
910 ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th;
911 ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt);
912 ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio;
913 ext_req->use_rate_table = cc_ext->low_rate_en;
914 ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th);
915 ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1);
916 ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2);
917 ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th);
918 ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1);
919 ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2);
920 ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt);
921 ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes;
924 int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res,
925 struct bnxt_qplib_cc_param *cc_param)
927 struct bnxt_qplib_tlv_modify_cc_req tlv_req = {};
928 struct creq_modify_roce_cc_resp resp = {};
929 struct bnxt_qplib_cmdqmsg msg = {};
930 struct cmdq_modify_roce_cc *req;
931 int req_size;
932 void *cmd;
933 int rc;
935 /* Prepare the older base command */
936 req = &tlv_req.base_req;
937 cmd = req;
938 req_size = sizeof(*req);
939 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC,
940 sizeof(*req));
941 req->modify_mask = cpu_to_le32(cc_param->mask);
942 req->enable_cc = cc_param->enable;
943 req->g = cc_param->g;
944 req->num_phases_per_state = cc_param->nph_per_state;
945 req->time_per_phase = cc_param->time_pph;
946 req->pkts_per_phase = cc_param->pkts_pph;
947 req->init_cr = cpu_to_le16(cc_param->init_cr);
948 req->init_tr = cpu_to_le16(cc_param->init_tr);
949 req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) |
950 (cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK);
951 req->alt_vlan_pcp = cc_param->alt_vlan_pcp;
952 req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp);
953 req->rtt = cpu_to_le16(cc_param->rtt);
954 req->tcp_cp = cpu_to_le16(cc_param->tcp_cp);
955 req->cc_mode = cc_param->cc_mode;
956 req->inactivity_th = cpu_to_le16(cc_param->inact_th);
958 /* For chip gen P5 onwards fill extended cmd and header */
959 if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
960 struct roce_tlv *hdr;
961 u32 payload;
962 u32 chunks;
964 cmd = &tlv_req;
965 req_size = sizeof(tlv_req);
966 /* Prepare primary tlv header */
967 hdr = &tlv_req.tlv_hdr;
968 chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req));
969 payload = sizeof(struct cmdq_modify_roce_cc);
970 __roce_1st_tlv_prep(hdr, chunks, payload, true);
971 /* Prepare secondary tlv header */
972 hdr = (struct roce_tlv *)&tlv_req.ext_req;
973 payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) -
974 sizeof(struct roce_tlv);
975 __roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true);
976 bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext);
979 bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size,
980 sizeof(resp), 0);
981 rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
982 return rc;
985 int bnxt_qplib_read_context(struct bnxt_qplib_rcfw *rcfw, u8 res_type,
986 u32 xid, u32 resp_size, void *resp_va)
988 struct creq_read_context resp = {};
989 struct bnxt_qplib_cmdqmsg msg = {};
990 struct cmdq_read_context req = {};
991 struct bnxt_qplib_rcfw_sbuf sbuf;
992 int rc;
994 sbuf.size = resp_size;
995 sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
996 &sbuf.dma_addr, GFP_KERNEL);
997 if (!sbuf.sb)
998 return -ENOMEM;
1000 bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
1001 CMDQ_BASE_OPCODE_READ_CONTEXT, sizeof(req));
1002 req.resp_addr = cpu_to_le64(sbuf.dma_addr);
1003 req.resp_size = resp_size / BNXT_QPLIB_CMDQE_UNITS;
1005 req.xid = cpu_to_le32(xid);
1006 req.type = res_type;
1008 bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
1009 sizeof(resp), 0);
1010 rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
1011 if (rc)
1012 goto free_mem;
1014 memcpy(resp_va, sbuf.sb, resp_size);
1015 free_mem:
1016 dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr);
1017 return rc;