1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 * Copyright(c) 2015 - 2020 Intel Corporation.
6 #include <linux/topology.h>
7 #include <linux/cpumask.h>
8 #include <linux/interrupt.h>
9 #include <linux/numa.h>
16 struct hfi1_affinity_node_list node_affinity
= {
17 .list
= LIST_HEAD_INIT(node_affinity
.list
),
18 .lock
= __MUTEX_INITIALIZER(node_affinity
.lock
)
21 /* Name of IRQ types, indexed by enum irq_type */
22 static const char * const irq_type_names
[] = {
30 /* Per NUMA node count of HFI devices */
31 static unsigned int *hfi1_per_node_cntr
;
33 static inline void init_cpu_mask_set(struct cpu_mask_set
*set
)
35 cpumask_clear(&set
->mask
);
36 cpumask_clear(&set
->used
);
40 /* Increment generation of CPU set if needed */
41 static void _cpu_mask_set_gen_inc(struct cpu_mask_set
*set
)
43 if (cpumask_equal(&set
->mask
, &set
->used
)) {
45 * We've used up all the CPUs, bump up the generation
46 * and reset the 'used' map
49 cpumask_clear(&set
->used
);
53 static void _cpu_mask_set_gen_dec(struct cpu_mask_set
*set
)
55 if (cpumask_empty(&set
->used
) && set
->gen
) {
57 cpumask_copy(&set
->used
, &set
->mask
);
61 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
62 static int cpu_mask_set_get_first(struct cpu_mask_set
*set
, cpumask_var_t diff
)
69 _cpu_mask_set_gen_inc(set
);
71 /* Find out CPUs left in CPU mask */
72 cpumask_andnot(diff
, &set
->mask
, &set
->used
);
74 cpu
= cpumask_first(diff
);
75 if (cpu
>= nr_cpu_ids
) /* empty */
78 cpumask_set_cpu(cpu
, &set
->used
);
83 static void cpu_mask_set_put(struct cpu_mask_set
*set
, int cpu
)
88 cpumask_clear_cpu(cpu
, &set
->used
);
89 _cpu_mask_set_gen_dec(set
);
92 /* Initialize non-HT cpu cores mask */
93 void init_real_cpu_mask(void)
95 int possible
, curr_cpu
, i
, ht
;
97 cpumask_clear(&node_affinity
.real_cpu_mask
);
99 /* Start with cpu online mask as the real cpu mask */
100 cpumask_copy(&node_affinity
.real_cpu_mask
, cpu_online_mask
);
103 * Remove HT cores from the real cpu mask. Do this in two steps below.
105 possible
= cpumask_weight(&node_affinity
.real_cpu_mask
);
106 ht
= cpumask_weight(topology_sibling_cpumask(
107 cpumask_first(&node_affinity
.real_cpu_mask
)));
109 * Step 1. Skip over the first N HT siblings and use them as the
110 * "real" cores. Assumes that HT cores are not enumerated in
111 * succession (except in the single core case).
113 curr_cpu
= cpumask_first(&node_affinity
.real_cpu_mask
);
114 for (i
= 0; i
< possible
/ ht
; i
++)
115 curr_cpu
= cpumask_next(curr_cpu
, &node_affinity
.real_cpu_mask
);
117 * Step 2. Remove the remaining HT siblings. Use cpumask_next() to
120 for (; i
< possible
; i
++) {
121 cpumask_clear_cpu(curr_cpu
, &node_affinity
.real_cpu_mask
);
122 curr_cpu
= cpumask_next(curr_cpu
, &node_affinity
.real_cpu_mask
);
126 int node_affinity_init(void)
129 struct pci_dev
*dev
= NULL
;
130 const struct pci_device_id
*ids
= hfi1_pci_tbl
;
132 cpumask_clear(&node_affinity
.proc
.used
);
133 cpumask_copy(&node_affinity
.proc
.mask
, cpu_online_mask
);
135 node_affinity
.proc
.gen
= 0;
136 node_affinity
.num_core_siblings
=
137 cpumask_weight(topology_sibling_cpumask(
138 cpumask_first(&node_affinity
.proc
.mask
)
140 node_affinity
.num_possible_nodes
= num_possible_nodes();
141 node_affinity
.num_online_nodes
= num_online_nodes();
142 node_affinity
.num_online_cpus
= num_online_cpus();
145 * The real cpu mask is part of the affinity struct but it has to be
146 * initialized early. It is needed to calculate the number of user
147 * contexts in set_up_context_variables().
149 init_real_cpu_mask();
151 hfi1_per_node_cntr
= kcalloc(node_affinity
.num_possible_nodes
,
152 sizeof(*hfi1_per_node_cntr
), GFP_KERNEL
);
153 if (!hfi1_per_node_cntr
)
156 while (ids
->vendor
) {
158 while ((dev
= pci_get_device(ids
->vendor
, ids
->device
, dev
))) {
159 node
= pcibus_to_node(dev
->bus
);
163 hfi1_per_node_cntr
[node
]++;
172 * Invalid PCI NUMA node information found, note it, and populate
175 pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
176 pr_err("HFI: System BIOS may need to be upgraded\n");
177 for (node
= 0; node
< node_affinity
.num_possible_nodes
; node
++)
178 hfi1_per_node_cntr
[node
] = 1;
185 static void node_affinity_destroy(struct hfi1_affinity_node
*entry
)
187 free_percpu(entry
->comp_vect_affinity
);
191 void node_affinity_destroy_all(void)
193 struct list_head
*pos
, *q
;
194 struct hfi1_affinity_node
*entry
;
196 mutex_lock(&node_affinity
.lock
);
197 list_for_each_safe(pos
, q
, &node_affinity
.list
) {
198 entry
= list_entry(pos
, struct hfi1_affinity_node
,
201 node_affinity_destroy(entry
);
203 mutex_unlock(&node_affinity
.lock
);
204 kfree(hfi1_per_node_cntr
);
207 static struct hfi1_affinity_node
*node_affinity_allocate(int node
)
209 struct hfi1_affinity_node
*entry
;
211 entry
= kzalloc(sizeof(*entry
), GFP_KERNEL
);
215 entry
->comp_vect_affinity
= alloc_percpu(u16
);
216 INIT_LIST_HEAD(&entry
->list
);
222 * It appends an entry to the list.
223 * It *must* be called with node_affinity.lock held.
225 static void node_affinity_add_tail(struct hfi1_affinity_node
*entry
)
227 list_add_tail(&entry
->list
, &node_affinity
.list
);
230 /* It must be called with node_affinity.lock held */
231 static struct hfi1_affinity_node
*node_affinity_lookup(int node
)
233 struct hfi1_affinity_node
*entry
;
235 list_for_each_entry(entry
, &node_affinity
.list
, list
) {
236 if (entry
->node
== node
)
243 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask
,
244 u16 __percpu
*comp_vect_affinity
)
251 if (!possible_cpumask
) {
256 if (!comp_vect_affinity
) {
261 ret_cpu
= cpumask_first(possible_cpumask
);
262 if (ret_cpu
>= nr_cpu_ids
) {
267 prev_cntr
= *per_cpu_ptr(comp_vect_affinity
, ret_cpu
);
268 for_each_cpu(curr_cpu
, possible_cpumask
) {
269 cntr
= *per_cpu_ptr(comp_vect_affinity
, curr_cpu
);
271 if (cntr
< prev_cntr
) {
277 *per_cpu_ptr(comp_vect_affinity
, ret_cpu
) += 1;
283 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask
,
284 u16 __percpu
*comp_vect_affinity
)
291 if (!possible_cpumask
)
294 if (!comp_vect_affinity
)
297 max_cpu
= cpumask_first(possible_cpumask
);
298 if (max_cpu
>= nr_cpu_ids
)
301 prev_cntr
= *per_cpu_ptr(comp_vect_affinity
, max_cpu
);
302 for_each_cpu(curr_cpu
, possible_cpumask
) {
303 cntr
= *per_cpu_ptr(comp_vect_affinity
, curr_cpu
);
305 if (cntr
> prev_cntr
) {
311 *per_cpu_ptr(comp_vect_affinity
, max_cpu
) -= 1;
317 * Non-interrupt CPUs are used first, then interrupt CPUs.
318 * Two already allocated cpu masks must be passed.
320 static int _dev_comp_vect_cpu_get(struct hfi1_devdata
*dd
,
321 struct hfi1_affinity_node
*entry
,
322 cpumask_var_t non_intr_cpus
,
323 cpumask_var_t available_cpus
)
324 __must_hold(&node_affinity
.lock
)
327 struct cpu_mask_set
*set
= dd
->comp_vect
;
329 lockdep_assert_held(&node_affinity
.lock
);
330 if (!non_intr_cpus
) {
335 if (!available_cpus
) {
340 /* Available CPUs for pinning completion vectors */
341 _cpu_mask_set_gen_inc(set
);
342 cpumask_andnot(available_cpus
, &set
->mask
, &set
->used
);
344 /* Available CPUs without SDMA engine interrupts */
345 cpumask_andnot(non_intr_cpus
, available_cpus
,
346 &entry
->def_intr
.used
);
348 /* If there are non-interrupt CPUs available, use them first */
349 if (!cpumask_empty(non_intr_cpus
))
350 cpu
= cpumask_first(non_intr_cpus
);
351 else /* Otherwise, use interrupt CPUs */
352 cpu
= cpumask_first(available_cpus
);
354 if (cpu
>= nr_cpu_ids
) { /* empty */
358 cpumask_set_cpu(cpu
, &set
->used
);
364 static void _dev_comp_vect_cpu_put(struct hfi1_devdata
*dd
, int cpu
)
366 struct cpu_mask_set
*set
= dd
->comp_vect
;
371 cpu_mask_set_put(set
, cpu
);
374 /* _dev_comp_vect_mappings_destroy() is reentrant */
375 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata
*dd
)
379 if (!dd
->comp_vect_mappings
)
382 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++) {
383 cpu
= dd
->comp_vect_mappings
[i
];
384 _dev_comp_vect_cpu_put(dd
, cpu
);
385 dd
->comp_vect_mappings
[i
] = -1;
387 "[%s] Release CPU %d from completion vector %d",
388 rvt_get_ibdev_name(&(dd
)->verbs_dev
.rdi
), cpu
, i
);
391 kfree(dd
->comp_vect_mappings
);
392 dd
->comp_vect_mappings
= NULL
;
396 * This function creates the table for looking up CPUs for completion vectors.
397 * num_comp_vectors needs to have been initilized before calling this function.
399 static int _dev_comp_vect_mappings_create(struct hfi1_devdata
*dd
,
400 struct hfi1_affinity_node
*entry
)
401 __must_hold(&node_affinity
.lock
)
404 cpumask_var_t non_intr_cpus
;
405 cpumask_var_t available_cpus
;
407 lockdep_assert_held(&node_affinity
.lock
);
409 if (!zalloc_cpumask_var(&non_intr_cpus
, GFP_KERNEL
))
412 if (!zalloc_cpumask_var(&available_cpus
, GFP_KERNEL
)) {
413 free_cpumask_var(non_intr_cpus
);
417 dd
->comp_vect_mappings
= kcalloc(dd
->comp_vect_possible_cpus
,
418 sizeof(*dd
->comp_vect_mappings
),
420 if (!dd
->comp_vect_mappings
) {
424 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++)
425 dd
->comp_vect_mappings
[i
] = -1;
427 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++) {
428 cpu
= _dev_comp_vect_cpu_get(dd
, entry
, non_intr_cpus
,
435 dd
->comp_vect_mappings
[i
] = cpu
;
437 "[%s] Completion Vector %d -> CPU %d",
438 rvt_get_ibdev_name(&(dd
)->verbs_dev
.rdi
), i
, cpu
);
441 free_cpumask_var(available_cpus
);
442 free_cpumask_var(non_intr_cpus
);
446 free_cpumask_var(available_cpus
);
447 free_cpumask_var(non_intr_cpus
);
448 _dev_comp_vect_mappings_destroy(dd
);
453 int hfi1_comp_vectors_set_up(struct hfi1_devdata
*dd
)
456 struct hfi1_affinity_node
*entry
;
458 mutex_lock(&node_affinity
.lock
);
459 entry
= node_affinity_lookup(dd
->node
);
464 ret
= _dev_comp_vect_mappings_create(dd
, entry
);
466 mutex_unlock(&node_affinity
.lock
);
471 void hfi1_comp_vectors_clean_up(struct hfi1_devdata
*dd
)
473 _dev_comp_vect_mappings_destroy(dd
);
476 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info
*rdi
, int comp_vect
)
478 struct hfi1_ibdev
*verbs_dev
= dev_from_rdi(rdi
);
479 struct hfi1_devdata
*dd
= dd_from_dev(verbs_dev
);
481 if (!dd
->comp_vect_mappings
)
483 if (comp_vect
>= dd
->comp_vect_possible_cpus
)
486 return dd
->comp_vect_mappings
[comp_vect
];
490 * It assumes dd->comp_vect_possible_cpus is available.
492 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata
*dd
,
493 struct hfi1_affinity_node
*entry
,
495 __must_hold(&node_affinity
.lock
)
498 int possible_cpus_comp_vect
= 0;
499 struct cpumask
*dev_comp_vect_mask
= &dd
->comp_vect
->mask
;
501 lockdep_assert_held(&node_affinity
.lock
);
503 * If there's only one CPU available for completion vectors, then
504 * there will only be one completion vector available. Othewise,
505 * the number of completion vector available will be the number of
506 * available CPUs divide it by the number of devices in the
509 if (cpumask_weight(&entry
->comp_vect_mask
) == 1) {
510 possible_cpus_comp_vect
= 1;
512 "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
514 possible_cpus_comp_vect
+=
515 cpumask_weight(&entry
->comp_vect_mask
) /
516 hfi1_per_node_cntr
[dd
->node
];
519 * If the completion vector CPUs available doesn't divide
520 * evenly among devices, then the first device device to be
521 * initialized gets an extra CPU.
523 if (first_dev_init
&&
524 cpumask_weight(&entry
->comp_vect_mask
) %
525 hfi1_per_node_cntr
[dd
->node
] != 0)
526 possible_cpus_comp_vect
++;
529 dd
->comp_vect_possible_cpus
= possible_cpus_comp_vect
;
531 /* Reserving CPUs for device completion vector */
532 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++) {
533 curr_cpu
= per_cpu_affinity_get(&entry
->comp_vect_mask
,
534 entry
->comp_vect_affinity
);
538 cpumask_set_cpu(curr_cpu
, dev_comp_vect_mask
);
542 "[%s] Completion vector affinity CPU set(s) %*pbl",
543 rvt_get_ibdev_name(&(dd
)->verbs_dev
.rdi
),
544 cpumask_pr_args(dev_comp_vect_mask
));
549 for (j
= 0; j
< i
; j
++)
550 per_cpu_affinity_put_max(&entry
->comp_vect_mask
,
551 entry
->comp_vect_affinity
);
557 * It assumes dd->comp_vect_possible_cpus is available.
559 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata
*dd
,
560 struct hfi1_affinity_node
*entry
)
561 __must_hold(&node_affinity
.lock
)
565 lockdep_assert_held(&node_affinity
.lock
);
566 if (!dd
->comp_vect_possible_cpus
)
569 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++) {
570 cpu
= per_cpu_affinity_put_max(&dd
->comp_vect
->mask
,
571 entry
->comp_vect_affinity
);
572 /* Clearing CPU in device completion vector cpu mask */
574 cpumask_clear_cpu(cpu
, &dd
->comp_vect
->mask
);
577 dd
->comp_vect_possible_cpus
= 0;
581 * Interrupt affinity.
583 * non-rcv avail gets a default mask that
584 * starts as possible cpus with threads reset
585 * and each rcv avail reset.
587 * rcv avail gets node relative 1 wrapping back
588 * to the node relative 1 as necessary.
591 int hfi1_dev_affinity_init(struct hfi1_devdata
*dd
)
593 struct hfi1_affinity_node
*entry
;
594 const struct cpumask
*local_mask
;
595 int curr_cpu
, possible
, i
, ret
;
596 bool new_entry
= false;
598 local_mask
= cpumask_of_node(dd
->node
);
599 if (cpumask_first(local_mask
) >= nr_cpu_ids
)
600 local_mask
= topology_core_cpumask(0);
602 mutex_lock(&node_affinity
.lock
);
603 entry
= node_affinity_lookup(dd
->node
);
606 * If this is the first time this NUMA node's affinity is used,
607 * create an entry in the global affinity structure and initialize it.
610 entry
= node_affinity_allocate(dd
->node
);
613 "Unable to allocate global affinity node\n");
619 init_cpu_mask_set(&entry
->def_intr
);
620 init_cpu_mask_set(&entry
->rcv_intr
);
621 cpumask_clear(&entry
->comp_vect_mask
);
622 cpumask_clear(&entry
->general_intr_mask
);
623 /* Use the "real" cpu mask of this node as the default */
624 cpumask_and(&entry
->def_intr
.mask
, &node_affinity
.real_cpu_mask
,
627 /* fill in the receive list */
628 possible
= cpumask_weight(&entry
->def_intr
.mask
);
629 curr_cpu
= cpumask_first(&entry
->def_intr
.mask
);
632 /* only one CPU, everyone will use it */
633 cpumask_set_cpu(curr_cpu
, &entry
->rcv_intr
.mask
);
634 cpumask_set_cpu(curr_cpu
, &entry
->general_intr_mask
);
637 * The general/control context will be the first CPU in
638 * the default list, so it is removed from the default
639 * list and added to the general interrupt list.
641 cpumask_clear_cpu(curr_cpu
, &entry
->def_intr
.mask
);
642 cpumask_set_cpu(curr_cpu
, &entry
->general_intr_mask
);
643 curr_cpu
= cpumask_next(curr_cpu
,
644 &entry
->def_intr
.mask
);
647 * Remove the remaining kernel receive queues from
648 * the default list and add them to the receive list.
651 i
< (dd
->n_krcv_queues
- 1) *
652 hfi1_per_node_cntr
[dd
->node
];
654 cpumask_clear_cpu(curr_cpu
,
655 &entry
->def_intr
.mask
);
656 cpumask_set_cpu(curr_cpu
,
657 &entry
->rcv_intr
.mask
);
658 curr_cpu
= cpumask_next(curr_cpu
,
659 &entry
->def_intr
.mask
);
660 if (curr_cpu
>= nr_cpu_ids
)
665 * If there ends up being 0 CPU cores leftover for SDMA
666 * engines, use the same CPU cores as general/control
669 if (cpumask_empty(&entry
->def_intr
.mask
))
670 cpumask_copy(&entry
->def_intr
.mask
,
671 &entry
->general_intr_mask
);
674 /* Determine completion vector CPUs for the entire node */
675 cpumask_and(&entry
->comp_vect_mask
,
676 &node_affinity
.real_cpu_mask
, local_mask
);
677 cpumask_andnot(&entry
->comp_vect_mask
,
678 &entry
->comp_vect_mask
,
679 &entry
->rcv_intr
.mask
);
680 cpumask_andnot(&entry
->comp_vect_mask
,
681 &entry
->comp_vect_mask
,
682 &entry
->general_intr_mask
);
685 * If there ends up being 0 CPU cores leftover for completion
686 * vectors, use the same CPU core as the general/control
689 if (cpumask_empty(&entry
->comp_vect_mask
))
690 cpumask_copy(&entry
->comp_vect_mask
,
691 &entry
->general_intr_mask
);
694 ret
= _dev_comp_vect_cpu_mask_init(dd
, entry
, new_entry
);
699 node_affinity_add_tail(entry
);
701 dd
->affinity_entry
= entry
;
702 mutex_unlock(&node_affinity
.lock
);
708 node_affinity_destroy(entry
);
709 mutex_unlock(&node_affinity
.lock
);
713 void hfi1_dev_affinity_clean_up(struct hfi1_devdata
*dd
)
715 struct hfi1_affinity_node
*entry
;
717 mutex_lock(&node_affinity
.lock
);
718 if (!dd
->affinity_entry
)
720 entry
= node_affinity_lookup(dd
->node
);
725 * Free device completion vector CPUs to be used by future
728 _dev_comp_vect_cpu_mask_clean_up(dd
, entry
);
730 dd
->affinity_entry
= NULL
;
731 mutex_unlock(&node_affinity
.lock
);
735 * Function updates the irq affinity hint for msix after it has been changed
736 * by the user using the /proc/irq interface. This function only accepts
737 * one cpu in the mask.
739 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry
*msix
, int cpu
)
741 struct sdma_engine
*sde
= msix
->arg
;
742 struct hfi1_devdata
*dd
= sde
->dd
;
743 struct hfi1_affinity_node
*entry
;
744 struct cpu_mask_set
*set
;
747 if (cpu
> num_online_cpus() || cpu
== sde
->cpu
)
750 mutex_lock(&node_affinity
.lock
);
751 entry
= node_affinity_lookup(dd
->node
);
757 cpumask_clear(&msix
->mask
);
758 cpumask_set_cpu(cpu
, &msix
->mask
);
759 dd_dev_dbg(dd
, "IRQ: %u, type %s engine %u -> cpu: %d\n",
760 msix
->irq
, irq_type_names
[msix
->type
],
762 irq_set_affinity_hint(msix
->irq
, &msix
->mask
);
765 * Set the new cpu in the hfi1_affinity_node and clean
766 * the old cpu if it is not used by any other IRQ
768 set
= &entry
->def_intr
;
769 cpumask_set_cpu(cpu
, &set
->mask
);
770 cpumask_set_cpu(cpu
, &set
->used
);
771 for (i
= 0; i
< dd
->msix_info
.max_requested
; i
++) {
772 struct hfi1_msix_entry
*other_msix
;
774 other_msix
= &dd
->msix_info
.msix_entries
[i
];
775 if (other_msix
->type
!= IRQ_SDMA
|| other_msix
== msix
)
778 if (cpumask_test_cpu(old_cpu
, &other_msix
->mask
))
781 cpumask_clear_cpu(old_cpu
, &set
->mask
);
782 cpumask_clear_cpu(old_cpu
, &set
->used
);
784 mutex_unlock(&node_affinity
.lock
);
787 static void hfi1_irq_notifier_notify(struct irq_affinity_notify
*notify
,
788 const cpumask_t
*mask
)
790 int cpu
= cpumask_first(mask
);
791 struct hfi1_msix_entry
*msix
= container_of(notify
,
792 struct hfi1_msix_entry
,
795 /* Only one CPU configuration supported currently */
796 hfi1_update_sdma_affinity(msix
, cpu
);
799 static void hfi1_irq_notifier_release(struct kref
*ref
)
802 * This is required by affinity notifier. We don't have anything to
807 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry
*msix
)
809 struct irq_affinity_notify
*notify
= &msix
->notify
;
811 notify
->irq
= msix
->irq
;
812 notify
->notify
= hfi1_irq_notifier_notify
;
813 notify
->release
= hfi1_irq_notifier_release
;
815 if (irq_set_affinity_notifier(notify
->irq
, notify
))
816 pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
820 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry
*msix
)
822 struct irq_affinity_notify
*notify
= &msix
->notify
;
824 if (irq_set_affinity_notifier(notify
->irq
, NULL
))
825 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
830 * Function sets the irq affinity for msix.
831 * It *must* be called with node_affinity.lock held.
833 static int get_irq_affinity(struct hfi1_devdata
*dd
,
834 struct hfi1_msix_entry
*msix
)
837 struct hfi1_affinity_node
*entry
;
838 struct cpu_mask_set
*set
= NULL
;
839 struct sdma_engine
*sde
= NULL
;
840 struct hfi1_ctxtdata
*rcd
= NULL
;
845 cpumask_clear(&msix
->mask
);
847 entry
= node_affinity_lookup(dd
->node
);
849 switch (msix
->type
) {
851 sde
= (struct sdma_engine
*)msix
->arg
;
852 scnprintf(extra
, 64, "engine %u", sde
->this_idx
);
853 set
= &entry
->def_intr
;
856 cpu
= cpumask_first(&entry
->general_intr_mask
);
859 rcd
= (struct hfi1_ctxtdata
*)msix
->arg
;
860 if (rcd
->ctxt
== HFI1_CTRL_CTXT
)
861 cpu
= cpumask_first(&entry
->general_intr_mask
);
863 set
= &entry
->rcv_intr
;
864 scnprintf(extra
, 64, "ctxt %u", rcd
->ctxt
);
867 rcd
= (struct hfi1_ctxtdata
*)msix
->arg
;
868 set
= &entry
->def_intr
;
869 scnprintf(extra
, 64, "ctxt %u", rcd
->ctxt
);
872 dd_dev_err(dd
, "Invalid IRQ type %d\n", msix
->type
);
877 * The general and control contexts are placed on a particular
878 * CPU, which is set above. Skip accounting for it. Everything else
879 * finds its CPU here.
881 if (cpu
== -1 && set
) {
882 if (!zalloc_cpumask_var(&diff
, GFP_KERNEL
))
885 cpu
= cpu_mask_set_get_first(set
, diff
);
887 free_cpumask_var(diff
);
888 dd_dev_err(dd
, "Failure to obtain CPU for IRQ\n");
892 free_cpumask_var(diff
);
895 cpumask_set_cpu(cpu
, &msix
->mask
);
896 dd_dev_info(dd
, "IRQ: %u, type %s %s -> cpu: %d\n",
897 msix
->irq
, irq_type_names
[msix
->type
],
899 irq_set_affinity_hint(msix
->irq
, &msix
->mask
);
901 if (msix
->type
== IRQ_SDMA
) {
903 hfi1_setup_sdma_notifier(msix
);
909 int hfi1_get_irq_affinity(struct hfi1_devdata
*dd
, struct hfi1_msix_entry
*msix
)
913 mutex_lock(&node_affinity
.lock
);
914 ret
= get_irq_affinity(dd
, msix
);
915 mutex_unlock(&node_affinity
.lock
);
919 void hfi1_put_irq_affinity(struct hfi1_devdata
*dd
,
920 struct hfi1_msix_entry
*msix
)
922 struct cpu_mask_set
*set
= NULL
;
923 struct hfi1_affinity_node
*entry
;
925 mutex_lock(&node_affinity
.lock
);
926 entry
= node_affinity_lookup(dd
->node
);
928 switch (msix
->type
) {
930 set
= &entry
->def_intr
;
931 hfi1_cleanup_sdma_notifier(msix
);
934 /* Don't do accounting for general contexts */
937 struct hfi1_ctxtdata
*rcd
= msix
->arg
;
939 /* Don't do accounting for control contexts */
940 if (rcd
->ctxt
!= HFI1_CTRL_CTXT
)
941 set
= &entry
->rcv_intr
;
945 set
= &entry
->def_intr
;
948 mutex_unlock(&node_affinity
.lock
);
953 cpumask_andnot(&set
->used
, &set
->used
, &msix
->mask
);
954 _cpu_mask_set_gen_dec(set
);
957 irq_set_affinity_hint(msix
->irq
, NULL
);
958 cpumask_clear(&msix
->mask
);
959 mutex_unlock(&node_affinity
.lock
);
962 /* This should be called with node_affinity.lock held */
963 static void find_hw_thread_mask(uint hw_thread_no
, cpumask_var_t hw_thread_mask
,
964 struct hfi1_affinity_node_list
*affinity
)
966 int possible
, curr_cpu
, i
;
967 uint num_cores_per_socket
= node_affinity
.num_online_cpus
/
968 affinity
->num_core_siblings
/
969 node_affinity
.num_online_nodes
;
971 cpumask_copy(hw_thread_mask
, &affinity
->proc
.mask
);
972 if (affinity
->num_core_siblings
> 0) {
973 /* Removing other siblings not needed for now */
974 possible
= cpumask_weight(hw_thread_mask
);
975 curr_cpu
= cpumask_first(hw_thread_mask
);
977 i
< num_cores_per_socket
* node_affinity
.num_online_nodes
;
979 curr_cpu
= cpumask_next(curr_cpu
, hw_thread_mask
);
981 for (; i
< possible
; i
++) {
982 cpumask_clear_cpu(curr_cpu
, hw_thread_mask
);
983 curr_cpu
= cpumask_next(curr_cpu
, hw_thread_mask
);
986 /* Identifying correct HW threads within physical cores */
987 cpumask_shift_left(hw_thread_mask
, hw_thread_mask
,
988 num_cores_per_socket
*
989 node_affinity
.num_online_nodes
*
994 int hfi1_get_proc_affinity(int node
)
996 int cpu
= -1, ret
, i
;
997 struct hfi1_affinity_node
*entry
;
998 cpumask_var_t diff
, hw_thread_mask
, available_mask
, intrs_mask
;
999 const struct cpumask
*node_mask
,
1000 *proc_mask
= current
->cpus_ptr
;
1001 struct hfi1_affinity_node_list
*affinity
= &node_affinity
;
1002 struct cpu_mask_set
*set
= &affinity
->proc
;
1005 * check whether process/context affinity has already
1008 if (current
->nr_cpus_allowed
== 1) {
1009 hfi1_cdbg(PROC
, "PID %u %s affinity set to CPU %*pbl",
1010 current
->pid
, current
->comm
,
1011 cpumask_pr_args(proc_mask
));
1013 * Mark the pre-set CPU as used. This is atomic so we don't
1016 cpu
= cpumask_first(proc_mask
);
1017 cpumask_set_cpu(cpu
, &set
->used
);
1019 } else if (current
->nr_cpus_allowed
< cpumask_weight(&set
->mask
)) {
1020 hfi1_cdbg(PROC
, "PID %u %s affinity set to CPU set(s) %*pbl",
1021 current
->pid
, current
->comm
,
1022 cpumask_pr_args(proc_mask
));
1027 * The process does not have a preset CPU affinity so find one to
1028 * recommend using the following algorithm:
1030 * For each user process that is opening a context on HFI Y:
1031 * a) If all cores are filled, reinitialize the bitmask
1032 * b) Fill real cores first, then HT cores (First set of HT
1033 * cores on all physical cores, then second set of HT core,
1034 * and, so on) in the following order:
1036 * 1. Same NUMA node as HFI Y and not running an IRQ
1038 * 2. Same NUMA node as HFI Y and running an IRQ handler
1039 * 3. Different NUMA node to HFI Y and not running an IRQ
1041 * 4. Different NUMA node to HFI Y and running an IRQ
1043 * c) Mark core as filled in the bitmask. As user processes are
1044 * done, clear cores from the bitmask.
1047 ret
= zalloc_cpumask_var(&diff
, GFP_KERNEL
);
1050 ret
= zalloc_cpumask_var(&hw_thread_mask
, GFP_KERNEL
);
1053 ret
= zalloc_cpumask_var(&available_mask
, GFP_KERNEL
);
1055 goto free_hw_thread_mask
;
1056 ret
= zalloc_cpumask_var(&intrs_mask
, GFP_KERNEL
);
1058 goto free_available_mask
;
1060 mutex_lock(&affinity
->lock
);
1062 * If we've used all available HW threads, clear the mask and start
1065 _cpu_mask_set_gen_inc(set
);
1068 * If NUMA node has CPUs used by interrupt handlers, include them in the
1069 * interrupt handler mask.
1071 entry
= node_affinity_lookup(node
);
1073 cpumask_copy(intrs_mask
, (entry
->def_intr
.gen
?
1074 &entry
->def_intr
.mask
:
1075 &entry
->def_intr
.used
));
1076 cpumask_or(intrs_mask
, intrs_mask
, (entry
->rcv_intr
.gen
?
1077 &entry
->rcv_intr
.mask
:
1078 &entry
->rcv_intr
.used
));
1079 cpumask_or(intrs_mask
, intrs_mask
, &entry
->general_intr_mask
);
1081 hfi1_cdbg(PROC
, "CPUs used by interrupts: %*pbl",
1082 cpumask_pr_args(intrs_mask
));
1084 cpumask_copy(hw_thread_mask
, &set
->mask
);
1087 * If HT cores are enabled, identify which HW threads within the
1088 * physical cores should be used.
1090 if (affinity
->num_core_siblings
> 0) {
1091 for (i
= 0; i
< affinity
->num_core_siblings
; i
++) {
1092 find_hw_thread_mask(i
, hw_thread_mask
, affinity
);
1095 * If there's at least one available core for this HW
1096 * thread number, stop looking for a core.
1098 * diff will always be not empty at least once in this
1099 * loop as the used mask gets reset when
1100 * (set->mask == set->used) before this loop.
1102 cpumask_andnot(diff
, hw_thread_mask
, &set
->used
);
1103 if (!cpumask_empty(diff
))
1107 hfi1_cdbg(PROC
, "Same available HW thread on all physical CPUs: %*pbl",
1108 cpumask_pr_args(hw_thread_mask
));
1110 node_mask
= cpumask_of_node(node
);
1111 hfi1_cdbg(PROC
, "Device on NUMA %u, CPUs %*pbl", node
,
1112 cpumask_pr_args(node_mask
));
1114 /* Get cpumask of available CPUs on preferred NUMA */
1115 cpumask_and(available_mask
, hw_thread_mask
, node_mask
);
1116 cpumask_andnot(available_mask
, available_mask
, &set
->used
);
1117 hfi1_cdbg(PROC
, "Available CPUs on NUMA %u: %*pbl", node
,
1118 cpumask_pr_args(available_mask
));
1121 * At first, we don't want to place processes on the same
1122 * CPUs as interrupt handlers. Then, CPUs running interrupt
1123 * handlers are used.
1125 * 1) If diff is not empty, then there are CPUs not running
1126 * non-interrupt handlers available, so diff gets copied
1127 * over to available_mask.
1128 * 2) If diff is empty, then all CPUs not running interrupt
1129 * handlers are taken, so available_mask contains all
1130 * available CPUs running interrupt handlers.
1131 * 3) If available_mask is empty, then all CPUs on the
1132 * preferred NUMA node are taken, so other NUMA nodes are
1133 * used for process assignments using the same method as
1134 * the preferred NUMA node.
1136 cpumask_andnot(diff
, available_mask
, intrs_mask
);
1137 if (!cpumask_empty(diff
))
1138 cpumask_copy(available_mask
, diff
);
1140 /* If we don't have CPUs on the preferred node, use other NUMA nodes */
1141 if (cpumask_empty(available_mask
)) {
1142 cpumask_andnot(available_mask
, hw_thread_mask
, &set
->used
);
1143 /* Excluding preferred NUMA cores */
1144 cpumask_andnot(available_mask
, available_mask
, node_mask
);
1146 "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1147 cpumask_pr_args(available_mask
));
1150 * At first, we don't want to place processes on the same
1151 * CPUs as interrupt handlers.
1153 cpumask_andnot(diff
, available_mask
, intrs_mask
);
1154 if (!cpumask_empty(diff
))
1155 cpumask_copy(available_mask
, diff
);
1157 hfi1_cdbg(PROC
, "Possible CPUs for process: %*pbl",
1158 cpumask_pr_args(available_mask
));
1160 cpu
= cpumask_first(available_mask
);
1161 if (cpu
>= nr_cpu_ids
) /* empty */
1164 cpumask_set_cpu(cpu
, &set
->used
);
1166 mutex_unlock(&affinity
->lock
);
1167 hfi1_cdbg(PROC
, "Process assigned to CPU %d", cpu
);
1169 free_cpumask_var(intrs_mask
);
1170 free_available_mask
:
1171 free_cpumask_var(available_mask
);
1172 free_hw_thread_mask
:
1173 free_cpumask_var(hw_thread_mask
);
1175 free_cpumask_var(diff
);
1180 void hfi1_put_proc_affinity(int cpu
)
1182 struct hfi1_affinity_node_list
*affinity
= &node_affinity
;
1183 struct cpu_mask_set
*set
= &affinity
->proc
;
1188 mutex_lock(&affinity
->lock
);
1189 cpu_mask_set_put(set
, cpu
);
1190 hfi1_cdbg(PROC
, "Returning CPU %d for future process assignment", cpu
);
1191 mutex_unlock(&affinity
->lock
);