drm/panel: samsung-s6e88a0-ams452ef01: transition to mipi_dsi wrapped functions
[drm/drm-misc.git] / drivers / iommu / riscv / iommu.c
blob8a05def774bdb5666091ab8d469bf1783d3da6f8
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * IOMMU API for RISC-V IOMMU implementations.
5 * Copyright © 2022-2024 Rivos Inc.
6 * Copyright © 2023 FORTH-ICS/CARV
8 * Authors
9 * Tomasz Jeznach <tjeznach@rivosinc.com>
10 * Nick Kossifidis <mick@ics.forth.gr>
13 #define pr_fmt(fmt) "riscv-iommu: " fmt
15 #include <linux/compiler.h>
16 #include <linux/crash_dump.h>
17 #include <linux/init.h>
18 #include <linux/iommu.h>
19 #include <linux/iopoll.h>
20 #include <linux/kernel.h>
21 #include <linux/pci.h>
23 #include "../iommu-pages.h"
24 #include "iommu-bits.h"
25 #include "iommu.h"
27 /* Timeouts in [us] */
28 #define RISCV_IOMMU_QCSR_TIMEOUT 150000
29 #define RISCV_IOMMU_QUEUE_TIMEOUT 150000
30 #define RISCV_IOMMU_DDTP_TIMEOUT 10000000
31 #define RISCV_IOMMU_IOTINVAL_TIMEOUT 90000000
33 /* Number of entries per CMD/FLT queue, should be <= INT_MAX */
34 #define RISCV_IOMMU_DEF_CQ_COUNT 8192
35 #define RISCV_IOMMU_DEF_FQ_COUNT 4096
37 /* RISC-V IOMMU PPN <> PHYS address conversions, PHYS <=> PPN[53:10] */
38 #define phys_to_ppn(pa) (((pa) >> 2) & (((1ULL << 44) - 1) << 10))
39 #define ppn_to_phys(pn) (((pn) << 2) & (((1ULL << 44) - 1) << 12))
41 #define dev_to_iommu(dev) \
42 iommu_get_iommu_dev(dev, struct riscv_iommu_device, iommu)
44 /* IOMMU PSCID allocation namespace. */
45 static DEFINE_IDA(riscv_iommu_pscids);
46 #define RISCV_IOMMU_MAX_PSCID (BIT(20) - 1)
48 /* Device resource-managed allocations */
49 struct riscv_iommu_devres {
50 void *addr;
51 int order;
54 static void riscv_iommu_devres_pages_release(struct device *dev, void *res)
56 struct riscv_iommu_devres *devres = res;
58 iommu_free_pages(devres->addr, devres->order);
61 static int riscv_iommu_devres_pages_match(struct device *dev, void *res, void *p)
63 struct riscv_iommu_devres *devres = res;
64 struct riscv_iommu_devres *target = p;
66 return devres->addr == target->addr;
69 static void *riscv_iommu_get_pages(struct riscv_iommu_device *iommu, int order)
71 struct riscv_iommu_devres *devres;
72 void *addr;
74 addr = iommu_alloc_pages_node(dev_to_node(iommu->dev),
75 GFP_KERNEL_ACCOUNT, order);
76 if (unlikely(!addr))
77 return NULL;
79 devres = devres_alloc(riscv_iommu_devres_pages_release,
80 sizeof(struct riscv_iommu_devres), GFP_KERNEL);
82 if (unlikely(!devres)) {
83 iommu_free_pages(addr, order);
84 return NULL;
87 devres->addr = addr;
88 devres->order = order;
90 devres_add(iommu->dev, devres);
92 return addr;
95 static void riscv_iommu_free_pages(struct riscv_iommu_device *iommu, void *addr)
97 struct riscv_iommu_devres devres = { .addr = addr };
99 devres_release(iommu->dev, riscv_iommu_devres_pages_release,
100 riscv_iommu_devres_pages_match, &devres);
104 * Hardware queue allocation and management.
107 /* Setup queue base, control registers and default queue length */
108 #define RISCV_IOMMU_QUEUE_INIT(q, name) do { \
109 struct riscv_iommu_queue *_q = q; \
110 _q->qid = RISCV_IOMMU_INTR_ ## name; \
111 _q->qbr = RISCV_IOMMU_REG_ ## name ## B; \
112 _q->qcr = RISCV_IOMMU_REG_ ## name ## CSR; \
113 _q->mask = _q->mask ?: (RISCV_IOMMU_DEF_ ## name ## _COUNT) - 1;\
114 } while (0)
116 /* Note: offsets are the same for all queues */
117 #define Q_HEAD(q) ((q)->qbr + (RISCV_IOMMU_REG_CQH - RISCV_IOMMU_REG_CQB))
118 #define Q_TAIL(q) ((q)->qbr + (RISCV_IOMMU_REG_CQT - RISCV_IOMMU_REG_CQB))
119 #define Q_ITEM(q, index) ((q)->mask & (index))
120 #define Q_IPSR(q) BIT((q)->qid)
123 * Discover queue ring buffer hardware configuration, allocate in-memory
124 * ring buffer or use fixed I/O memory location, configure queue base register.
125 * Must be called before hardware queue is enabled.
127 * @queue - data structure, configured with RISCV_IOMMU_QUEUE_INIT()
128 * @entry_size - queue single element size in bytes.
130 static int riscv_iommu_queue_alloc(struct riscv_iommu_device *iommu,
131 struct riscv_iommu_queue *queue,
132 size_t entry_size)
134 unsigned int logsz;
135 u64 qb, rb;
138 * Use WARL base register property to discover maximum allowed
139 * number of entries and optional fixed IO address for queue location.
141 riscv_iommu_writeq(iommu, queue->qbr, RISCV_IOMMU_QUEUE_LOG2SZ_FIELD);
142 qb = riscv_iommu_readq(iommu, queue->qbr);
145 * Calculate and verify hardware supported queue length, as reported
146 * by the field LOG2SZ, where max queue length is equal to 2^(LOG2SZ + 1).
147 * Update queue size based on hardware supported value.
149 logsz = ilog2(queue->mask);
150 if (logsz > FIELD_GET(RISCV_IOMMU_QUEUE_LOG2SZ_FIELD, qb))
151 logsz = FIELD_GET(RISCV_IOMMU_QUEUE_LOG2SZ_FIELD, qb);
154 * Use WARL base register property to discover an optional fixed IO
155 * address for queue ring buffer location. Otherwise allocate contiguous
156 * system memory.
158 if (FIELD_GET(RISCV_IOMMU_PPN_FIELD, qb)) {
159 const size_t queue_size = entry_size << (logsz + 1);
161 queue->phys = pfn_to_phys(FIELD_GET(RISCV_IOMMU_PPN_FIELD, qb));
162 queue->base = devm_ioremap(iommu->dev, queue->phys, queue_size);
163 } else {
164 do {
165 const size_t queue_size = entry_size << (logsz + 1);
166 const int order = get_order(queue_size);
168 queue->base = riscv_iommu_get_pages(iommu, order);
169 queue->phys = __pa(queue->base);
170 } while (!queue->base && logsz-- > 0);
173 if (!queue->base)
174 return -ENOMEM;
176 qb = phys_to_ppn(queue->phys) |
177 FIELD_PREP(RISCV_IOMMU_QUEUE_LOG2SZ_FIELD, logsz);
179 /* Update base register and read back to verify hw accepted our write */
180 riscv_iommu_writeq(iommu, queue->qbr, qb);
181 rb = riscv_iommu_readq(iommu, queue->qbr);
182 if (rb != qb) {
183 dev_err(iommu->dev, "queue #%u allocation failed\n", queue->qid);
184 return -ENODEV;
187 /* Update actual queue mask */
188 queue->mask = (2U << logsz) - 1;
190 dev_dbg(iommu->dev, "queue #%u allocated 2^%u entries",
191 queue->qid, logsz + 1);
193 return 0;
196 /* Check interrupt queue status, IPSR */
197 static irqreturn_t riscv_iommu_queue_ipsr(int irq, void *data)
199 struct riscv_iommu_queue *queue = (struct riscv_iommu_queue *)data;
201 if (riscv_iommu_readl(queue->iommu, RISCV_IOMMU_REG_IPSR) & Q_IPSR(queue))
202 return IRQ_WAKE_THREAD;
204 return IRQ_NONE;
207 static int riscv_iommu_queue_vec(struct riscv_iommu_device *iommu, int n)
209 /* Reuse ICVEC.CIV mask for all interrupt vectors mapping. */
210 return (iommu->icvec >> (n * 4)) & RISCV_IOMMU_ICVEC_CIV;
214 * Enable queue processing in the hardware, register interrupt handler.
216 * @queue - data structure, already allocated with riscv_iommu_queue_alloc()
217 * @irq_handler - threaded interrupt handler.
219 static int riscv_iommu_queue_enable(struct riscv_iommu_device *iommu,
220 struct riscv_iommu_queue *queue,
221 irq_handler_t irq_handler)
223 const unsigned int irq = iommu->irqs[riscv_iommu_queue_vec(iommu, queue->qid)];
224 u32 csr;
225 int rc;
227 if (queue->iommu)
228 return -EBUSY;
230 /* Polling not implemented */
231 if (!irq)
232 return -ENODEV;
234 queue->iommu = iommu;
235 rc = request_threaded_irq(irq, riscv_iommu_queue_ipsr, irq_handler,
236 IRQF_ONESHOT | IRQF_SHARED,
237 dev_name(iommu->dev), queue);
238 if (rc) {
239 queue->iommu = NULL;
240 return rc;
244 * Enable queue with interrupts, clear any memory fault if any.
245 * Wait for the hardware to acknowledge request and activate queue
246 * processing.
247 * Note: All CSR bitfields are in the same offsets for all queues.
249 riscv_iommu_writel(iommu, queue->qcr,
250 RISCV_IOMMU_QUEUE_ENABLE |
251 RISCV_IOMMU_QUEUE_INTR_ENABLE |
252 RISCV_IOMMU_QUEUE_MEM_FAULT);
254 riscv_iommu_readl_timeout(iommu, queue->qcr,
255 csr, !(csr & RISCV_IOMMU_QUEUE_BUSY),
256 10, RISCV_IOMMU_QCSR_TIMEOUT);
258 if (RISCV_IOMMU_QUEUE_ACTIVE != (csr & (RISCV_IOMMU_QUEUE_ACTIVE |
259 RISCV_IOMMU_QUEUE_BUSY |
260 RISCV_IOMMU_QUEUE_MEM_FAULT))) {
261 /* Best effort to stop and disable failing hardware queue. */
262 riscv_iommu_writel(iommu, queue->qcr, 0);
263 free_irq(irq, queue);
264 queue->iommu = NULL;
265 dev_err(iommu->dev, "queue #%u failed to start\n", queue->qid);
266 return -EBUSY;
269 /* Clear any pending interrupt flag. */
270 riscv_iommu_writel(iommu, RISCV_IOMMU_REG_IPSR, Q_IPSR(queue));
272 return 0;
276 * Disable queue. Wait for the hardware to acknowledge request and
277 * stop processing enqueued requests. Report errors but continue.
279 static void riscv_iommu_queue_disable(struct riscv_iommu_queue *queue)
281 struct riscv_iommu_device *iommu = queue->iommu;
282 u32 csr;
284 if (!iommu)
285 return;
287 free_irq(iommu->irqs[riscv_iommu_queue_vec(iommu, queue->qid)], queue);
288 riscv_iommu_writel(iommu, queue->qcr, 0);
289 riscv_iommu_readl_timeout(iommu, queue->qcr,
290 csr, !(csr & RISCV_IOMMU_QUEUE_BUSY),
291 10, RISCV_IOMMU_QCSR_TIMEOUT);
293 if (csr & (RISCV_IOMMU_QUEUE_ACTIVE | RISCV_IOMMU_QUEUE_BUSY))
294 dev_err(iommu->dev, "fail to disable hardware queue #%u, csr 0x%x\n",
295 queue->qid, csr);
297 queue->iommu = NULL;
301 * Returns number of available valid queue entries and the first item index.
302 * Update shadow producer index if necessary.
304 static int riscv_iommu_queue_consume(struct riscv_iommu_queue *queue,
305 unsigned int *index)
307 unsigned int head = atomic_read(&queue->head);
308 unsigned int tail = atomic_read(&queue->tail);
309 unsigned int last = Q_ITEM(queue, tail);
310 int available = (int)(tail - head);
312 *index = head;
314 if (available > 0)
315 return available;
317 /* read hardware producer index, check reserved register bits are not set. */
318 if (riscv_iommu_readl_timeout(queue->iommu, Q_TAIL(queue),
319 tail, (tail & ~queue->mask) == 0,
320 0, RISCV_IOMMU_QUEUE_TIMEOUT)) {
321 dev_err_once(queue->iommu->dev,
322 "Hardware error: queue access timeout\n");
323 return 0;
326 if (tail == last)
327 return 0;
329 /* update shadow producer index */
330 return (int)(atomic_add_return((tail - last) & queue->mask, &queue->tail) - head);
334 * Release processed queue entries, should match riscv_iommu_queue_consume() calls.
336 static void riscv_iommu_queue_release(struct riscv_iommu_queue *queue, int count)
338 const unsigned int head = atomic_add_return(count, &queue->head);
340 riscv_iommu_writel(queue->iommu, Q_HEAD(queue), Q_ITEM(queue, head));
343 /* Return actual consumer index based on hardware reported queue head index. */
344 static unsigned int riscv_iommu_queue_cons(struct riscv_iommu_queue *queue)
346 const unsigned int cons = atomic_read(&queue->head);
347 const unsigned int last = Q_ITEM(queue, cons);
348 unsigned int head;
350 if (riscv_iommu_readl_timeout(queue->iommu, Q_HEAD(queue), head,
351 !(head & ~queue->mask),
352 0, RISCV_IOMMU_QUEUE_TIMEOUT))
353 return cons;
355 return cons + ((head - last) & queue->mask);
358 /* Wait for submitted item to be processed. */
359 static int riscv_iommu_queue_wait(struct riscv_iommu_queue *queue,
360 unsigned int index,
361 unsigned int timeout_us)
363 unsigned int cons = atomic_read(&queue->head);
365 /* Already processed by the consumer */
366 if ((int)(cons - index) > 0)
367 return 0;
369 /* Monitor consumer index */
370 return readx_poll_timeout(riscv_iommu_queue_cons, queue, cons,
371 (int)(cons - index) > 0, 0, timeout_us);
374 /* Enqueue an entry and wait to be processed if timeout_us > 0
376 * Error handling for IOMMU hardware not responding in reasonable time
377 * will be added as separate patch series along with other RAS features.
378 * For now, only report hardware failure and continue.
380 static unsigned int riscv_iommu_queue_send(struct riscv_iommu_queue *queue,
381 void *entry, size_t entry_size)
383 unsigned int prod;
384 unsigned int head;
385 unsigned int tail;
386 unsigned long flags;
388 /* Do not preempt submission flow. */
389 local_irq_save(flags);
391 /* 1. Allocate some space in the queue */
392 prod = atomic_inc_return(&queue->prod) - 1;
393 head = atomic_read(&queue->head);
395 /* 2. Wait for space availability. */
396 if ((prod - head) > queue->mask) {
397 if (readx_poll_timeout(atomic_read, &queue->head,
398 head, (prod - head) < queue->mask,
399 0, RISCV_IOMMU_QUEUE_TIMEOUT))
400 goto err_busy;
401 } else if ((prod - head) == queue->mask) {
402 const unsigned int last = Q_ITEM(queue, head);
404 if (riscv_iommu_readl_timeout(queue->iommu, Q_HEAD(queue), head,
405 !(head & ~queue->mask) && head != last,
406 0, RISCV_IOMMU_QUEUE_TIMEOUT))
407 goto err_busy;
408 atomic_add((head - last) & queue->mask, &queue->head);
411 /* 3. Store entry in the ring buffer */
412 memcpy(queue->base + Q_ITEM(queue, prod) * entry_size, entry, entry_size);
414 /* 4. Wait for all previous entries to be ready */
415 if (readx_poll_timeout(atomic_read, &queue->tail, tail, prod == tail,
416 0, RISCV_IOMMU_QUEUE_TIMEOUT))
417 goto err_busy;
420 * 5. Make sure the ring buffer update (whether in normal or I/O memory) is
421 * completed and visible before signaling the tail doorbell to fetch
422 * the next command. 'fence ow, ow'
424 dma_wmb();
425 riscv_iommu_writel(queue->iommu, Q_TAIL(queue), Q_ITEM(queue, prod + 1));
428 * 6. Make sure the doorbell write to the device has finished before updating
429 * the shadow tail index in normal memory. 'fence o, w'
431 mmiowb();
432 atomic_inc(&queue->tail);
434 /* 7. Complete submission and restore local interrupts */
435 local_irq_restore(flags);
437 return prod;
439 err_busy:
440 local_irq_restore(flags);
441 dev_err_once(queue->iommu->dev, "Hardware error: command enqueue failed\n");
443 return prod;
447 * IOMMU Command queue chapter 3.1
450 /* Command queue interrupt handler thread function */
451 static irqreturn_t riscv_iommu_cmdq_process(int irq, void *data)
453 const struct riscv_iommu_queue *queue = (struct riscv_iommu_queue *)data;
454 unsigned int ctrl;
456 /* Clear MF/CQ errors, complete error recovery to be implemented. */
457 ctrl = riscv_iommu_readl(queue->iommu, queue->qcr);
458 if (ctrl & (RISCV_IOMMU_CQCSR_CQMF | RISCV_IOMMU_CQCSR_CMD_TO |
459 RISCV_IOMMU_CQCSR_CMD_ILL | RISCV_IOMMU_CQCSR_FENCE_W_IP)) {
460 riscv_iommu_writel(queue->iommu, queue->qcr, ctrl);
461 dev_warn(queue->iommu->dev,
462 "Queue #%u error; fault:%d timeout:%d illegal:%d fence_w_ip:%d\n",
463 queue->qid,
464 !!(ctrl & RISCV_IOMMU_CQCSR_CQMF),
465 !!(ctrl & RISCV_IOMMU_CQCSR_CMD_TO),
466 !!(ctrl & RISCV_IOMMU_CQCSR_CMD_ILL),
467 !!(ctrl & RISCV_IOMMU_CQCSR_FENCE_W_IP));
470 /* Placeholder for command queue interrupt notifiers */
472 /* Clear command interrupt pending. */
473 riscv_iommu_writel(queue->iommu, RISCV_IOMMU_REG_IPSR, Q_IPSR(queue));
475 return IRQ_HANDLED;
478 /* Send command to the IOMMU command queue */
479 static void riscv_iommu_cmd_send(struct riscv_iommu_device *iommu,
480 struct riscv_iommu_command *cmd)
482 riscv_iommu_queue_send(&iommu->cmdq, cmd, sizeof(*cmd));
485 /* Send IOFENCE.C command and wait for all scheduled commands to complete. */
486 static void riscv_iommu_cmd_sync(struct riscv_iommu_device *iommu,
487 unsigned int timeout_us)
489 struct riscv_iommu_command cmd;
490 unsigned int prod;
492 riscv_iommu_cmd_iofence(&cmd);
493 prod = riscv_iommu_queue_send(&iommu->cmdq, &cmd, sizeof(cmd));
495 if (!timeout_us)
496 return;
498 if (riscv_iommu_queue_wait(&iommu->cmdq, prod, timeout_us))
499 dev_err_once(iommu->dev,
500 "Hardware error: command execution timeout\n");
504 * IOMMU Fault/Event queue chapter 3.2
507 static void riscv_iommu_fault(struct riscv_iommu_device *iommu,
508 struct riscv_iommu_fq_record *event)
510 unsigned int err = FIELD_GET(RISCV_IOMMU_FQ_HDR_CAUSE, event->hdr);
511 unsigned int devid = FIELD_GET(RISCV_IOMMU_FQ_HDR_DID, event->hdr);
513 /* Placeholder for future fault handling implementation, report only. */
514 if (err)
515 dev_warn_ratelimited(iommu->dev,
516 "Fault %d devid: 0x%x iotval: %llx iotval2: %llx\n",
517 err, devid, event->iotval, event->iotval2);
520 /* Fault queue interrupt handler thread function */
521 static irqreturn_t riscv_iommu_fltq_process(int irq, void *data)
523 struct riscv_iommu_queue *queue = (struct riscv_iommu_queue *)data;
524 struct riscv_iommu_device *iommu = queue->iommu;
525 struct riscv_iommu_fq_record *events;
526 unsigned int ctrl, idx;
527 int cnt, len;
529 events = (struct riscv_iommu_fq_record *)queue->base;
531 /* Clear fault interrupt pending and process all received fault events. */
532 riscv_iommu_writel(iommu, RISCV_IOMMU_REG_IPSR, Q_IPSR(queue));
534 do {
535 cnt = riscv_iommu_queue_consume(queue, &idx);
536 for (len = 0; len < cnt; idx++, len++)
537 riscv_iommu_fault(iommu, &events[Q_ITEM(queue, idx)]);
538 riscv_iommu_queue_release(queue, cnt);
539 } while (cnt > 0);
541 /* Clear MF/OF errors, complete error recovery to be implemented. */
542 ctrl = riscv_iommu_readl(iommu, queue->qcr);
543 if (ctrl & (RISCV_IOMMU_FQCSR_FQMF | RISCV_IOMMU_FQCSR_FQOF)) {
544 riscv_iommu_writel(iommu, queue->qcr, ctrl);
545 dev_warn(iommu->dev,
546 "Queue #%u error; memory fault:%d overflow:%d\n",
547 queue->qid,
548 !!(ctrl & RISCV_IOMMU_FQCSR_FQMF),
549 !!(ctrl & RISCV_IOMMU_FQCSR_FQOF));
552 return IRQ_HANDLED;
555 /* Lookup and initialize device context info structure. */
556 static struct riscv_iommu_dc *riscv_iommu_get_dc(struct riscv_iommu_device *iommu,
557 unsigned int devid)
559 const bool base_format = !(iommu->caps & RISCV_IOMMU_CAPABILITIES_MSI_FLAT);
560 unsigned int depth;
561 unsigned long ddt, old, new;
562 void *ptr;
563 u8 ddi_bits[3] = { 0 };
564 u64 *ddtp = NULL;
566 /* Make sure the mode is valid */
567 if (iommu->ddt_mode < RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL ||
568 iommu->ddt_mode > RISCV_IOMMU_DDTP_IOMMU_MODE_3LVL)
569 return NULL;
572 * Device id partitioning for base format:
573 * DDI[0]: bits 0 - 6 (1st level) (7 bits)
574 * DDI[1]: bits 7 - 15 (2nd level) (9 bits)
575 * DDI[2]: bits 16 - 23 (3rd level) (8 bits)
577 * For extended format:
578 * DDI[0]: bits 0 - 5 (1st level) (6 bits)
579 * DDI[1]: bits 6 - 14 (2nd level) (9 bits)
580 * DDI[2]: bits 15 - 23 (3rd level) (9 bits)
582 if (base_format) {
583 ddi_bits[0] = 7;
584 ddi_bits[1] = 7 + 9;
585 ddi_bits[2] = 7 + 9 + 8;
586 } else {
587 ddi_bits[0] = 6;
588 ddi_bits[1] = 6 + 9;
589 ddi_bits[2] = 6 + 9 + 9;
592 /* Make sure device id is within range */
593 depth = iommu->ddt_mode - RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL;
594 if (devid >= (1 << ddi_bits[depth]))
595 return NULL;
597 /* Get to the level of the non-leaf node that holds the device context */
598 for (ddtp = iommu->ddt_root; depth-- > 0;) {
599 const int split = ddi_bits[depth];
601 * Each non-leaf node is 64bits wide and on each level
602 * nodes are indexed by DDI[depth].
604 ddtp += (devid >> split) & 0x1FF;
607 * Check if this node has been populated and if not
608 * allocate a new level and populate it.
610 do {
611 ddt = READ_ONCE(*(unsigned long *)ddtp);
612 if (ddt & RISCV_IOMMU_DDTE_V) {
613 ddtp = __va(ppn_to_phys(ddt));
614 break;
617 ptr = riscv_iommu_get_pages(iommu, 0);
618 if (!ptr)
619 return NULL;
621 new = phys_to_ppn(__pa(ptr)) | RISCV_IOMMU_DDTE_V;
622 old = cmpxchg_relaxed((unsigned long *)ddtp, ddt, new);
624 if (old == ddt) {
625 ddtp = (u64 *)ptr;
626 break;
629 /* Race setting DDT detected, re-read and retry. */
630 riscv_iommu_free_pages(iommu, ptr);
631 } while (1);
635 * Grab the node that matches DDI[depth], note that when using base
636 * format the device context is 4 * 64bits, and the extended format
637 * is 8 * 64bits, hence the (3 - base_format) below.
639 ddtp += (devid & ((64 << base_format) - 1)) << (3 - base_format);
641 return (struct riscv_iommu_dc *)ddtp;
645 * This is best effort IOMMU translation shutdown flow.
646 * Disable IOMMU without waiting for hardware response.
648 static void riscv_iommu_disable(struct riscv_iommu_device *iommu)
650 riscv_iommu_writeq(iommu, RISCV_IOMMU_REG_DDTP, 0);
651 riscv_iommu_writel(iommu, RISCV_IOMMU_REG_CQCSR, 0);
652 riscv_iommu_writel(iommu, RISCV_IOMMU_REG_FQCSR, 0);
653 riscv_iommu_writel(iommu, RISCV_IOMMU_REG_PQCSR, 0);
656 #define riscv_iommu_read_ddtp(iommu) ({ \
657 u64 ddtp; \
658 riscv_iommu_readq_timeout((iommu), RISCV_IOMMU_REG_DDTP, ddtp, \
659 !(ddtp & RISCV_IOMMU_DDTP_BUSY), 10, \
660 RISCV_IOMMU_DDTP_TIMEOUT); \
661 ddtp; })
663 static int riscv_iommu_iodir_alloc(struct riscv_iommu_device *iommu)
665 u64 ddtp;
666 unsigned int mode;
668 ddtp = riscv_iommu_read_ddtp(iommu);
669 if (ddtp & RISCV_IOMMU_DDTP_BUSY)
670 return -EBUSY;
673 * It is optional for the hardware to report a fixed address for device
674 * directory root page when DDT.MODE is OFF or BARE.
676 mode = FIELD_GET(RISCV_IOMMU_DDTP_IOMMU_MODE, ddtp);
677 if (mode == RISCV_IOMMU_DDTP_IOMMU_MODE_BARE ||
678 mode == RISCV_IOMMU_DDTP_IOMMU_MODE_OFF) {
679 /* Use WARL to discover hardware fixed DDT PPN */
680 riscv_iommu_writeq(iommu, RISCV_IOMMU_REG_DDTP,
681 FIELD_PREP(RISCV_IOMMU_DDTP_IOMMU_MODE, mode));
682 ddtp = riscv_iommu_read_ddtp(iommu);
683 if (ddtp & RISCV_IOMMU_DDTP_BUSY)
684 return -EBUSY;
686 iommu->ddt_phys = ppn_to_phys(ddtp);
687 if (iommu->ddt_phys)
688 iommu->ddt_root = devm_ioremap(iommu->dev,
689 iommu->ddt_phys, PAGE_SIZE);
690 if (iommu->ddt_root)
691 memset(iommu->ddt_root, 0, PAGE_SIZE);
694 if (!iommu->ddt_root) {
695 iommu->ddt_root = riscv_iommu_get_pages(iommu, 0);
696 iommu->ddt_phys = __pa(iommu->ddt_root);
699 if (!iommu->ddt_root)
700 return -ENOMEM;
702 return 0;
706 * Discover supported DDT modes starting from requested value,
707 * configure DDTP register with accepted mode and root DDT address.
708 * Accepted iommu->ddt_mode is updated on success.
710 static int riscv_iommu_iodir_set_mode(struct riscv_iommu_device *iommu,
711 unsigned int ddtp_mode)
713 struct device *dev = iommu->dev;
714 u64 ddtp, rq_ddtp;
715 unsigned int mode, rq_mode = ddtp_mode;
716 struct riscv_iommu_command cmd;
718 ddtp = riscv_iommu_read_ddtp(iommu);
719 if (ddtp & RISCV_IOMMU_DDTP_BUSY)
720 return -EBUSY;
722 /* Disallow state transition from xLVL to xLVL. */
723 mode = FIELD_GET(RISCV_IOMMU_DDTP_IOMMU_MODE, ddtp);
724 if (mode != RISCV_IOMMU_DDTP_IOMMU_MODE_BARE &&
725 mode != RISCV_IOMMU_DDTP_IOMMU_MODE_OFF &&
726 rq_mode != RISCV_IOMMU_DDTP_IOMMU_MODE_BARE &&
727 rq_mode != RISCV_IOMMU_DDTP_IOMMU_MODE_OFF)
728 return -EINVAL;
730 do {
731 rq_ddtp = FIELD_PREP(RISCV_IOMMU_DDTP_IOMMU_MODE, rq_mode);
732 if (rq_mode > RISCV_IOMMU_DDTP_IOMMU_MODE_BARE)
733 rq_ddtp |= phys_to_ppn(iommu->ddt_phys);
735 riscv_iommu_writeq(iommu, RISCV_IOMMU_REG_DDTP, rq_ddtp);
736 ddtp = riscv_iommu_read_ddtp(iommu);
737 if (ddtp & RISCV_IOMMU_DDTP_BUSY) {
738 dev_err(dev, "timeout when setting ddtp (ddt mode: %u, read: %llx)\n",
739 rq_mode, ddtp);
740 return -EBUSY;
743 /* Verify IOMMU hardware accepts new DDTP config. */
744 mode = FIELD_GET(RISCV_IOMMU_DDTP_IOMMU_MODE, ddtp);
746 if (rq_mode == mode)
747 break;
749 /* Hardware mandatory DDTP mode has not been accepted. */
750 if (rq_mode < RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL && rq_ddtp != ddtp) {
751 dev_err(dev, "DDTP update failed hw: %llx vs %llx\n",
752 ddtp, rq_ddtp);
753 return -EINVAL;
757 * Mode field is WARL, an IOMMU may support a subset of
758 * directory table levels in which case if we tried to set
759 * an unsupported number of levels we'll readback either
760 * a valid xLVL or off/bare. If we got off/bare, try again
761 * with a smaller xLVL.
763 if (mode < RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL &&
764 rq_mode > RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL) {
765 dev_dbg(dev, "DDTP hw mode %u vs %u\n", mode, rq_mode);
766 rq_mode--;
767 continue;
771 * We tried all supported modes and IOMMU hardware failed to
772 * accept new settings, something went very wrong since off/bare
773 * and at least one xLVL must be supported.
775 dev_err(dev, "DDTP hw mode %u, failed to set %u\n",
776 mode, ddtp_mode);
777 return -EINVAL;
778 } while (1);
780 iommu->ddt_mode = mode;
781 if (mode != ddtp_mode)
782 dev_dbg(dev, "DDTP hw mode %u, requested %u\n", mode, ddtp_mode);
784 /* Invalidate device context cache */
785 riscv_iommu_cmd_iodir_inval_ddt(&cmd);
786 riscv_iommu_cmd_send(iommu, &cmd);
788 /* Invalidate address translation cache */
789 riscv_iommu_cmd_inval_vma(&cmd);
790 riscv_iommu_cmd_send(iommu, &cmd);
792 /* IOFENCE.C */
793 riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
795 return 0;
798 /* This struct contains protection domain specific IOMMU driver data. */
799 struct riscv_iommu_domain {
800 struct iommu_domain domain;
801 struct list_head bonds;
802 spinlock_t lock; /* protect bonds list updates. */
803 int pscid;
804 bool amo_enabled;
805 int numa_node;
806 unsigned int pgd_mode;
807 unsigned long *pgd_root;
810 #define iommu_domain_to_riscv(iommu_domain) \
811 container_of(iommu_domain, struct riscv_iommu_domain, domain)
813 /* Private IOMMU data for managed devices, dev_iommu_priv_* */
814 struct riscv_iommu_info {
815 struct riscv_iommu_domain *domain;
819 * Linkage between an iommu_domain and attached devices.
821 * Protection domain requiring IOATC and DevATC translation cache invalidations,
822 * should be linked to attached devices using a riscv_iommu_bond structure.
823 * Devices should be linked to the domain before first use and unlinked after
824 * the translations from the referenced protection domain can no longer be used.
825 * Blocking and identity domains are not tracked here, as the IOMMU hardware
826 * does not cache negative and/or identity (BARE mode) translations, and DevATC
827 * is disabled for those protection domains.
829 * The device pointer and IOMMU data remain stable in the bond struct after
830 * _probe_device() where it's attached to the managed IOMMU, up to the
831 * completion of the _release_device() call. The release of the bond structure
832 * is synchronized with the device release.
834 struct riscv_iommu_bond {
835 struct list_head list;
836 struct rcu_head rcu;
837 struct device *dev;
840 static int riscv_iommu_bond_link(struct riscv_iommu_domain *domain,
841 struct device *dev)
843 struct riscv_iommu_device *iommu = dev_to_iommu(dev);
844 struct riscv_iommu_bond *bond;
845 struct list_head *bonds;
847 bond = kzalloc(sizeof(*bond), GFP_KERNEL);
848 if (!bond)
849 return -ENOMEM;
850 bond->dev = dev;
853 * List of devices attached to the domain is arranged based on
854 * managed IOMMU device.
857 spin_lock(&domain->lock);
858 list_for_each(bonds, &domain->bonds)
859 if (dev_to_iommu(list_entry(bonds, struct riscv_iommu_bond, list)->dev) == iommu)
860 break;
861 list_add_rcu(&bond->list, bonds);
862 spin_unlock(&domain->lock);
864 /* Synchronize with riscv_iommu_iotlb_inval() sequence. See comment below. */
865 smp_mb();
867 return 0;
870 static void riscv_iommu_bond_unlink(struct riscv_iommu_domain *domain,
871 struct device *dev)
873 struct riscv_iommu_device *iommu = dev_to_iommu(dev);
874 struct riscv_iommu_bond *bond, *found = NULL;
875 struct riscv_iommu_command cmd;
876 int count = 0;
878 if (!domain)
879 return;
881 spin_lock(&domain->lock);
882 list_for_each_entry(bond, &domain->bonds, list) {
883 if (found && count)
884 break;
885 else if (bond->dev == dev)
886 found = bond;
887 else if (dev_to_iommu(bond->dev) == iommu)
888 count++;
890 if (found)
891 list_del_rcu(&found->list);
892 spin_unlock(&domain->lock);
893 kfree_rcu(found, rcu);
896 * If this was the last bond between this domain and the IOMMU
897 * invalidate all cached entries for domain's PSCID.
899 if (!count) {
900 riscv_iommu_cmd_inval_vma(&cmd);
901 riscv_iommu_cmd_inval_set_pscid(&cmd, domain->pscid);
902 riscv_iommu_cmd_send(iommu, &cmd);
904 riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
909 * Send IOTLB.INVAL for whole address space for ranges larger than 2MB.
910 * This limit will be replaced with range invalidations, if supported by
911 * the hardware, when RISC-V IOMMU architecture specification update for
912 * range invalidations update will be available.
914 #define RISCV_IOMMU_IOTLB_INVAL_LIMIT (2 << 20)
916 static void riscv_iommu_iotlb_inval(struct riscv_iommu_domain *domain,
917 unsigned long start, unsigned long end)
919 struct riscv_iommu_bond *bond;
920 struct riscv_iommu_device *iommu, *prev;
921 struct riscv_iommu_command cmd;
922 unsigned long len = end - start + 1;
923 unsigned long iova;
926 * For each IOMMU linked with this protection domain (via bonds->dev),
927 * an IOTLB invaliation command will be submitted and executed.
929 * Possbile race with domain attach flow is handled by sequencing
930 * bond creation - riscv_iommu_bond_link(), and device directory
931 * update - riscv_iommu_iodir_update().
933 * PTE Update / IOTLB Inval Device attach & directory update
934 * -------------------------- --------------------------
935 * update page table entries add dev to the bond list
936 * FENCE RW,RW FENCE RW,RW
937 * For all IOMMUs: (can be empty) Update FSC/PSCID
938 * FENCE IOW,IOW FENCE IOW,IOW
939 * IOTLB.INVAL IODIR.INVAL
940 * IOFENCE.C
942 * If bond list is not updated with new device, directory context will
943 * be configured with already valid page table content. If an IOMMU is
944 * linked to the protection domain it will receive invalidation
945 * requests for updated page table entries.
947 smp_mb();
949 rcu_read_lock();
951 prev = NULL;
952 list_for_each_entry_rcu(bond, &domain->bonds, list) {
953 iommu = dev_to_iommu(bond->dev);
956 * IOTLB invalidation request can be safely omitted if already sent
957 * to the IOMMU for the same PSCID, and with domain->bonds list
958 * arranged based on the device's IOMMU, it's sufficient to check
959 * last device the invalidation was sent to.
961 if (iommu == prev)
962 continue;
964 riscv_iommu_cmd_inval_vma(&cmd);
965 riscv_iommu_cmd_inval_set_pscid(&cmd, domain->pscid);
966 if (len && len < RISCV_IOMMU_IOTLB_INVAL_LIMIT) {
967 for (iova = start; iova < end; iova += PAGE_SIZE) {
968 riscv_iommu_cmd_inval_set_addr(&cmd, iova);
969 riscv_iommu_cmd_send(iommu, &cmd);
971 } else {
972 riscv_iommu_cmd_send(iommu, &cmd);
974 prev = iommu;
977 prev = NULL;
978 list_for_each_entry_rcu(bond, &domain->bonds, list) {
979 iommu = dev_to_iommu(bond->dev);
980 if (iommu == prev)
981 continue;
983 riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
984 prev = iommu;
986 rcu_read_unlock();
989 #define RISCV_IOMMU_FSC_BARE 0
992 * Update IODIR for the device.
994 * During the execution of riscv_iommu_probe_device(), IODIR entries are
995 * allocated for the device's identifiers. Device context invalidation
996 * becomes necessary only if one of the updated entries was previously
997 * marked as valid, given that invalid device context entries are not
998 * cached by the IOMMU hardware.
999 * In this implementation, updating a valid device context while the
1000 * device is not quiesced might be disruptive, potentially causing
1001 * interim translation faults.
1003 static void riscv_iommu_iodir_update(struct riscv_iommu_device *iommu,
1004 struct device *dev, u64 fsc, u64 ta)
1006 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1007 struct riscv_iommu_dc *dc;
1008 struct riscv_iommu_command cmd;
1009 bool sync_required = false;
1010 u64 tc;
1011 int i;
1013 for (i = 0; i < fwspec->num_ids; i++) {
1014 dc = riscv_iommu_get_dc(iommu, fwspec->ids[i]);
1015 tc = READ_ONCE(dc->tc);
1016 if (!(tc & RISCV_IOMMU_DC_TC_V))
1017 continue;
1019 WRITE_ONCE(dc->tc, tc & ~RISCV_IOMMU_DC_TC_V);
1021 /* Invalidate device context cached values */
1022 riscv_iommu_cmd_iodir_inval_ddt(&cmd);
1023 riscv_iommu_cmd_iodir_set_did(&cmd, fwspec->ids[i]);
1024 riscv_iommu_cmd_send(iommu, &cmd);
1025 sync_required = true;
1028 if (sync_required)
1029 riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
1032 * For device context with DC_TC_PDTV = 0, translation attributes valid bit
1033 * is stored as DC_TC_V bit (both sharing the same location at BIT(0)).
1035 for (i = 0; i < fwspec->num_ids; i++) {
1036 dc = riscv_iommu_get_dc(iommu, fwspec->ids[i]);
1037 tc = READ_ONCE(dc->tc);
1038 tc |= ta & RISCV_IOMMU_DC_TC_V;
1040 WRITE_ONCE(dc->fsc, fsc);
1041 WRITE_ONCE(dc->ta, ta & RISCV_IOMMU_PC_TA_PSCID);
1042 /* Update device context, write TC.V as the last step. */
1043 dma_wmb();
1044 WRITE_ONCE(dc->tc, tc);
1046 /* Invalidate device context after update */
1047 riscv_iommu_cmd_iodir_inval_ddt(&cmd);
1048 riscv_iommu_cmd_iodir_set_did(&cmd, fwspec->ids[i]);
1049 riscv_iommu_cmd_send(iommu, &cmd);
1052 riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
1056 * IOVA page translation tree management.
1059 static void riscv_iommu_iotlb_flush_all(struct iommu_domain *iommu_domain)
1061 struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
1063 riscv_iommu_iotlb_inval(domain, 0, ULONG_MAX);
1066 static void riscv_iommu_iotlb_sync(struct iommu_domain *iommu_domain,
1067 struct iommu_iotlb_gather *gather)
1069 struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
1071 riscv_iommu_iotlb_inval(domain, gather->start, gather->end);
1074 #define PT_SHIFT (PAGE_SHIFT - ilog2(sizeof(pte_t)))
1076 #define _io_pte_present(pte) ((pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE))
1077 #define _io_pte_leaf(pte) ((pte) & _PAGE_LEAF)
1078 #define _io_pte_none(pte) ((pte) == 0)
1079 #define _io_pte_entry(pn, prot) ((_PAGE_PFN_MASK & ((pn) << _PAGE_PFN_SHIFT)) | (prot))
1081 static void riscv_iommu_pte_free(struct riscv_iommu_domain *domain,
1082 unsigned long pte, struct list_head *freelist)
1084 unsigned long *ptr;
1085 int i;
1087 if (!_io_pte_present(pte) || _io_pte_leaf(pte))
1088 return;
1090 ptr = (unsigned long *)pfn_to_virt(__page_val_to_pfn(pte));
1092 /* Recursively free all sub page table pages */
1093 for (i = 0; i < PTRS_PER_PTE; i++) {
1094 pte = READ_ONCE(ptr[i]);
1095 if (!_io_pte_none(pte) && cmpxchg_relaxed(ptr + i, pte, 0) == pte)
1096 riscv_iommu_pte_free(domain, pte, freelist);
1099 if (freelist)
1100 list_add_tail(&virt_to_page(ptr)->lru, freelist);
1101 else
1102 iommu_free_page(ptr);
1105 static unsigned long *riscv_iommu_pte_alloc(struct riscv_iommu_domain *domain,
1106 unsigned long iova, size_t pgsize,
1107 gfp_t gfp)
1109 unsigned long *ptr = domain->pgd_root;
1110 unsigned long pte, old;
1111 int level = domain->pgd_mode - RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39 + 2;
1112 void *addr;
1114 do {
1115 const int shift = PAGE_SHIFT + PT_SHIFT * level;
1117 ptr += ((iova >> shift) & (PTRS_PER_PTE - 1));
1119 * Note: returned entry might be a non-leaf if there was
1120 * existing mapping with smaller granularity. Up to the caller
1121 * to replace and invalidate.
1123 if (((size_t)1 << shift) == pgsize)
1124 return ptr;
1125 pte_retry:
1126 pte = READ_ONCE(*ptr);
1128 * This is very likely incorrect as we should not be adding
1129 * new mapping with smaller granularity on top
1130 * of existing 2M/1G mapping. Fail.
1132 if (_io_pte_present(pte) && _io_pte_leaf(pte))
1133 return NULL;
1135 * Non-leaf entry is missing, allocate and try to add to the
1136 * page table. This might race with other mappings, retry.
1138 if (_io_pte_none(pte)) {
1139 addr = iommu_alloc_page_node(domain->numa_node, gfp);
1140 if (!addr)
1141 return NULL;
1142 old = pte;
1143 pte = _io_pte_entry(virt_to_pfn(addr), _PAGE_TABLE);
1144 if (cmpxchg_relaxed(ptr, old, pte) != old) {
1145 iommu_free_page(addr);
1146 goto pte_retry;
1149 ptr = (unsigned long *)pfn_to_virt(__page_val_to_pfn(pte));
1150 } while (level-- > 0);
1152 return NULL;
1155 static unsigned long *riscv_iommu_pte_fetch(struct riscv_iommu_domain *domain,
1156 unsigned long iova, size_t *pte_pgsize)
1158 unsigned long *ptr = domain->pgd_root;
1159 unsigned long pte;
1160 int level = domain->pgd_mode - RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39 + 2;
1162 do {
1163 const int shift = PAGE_SHIFT + PT_SHIFT * level;
1165 ptr += ((iova >> shift) & (PTRS_PER_PTE - 1));
1166 pte = READ_ONCE(*ptr);
1167 if (_io_pte_present(pte) && _io_pte_leaf(pte)) {
1168 *pte_pgsize = (size_t)1 << shift;
1169 return ptr;
1171 if (_io_pte_none(pte))
1172 return NULL;
1173 ptr = (unsigned long *)pfn_to_virt(__page_val_to_pfn(pte));
1174 } while (level-- > 0);
1176 return NULL;
1179 static int riscv_iommu_map_pages(struct iommu_domain *iommu_domain,
1180 unsigned long iova, phys_addr_t phys,
1181 size_t pgsize, size_t pgcount, int prot,
1182 gfp_t gfp, size_t *mapped)
1184 struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
1185 size_t size = 0;
1186 unsigned long *ptr;
1187 unsigned long pte, old, pte_prot;
1188 int rc = 0;
1189 LIST_HEAD(freelist);
1191 if (!(prot & IOMMU_WRITE))
1192 pte_prot = _PAGE_BASE | _PAGE_READ;
1193 else if (domain->amo_enabled)
1194 pte_prot = _PAGE_BASE | _PAGE_READ | _PAGE_WRITE;
1195 else
1196 pte_prot = _PAGE_BASE | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY;
1198 while (pgcount) {
1199 ptr = riscv_iommu_pte_alloc(domain, iova, pgsize, gfp);
1200 if (!ptr) {
1201 rc = -ENOMEM;
1202 break;
1205 old = READ_ONCE(*ptr);
1206 pte = _io_pte_entry(phys_to_pfn(phys), pte_prot);
1207 if (cmpxchg_relaxed(ptr, old, pte) != old)
1208 continue;
1210 riscv_iommu_pte_free(domain, old, &freelist);
1212 size += pgsize;
1213 iova += pgsize;
1214 phys += pgsize;
1215 --pgcount;
1218 *mapped = size;
1220 if (!list_empty(&freelist)) {
1222 * In 1.0 spec version, the smallest scope we can use to
1223 * invalidate all levels of page table (i.e. leaf and non-leaf)
1224 * is an invalidate-all-PSCID IOTINVAL.VMA with AV=0.
1225 * This will be updated with hardware support for
1226 * capability.NL (non-leaf) IOTINVAL command.
1228 riscv_iommu_iotlb_inval(domain, 0, ULONG_MAX);
1229 iommu_put_pages_list(&freelist);
1232 return rc;
1235 static size_t riscv_iommu_unmap_pages(struct iommu_domain *iommu_domain,
1236 unsigned long iova, size_t pgsize,
1237 size_t pgcount,
1238 struct iommu_iotlb_gather *gather)
1240 struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
1241 size_t size = pgcount << __ffs(pgsize);
1242 unsigned long *ptr, old;
1243 size_t unmapped = 0;
1244 size_t pte_size;
1246 while (unmapped < size) {
1247 ptr = riscv_iommu_pte_fetch(domain, iova, &pte_size);
1248 if (!ptr)
1249 return unmapped;
1251 /* partial unmap is not allowed, fail. */
1252 if (iova & (pte_size - 1))
1253 return unmapped;
1255 old = READ_ONCE(*ptr);
1256 if (cmpxchg_relaxed(ptr, old, 0) != old)
1257 continue;
1259 iommu_iotlb_gather_add_page(&domain->domain, gather, iova,
1260 pte_size);
1262 iova += pte_size;
1263 unmapped += pte_size;
1266 return unmapped;
1269 static phys_addr_t riscv_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1270 dma_addr_t iova)
1272 struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
1273 unsigned long pte_size;
1274 unsigned long *ptr;
1276 ptr = riscv_iommu_pte_fetch(domain, iova, &pte_size);
1277 if (_io_pte_none(*ptr) || !_io_pte_present(*ptr))
1278 return 0;
1280 return pfn_to_phys(__page_val_to_pfn(*ptr)) | (iova & (pte_size - 1));
1283 static void riscv_iommu_free_paging_domain(struct iommu_domain *iommu_domain)
1285 struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
1286 const unsigned long pfn = virt_to_pfn(domain->pgd_root);
1288 WARN_ON(!list_empty(&domain->bonds));
1290 if ((int)domain->pscid > 0)
1291 ida_free(&riscv_iommu_pscids, domain->pscid);
1293 riscv_iommu_pte_free(domain, _io_pte_entry(pfn, _PAGE_TABLE), NULL);
1294 kfree(domain);
1297 static bool riscv_iommu_pt_supported(struct riscv_iommu_device *iommu, int pgd_mode)
1299 switch (pgd_mode) {
1300 case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39:
1301 return iommu->caps & RISCV_IOMMU_CAPABILITIES_SV39;
1303 case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV48:
1304 return iommu->caps & RISCV_IOMMU_CAPABILITIES_SV48;
1306 case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV57:
1307 return iommu->caps & RISCV_IOMMU_CAPABILITIES_SV57;
1309 return false;
1312 static int riscv_iommu_attach_paging_domain(struct iommu_domain *iommu_domain,
1313 struct device *dev)
1315 struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
1316 struct riscv_iommu_device *iommu = dev_to_iommu(dev);
1317 struct riscv_iommu_info *info = dev_iommu_priv_get(dev);
1318 u64 fsc, ta;
1320 if (!riscv_iommu_pt_supported(iommu, domain->pgd_mode))
1321 return -ENODEV;
1323 fsc = FIELD_PREP(RISCV_IOMMU_PC_FSC_MODE, domain->pgd_mode) |
1324 FIELD_PREP(RISCV_IOMMU_PC_FSC_PPN, virt_to_pfn(domain->pgd_root));
1325 ta = FIELD_PREP(RISCV_IOMMU_PC_TA_PSCID, domain->pscid) |
1326 RISCV_IOMMU_PC_TA_V;
1328 if (riscv_iommu_bond_link(domain, dev))
1329 return -ENOMEM;
1331 riscv_iommu_iodir_update(iommu, dev, fsc, ta);
1332 riscv_iommu_bond_unlink(info->domain, dev);
1333 info->domain = domain;
1335 return 0;
1338 static const struct iommu_domain_ops riscv_iommu_paging_domain_ops = {
1339 .attach_dev = riscv_iommu_attach_paging_domain,
1340 .free = riscv_iommu_free_paging_domain,
1341 .map_pages = riscv_iommu_map_pages,
1342 .unmap_pages = riscv_iommu_unmap_pages,
1343 .iova_to_phys = riscv_iommu_iova_to_phys,
1344 .iotlb_sync = riscv_iommu_iotlb_sync,
1345 .flush_iotlb_all = riscv_iommu_iotlb_flush_all,
1348 static struct iommu_domain *riscv_iommu_alloc_paging_domain(struct device *dev)
1350 struct riscv_iommu_domain *domain;
1351 struct riscv_iommu_device *iommu;
1352 unsigned int pgd_mode;
1353 dma_addr_t va_mask;
1354 int va_bits;
1356 iommu = dev_to_iommu(dev);
1357 if (iommu->caps & RISCV_IOMMU_CAPABILITIES_SV57) {
1358 pgd_mode = RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV57;
1359 va_bits = 57;
1360 } else if (iommu->caps & RISCV_IOMMU_CAPABILITIES_SV48) {
1361 pgd_mode = RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV48;
1362 va_bits = 48;
1363 } else if (iommu->caps & RISCV_IOMMU_CAPABILITIES_SV39) {
1364 pgd_mode = RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39;
1365 va_bits = 39;
1366 } else {
1367 dev_err(dev, "cannot find supported page table mode\n");
1368 return ERR_PTR(-ENODEV);
1371 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1372 if (!domain)
1373 return ERR_PTR(-ENOMEM);
1375 INIT_LIST_HEAD_RCU(&domain->bonds);
1376 spin_lock_init(&domain->lock);
1377 domain->numa_node = dev_to_node(iommu->dev);
1378 domain->amo_enabled = !!(iommu->caps & RISCV_IOMMU_CAPABILITIES_AMO_HWAD);
1379 domain->pgd_mode = pgd_mode;
1380 domain->pgd_root = iommu_alloc_page_node(domain->numa_node,
1381 GFP_KERNEL_ACCOUNT);
1382 if (!domain->pgd_root) {
1383 kfree(domain);
1384 return ERR_PTR(-ENOMEM);
1387 domain->pscid = ida_alloc_range(&riscv_iommu_pscids, 1,
1388 RISCV_IOMMU_MAX_PSCID, GFP_KERNEL);
1389 if (domain->pscid < 0) {
1390 iommu_free_page(domain->pgd_root);
1391 kfree(domain);
1392 return ERR_PTR(-ENOMEM);
1396 * Note: RISC-V Privilege spec mandates that virtual addresses
1397 * need to be sign-extended, so if (VA_BITS - 1) is set, all
1398 * bits >= VA_BITS need to also be set or else we'll get a
1399 * page fault. However the code that creates the mappings
1400 * above us (e.g. iommu_dma_alloc_iova()) won't do that for us
1401 * for now, so we'll end up with invalid virtual addresses
1402 * to map. As a workaround until we get this sorted out
1403 * limit the available virtual addresses to VA_BITS - 1.
1405 va_mask = DMA_BIT_MASK(va_bits - 1);
1407 domain->domain.geometry.aperture_start = 0;
1408 domain->domain.geometry.aperture_end = va_mask;
1409 domain->domain.geometry.force_aperture = true;
1410 domain->domain.pgsize_bitmap = va_mask & (SZ_4K | SZ_2M | SZ_1G | SZ_512G);
1412 domain->domain.ops = &riscv_iommu_paging_domain_ops;
1414 return &domain->domain;
1417 static int riscv_iommu_attach_blocking_domain(struct iommu_domain *iommu_domain,
1418 struct device *dev)
1420 struct riscv_iommu_device *iommu = dev_to_iommu(dev);
1421 struct riscv_iommu_info *info = dev_iommu_priv_get(dev);
1423 /* Make device context invalid, translation requests will fault w/ #258 */
1424 riscv_iommu_iodir_update(iommu, dev, RISCV_IOMMU_FSC_BARE, 0);
1425 riscv_iommu_bond_unlink(info->domain, dev);
1426 info->domain = NULL;
1428 return 0;
1431 static struct iommu_domain riscv_iommu_blocking_domain = {
1432 .type = IOMMU_DOMAIN_BLOCKED,
1433 .ops = &(const struct iommu_domain_ops) {
1434 .attach_dev = riscv_iommu_attach_blocking_domain,
1438 static int riscv_iommu_attach_identity_domain(struct iommu_domain *iommu_domain,
1439 struct device *dev)
1441 struct riscv_iommu_device *iommu = dev_to_iommu(dev);
1442 struct riscv_iommu_info *info = dev_iommu_priv_get(dev);
1444 riscv_iommu_iodir_update(iommu, dev, RISCV_IOMMU_FSC_BARE, RISCV_IOMMU_PC_TA_V);
1445 riscv_iommu_bond_unlink(info->domain, dev);
1446 info->domain = NULL;
1448 return 0;
1451 static struct iommu_domain riscv_iommu_identity_domain = {
1452 .type = IOMMU_DOMAIN_IDENTITY,
1453 .ops = &(const struct iommu_domain_ops) {
1454 .attach_dev = riscv_iommu_attach_identity_domain,
1458 static struct iommu_group *riscv_iommu_device_group(struct device *dev)
1460 if (dev_is_pci(dev))
1461 return pci_device_group(dev);
1462 return generic_device_group(dev);
1465 static int riscv_iommu_of_xlate(struct device *dev, const struct of_phandle_args *args)
1467 return iommu_fwspec_add_ids(dev, args->args, 1);
1470 static struct iommu_device *riscv_iommu_probe_device(struct device *dev)
1472 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1473 struct riscv_iommu_device *iommu;
1474 struct riscv_iommu_info *info;
1475 struct riscv_iommu_dc *dc;
1476 u64 tc;
1477 int i;
1479 if (!fwspec || !fwspec->iommu_fwnode->dev || !fwspec->num_ids)
1480 return ERR_PTR(-ENODEV);
1482 iommu = dev_get_drvdata(fwspec->iommu_fwnode->dev);
1483 if (!iommu)
1484 return ERR_PTR(-ENODEV);
1487 * IOMMU hardware operating in fail-over BARE mode will provide
1488 * identity translation for all connected devices anyway...
1490 if (iommu->ddt_mode <= RISCV_IOMMU_DDTP_IOMMU_MODE_BARE)
1491 return ERR_PTR(-ENODEV);
1493 info = kzalloc(sizeof(*info), GFP_KERNEL);
1494 if (!info)
1495 return ERR_PTR(-ENOMEM);
1497 * Allocate and pre-configure device context entries in
1498 * the device directory. Do not mark the context valid yet.
1500 tc = 0;
1501 if (iommu->caps & RISCV_IOMMU_CAPABILITIES_AMO_HWAD)
1502 tc |= RISCV_IOMMU_DC_TC_SADE;
1503 for (i = 0; i < fwspec->num_ids; i++) {
1504 dc = riscv_iommu_get_dc(iommu, fwspec->ids[i]);
1505 if (!dc) {
1506 kfree(info);
1507 return ERR_PTR(-ENODEV);
1509 if (READ_ONCE(dc->tc) & RISCV_IOMMU_DC_TC_V)
1510 dev_warn(dev, "already attached to IOMMU device directory\n");
1511 WRITE_ONCE(dc->tc, tc);
1514 dev_iommu_priv_set(dev, info);
1516 return &iommu->iommu;
1519 static void riscv_iommu_release_device(struct device *dev)
1521 struct riscv_iommu_info *info = dev_iommu_priv_get(dev);
1523 kfree_rcu_mightsleep(info);
1526 static const struct iommu_ops riscv_iommu_ops = {
1527 .pgsize_bitmap = SZ_4K,
1528 .of_xlate = riscv_iommu_of_xlate,
1529 .identity_domain = &riscv_iommu_identity_domain,
1530 .blocked_domain = &riscv_iommu_blocking_domain,
1531 .release_domain = &riscv_iommu_blocking_domain,
1532 .domain_alloc_paging = riscv_iommu_alloc_paging_domain,
1533 .device_group = riscv_iommu_device_group,
1534 .probe_device = riscv_iommu_probe_device,
1535 .release_device = riscv_iommu_release_device,
1538 static int riscv_iommu_init_check(struct riscv_iommu_device *iommu)
1540 u64 ddtp;
1543 * Make sure the IOMMU is switched off or in pass-through mode during
1544 * regular boot flow and disable translation when we boot into a kexec
1545 * kernel and the previous kernel left them enabled.
1547 ddtp = riscv_iommu_readq(iommu, RISCV_IOMMU_REG_DDTP);
1548 if (ddtp & RISCV_IOMMU_DDTP_BUSY)
1549 return -EBUSY;
1551 if (FIELD_GET(RISCV_IOMMU_DDTP_IOMMU_MODE, ddtp) >
1552 RISCV_IOMMU_DDTP_IOMMU_MODE_BARE) {
1553 if (!is_kdump_kernel())
1554 return -EBUSY;
1555 riscv_iommu_disable(iommu);
1558 /* Configure accesses to in-memory data structures for CPU-native byte order. */
1559 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) !=
1560 !!(iommu->fctl & RISCV_IOMMU_FCTL_BE)) {
1561 if (!(iommu->caps & RISCV_IOMMU_CAPABILITIES_END))
1562 return -EINVAL;
1563 riscv_iommu_writel(iommu, RISCV_IOMMU_REG_FCTL,
1564 iommu->fctl ^ RISCV_IOMMU_FCTL_BE);
1565 iommu->fctl = riscv_iommu_readl(iommu, RISCV_IOMMU_REG_FCTL);
1566 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) !=
1567 !!(iommu->fctl & RISCV_IOMMU_FCTL_BE))
1568 return -EINVAL;
1572 * Distribute interrupt vectors, always use first vector for CIV.
1573 * At least one interrupt is required. Read back and verify.
1575 if (!iommu->irqs_count)
1576 return -EINVAL;
1578 iommu->icvec = FIELD_PREP(RISCV_IOMMU_ICVEC_FIV, 1 % iommu->irqs_count) |
1579 FIELD_PREP(RISCV_IOMMU_ICVEC_PIV, 2 % iommu->irqs_count) |
1580 FIELD_PREP(RISCV_IOMMU_ICVEC_PMIV, 3 % iommu->irqs_count);
1581 riscv_iommu_writeq(iommu, RISCV_IOMMU_REG_ICVEC, iommu->icvec);
1582 iommu->icvec = riscv_iommu_readq(iommu, RISCV_IOMMU_REG_ICVEC);
1583 if (max(max(FIELD_GET(RISCV_IOMMU_ICVEC_CIV, iommu->icvec),
1584 FIELD_GET(RISCV_IOMMU_ICVEC_FIV, iommu->icvec)),
1585 max(FIELD_GET(RISCV_IOMMU_ICVEC_PIV, iommu->icvec),
1586 FIELD_GET(RISCV_IOMMU_ICVEC_PMIV, iommu->icvec))) >= iommu->irqs_count)
1587 return -EINVAL;
1589 return 0;
1592 void riscv_iommu_remove(struct riscv_iommu_device *iommu)
1594 iommu_device_unregister(&iommu->iommu);
1595 iommu_device_sysfs_remove(&iommu->iommu);
1596 riscv_iommu_iodir_set_mode(iommu, RISCV_IOMMU_DDTP_IOMMU_MODE_OFF);
1597 riscv_iommu_queue_disable(&iommu->cmdq);
1598 riscv_iommu_queue_disable(&iommu->fltq);
1601 int riscv_iommu_init(struct riscv_iommu_device *iommu)
1603 int rc;
1605 RISCV_IOMMU_QUEUE_INIT(&iommu->cmdq, CQ);
1606 RISCV_IOMMU_QUEUE_INIT(&iommu->fltq, FQ);
1608 rc = riscv_iommu_init_check(iommu);
1609 if (rc)
1610 return dev_err_probe(iommu->dev, rc, "unexpected device state\n");
1612 rc = riscv_iommu_iodir_alloc(iommu);
1613 if (rc)
1614 return rc;
1616 rc = riscv_iommu_queue_alloc(iommu, &iommu->cmdq,
1617 sizeof(struct riscv_iommu_command));
1618 if (rc)
1619 return rc;
1621 rc = riscv_iommu_queue_alloc(iommu, &iommu->fltq,
1622 sizeof(struct riscv_iommu_fq_record));
1623 if (rc)
1624 return rc;
1626 rc = riscv_iommu_queue_enable(iommu, &iommu->cmdq, riscv_iommu_cmdq_process);
1627 if (rc)
1628 return rc;
1630 rc = riscv_iommu_queue_enable(iommu, &iommu->fltq, riscv_iommu_fltq_process);
1631 if (rc)
1632 goto err_queue_disable;
1634 rc = riscv_iommu_iodir_set_mode(iommu, RISCV_IOMMU_DDTP_IOMMU_MODE_MAX);
1635 if (rc)
1636 goto err_queue_disable;
1638 rc = iommu_device_sysfs_add(&iommu->iommu, NULL, NULL, "riscv-iommu@%s",
1639 dev_name(iommu->dev));
1640 if (rc) {
1641 dev_err_probe(iommu->dev, rc, "cannot register sysfs interface\n");
1642 goto err_iodir_off;
1645 rc = iommu_device_register(&iommu->iommu, &riscv_iommu_ops, iommu->dev);
1646 if (rc) {
1647 dev_err_probe(iommu->dev, rc, "cannot register iommu interface\n");
1648 goto err_remove_sysfs;
1651 return 0;
1653 err_remove_sysfs:
1654 iommu_device_sysfs_remove(&iommu->iommu);
1655 err_iodir_off:
1656 riscv_iommu_iodir_set_mode(iommu, RISCV_IOMMU_DDTP_IOMMU_MODE_OFF);
1657 err_queue_disable:
1658 riscv_iommu_queue_disable(&iommu->fltq);
1659 riscv_iommu_queue_disable(&iommu->cmdq);
1660 return rc;