drm: add modifiers for MediaTek tiled formats
[drm/drm-misc.git] / drivers / irqchip / irq-mips-gic.c
blobbca8053864b2ce4f8cffd2e0538a05f781b8ed1c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2008 Ralf Baechle (ralf@linux-mips.org)
7 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
8 */
10 #define pr_fmt(fmt) "irq-mips-gic: " fmt
12 #include <linux/bitfield.h>
13 #include <linux/bitmap.h>
14 #include <linux/clocksource.h>
15 #include <linux/cpuhotplug.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/irqchip.h>
20 #include <linux/irqdomain.h>
21 #include <linux/of_address.h>
22 #include <linux/percpu.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
26 #include <asm/mips-cps.h>
27 #include <asm/setup.h>
28 #include <asm/traps.h>
30 #include <dt-bindings/interrupt-controller/mips-gic.h>
32 #define GIC_MAX_INTRS 256
33 #define GIC_MAX_LONGS BITS_TO_LONGS(GIC_MAX_INTRS)
35 /* Add 2 to convert GIC CPU pin to core interrupt */
36 #define GIC_CPU_PIN_OFFSET 2
38 /* Mapped interrupt to pin X, then GIC will generate the vector (X+1). */
39 #define GIC_PIN_TO_VEC_OFFSET 1
41 /* Convert between local/shared IRQ number and GIC HW IRQ number. */
42 #define GIC_LOCAL_HWIRQ_BASE 0
43 #define GIC_LOCAL_TO_HWIRQ(x) (GIC_LOCAL_HWIRQ_BASE + (x))
44 #define GIC_HWIRQ_TO_LOCAL(x) ((x) - GIC_LOCAL_HWIRQ_BASE)
45 #define GIC_SHARED_HWIRQ_BASE GIC_NUM_LOCAL_INTRS
46 #define GIC_SHARED_TO_HWIRQ(x) (GIC_SHARED_HWIRQ_BASE + (x))
47 #define GIC_HWIRQ_TO_SHARED(x) ((x) - GIC_SHARED_HWIRQ_BASE)
49 void __iomem *mips_gic_base;
51 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[GIC_MAX_LONGS], pcpu_masks);
53 static DEFINE_RAW_SPINLOCK(gic_lock);
54 static struct irq_domain *gic_irq_domain;
55 static int gic_shared_intrs;
56 static unsigned int gic_cpu_pin;
57 static struct irq_chip gic_level_irq_controller, gic_edge_irq_controller;
59 #ifdef CONFIG_GENERIC_IRQ_IPI
60 static DECLARE_BITMAP(ipi_resrv, GIC_MAX_INTRS);
61 static DECLARE_BITMAP(ipi_available, GIC_MAX_INTRS);
62 #endif /* CONFIG_GENERIC_IRQ_IPI */
64 static struct gic_all_vpes_chip_data {
65 u32 map;
66 bool mask;
67 } gic_all_vpes_chip_data[GIC_NUM_LOCAL_INTRS];
69 static int __gic_with_next_online_cpu(int prev)
71 unsigned int cpu;
73 /* Discover the next online CPU */
74 cpu = cpumask_next(prev, cpu_online_mask);
76 /* If there isn't one, we're done */
77 if (cpu >= nr_cpu_ids)
78 return cpu;
81 * Move the access lock to the next CPU's GIC local register block.
83 * Set GIC_VL_OTHER. Since the caller holds gic_lock nothing can
84 * clobber the written value.
86 write_gic_vl_other(mips_cm_vp_id(cpu));
88 return cpu;
91 static inline void gic_unlock_cluster(void)
93 if (mips_cps_multicluster_cpus())
94 mips_cm_unlock_other();
97 /**
98 * for_each_online_cpu_gic() - Iterate over online CPUs, access local registers
99 * @cpu: An integer variable to hold the current CPU number
100 * @gic_lock: A pointer to raw spin lock used as a guard
102 * Iterate over online CPUs & configure the other/redirect register region to
103 * access each CPUs GIC local register block, which can be accessed from the
104 * loop body using read_gic_vo_*() or write_gic_vo_*() accessor functions or
105 * their derivatives.
107 #define for_each_online_cpu_gic(cpu, gic_lock) \
108 guard(raw_spinlock_irqsave)(gic_lock); \
109 for ((cpu) = __gic_with_next_online_cpu(-1); \
110 (cpu) < nr_cpu_ids; \
111 gic_unlock_cluster(), \
112 (cpu) = __gic_with_next_online_cpu(cpu))
115 * gic_irq_lock_cluster() - Lock redirect block access to IRQ's cluster
116 * @d: struct irq_data corresponding to the interrupt we're interested in
118 * Locks redirect register block access to the global register block of the GIC
119 * within the remote cluster that the IRQ corresponding to @d is affine to,
120 * returning true when this redirect block setup & locking has been performed.
122 * If @d is affine to the local cluster then no locking is performed and this
123 * function will return false, indicating to the caller that it should access
124 * the local clusters registers without the overhead of indirection through the
125 * redirect block.
127 * In summary, if this function returns true then the caller should access GIC
128 * registers using redirect register block accessors & then call
129 * mips_cm_unlock_other() when done. If this function returns false then the
130 * caller should trivially access GIC registers in the local cluster.
132 * Returns true if locking performed, else false.
134 static bool gic_irq_lock_cluster(struct irq_data *d)
136 unsigned int cpu, cl;
138 cpu = cpumask_first(irq_data_get_effective_affinity_mask(d));
139 BUG_ON(cpu >= NR_CPUS);
141 cl = cpu_cluster(&cpu_data[cpu]);
142 if (cl == cpu_cluster(&current_cpu_data))
143 return false;
144 if (mips_cps_numcores(cl) == 0)
145 return false;
146 mips_cm_lock_other(cl, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
147 return true;
150 static void gic_clear_pcpu_masks(unsigned int intr)
152 unsigned int i;
154 /* Clear the interrupt's bit in all pcpu_masks */
155 for_each_possible_cpu(i)
156 clear_bit(intr, per_cpu_ptr(pcpu_masks, i));
159 static bool gic_local_irq_is_routable(int intr)
161 u32 vpe_ctl;
163 /* All local interrupts are routable in EIC mode. */
164 if (cpu_has_veic)
165 return true;
167 vpe_ctl = read_gic_vl_ctl();
168 switch (intr) {
169 case GIC_LOCAL_INT_TIMER:
170 return vpe_ctl & GIC_VX_CTL_TIMER_ROUTABLE;
171 case GIC_LOCAL_INT_PERFCTR:
172 return vpe_ctl & GIC_VX_CTL_PERFCNT_ROUTABLE;
173 case GIC_LOCAL_INT_FDC:
174 return vpe_ctl & GIC_VX_CTL_FDC_ROUTABLE;
175 case GIC_LOCAL_INT_SWINT0:
176 case GIC_LOCAL_INT_SWINT1:
177 return vpe_ctl & GIC_VX_CTL_SWINT_ROUTABLE;
178 default:
179 return true;
183 static void gic_bind_eic_interrupt(int irq, int set)
185 /* Convert irq vector # to hw int # */
186 irq -= GIC_PIN_TO_VEC_OFFSET;
188 /* Set irq to use shadow set */
189 write_gic_vl_eic_shadow_set(irq, set);
192 static void gic_send_ipi(struct irq_data *d, unsigned int cpu)
194 irq_hw_number_t hwirq = GIC_HWIRQ_TO_SHARED(irqd_to_hwirq(d));
196 if (gic_irq_lock_cluster(d)) {
197 write_gic_redir_wedge(GIC_WEDGE_RW | hwirq);
198 mips_cm_unlock_other();
199 } else {
200 write_gic_wedge(GIC_WEDGE_RW | hwirq);
204 int gic_get_c0_compare_int(void)
206 if (!gic_local_irq_is_routable(GIC_LOCAL_INT_TIMER))
207 return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
208 return irq_create_mapping(gic_irq_domain,
209 GIC_LOCAL_TO_HWIRQ(GIC_LOCAL_INT_TIMER));
212 int gic_get_c0_perfcount_int(void)
214 if (!gic_local_irq_is_routable(GIC_LOCAL_INT_PERFCTR)) {
215 /* Is the performance counter shared with the timer? */
216 if (cp0_perfcount_irq < 0)
217 return -1;
218 return MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
220 return irq_create_mapping(gic_irq_domain,
221 GIC_LOCAL_TO_HWIRQ(GIC_LOCAL_INT_PERFCTR));
224 int gic_get_c0_fdc_int(void)
226 if (!gic_local_irq_is_routable(GIC_LOCAL_INT_FDC)) {
227 /* Is the FDC IRQ even present? */
228 if (cp0_fdc_irq < 0)
229 return -1;
230 return MIPS_CPU_IRQ_BASE + cp0_fdc_irq;
233 return irq_create_mapping(gic_irq_domain,
234 GIC_LOCAL_TO_HWIRQ(GIC_LOCAL_INT_FDC));
237 static void gic_handle_shared_int(bool chained)
239 unsigned int intr;
240 unsigned long *pcpu_mask;
241 DECLARE_BITMAP(pending, GIC_MAX_INTRS);
243 /* Get per-cpu bitmaps */
244 pcpu_mask = this_cpu_ptr(pcpu_masks);
246 if (mips_cm_is64)
247 __ioread64_copy(pending, addr_gic_pend(),
248 DIV_ROUND_UP(gic_shared_intrs, 64));
249 else
250 __ioread32_copy(pending, addr_gic_pend(),
251 DIV_ROUND_UP(gic_shared_intrs, 32));
253 bitmap_and(pending, pending, pcpu_mask, gic_shared_intrs);
255 for_each_set_bit(intr, pending, gic_shared_intrs) {
256 if (chained)
257 generic_handle_domain_irq(gic_irq_domain,
258 GIC_SHARED_TO_HWIRQ(intr));
259 else
260 do_domain_IRQ(gic_irq_domain,
261 GIC_SHARED_TO_HWIRQ(intr));
265 static void gic_mask_irq(struct irq_data *d)
267 unsigned int intr = GIC_HWIRQ_TO_SHARED(d->hwirq);
269 if (gic_irq_lock_cluster(d)) {
270 write_gic_redir_rmask(intr);
271 mips_cm_unlock_other();
272 } else {
273 write_gic_rmask(intr);
276 gic_clear_pcpu_masks(intr);
279 static void gic_unmask_irq(struct irq_data *d)
281 unsigned int intr = GIC_HWIRQ_TO_SHARED(d->hwirq);
282 unsigned int cpu;
284 if (gic_irq_lock_cluster(d)) {
285 write_gic_redir_smask(intr);
286 mips_cm_unlock_other();
287 } else {
288 write_gic_smask(intr);
291 gic_clear_pcpu_masks(intr);
292 cpu = cpumask_first(irq_data_get_effective_affinity_mask(d));
293 set_bit(intr, per_cpu_ptr(pcpu_masks, cpu));
296 static void gic_ack_irq(struct irq_data *d)
298 unsigned int irq = GIC_HWIRQ_TO_SHARED(d->hwirq);
300 if (gic_irq_lock_cluster(d)) {
301 write_gic_redir_wedge(irq);
302 mips_cm_unlock_other();
303 } else {
304 write_gic_wedge(irq);
308 static int gic_set_type(struct irq_data *d, unsigned int type)
310 unsigned int irq, pol, trig, dual;
311 unsigned long flags;
313 irq = GIC_HWIRQ_TO_SHARED(d->hwirq);
315 raw_spin_lock_irqsave(&gic_lock, flags);
316 switch (type & IRQ_TYPE_SENSE_MASK) {
317 case IRQ_TYPE_EDGE_FALLING:
318 pol = GIC_POL_FALLING_EDGE;
319 trig = GIC_TRIG_EDGE;
320 dual = GIC_DUAL_SINGLE;
321 break;
322 case IRQ_TYPE_EDGE_RISING:
323 pol = GIC_POL_RISING_EDGE;
324 trig = GIC_TRIG_EDGE;
325 dual = GIC_DUAL_SINGLE;
326 break;
327 case IRQ_TYPE_EDGE_BOTH:
328 pol = 0; /* Doesn't matter */
329 trig = GIC_TRIG_EDGE;
330 dual = GIC_DUAL_DUAL;
331 break;
332 case IRQ_TYPE_LEVEL_LOW:
333 pol = GIC_POL_ACTIVE_LOW;
334 trig = GIC_TRIG_LEVEL;
335 dual = GIC_DUAL_SINGLE;
336 break;
337 case IRQ_TYPE_LEVEL_HIGH:
338 default:
339 pol = GIC_POL_ACTIVE_HIGH;
340 trig = GIC_TRIG_LEVEL;
341 dual = GIC_DUAL_SINGLE;
342 break;
345 if (gic_irq_lock_cluster(d)) {
346 change_gic_redir_pol(irq, pol);
347 change_gic_redir_trig(irq, trig);
348 change_gic_redir_dual(irq, dual);
349 mips_cm_unlock_other();
350 } else {
351 change_gic_pol(irq, pol);
352 change_gic_trig(irq, trig);
353 change_gic_dual(irq, dual);
356 if (trig == GIC_TRIG_EDGE)
357 irq_set_chip_handler_name_locked(d, &gic_edge_irq_controller,
358 handle_edge_irq, NULL);
359 else
360 irq_set_chip_handler_name_locked(d, &gic_level_irq_controller,
361 handle_level_irq, NULL);
362 raw_spin_unlock_irqrestore(&gic_lock, flags);
364 return 0;
367 #ifdef CONFIG_SMP
368 static int gic_set_affinity(struct irq_data *d, const struct cpumask *cpumask,
369 bool force)
371 unsigned int irq = GIC_HWIRQ_TO_SHARED(d->hwirq);
372 unsigned int cpu, cl, old_cpu, old_cl;
373 unsigned long flags;
376 * The GIC specifies that we can only route an interrupt to one VP(E),
377 * ie. CPU in Linux parlance, at a time. Therefore we always route to
378 * the first online CPU in the mask.
380 cpu = cpumask_first_and(cpumask, cpu_online_mask);
381 if (cpu >= NR_CPUS)
382 return -EINVAL;
384 old_cpu = cpumask_first(irq_data_get_effective_affinity_mask(d));
385 old_cl = cpu_cluster(&cpu_data[old_cpu]);
386 cl = cpu_cluster(&cpu_data[cpu]);
388 raw_spin_lock_irqsave(&gic_lock, flags);
391 * If we're moving affinity between clusters, stop routing the
392 * interrupt to any VP(E) in the old cluster.
394 if (cl != old_cl) {
395 if (gic_irq_lock_cluster(d)) {
396 write_gic_redir_map_vp(irq, 0);
397 mips_cm_unlock_other();
398 } else {
399 write_gic_map_vp(irq, 0);
404 * Update effective affinity - after this gic_irq_lock_cluster() will
405 * begin operating on the new cluster.
407 irq_data_update_effective_affinity(d, cpumask_of(cpu));
410 * If we're moving affinity between clusters, configure the interrupt
411 * trigger type in the new cluster.
413 if (cl != old_cl)
414 gic_set_type(d, irqd_get_trigger_type(d));
416 /* Route the interrupt to its new VP(E) */
417 if (gic_irq_lock_cluster(d)) {
418 write_gic_redir_map_pin(irq,
419 GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin);
420 write_gic_redir_map_vp(irq, BIT(mips_cm_vp_id(cpu)));
422 /* Update the pcpu_masks */
423 gic_clear_pcpu_masks(irq);
424 if (read_gic_redir_mask(irq))
425 set_bit(irq, per_cpu_ptr(pcpu_masks, cpu));
427 mips_cm_unlock_other();
428 } else {
429 write_gic_map_pin(irq, GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin);
430 write_gic_map_vp(irq, BIT(mips_cm_vp_id(cpu)));
432 /* Update the pcpu_masks */
433 gic_clear_pcpu_masks(irq);
434 if (read_gic_mask(irq))
435 set_bit(irq, per_cpu_ptr(pcpu_masks, cpu));
438 raw_spin_unlock_irqrestore(&gic_lock, flags);
440 return IRQ_SET_MASK_OK;
442 #endif
444 static struct irq_chip gic_level_irq_controller = {
445 .name = "MIPS GIC",
446 .irq_mask = gic_mask_irq,
447 .irq_unmask = gic_unmask_irq,
448 .irq_set_type = gic_set_type,
449 #ifdef CONFIG_SMP
450 .irq_set_affinity = gic_set_affinity,
451 #endif
454 static struct irq_chip gic_edge_irq_controller = {
455 .name = "MIPS GIC",
456 .irq_ack = gic_ack_irq,
457 .irq_mask = gic_mask_irq,
458 .irq_unmask = gic_unmask_irq,
459 .irq_set_type = gic_set_type,
460 #ifdef CONFIG_SMP
461 .irq_set_affinity = gic_set_affinity,
462 #endif
463 .ipi_send_single = gic_send_ipi,
466 static void gic_handle_local_int(bool chained)
468 unsigned long pending, masked;
469 unsigned int intr;
471 pending = read_gic_vl_pend();
472 masked = read_gic_vl_mask();
474 bitmap_and(&pending, &pending, &masked, GIC_NUM_LOCAL_INTRS);
476 for_each_set_bit(intr, &pending, GIC_NUM_LOCAL_INTRS) {
477 if (chained)
478 generic_handle_domain_irq(gic_irq_domain,
479 GIC_LOCAL_TO_HWIRQ(intr));
480 else
481 do_domain_IRQ(gic_irq_domain,
482 GIC_LOCAL_TO_HWIRQ(intr));
486 static void gic_mask_local_irq(struct irq_data *d)
488 int intr = GIC_HWIRQ_TO_LOCAL(d->hwirq);
490 write_gic_vl_rmask(BIT(intr));
493 static void gic_unmask_local_irq(struct irq_data *d)
495 int intr = GIC_HWIRQ_TO_LOCAL(d->hwirq);
497 write_gic_vl_smask(BIT(intr));
500 static struct irq_chip gic_local_irq_controller = {
501 .name = "MIPS GIC Local",
502 .irq_mask = gic_mask_local_irq,
503 .irq_unmask = gic_unmask_local_irq,
506 static void gic_mask_local_irq_all_vpes(struct irq_data *d)
508 struct gic_all_vpes_chip_data *cd;
509 int intr, cpu;
511 if (!mips_cps_multicluster_cpus())
512 return;
514 intr = GIC_HWIRQ_TO_LOCAL(d->hwirq);
515 cd = irq_data_get_irq_chip_data(d);
516 cd->mask = false;
518 for_each_online_cpu_gic(cpu, &gic_lock)
519 write_gic_vo_rmask(BIT(intr));
522 static void gic_unmask_local_irq_all_vpes(struct irq_data *d)
524 struct gic_all_vpes_chip_data *cd;
525 int intr, cpu;
527 if (!mips_cps_multicluster_cpus())
528 return;
530 intr = GIC_HWIRQ_TO_LOCAL(d->hwirq);
531 cd = irq_data_get_irq_chip_data(d);
532 cd->mask = true;
534 for_each_online_cpu_gic(cpu, &gic_lock)
535 write_gic_vo_smask(BIT(intr));
538 static void gic_all_vpes_irq_cpu_online(void)
540 static const unsigned int local_intrs[] = {
541 GIC_LOCAL_INT_TIMER,
542 GIC_LOCAL_INT_PERFCTR,
543 GIC_LOCAL_INT_FDC,
545 unsigned long flags;
546 int i;
548 raw_spin_lock_irqsave(&gic_lock, flags);
550 for (i = 0; i < ARRAY_SIZE(local_intrs); i++) {
551 unsigned int intr = local_intrs[i];
552 struct gic_all_vpes_chip_data *cd;
554 if (!gic_local_irq_is_routable(intr))
555 continue;
556 cd = &gic_all_vpes_chip_data[intr];
557 write_gic_vl_map(mips_gic_vx_map_reg(intr), cd->map);
558 if (cd->mask)
559 write_gic_vl_smask(BIT(intr));
562 raw_spin_unlock_irqrestore(&gic_lock, flags);
565 static struct irq_chip gic_all_vpes_local_irq_controller = {
566 .name = "MIPS GIC Local",
567 .irq_mask = gic_mask_local_irq_all_vpes,
568 .irq_unmask = gic_unmask_local_irq_all_vpes,
571 static void __gic_irq_dispatch(void)
573 gic_handle_local_int(false);
574 gic_handle_shared_int(false);
577 static void gic_irq_dispatch(struct irq_desc *desc)
579 gic_handle_local_int(true);
580 gic_handle_shared_int(true);
583 static int gic_shared_irq_domain_map(struct irq_domain *d, unsigned int virq,
584 irq_hw_number_t hw, unsigned int cpu)
586 int intr = GIC_HWIRQ_TO_SHARED(hw);
587 struct irq_data *data;
588 unsigned long flags;
590 data = irq_get_irq_data(virq);
591 irq_data_update_effective_affinity(data, cpumask_of(cpu));
593 raw_spin_lock_irqsave(&gic_lock, flags);
595 /* Route the interrupt to its VP(E) */
596 if (gic_irq_lock_cluster(data)) {
597 write_gic_redir_map_pin(intr,
598 GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin);
599 write_gic_redir_map_vp(intr, BIT(mips_cm_vp_id(cpu)));
600 mips_cm_unlock_other();
601 } else {
602 write_gic_map_pin(intr, GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin);
603 write_gic_map_vp(intr, BIT(mips_cm_vp_id(cpu)));
606 raw_spin_unlock_irqrestore(&gic_lock, flags);
608 return 0;
611 static int gic_irq_domain_xlate(struct irq_domain *d, struct device_node *ctrlr,
612 const u32 *intspec, unsigned int intsize,
613 irq_hw_number_t *out_hwirq,
614 unsigned int *out_type)
616 if (intsize != 3)
617 return -EINVAL;
619 if (intspec[0] == GIC_SHARED)
620 *out_hwirq = GIC_SHARED_TO_HWIRQ(intspec[1]);
621 else if (intspec[0] == GIC_LOCAL)
622 *out_hwirq = GIC_LOCAL_TO_HWIRQ(intspec[1]);
623 else
624 return -EINVAL;
625 *out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;
627 return 0;
630 static int gic_irq_domain_map(struct irq_domain *d, unsigned int virq,
631 irq_hw_number_t hwirq)
633 struct gic_all_vpes_chip_data *cd;
634 unsigned int intr;
635 int err, cpu;
636 u32 map;
638 if (hwirq >= GIC_SHARED_HWIRQ_BASE) {
639 #ifdef CONFIG_GENERIC_IRQ_IPI
640 /* verify that shared irqs don't conflict with an IPI irq */
641 if (test_bit(GIC_HWIRQ_TO_SHARED(hwirq), ipi_resrv))
642 return -EBUSY;
643 #endif /* CONFIG_GENERIC_IRQ_IPI */
645 err = irq_domain_set_hwirq_and_chip(d, virq, hwirq,
646 &gic_level_irq_controller,
647 NULL);
648 if (err)
649 return err;
651 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq)));
652 return gic_shared_irq_domain_map(d, virq, hwirq, 0);
655 intr = GIC_HWIRQ_TO_LOCAL(hwirq);
656 map = GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin;
659 * If adding support for more per-cpu interrupts, keep the
660 * array in gic_all_vpes_irq_cpu_online() in sync.
662 switch (intr) {
663 case GIC_LOCAL_INT_TIMER:
664 case GIC_LOCAL_INT_PERFCTR:
665 case GIC_LOCAL_INT_FDC:
667 * HACK: These are all really percpu interrupts, but
668 * the rest of the MIPS kernel code does not use the
669 * percpu IRQ API for them.
671 cd = &gic_all_vpes_chip_data[intr];
672 cd->map = map;
673 err = irq_domain_set_hwirq_and_chip(d, virq, hwirq,
674 &gic_all_vpes_local_irq_controller,
675 cd);
676 if (err)
677 return err;
679 irq_set_handler(virq, handle_percpu_irq);
680 break;
682 default:
683 err = irq_domain_set_hwirq_and_chip(d, virq, hwirq,
684 &gic_local_irq_controller,
685 NULL);
686 if (err)
687 return err;
689 irq_set_handler(virq, handle_percpu_devid_irq);
690 irq_set_percpu_devid(virq);
691 break;
694 if (!gic_local_irq_is_routable(intr))
695 return -EPERM;
697 if (mips_cps_multicluster_cpus()) {
698 for_each_online_cpu_gic(cpu, &gic_lock)
699 write_gic_vo_map(mips_gic_vx_map_reg(intr), map);
702 return 0;
705 static int gic_irq_domain_alloc(struct irq_domain *d, unsigned int virq,
706 unsigned int nr_irqs, void *arg)
708 struct irq_fwspec *fwspec = arg;
709 irq_hw_number_t hwirq;
711 if (fwspec->param[0] == GIC_SHARED)
712 hwirq = GIC_SHARED_TO_HWIRQ(fwspec->param[1]);
713 else
714 hwirq = GIC_LOCAL_TO_HWIRQ(fwspec->param[1]);
716 return gic_irq_domain_map(d, virq, hwirq);
719 static void gic_irq_domain_free(struct irq_domain *d, unsigned int virq,
720 unsigned int nr_irqs)
724 static const struct irq_domain_ops gic_irq_domain_ops = {
725 .xlate = gic_irq_domain_xlate,
726 .alloc = gic_irq_domain_alloc,
727 .free = gic_irq_domain_free,
728 .map = gic_irq_domain_map,
731 #ifdef CONFIG_GENERIC_IRQ_IPI
733 static int gic_ipi_domain_xlate(struct irq_domain *d, struct device_node *ctrlr,
734 const u32 *intspec, unsigned int intsize,
735 irq_hw_number_t *out_hwirq,
736 unsigned int *out_type)
739 * There's nothing to translate here. hwirq is dynamically allocated and
740 * the irq type is always edge triggered.
741 * */
742 *out_hwirq = 0;
743 *out_type = IRQ_TYPE_EDGE_RISING;
745 return 0;
748 static int gic_ipi_domain_alloc(struct irq_domain *d, unsigned int virq,
749 unsigned int nr_irqs, void *arg)
751 struct cpumask *ipimask = arg;
752 irq_hw_number_t hwirq, base_hwirq;
753 int cpu, ret, i;
755 base_hwirq = find_first_bit(ipi_available, gic_shared_intrs);
756 if (base_hwirq == gic_shared_intrs)
757 return -ENOMEM;
759 /* check that we have enough space */
760 for (i = base_hwirq; i < nr_irqs; i++) {
761 if (!test_bit(i, ipi_available))
762 return -EBUSY;
764 bitmap_clear(ipi_available, base_hwirq, nr_irqs);
766 /* map the hwirq for each cpu consecutively */
767 i = 0;
768 for_each_cpu(cpu, ipimask) {
769 hwirq = GIC_SHARED_TO_HWIRQ(base_hwirq + i);
771 ret = irq_domain_set_hwirq_and_chip(d, virq + i, hwirq,
772 &gic_edge_irq_controller,
773 NULL);
774 if (ret)
775 goto error;
777 ret = irq_domain_set_hwirq_and_chip(d->parent, virq + i, hwirq,
778 &gic_edge_irq_controller,
779 NULL);
780 if (ret)
781 goto error;
783 /* Set affinity to cpu. */
784 irq_data_update_effective_affinity(irq_get_irq_data(virq + i),
785 cpumask_of(cpu));
786 ret = irq_set_irq_type(virq + i, IRQ_TYPE_EDGE_RISING);
787 if (ret)
788 goto error;
790 ret = gic_shared_irq_domain_map(d, virq + i, hwirq, cpu);
791 if (ret)
792 goto error;
794 i++;
797 return 0;
798 error:
799 bitmap_set(ipi_available, base_hwirq, nr_irqs);
800 return ret;
803 static void gic_ipi_domain_free(struct irq_domain *d, unsigned int virq,
804 unsigned int nr_irqs)
806 irq_hw_number_t base_hwirq;
807 struct irq_data *data;
809 data = irq_get_irq_data(virq);
810 if (!data)
811 return;
813 base_hwirq = GIC_HWIRQ_TO_SHARED(irqd_to_hwirq(data));
814 bitmap_set(ipi_available, base_hwirq, nr_irqs);
817 static int gic_ipi_domain_match(struct irq_domain *d, struct device_node *node,
818 enum irq_domain_bus_token bus_token)
820 bool is_ipi;
822 switch (bus_token) {
823 case DOMAIN_BUS_IPI:
824 is_ipi = d->bus_token == bus_token;
825 return (!node || to_of_node(d->fwnode) == node) && is_ipi;
826 break;
827 default:
828 return 0;
832 static const struct irq_domain_ops gic_ipi_domain_ops = {
833 .xlate = gic_ipi_domain_xlate,
834 .alloc = gic_ipi_domain_alloc,
835 .free = gic_ipi_domain_free,
836 .match = gic_ipi_domain_match,
839 static int gic_register_ipi_domain(struct device_node *node)
841 struct irq_domain *gic_ipi_domain;
842 unsigned int v[2], num_ipis;
844 gic_ipi_domain = irq_domain_add_hierarchy(gic_irq_domain,
845 IRQ_DOMAIN_FLAG_IPI_PER_CPU,
846 GIC_NUM_LOCAL_INTRS + gic_shared_intrs,
847 node, &gic_ipi_domain_ops, NULL);
848 if (!gic_ipi_domain) {
849 pr_err("Failed to add IPI domain");
850 return -ENXIO;
853 irq_domain_update_bus_token(gic_ipi_domain, DOMAIN_BUS_IPI);
855 if (node &&
856 !of_property_read_u32_array(node, "mti,reserved-ipi-vectors", v, 2)) {
857 bitmap_set(ipi_resrv, v[0], v[1]);
858 } else {
860 * Reserve 2 interrupts per possible CPU/VP for use as IPIs,
861 * meeting the requirements of arch/mips SMP.
863 num_ipis = 2 * num_possible_cpus();
864 bitmap_set(ipi_resrv, gic_shared_intrs - num_ipis, num_ipis);
867 bitmap_copy(ipi_available, ipi_resrv, GIC_MAX_INTRS);
869 return 0;
872 #else /* !CONFIG_GENERIC_IRQ_IPI */
874 static inline int gic_register_ipi_domain(struct device_node *node)
876 return 0;
879 #endif /* !CONFIG_GENERIC_IRQ_IPI */
881 static int gic_cpu_startup(unsigned int cpu)
883 /* Enable or disable EIC */
884 change_gic_vl_ctl(GIC_VX_CTL_EIC,
885 cpu_has_veic ? GIC_VX_CTL_EIC : 0);
887 /* Clear all local IRQ masks (ie. disable all local interrupts) */
888 write_gic_vl_rmask(~0);
890 /* Enable desired interrupts */
891 gic_all_vpes_irq_cpu_online();
893 return 0;
896 static int __init gic_of_init(struct device_node *node,
897 struct device_node *parent)
899 unsigned int cpu_vec, i, gicconfig, cl, nclusters;
900 unsigned long reserved;
901 phys_addr_t gic_base;
902 struct resource res;
903 size_t gic_len;
904 int ret;
906 /* Find the first available CPU vector. */
907 i = 0;
908 reserved = (C_SW0 | C_SW1) >> __ffs(C_SW0);
909 while (!of_property_read_u32_index(node, "mti,reserved-cpu-vectors",
910 i++, &cpu_vec))
911 reserved |= BIT(cpu_vec);
913 cpu_vec = find_first_zero_bit(&reserved, hweight_long(ST0_IM));
914 if (cpu_vec == hweight_long(ST0_IM)) {
915 pr_err("No CPU vectors available\n");
916 return -ENODEV;
919 if (of_address_to_resource(node, 0, &res)) {
921 * Probe the CM for the GIC base address if not specified
922 * in the device-tree.
924 if (mips_cm_present()) {
925 gic_base = read_gcr_gic_base() &
926 ~CM_GCR_GIC_BASE_GICEN;
927 gic_len = 0x20000;
928 pr_warn("Using inherited base address %pa\n",
929 &gic_base);
930 } else {
931 pr_err("Failed to get memory range\n");
932 return -ENODEV;
934 } else {
935 gic_base = res.start;
936 gic_len = resource_size(&res);
939 if (mips_cm_present()) {
940 write_gcr_gic_base(gic_base | CM_GCR_GIC_BASE_GICEN);
941 /* Ensure GIC region is enabled before trying to access it */
942 __sync();
945 mips_gic_base = ioremap(gic_base, gic_len);
946 if (!mips_gic_base) {
947 pr_err("Failed to ioremap gic_base\n");
948 return -ENOMEM;
951 gicconfig = read_gic_config();
952 gic_shared_intrs = FIELD_GET(GIC_CONFIG_NUMINTERRUPTS, gicconfig);
953 gic_shared_intrs = (gic_shared_intrs + 1) * 8;
955 if (cpu_has_veic) {
956 /* Always use vector 1 in EIC mode */
957 gic_cpu_pin = 0;
958 set_vi_handler(gic_cpu_pin + GIC_PIN_TO_VEC_OFFSET,
959 __gic_irq_dispatch);
960 } else {
961 gic_cpu_pin = cpu_vec - GIC_CPU_PIN_OFFSET;
962 irq_set_chained_handler(MIPS_CPU_IRQ_BASE + cpu_vec,
963 gic_irq_dispatch);
966 gic_irq_domain = irq_domain_add_simple(node, GIC_NUM_LOCAL_INTRS +
967 gic_shared_intrs, 0,
968 &gic_irq_domain_ops, NULL);
969 if (!gic_irq_domain) {
970 pr_err("Failed to add IRQ domain");
971 return -ENXIO;
974 ret = gic_register_ipi_domain(node);
975 if (ret)
976 return ret;
978 board_bind_eic_interrupt = &gic_bind_eic_interrupt;
981 * Initialise each cluster's GIC shared registers to sane default
982 * values.
983 * Otherwise, the IPI set up will be erased if we move code
984 * to gic_cpu_startup for each cpu.
986 nclusters = mips_cps_numclusters();
987 for (cl = 0; cl < nclusters; cl++) {
988 if (cl == cpu_cluster(&current_cpu_data)) {
989 for (i = 0; i < gic_shared_intrs; i++) {
990 change_gic_pol(i, GIC_POL_ACTIVE_HIGH);
991 change_gic_trig(i, GIC_TRIG_LEVEL);
992 write_gic_rmask(i);
994 } else if (mips_cps_numcores(cl) != 0) {
995 mips_cm_lock_other(cl, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
996 for (i = 0; i < gic_shared_intrs; i++) {
997 change_gic_redir_pol(i, GIC_POL_ACTIVE_HIGH);
998 change_gic_redir_trig(i, GIC_TRIG_LEVEL);
999 write_gic_redir_rmask(i);
1001 mips_cm_unlock_other();
1003 } else {
1004 pr_warn("No CPU cores on the cluster %d skip it\n", cl);
1008 return cpuhp_setup_state(CPUHP_AP_IRQ_MIPS_GIC_STARTING,
1009 "irqchip/mips/gic:starting",
1010 gic_cpu_startup, NULL);
1012 IRQCHIP_DECLARE(mips_gic, "mti,gic", gic_of_init);