1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
5 * Author Andreas Eversberg (jolly@eversberg.eu)
6 * ported to mqueue mechanism:
7 * Peter Sprenger (sprengermoving-bytes.de)
9 * inspired by existing hfc-pci driver:
10 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
11 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
12 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
14 * Thanks to Cologne Chip AG for this great controller!
20 * By default (0), the card is automatically detected.
21 * Or use the following combinations:
22 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
23 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
24 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
25 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
26 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
28 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwise auto)
29 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwise auto)
31 * Bit 14 = 0x04000 = Use external ram (128K)
32 * Bit 15 = 0x08000 = Use external ram (512K)
33 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
34 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
36 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
37 * (all other bits are reserved and shall be 0)
38 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
41 * port: (optional or required for all ports on all installed cards)
42 * HFC-4S/HFC-8S only bits:
43 * Bit 0 = 0x001 = Use master clock for this S/T interface
44 * (only once per chip).
45 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
46 * Don't use this unless you know what you are doing!
47 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
48 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
49 * received from port 1
52 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
53 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
54 * Bit 2 = 0x0004 = Report LOS
55 * Bit 3 = 0x0008 = Report AIS
56 * Bit 4 = 0x0010 = Report SLIP
57 * Bit 5 = 0x0020 = Report RDI
58 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
60 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
61 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
62 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
64 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
66 * (all other bits are reserved and shall be 0)
69 * NOTE: only one debug value must be given for all cards
70 * enable debugging (see hfc_multi.h for debug options)
73 * NOTE: only one poll value must be given for all cards
74 * Give the number of samples for each fifo process.
75 * By default 128 is used. Decrease to reduce delay, increase to
76 * reduce cpu load. If unsure, don't mess with it!
77 * Valid is 8, 16, 32, 64, 128, 256.
80 * NOTE: only one pcm value must be given for every card.
81 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
82 * By default (0), the PCM bus id is 100 for the card that is PCM master.
83 * If multiple cards are PCM master (because they are not interconnected),
84 * each card with PCM master will have increasing PCM id.
85 * All PCM buses with the same ID are expected to be connected and have
86 * common time slots slots.
87 * Only one chip of the PCM bus must be master, the others slave.
88 * -1 means no support of PCM bus not even.
89 * Omit this value, if all cards are interconnected or none is connected.
90 * If unsure, don't give this parameter.
93 * NOTE: One dmask value must be given for every HFC-E1 card.
94 * If omitted, the E1 card has D-channel on time slot 16, which is default.
95 * dmask is a 32 bit mask. The bit must be set for an alternate time slot.
96 * If multiple bits are set, multiple virtual card fragments are created.
97 * For each bit set, a bmask value must be given. Each bit on the bmask
98 * value stands for a B-channel. The bmask may not overlap with dmask or
99 * with other bmask values for that card.
100 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
101 * This will create one fragment with D-channel on slot 1 with
102 * B-channels on slots 2..15, and a second fragment with D-channel
103 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
104 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
106 * Example: dmask=0x00000001 bmask=0xfffffffe
107 * This will create a port with all 31 usable timeslots as
109 * If no bits are set on bmask, no B-channel is created for that fragment.
110 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
111 * This will create 31 ports with one D-channel only.
112 * If you don't know how to use it, you don't need it!
115 * NOTE: only one mode value must be given for every card.
116 * -> See hfc_multi.h for HFC_IO_MODE_* values
117 * By default, the IO mode is pci memory IO (MEMIO).
118 * Some cards require specific IO mode, so it cannot be changed.
119 * It may be useful to set IO mode to register io (REGIO) to solve
120 * PCI bridge problems.
121 * If unsure, don't give this parameter.
124 * NOTE: only one clockdelay_nt value must be given once for all cards.
125 * Give the value of the clock control register (A_ST_CLK_DLY)
126 * of the S/T interfaces in NT mode.
127 * This register is needed for the TBR3 certification, so don't change it.
130 * NOTE: only one clockdelay_te value must be given once
131 * Give the value of the clock control register (A_ST_CLK_DLY)
132 * of the S/T interfaces in TE mode.
133 * This register is needed for the TBR3 certification, so don't change it.
136 * NOTE: only one clock value must be given once
137 * Selects interface with clock source for mISDN and applications.
138 * Set to card number starting with 1. Set to -1 to disable.
139 * By default, the first card is used as clock source.
142 * NOTE: only one hwid value must be given once
143 * Enable special embedded devices with XHFC controllers.
147 * debug register access (never use this, it will flood your system log)
148 * #define HFC_REGISTER_DEBUG
151 #define HFC_MULTI_VERSION "2.03"
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/slab.h>
156 #include <linux/pci.h>
157 #include <linux/delay.h>
158 #include <linux/mISDNhw.h>
159 #include <linux/mISDNdsp.h>
162 #define IRQCOUNT_DEBUG
166 #include "hfc_multi.h"
172 #define MAX_PORTS (8 * MAX_CARDS)
173 #define MAX_FRAGS (32 * MAX_CARDS)
175 static LIST_HEAD(HFClist
);
176 static DEFINE_SPINLOCK(HFClock
); /* global hfc list lock */
178 static void ph_state_change(struct dchannel
*);
180 static struct hfc_multi
*syncmaster
;
181 static int plxsd_master
; /* if we have a master card (yet) */
182 static DEFINE_SPINLOCK(plx_lock
); /* may not acquire other lock inside */
188 static int poll_timer
= 6; /* default = 128 samples = 16ms */
189 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190 static int nt_t1_count
[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
191 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
192 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
193 (0x60 MUST be included!) */
195 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
196 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
197 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
203 static uint type
[MAX_CARDS
];
204 static int pcm
[MAX_CARDS
];
205 static uint dmask
[MAX_CARDS
];
206 static uint bmask
[MAX_FRAGS
];
207 static uint iomode
[MAX_CARDS
];
208 static uint port
[MAX_PORTS
];
213 static uint clockdelay_te
= CLKDEL_TE
;
214 static uint clockdelay_nt
= CLKDEL_NT
;
216 #define HWID_MINIP4 1
217 #define HWID_MINIP8 2
218 #define HWID_MINIP16 3
219 static uint hwid
= HWID_NONE
;
221 static int HFC_cnt
, E1_cnt
, bmask_cnt
, Port_cnt
, PCM_cnt
= 99;
223 MODULE_AUTHOR("Andreas Eversberg");
224 MODULE_DESCRIPTION("mISDN driver for hfc-4s/hfc-8s/hfc-e1 based cards");
225 MODULE_LICENSE("GPL");
226 MODULE_VERSION(HFC_MULTI_VERSION
);
227 module_param(debug
, uint
, S_IRUGO
| S_IWUSR
);
228 module_param(poll
, uint
, S_IRUGO
| S_IWUSR
);
229 module_param(clock
, int, S_IRUGO
| S_IWUSR
);
230 module_param(timer
, uint
, S_IRUGO
| S_IWUSR
);
231 module_param(clockdelay_te
, uint
, S_IRUGO
| S_IWUSR
);
232 module_param(clockdelay_nt
, uint
, S_IRUGO
| S_IWUSR
);
233 module_param_array(type
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
234 module_param_array(pcm
, int, NULL
, S_IRUGO
| S_IWUSR
);
235 module_param_array(dmask
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
236 module_param_array(bmask
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
237 module_param_array(iomode
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
238 module_param_array(port
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
239 module_param(hwid
, uint
, S_IRUGO
| S_IWUSR
); /* The hardware ID */
241 #ifdef HFC_REGISTER_DEBUG
242 #define HFC_outb(hc, reg, val) \
243 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
244 #define HFC_outb_nodebug(hc, reg, val) \
245 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
246 #define HFC_inb(hc, reg) \
247 (hc->HFC_inb(hc, reg, __func__, __LINE__))
248 #define HFC_inb_nodebug(hc, reg) \
249 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
250 #define HFC_inw(hc, reg) \
251 (hc->HFC_inw(hc, reg, __func__, __LINE__))
252 #define HFC_inw_nodebug(hc, reg) \
253 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
254 #define HFC_wait(hc) \
255 (hc->HFC_wait(hc, __func__, __LINE__))
256 #define HFC_wait_nodebug(hc) \
257 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
259 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
260 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
261 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
262 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
263 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
264 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
265 #define HFC_wait(hc) (hc->HFC_wait(hc))
266 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
269 #ifdef CONFIG_MISDN_HFCMULTI_8xx
270 #include "hfc_multi_8xx.h"
273 /* HFC_IO_MODE_PCIMEM */
275 #ifdef HFC_REGISTER_DEBUG
276 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
,
277 const char *function
, int line
)
279 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
)
282 writeb(val
, hc
->pci_membase
+ reg
);
285 #ifdef HFC_REGISTER_DEBUG
286 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
288 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
)
291 return readb(hc
->pci_membase
+ reg
);
294 #ifdef HFC_REGISTER_DEBUG
295 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
297 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
)
300 return readw(hc
->pci_membase
+ reg
);
303 #ifdef HFC_REGISTER_DEBUG
304 HFC_wait_pcimem(struct hfc_multi
*hc
, const char *function
, int line
)
306 HFC_wait_pcimem(struct hfc_multi
*hc
)
309 while (readb(hc
->pci_membase
+ R_STATUS
) & V_BUSY
)
313 /* HFC_IO_MODE_REGIO */
315 #ifdef HFC_REGISTER_DEBUG
316 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
,
317 const char *function
, int line
)
319 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
)
322 outb(reg
, hc
->pci_iobase
+ 4);
323 outb(val
, hc
->pci_iobase
);
326 #ifdef HFC_REGISTER_DEBUG
327 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
329 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
)
332 outb(reg
, hc
->pci_iobase
+ 4);
333 return inb(hc
->pci_iobase
);
336 #ifdef HFC_REGISTER_DEBUG
337 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
339 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
)
342 outb(reg
, hc
->pci_iobase
+ 4);
343 return inw(hc
->pci_iobase
);
346 #ifdef HFC_REGISTER_DEBUG
347 HFC_wait_regio(struct hfc_multi
*hc
, const char *function
, int line
)
349 HFC_wait_regio(struct hfc_multi
*hc
)
352 outb(R_STATUS
, hc
->pci_iobase
+ 4);
353 while (inb(hc
->pci_iobase
) & V_BUSY
)
357 #ifdef HFC_REGISTER_DEBUG
359 HFC_outb_debug(struct hfc_multi
*hc
, u_char reg
, u_char val
,
360 const char *function
, int line
)
362 char regname
[256] = "", bits
[9] = "xxxxxxxx";
366 while (hfc_register_names
[++i
].name
) {
367 if (hfc_register_names
[i
].reg
== reg
)
368 strcat(regname
, hfc_register_names
[i
].name
);
370 if (regname
[0] == '\0')
371 strcpy(regname
, "register");
373 bits
[7] = '0' + (!!(val
& 1));
374 bits
[6] = '0' + (!!(val
& 2));
375 bits
[5] = '0' + (!!(val
& 4));
376 bits
[4] = '0' + (!!(val
& 8));
377 bits
[3] = '0' + (!!(val
& 16));
378 bits
[2] = '0' + (!!(val
& 32));
379 bits
[1] = '0' + (!!(val
& 64));
380 bits
[0] = '0' + (!!(val
& 128));
382 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
383 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
384 HFC_outb_nodebug(hc
, reg
, val
);
387 HFC_inb_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
389 char regname
[256] = "", bits
[9] = "xxxxxxxx";
390 u_char val
= HFC_inb_nodebug(hc
, reg
);
394 while (hfc_register_names
[i
++].name
)
396 while (hfc_register_names
[++i
].name
) {
397 if (hfc_register_names
[i
].reg
== reg
)
398 strcat(regname
, hfc_register_names
[i
].name
);
400 if (regname
[0] == '\0')
401 strcpy(regname
, "register");
403 bits
[7] = '0' + (!!(val
& 1));
404 bits
[6] = '0' + (!!(val
& 2));
405 bits
[5] = '0' + (!!(val
& 4));
406 bits
[4] = '0' + (!!(val
& 8));
407 bits
[3] = '0' + (!!(val
& 16));
408 bits
[2] = '0' + (!!(val
& 32));
409 bits
[1] = '0' + (!!(val
& 64));
410 bits
[0] = '0' + (!!(val
& 128));
412 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
413 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
417 HFC_inw_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
419 char regname
[256] = "";
420 u_short val
= HFC_inw_nodebug(hc
, reg
);
424 while (hfc_register_names
[i
++].name
)
426 while (hfc_register_names
[++i
].name
) {
427 if (hfc_register_names
[i
].reg
== reg
)
428 strcat(regname
, hfc_register_names
[i
].name
);
430 if (regname
[0] == '\0')
431 strcpy(regname
, "register");
434 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
435 hc
->id
, reg
, regname
, val
, function
, line
);
439 HFC_wait_debug(struct hfc_multi
*hc
, const char *function
, int line
)
441 printk(KERN_DEBUG
"HFC_wait(chip %d); in %s() line %d\n",
442 hc
->id
, function
, line
);
443 HFC_wait_nodebug(hc
);
447 /* write fifo data (REGIO) */
449 write_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
451 outb(A_FIFO_DATA0
, (hc
->pci_iobase
) + 4);
453 outl(cpu_to_le32(*(u32
*)data
), hc
->pci_iobase
);
458 outw(cpu_to_le16(*(u16
*)data
), hc
->pci_iobase
);
463 outb(*data
, hc
->pci_iobase
);
468 /* write fifo data (PCIMEM) */
470 write_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
473 writel(cpu_to_le32(*(u32
*)data
),
474 hc
->pci_membase
+ A_FIFO_DATA0
);
479 writew(cpu_to_le16(*(u16
*)data
),
480 hc
->pci_membase
+ A_FIFO_DATA0
);
485 writeb(*data
, hc
->pci_membase
+ A_FIFO_DATA0
);
491 /* read fifo data (REGIO) */
493 read_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
495 outb(A_FIFO_DATA0
, (hc
->pci_iobase
) + 4);
497 *(u32
*)data
= le32_to_cpu(inl(hc
->pci_iobase
));
502 *(u16
*)data
= le16_to_cpu(inw(hc
->pci_iobase
));
507 *data
= inb(hc
->pci_iobase
);
513 /* read fifo data (PCIMEM) */
515 read_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
519 le32_to_cpu(readl(hc
->pci_membase
+ A_FIFO_DATA0
));
525 le16_to_cpu(readw(hc
->pci_membase
+ A_FIFO_DATA0
));
530 *data
= readb(hc
->pci_membase
+ A_FIFO_DATA0
);
537 enable_hwirq(struct hfc_multi
*hc
)
539 hc
->hw
.r_irq_ctrl
|= V_GLOB_IRQ_EN
;
540 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
544 disable_hwirq(struct hfc_multi
*hc
)
546 hc
->hw
.r_irq_ctrl
&= ~((u_char
)V_GLOB_IRQ_EN
);
547 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
551 #define MAX_TDM_CHAN 32
555 enablepcibridge(struct hfc_multi
*c
)
557 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x3); /* was _io before */
561 disablepcibridge(struct hfc_multi
*c
)
563 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x2); /* was _io before */
566 static inline unsigned char
567 readpcibridge(struct hfc_multi
*hc
, unsigned char address
)
575 /* slow down a PCI read access by 1 PCI clock cycle */
576 HFC_outb(hc
, R_CTRL
, 0x4); /*was _io before*/
583 /* select local bridge port address by writing to CIP port */
584 /* data = HFC_inb(c, cipv); * was _io before */
585 outw(cipv
, hc
->pci_iobase
+ 4);
586 data
= inb(hc
->pci_iobase
);
588 /* restore R_CTRL for normal PCI read cycle speed */
589 HFC_outb(hc
, R_CTRL
, 0x0); /* was _io before */
595 writepcibridge(struct hfc_multi
*hc
, unsigned char address
, unsigned char data
)
608 /* select local bridge port address by writing to CIP port */
609 outw(cipv
, hc
->pci_iobase
+ 4);
610 /* define a 32 bit dword with 4 identical bytes for write sequence */
611 datav
= data
| ((__u32
) data
<< 8) | ((__u32
) data
<< 16) |
612 ((__u32
) data
<< 24);
615 * write this 32 bit dword to the bridge data port
616 * this will initiate a write sequence of up to 4 writes to the same
617 * address on the local bus interface the number of write accesses
618 * is undefined but >=1 and depends on the next PCI transaction
619 * during write sequence on the local bus
621 outl(datav
, hc
->pci_iobase
);
625 cpld_set_reg(struct hfc_multi
*hc
, unsigned char reg
)
627 /* Do data pin read low byte */
628 HFC_outb(hc
, R_GPIO_OUT1
, reg
);
632 cpld_write_reg(struct hfc_multi
*hc
, unsigned char reg
, unsigned char val
)
634 cpld_set_reg(hc
, reg
);
637 writepcibridge(hc
, 1, val
);
638 disablepcibridge(hc
);
644 vpm_write_address(struct hfc_multi
*hc
, unsigned short addr
)
646 cpld_write_reg(hc
, 0, 0xff & addr
);
647 cpld_write_reg(hc
, 1, 0x01 & (addr
>> 8));
650 static inline unsigned char
651 vpm_in(struct hfc_multi
*c
, int which
, unsigned short addr
)
655 vpm_write_address(c
, addr
);
663 res
= readpcibridge(c
, 1);
672 vpm_out(struct hfc_multi
*c
, int which
, unsigned short addr
,
675 vpm_write_address(c
, addr
);
684 writepcibridge(c
, 1, data
);
692 regin
= vpm_in(c
, which
, addr
);
694 printk(KERN_DEBUG
"Wrote 0x%x to register 0x%x but got back "
695 "0x%x\n", data
, addr
, regin
);
702 vpm_init(struct hfc_multi
*wc
)
706 unsigned int i
, x
, y
;
709 for (x
= 0; x
< NUM_EC
; x
++) {
712 ver
= vpm_in(wc
, x
, 0x1a0);
713 printk(KERN_DEBUG
"VPM: Chip %d: ver %02x\n", x
, ver
);
716 for (y
= 0; y
< 4; y
++) {
717 vpm_out(wc
, x
, 0x1a8 + y
, 0x00); /* GPIO out */
718 vpm_out(wc
, x
, 0x1ac + y
, 0x00); /* GPIO dir */
719 vpm_out(wc
, x
, 0x1b0 + y
, 0x00); /* GPIO sel */
722 /* Setup TDM path - sets fsync and tdm_clk as inputs */
723 reg
= vpm_in(wc
, x
, 0x1a3); /* misc_con */
724 vpm_out(wc
, x
, 0x1a3, reg
& ~2);
726 /* Setup Echo length (256 taps) */
727 vpm_out(wc
, x
, 0x022, 1);
728 vpm_out(wc
, x
, 0x023, 0xff);
730 /* Setup timeslots */
731 vpm_out(wc
, x
, 0x02f, 0x00);
732 mask
= 0x02020202 << (x
* 4);
734 /* Setup the tdm channel masks for all chips */
735 for (i
= 0; i
< 4; i
++)
736 vpm_out(wc
, x
, 0x33 - i
, (mask
>> (i
<< 3)) & 0xff);
738 /* Setup convergence rate */
739 printk(KERN_DEBUG
"VPM: A-law mode\n");
740 reg
= 0x00 | 0x10 | 0x01;
741 vpm_out(wc
, x
, 0x20, reg
);
742 printk(KERN_DEBUG
"VPM reg 0x20 is %x\n", reg
);
743 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
745 vpm_out(wc
, x
, 0x24, 0x02);
746 reg
= vpm_in(wc
, x
, 0x24);
747 printk(KERN_DEBUG
"NLP Thresh is set to %d (0x%x)\n", reg
, reg
);
749 /* Initialize echo cans */
750 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
751 if (mask
& (0x00000001 << i
))
752 vpm_out(wc
, x
, i
, 0x00);
756 * ARM arch at least disallows a udelay of
757 * more than 2ms... it gives a fake "__bad_udelay"
758 * reference at link-time.
759 * long delays in kernel code are pretty sucky anyway
760 * for now work around it using 5 x 2ms instead of 1 x 10ms
769 /* Put in bypass mode */
770 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
771 if (mask
& (0x00000001 << i
))
772 vpm_out(wc
, x
, i
, 0x01);
776 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
777 if (mask
& (0x00000001 << i
))
778 vpm_out(wc
, x
, 0x78 + i
, 0x01);
786 vpm_check(struct hfc_multi
*hctmp
)
790 gpi2
= HFC_inb(hctmp
, R_GPI_IN2
);
792 if ((gpi2
& 0x3) != 0x3)
793 printk(KERN_DEBUG
"Got interrupt 0x%x from VPM!\n", gpi2
);
799 * Interface to enable/disable the HW Echocan
801 * these functions are called within a spin_lock_irqsave on
802 * the channel instance lock, so we are not disturbed by irqs
804 * we can later easily change the interface to make other
805 * things configurable, for now we configure the taps
810 vpm_echocan_on(struct hfc_multi
*hc
, int ch
, int taps
)
812 unsigned int timeslot
;
814 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
819 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
826 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
827 sizeof(int), &txadj
, GFP_ATOMIC
);
829 recv_Bchannel_skb(bch
, skb
);
832 timeslot
= ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1;
835 printk(KERN_NOTICE
"vpm_echocan_on called taps [%d] on timeslot %d\n",
838 vpm_out(hc
, unit
, timeslot
, 0x7e);
842 vpm_echocan_off(struct hfc_multi
*hc
, int ch
)
844 unsigned int timeslot
;
846 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
852 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
859 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
860 sizeof(int), &txadj
, GFP_ATOMIC
);
862 recv_Bchannel_skb(bch
, skb
);
865 timeslot
= ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1;
868 printk(KERN_NOTICE
"vpm_echocan_off called on timeslot %d\n",
871 vpm_out(hc
, unit
, timeslot
, 0x01);
876 * Speech Design resync feature
877 * NOTE: This is called sometimes outside interrupt handler.
878 * We must lock irqsave, so no other interrupt (other card) will occur!
879 * Also multiple interrupts may nest, so must lock each access (lists, card)!
882 hfcmulti_resync(struct hfc_multi
*locked
, struct hfc_multi
*newmaster
, int rm
)
884 struct hfc_multi
*hc
, *next
, *pcmmaster
= NULL
;
885 void __iomem
*plx_acc_32
;
889 spin_lock_irqsave(&HFClock
, flags
);
890 spin_lock(&plx_lock
); /* must be locked inside other locks */
892 if (debug
& DEBUG_HFCMULTI_PLXSD
)
893 printk(KERN_DEBUG
"%s: RESYNC(syncmaster=0x%p)\n",
894 __func__
, syncmaster
);
896 /* select new master */
898 if (debug
& DEBUG_HFCMULTI_PLXSD
)
899 printk(KERN_DEBUG
"using provided controller\n");
901 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
902 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
903 if (hc
->syncronized
) {
911 /* Disable sync of all cards */
912 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
913 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
914 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
915 pv
= readl(plx_acc_32
);
916 pv
&= ~PLX_SYNC_O_EN
;
917 writel(pv
, plx_acc_32
);
918 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
920 if (hc
->ctype
== HFC_TYPE_E1
) {
921 if (debug
& DEBUG_HFCMULTI_PLXSD
)
923 "Schedule SYNC_I\n");
924 hc
->e1_resync
|= 1; /* get SYNC_I */
932 if (debug
& DEBUG_HFCMULTI_PLXSD
)
933 printk(KERN_DEBUG
"id=%d (0x%p) = synchronized with "
934 "interface.\n", hc
->id
, hc
);
935 /* Enable new sync master */
936 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
937 pv
= readl(plx_acc_32
);
939 writel(pv
, plx_acc_32
);
940 /* switch to jatt PLL, if not disabled by RX_SYNC */
941 if (hc
->ctype
== HFC_TYPE_E1
942 && !test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
)) {
943 if (debug
& DEBUG_HFCMULTI_PLXSD
)
944 printk(KERN_DEBUG
"Schedule jatt PLL\n");
945 hc
->e1_resync
|= 2; /* switch to jatt */
950 if (debug
& DEBUG_HFCMULTI_PLXSD
)
952 "id=%d (0x%p) = PCM master synchronized "
953 "with QUARTZ\n", hc
->id
, hc
);
954 if (hc
->ctype
== HFC_TYPE_E1
) {
955 /* Use the crystal clock for the PCM
957 if (debug
& DEBUG_HFCMULTI_PLXSD
)
959 "Schedule QUARTZ for HFC-E1\n");
960 hc
->e1_resync
|= 4; /* switch quartz */
962 if (debug
& DEBUG_HFCMULTI_PLXSD
)
964 "QUARTZ is automatically "
965 "enabled by HFC-%dS\n", hc
->ctype
);
967 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
968 pv
= readl(plx_acc_32
);
970 writel(pv
, plx_acc_32
);
973 printk(KERN_ERR
"%s no pcm master, this MUST "
974 "not happen!\n", __func__
);
976 syncmaster
= newmaster
;
978 spin_unlock(&plx_lock
);
979 spin_unlock_irqrestore(&HFClock
, flags
);
982 /* This must be called AND hc must be locked irqsave!!! */
984 plxsd_checksync(struct hfc_multi
*hc
, int rm
)
986 if (hc
->syncronized
) {
987 if (syncmaster
== NULL
) {
988 if (debug
& DEBUG_HFCMULTI_PLXSD
)
989 printk(KERN_DEBUG
"%s: GOT sync on card %d"
990 " (id=%d)\n", __func__
, hc
->id
+ 1,
992 hfcmulti_resync(hc
, hc
, rm
);
995 if (syncmaster
== hc
) {
996 if (debug
& DEBUG_HFCMULTI_PLXSD
)
997 printk(KERN_DEBUG
"%s: LOST sync on card %d"
998 " (id=%d)\n", __func__
, hc
->id
+ 1,
1000 hfcmulti_resync(hc
, NULL
, rm
);
1007 * free hardware resources used by driver
1010 release_io_hfcmulti(struct hfc_multi
*hc
)
1012 void __iomem
*plx_acc_32
;
1016 if (debug
& DEBUG_HFCMULTI_INIT
)
1017 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1019 /* soft reset also masks all interrupts */
1020 hc
->hw
.r_cirm
|= V_SRES
;
1021 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1023 hc
->hw
.r_cirm
&= ~V_SRES
;
1024 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1025 udelay(1000); /* instead of 'wait' that may cause locking */
1027 /* release Speech Design card, if PLX was initialized */
1028 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) && hc
->plx_membase
) {
1029 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1030 printk(KERN_DEBUG
"%s: release PLXSD card %d\n",
1031 __func__
, hc
->id
+ 1);
1032 spin_lock_irqsave(&plx_lock
, plx_flags
);
1033 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1034 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1035 pv
= readl(plx_acc_32
);
1036 /* Termination off */
1038 /* Disconnect the PCM */
1039 pv
|= PLX_SLAVE_EN_N
;
1040 pv
&= ~PLX_MASTER_EN
;
1041 pv
&= ~PLX_SYNC_O_EN
;
1042 /* Put the DSP in Reset */
1043 pv
&= ~PLX_DSP_RES_N
;
1044 writel(pv
, plx_acc_32
);
1045 if (debug
& DEBUG_HFCMULTI_INIT
)
1046 printk(KERN_DEBUG
"%s: PCM off: PLX_GPIO=%x\n",
1048 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1051 /* disable memory mapped ports / io ports */
1052 test_and_clear_bit(HFC_CHIP_PLXSD
, &hc
->chip
); /* prevent resync */
1054 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, 0);
1055 if (hc
->pci_membase
)
1056 iounmap(hc
->pci_membase
);
1057 if (hc
->plx_membase
)
1058 iounmap(hc
->plx_membase
);
1060 release_region(hc
->pci_iobase
, 8);
1061 if (hc
->xhfc_membase
)
1062 iounmap((void *)hc
->xhfc_membase
);
1065 pci_disable_device(hc
->pci_dev
);
1066 pci_set_drvdata(hc
->pci_dev
, NULL
);
1068 if (debug
& DEBUG_HFCMULTI_INIT
)
1069 printk(KERN_DEBUG
"%s: done\n", __func__
);
1073 * function called to reset the HFC chip. A complete software reset of chip
1074 * and fifos is done. All configuration of the chip is done.
1078 init_chip(struct hfc_multi
*hc
)
1080 u_long flags
, val
, val2
= 0, rev
;
1082 u_char r_conf_en
, rval
;
1083 void __iomem
*plx_acc_32
;
1085 u_long plx_flags
, hfc_flags
;
1087 struct hfc_multi
*pos
, *next
, *plx_last_hc
;
1089 spin_lock_irqsave(&hc
->lock
, flags
);
1090 /* reset all registers */
1091 memset(&hc
->hw
, 0, sizeof(struct hfcm_hw
));
1093 /* revision check */
1094 if (debug
& DEBUG_HFCMULTI_INIT
)
1095 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1096 val
= HFC_inb(hc
, R_CHIP_ID
);
1097 if ((val
>> 4) != 0x8 && (val
>> 4) != 0xc && (val
>> 4) != 0xe &&
1098 (val
>> 1) != 0x31) {
1099 printk(KERN_INFO
"HFC_multi: unknown CHIP_ID:%x\n", (u_int
)val
);
1103 rev
= HFC_inb(hc
, R_CHIP_RV
);
1105 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1106 val
, rev
, (rev
== 0 && (hc
->ctype
!= HFC_TYPE_XHFC
)) ?
1107 " (old FIFO handling)" : "");
1108 if (hc
->ctype
!= HFC_TYPE_XHFC
&& rev
== 0) {
1109 test_and_set_bit(HFC_CHIP_REVISION0
, &hc
->chip
);
1111 "HFC_multi: NOTE: Your chip is revision 0, "
1112 "ask Cologne Chip for update. Newer chips "
1113 "have a better FIFO handling. Old chips "
1114 "still work but may have slightly lower "
1115 "HDLC transmit performance.\n");
1118 printk(KERN_WARNING
"HFC_multi: WARNING: This driver doesn't "
1119 "consider chip revision = %ld. The chip / "
1120 "bridge may not work.\n", rev
);
1123 /* set s-ram size */
1127 hc
->DTMFbase
= 0x1000;
1128 if (test_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
)) {
1129 if (debug
& DEBUG_HFCMULTI_INIT
)
1130 printk(KERN_DEBUG
"%s: changing to 128K external RAM\n",
1132 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1133 hc
->hw
.r_ram_sz
= 1;
1137 hc
->DTMFbase
= 0x2000;
1139 if (test_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
)) {
1140 if (debug
& DEBUG_HFCMULTI_INIT
)
1141 printk(KERN_DEBUG
"%s: changing to 512K external RAM\n",
1143 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1144 hc
->hw
.r_ram_sz
= 2;
1148 hc
->DTMFbase
= 0x2000;
1150 if (hc
->ctype
== HFC_TYPE_XHFC
) {
1156 hc
->max_trans
= poll
<< 1;
1157 if (hc
->max_trans
> hc
->Zlen
)
1158 hc
->max_trans
= hc
->Zlen
;
1160 /* Speech Design PLX bridge */
1161 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1162 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1163 printk(KERN_DEBUG
"%s: initializing PLXSD card %d\n",
1164 __func__
, hc
->id
+ 1);
1165 spin_lock_irqsave(&plx_lock
, plx_flags
);
1166 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1167 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1168 pv
= readl(plx_acc_32
);
1169 /* The first and the last cards are terminating the PCM bus */
1170 pv
|= PLX_TERM_ON
; /* hc is currently the last */
1171 /* Disconnect the PCM */
1172 pv
|= PLX_SLAVE_EN_N
;
1173 pv
&= ~PLX_MASTER_EN
;
1174 pv
&= ~PLX_SYNC_O_EN
;
1175 /* Put the DSP in Reset */
1176 pv
&= ~PLX_DSP_RES_N
;
1177 writel(pv
, plx_acc_32
);
1178 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1179 if (debug
& DEBUG_HFCMULTI_INIT
)
1180 printk(KERN_DEBUG
"%s: slave/term: PLX_GPIO=%x\n",
1183 * If we are the 3rd PLXSD card or higher, we must turn
1184 * termination of last PLXSD card off.
1186 spin_lock_irqsave(&HFClock
, hfc_flags
);
1189 list_for_each_entry_safe(pos
, next
, &HFClist
, list
) {
1190 if (test_bit(HFC_CHIP_PLXSD
, &pos
->chip
)) {
1196 if (plx_count
>= 3) {
1197 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1198 printk(KERN_DEBUG
"%s: card %d is between, so "
1199 "we disable termination\n",
1200 __func__
, plx_last_hc
->id
+ 1);
1201 spin_lock_irqsave(&plx_lock
, plx_flags
);
1202 plx_acc_32
= plx_last_hc
->plx_membase
+ PLX_GPIOC
;
1203 pv
= readl(plx_acc_32
);
1205 writel(pv
, plx_acc_32
);
1206 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1207 if (debug
& DEBUG_HFCMULTI_INIT
)
1209 "%s: term off: PLX_GPIO=%x\n",
1212 spin_unlock_irqrestore(&HFClock
, hfc_flags
);
1213 hc
->hw
.r_pcm_md0
= V_F0_LEN
; /* shift clock for DSP */
1216 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1217 hc
->hw
.r_pcm_md0
= V_F0_LEN
; /* shift clock for DSP */
1219 /* we only want the real Z2 read-pointer for revision > 0 */
1220 if (!test_bit(HFC_CHIP_REVISION0
, &hc
->chip
))
1221 hc
->hw
.r_ram_sz
|= V_FZ_MD
;
1223 /* select pcm mode */
1224 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1225 if (debug
& DEBUG_HFCMULTI_INIT
)
1226 printk(KERN_DEBUG
"%s: setting PCM into slave mode\n",
1229 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
) && !plxsd_master
) {
1230 if (debug
& DEBUG_HFCMULTI_INIT
)
1231 printk(KERN_DEBUG
"%s: setting PCM into master mode\n",
1233 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1235 if (debug
& DEBUG_HFCMULTI_INIT
)
1236 printk(KERN_DEBUG
"%s: performing PCM auto detect\n",
1241 HFC_outb(hc
, R_CTRL
, hc
->hw
.r_ctrl
);
1242 if (hc
->ctype
== HFC_TYPE_XHFC
)
1243 HFC_outb(hc
, 0x0C /* R_FIFO_THRES */,
1244 0x11 /* 16 Bytes TX/RX */);
1246 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1247 HFC_outb(hc
, R_FIFO_MD
, 0);
1248 if (hc
->ctype
== HFC_TYPE_XHFC
)
1249 hc
->hw
.r_cirm
= V_SRES
| V_HFCRES
| V_PCMRES
| V_STRES
;
1251 hc
->hw
.r_cirm
= V_SRES
| V_HFCRES
| V_PCMRES
| V_STRES
1253 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1256 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1258 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1259 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1261 /* Speech Design PLX bridge pcm and sync mode */
1262 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1263 spin_lock_irqsave(&plx_lock
, plx_flags
);
1264 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1265 pv
= readl(plx_acc_32
);
1267 if (hc
->hw
.r_pcm_md0
& V_PCM_MD
) {
1268 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1269 pv
|= PLX_SYNC_O_EN
;
1270 if (debug
& DEBUG_HFCMULTI_INIT
)
1271 printk(KERN_DEBUG
"%s: master: PLX_GPIO=%x\n",
1274 pv
&= ~(PLX_MASTER_EN
| PLX_SLAVE_EN_N
);
1275 pv
&= ~PLX_SYNC_O_EN
;
1276 if (debug
& DEBUG_HFCMULTI_INIT
)
1277 printk(KERN_DEBUG
"%s: slave: PLX_GPIO=%x\n",
1280 writel(pv
, plx_acc_32
);
1281 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1285 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x90);
1286 if (hc
->slots
== 32)
1287 HFC_outb(hc
, R_PCM_MD1
, 0x00);
1288 if (hc
->slots
== 64)
1289 HFC_outb(hc
, R_PCM_MD1
, 0x10);
1290 if (hc
->slots
== 128)
1291 HFC_outb(hc
, R_PCM_MD1
, 0x20);
1292 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0xa0);
1293 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
1294 HFC_outb(hc
, R_PCM_MD2
, V_SYNC_SRC
); /* sync via SYNC_I / O */
1295 else if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1296 HFC_outb(hc
, R_PCM_MD2
, 0x10); /* V_C2O_EN */
1298 HFC_outb(hc
, R_PCM_MD2
, 0x00); /* sync from interface */
1299 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1300 for (i
= 0; i
< 256; i
++) {
1301 HFC_outb_nodebug(hc
, R_SLOT
, i
);
1302 HFC_outb_nodebug(hc
, A_SL_CFG
, 0);
1303 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1304 HFC_outb_nodebug(hc
, A_CONF
, 0);
1305 hc
->slot_owner
[i
] = -1;
1308 /* set clock speed */
1309 if (test_bit(HFC_CHIP_CLOCK2
, &hc
->chip
)) {
1310 if (debug
& DEBUG_HFCMULTI_INIT
)
1312 "%s: setting double clock\n", __func__
);
1313 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1316 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1317 HFC_outb(hc
, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1320 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1321 printk(KERN_NOTICE
"Setting GPIOs\n");
1322 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1323 HFC_outb(hc
, R_GPIO_EN1
, 0x3);
1325 printk(KERN_NOTICE
"calling vpm_init\n");
1329 /* check if R_F0_CNT counts (8 kHz frame count) */
1330 val
= HFC_inb(hc
, R_F0_CNTL
);
1331 val
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1332 if (debug
& DEBUG_HFCMULTI_INIT
)
1334 "HFC_multi F0_CNT %ld after reset\n", val
);
1335 spin_unlock_irqrestore(&hc
->lock
, flags
);
1336 set_current_state(TASK_UNINTERRUPTIBLE
);
1337 schedule_timeout((HZ
/ 100) ? : 1); /* Timeout minimum 10ms */
1338 spin_lock_irqsave(&hc
->lock
, flags
);
1339 val2
= HFC_inb(hc
, R_F0_CNTL
);
1340 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1341 if (debug
& DEBUG_HFCMULTI_INIT
)
1343 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1345 if (val2
>= val
+ 8) { /* 1 ms */
1346 /* it counts, so we keep the pcm mode */
1347 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1348 printk(KERN_INFO
"controller is PCM bus MASTER\n");
1350 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
))
1351 printk(KERN_INFO
"controller is PCM bus SLAVE\n");
1353 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
1354 printk(KERN_INFO
"controller is PCM bus SLAVE "
1355 "(auto detected)\n");
1358 /* does not count */
1359 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
1361 printk(KERN_ERR
"HFC_multi ERROR, getting no 125us "
1362 "pulse. Seems that controller fails.\n");
1366 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1367 printk(KERN_INFO
"controller is PCM bus SLAVE "
1368 "(ignoring missing PCM clock)\n");
1370 /* only one pcm master */
1371 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
1373 printk(KERN_ERR
"HFC_multi ERROR, no clock "
1374 "on another Speech Design card found. "
1375 "Please be sure to connect PCM cable.\n");
1379 /* retry with master clock */
1380 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1381 spin_lock_irqsave(&plx_lock
, plx_flags
);
1382 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1383 pv
= readl(plx_acc_32
);
1384 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1385 pv
|= PLX_SYNC_O_EN
;
1386 writel(pv
, plx_acc_32
);
1387 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1388 if (debug
& DEBUG_HFCMULTI_INIT
)
1389 printk(KERN_DEBUG
"%s: master: "
1390 "PLX_GPIO=%x\n", __func__
, pv
);
1392 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1393 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1394 spin_unlock_irqrestore(&hc
->lock
, flags
);
1395 set_current_state(TASK_UNINTERRUPTIBLE
);
1396 schedule_timeout((HZ
/ 100) ?: 1); /* Timeout min. 10ms */
1397 spin_lock_irqsave(&hc
->lock
, flags
);
1398 val2
= HFC_inb(hc
, R_F0_CNTL
);
1399 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1400 if (debug
& DEBUG_HFCMULTI_INIT
)
1401 printk(KERN_DEBUG
"HFC_multi F0_CNT %ld after "
1402 "10 ms (2nd try)\n", val2
);
1403 if (val2
>= val
+ 8) { /* 1 ms */
1404 test_and_set_bit(HFC_CHIP_PCM_MASTER
,
1406 printk(KERN_INFO
"controller is PCM bus MASTER "
1407 "(auto detected)\n");
1409 goto controller_fail
;
1413 /* Release the DSP Reset */
1414 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1415 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1417 spin_lock_irqsave(&plx_lock
, plx_flags
);
1418 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1419 pv
= readl(plx_acc_32
);
1420 pv
|= PLX_DSP_RES_N
;
1421 writel(pv
, plx_acc_32
);
1422 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1423 if (debug
& DEBUG_HFCMULTI_INIT
)
1424 printk(KERN_DEBUG
"%s: reset off: PLX_GPIO=%x\n",
1430 printk(KERN_INFO
"controller has given PCM BUS ID %d\n",
1433 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)
1434 || test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1435 PCM_cnt
++; /* SD has proprietary bridging */
1438 printk(KERN_INFO
"controller has PCM BUS ID %d "
1439 "(auto selected)\n", hc
->pcm
);
1443 HFC_outb(hc
, R_TI_WD
, poll_timer
);
1444 hc
->hw
.r_irqmsk_misc
|= V_TI_IRQMSK
;
1446 /* set E1 state machine IRQ */
1447 if (hc
->ctype
== HFC_TYPE_E1
)
1448 hc
->hw
.r_irqmsk_misc
|= V_STA_IRQMSK
;
1450 /* set DTMF detection */
1451 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
1452 if (debug
& DEBUG_HFCMULTI_INIT
)
1453 printk(KERN_DEBUG
"%s: enabling DTMF detection "
1454 "for all B-channel\n", __func__
);
1455 hc
->hw
.r_dtmf
= V_DTMF_EN
| V_DTMF_STOP
;
1456 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1457 hc
->hw
.r_dtmf
|= V_ULAW_SEL
;
1458 HFC_outb(hc
, R_DTMF_N
, 102 - 1);
1459 hc
->hw
.r_irqmsk_misc
|= V_DTMF_IRQMSK
;
1462 /* conference engine */
1463 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1464 r_conf_en
= V_CONF_EN
| V_ULAW
;
1466 r_conf_en
= V_CONF_EN
;
1467 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1468 HFC_outb(hc
, R_CONF_EN
, r_conf_en
);
1472 case 1: /* HFC-E1 OEM */
1473 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
1474 HFC_outb(hc
, R_GPIO_SEL
, 0x32);
1476 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1478 HFC_outb(hc
, R_GPIO_EN1
, 0x0f);
1479 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1481 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1484 case 2: /* HFC-4S OEM */
1486 HFC_outb(hc
, R_GPIO_SEL
, 0xf0);
1487 HFC_outb(hc
, R_GPIO_EN1
, 0xff);
1488 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1492 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
)) {
1493 hc
->hw
.r_st_sync
= 0x10; /* V_AUTO_SYNCI */
1494 HFC_outb(hc
, R_ST_SYNC
, hc
->hw
.r_st_sync
);
1497 /* set master clock */
1498 if (hc
->masterclk
>= 0) {
1499 if (debug
& DEBUG_HFCMULTI_INIT
)
1500 printk(KERN_DEBUG
"%s: setting ST master clock "
1501 "to port %d (0..%d)\n",
1502 __func__
, hc
->masterclk
, hc
->ports
- 1);
1503 hc
->hw
.r_st_sync
|= (hc
->masterclk
| V_AUTO_SYNC
);
1504 HFC_outb(hc
, R_ST_SYNC
, hc
->hw
.r_st_sync
);
1509 /* setting misc irq */
1510 HFC_outb(hc
, R_IRQMSK_MISC
, hc
->hw
.r_irqmsk_misc
);
1511 if (debug
& DEBUG_HFCMULTI_INIT
)
1512 printk(KERN_DEBUG
"r_irqmsk_misc.2: 0x%x\n",
1513 hc
->hw
.r_irqmsk_misc
);
1515 /* RAM access test */
1516 HFC_outb(hc
, R_RAM_ADDR0
, 0);
1517 HFC_outb(hc
, R_RAM_ADDR1
, 0);
1518 HFC_outb(hc
, R_RAM_ADDR2
, 0);
1519 for (i
= 0; i
< 256; i
++) {
1520 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1521 HFC_outb_nodebug(hc
, R_RAM_DATA
, ((i
* 3) & 0xff));
1523 for (i
= 0; i
< 256; i
++) {
1524 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1525 HFC_inb_nodebug(hc
, R_RAM_DATA
);
1526 rval
= HFC_inb_nodebug(hc
, R_INT_DATA
);
1527 if (rval
!= ((i
* 3) & 0xff)) {
1529 "addr:%x val:%x should:%x\n", i
, rval
,
1535 printk(KERN_DEBUG
"aborting - %d RAM access errors\n", err
);
1540 if (debug
& DEBUG_HFCMULTI_INIT
)
1541 printk(KERN_DEBUG
"%s: done\n", __func__
);
1543 spin_unlock_irqrestore(&hc
->lock
, flags
);
1549 * control the watchdog
1552 hfcmulti_watchdog(struct hfc_multi
*hc
)
1556 if (hc
->wdcount
> 10) {
1558 hc
->wdbyte
= hc
->wdbyte
== V_GPIO_OUT2
?
1559 V_GPIO_OUT3
: V_GPIO_OUT2
;
1561 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1562 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1563 HFC_outb(hc
, R_GPIO_OUT0
, hc
->wdbyte
);
1573 hfcmulti_leds(struct hfc_multi
*hc
)
1576 unsigned long leddw
;
1577 int i
, state
, active
, leds
;
1578 struct dchannel
*dch
;
1582 case 1: /* HFC-E1 OEM */
1583 /* 2 red steady: LOS
1584 * 1 red steady: L1 not active
1585 * 2 green steady: L1 active
1586 * 1st green flashing: activity on TX
1587 * 2nd green flashing: activity on RX
1593 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
1595 if (hc
->chan
[hc
->dnum
[0]].los
)
1597 if (hc
->e1_state
!= 1) {
1604 if (!hc
->flash
[2] && hc
->activity_tx
)
1605 hc
->flash
[2] = poll
;
1606 if (!hc
->flash
[3] && hc
->activity_rx
)
1607 hc
->flash
[3] = poll
;
1608 if (hc
->flash
[2] && hc
->flash
[2] < 1024)
1610 if (hc
->flash
[3] && hc
->flash
[3] < 1024)
1612 if (hc
->flash
[2] >= 2048)
1614 if (hc
->flash
[3] >= 2048)
1617 hc
->flash
[2] += poll
;
1619 hc
->flash
[3] += poll
;
1622 leds
= (led
[0] | (led
[1]<<2) | (led
[2]<<1) | (led
[3]<<3))^0xF;
1623 /* leds are inverted */
1624 if (leds
!= (int)hc
->ledstate
) {
1625 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
);
1626 hc
->ledstate
= leds
;
1630 case 2: /* HFC-4S OEM */
1631 /* red steady: PH_DEACTIVATE
1632 * green steady: PH_ACTIVATE
1633 * green flashing: activity on TX
1635 for (i
= 0; i
< 4; i
++) {
1638 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1641 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1647 if (state
== active
) {
1648 led
[i
] = 1; /* led green */
1649 hc
->activity_tx
|= hc
->activity_rx
;
1650 if (!hc
->flash
[i
] &&
1651 (hc
->activity_tx
& (1 << i
)))
1652 hc
->flash
[i
] = poll
;
1653 if (hc
->flash
[i
] && hc
->flash
[i
] < 1024)
1654 led
[i
] = 0; /* led off */
1655 if (hc
->flash
[i
] >= 2048)
1658 hc
->flash
[i
] += poll
;
1660 led
[i
] = 2; /* led red */
1664 led
[i
] = 0; /* led off */
1666 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1668 for (i
= 0; i
< 4; i
++) {
1671 leds
|= (0x2 << (i
* 2));
1672 } else if (led
[i
] == 2) {
1674 leds
|= (0x1 << (i
* 2));
1677 if (leds
!= (int)hc
->ledstate
) {
1678 vpm_out(hc
, 0, 0x1a8 + 3, leds
);
1679 hc
->ledstate
= leds
;
1682 leds
= ((led
[3] > 0) << 0) | ((led
[1] > 0) << 1) |
1683 ((led
[0] > 0) << 2) | ((led
[2] > 0) << 3) |
1684 ((led
[3] & 1) << 4) | ((led
[1] & 1) << 5) |
1685 ((led
[0] & 1) << 6) | ((led
[2] & 1) << 7);
1686 if (leds
!= (int)hc
->ledstate
) {
1687 HFC_outb_nodebug(hc
, R_GPIO_EN1
, leds
& 0x0F);
1688 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
>> 4);
1689 hc
->ledstate
= leds
;
1694 case 3: /* HFC 1S/2S Beronet */
1695 /* red steady: PH_DEACTIVATE
1696 * green steady: PH_ACTIVATE
1697 * green flashing: activity on TX
1699 for (i
= 0; i
< 2; i
++) {
1702 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1705 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1711 if (state
== active
) {
1712 led
[i
] = 1; /* led green */
1713 hc
->activity_tx
|= hc
->activity_rx
;
1714 if (!hc
->flash
[i
] &&
1715 (hc
->activity_tx
& (1 << i
)))
1716 hc
->flash
[i
] = poll
;
1717 if (hc
->flash
[i
] < 1024)
1718 led
[i
] = 0; /* led off */
1719 if (hc
->flash
[i
] >= 2048)
1722 hc
->flash
[i
] += poll
;
1724 led
[i
] = 2; /* led red */
1728 led
[i
] = 0; /* led off */
1730 leds
= (led
[0] > 0) | ((led
[1] > 0) << 1) | ((led
[0]&1) << 2)
1731 | ((led
[1]&1) << 3);
1732 if (leds
!= (int)hc
->ledstate
) {
1733 HFC_outb_nodebug(hc
, R_GPIO_EN1
,
1734 ((led
[0] > 0) << 2) | ((led
[1] > 0) << 3));
1735 HFC_outb_nodebug(hc
, R_GPIO_OUT1
,
1736 ((led
[0] & 1) << 2) | ((led
[1] & 1) << 3));
1737 hc
->ledstate
= leds
;
1740 case 8: /* HFC 8S+ Beronet */
1741 /* off: PH_DEACTIVATE
1742 * steady: PH_ACTIVATE
1743 * flashing: activity on TX
1745 lled
= 0xff; /* leds off */
1746 for (i
= 0; i
< 8; i
++) {
1749 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1752 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1758 if (state
== active
) {
1759 lled
&= ~(1 << i
); /* led on */
1760 hc
->activity_tx
|= hc
->activity_rx
;
1761 if (!hc
->flash
[i
] &&
1762 (hc
->activity_tx
& (1 << i
)))
1763 hc
->flash
[i
] = poll
;
1764 if (hc
->flash
[i
] < 1024)
1765 lled
|= 1 << i
; /* led off */
1766 if (hc
->flash
[i
] >= 2048)
1769 hc
->flash
[i
] += poll
;
1774 leddw
= lled
<< 24 | lled
<< 16 | lled
<< 8 | lled
;
1775 if (leddw
!= hc
->ledstate
) {
1776 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1777 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1778 /* was _io before */
1779 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
1780 outw(0x4000, hc
->pci_iobase
+ 4);
1781 outl(leddw
, hc
->pci_iobase
);
1782 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1783 hc
->ledstate
= leddw
;
1787 hc
->activity_tx
= 0;
1788 hc
->activity_rx
= 0;
1791 * read dtmf coefficients
1795 hfcmulti_dtmf(struct hfc_multi
*hc
)
1800 struct bchannel
*bch
= NULL
;
1805 struct sk_buff
*skb
;
1806 struct mISDNhead
*hh
;
1808 if (debug
& DEBUG_HFCMULTI_DTMF
)
1809 printk(KERN_DEBUG
"%s: dtmf detection irq\n", __func__
);
1810 for (ch
= 0; ch
<= 31; ch
++) {
1811 /* only process enabled B-channels */
1812 bch
= hc
->chan
[ch
].bch
;
1815 if (!hc
->created
[hc
->chan
[ch
].port
])
1817 if (!test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
1819 if (debug
& DEBUG_HFCMULTI_DTMF
)
1820 printk(KERN_DEBUG
"%s: dtmf channel %d:",
1822 coeff
= &(hc
->chan
[ch
].coeff
[hc
->chan
[ch
].coeff_count
* 16]);
1824 for (co
= 0; co
< 8; co
++) {
1825 /* read W(n-1) coefficient */
1826 addr
= hc
->DTMFbase
+ ((co
<< 7) | (ch
<< 2));
1827 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, addr
);
1828 HFC_outb_nodebug(hc
, R_RAM_ADDR1
, addr
>> 8);
1829 HFC_outb_nodebug(hc
, R_RAM_ADDR2
, (addr
>> 16)
1831 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1832 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1833 if (debug
& DEBUG_HFCMULTI_DTMF
)
1834 printk(" %04x", w_float
);
1836 /* decode float (see chip doc) */
1837 mantissa
= w_float
& 0x0fff;
1838 if (w_float
& 0x8000)
1839 mantissa
|= 0xfffff000;
1840 exponent
= (w_float
>> 12) & 0x7;
1843 mantissa
<<= (exponent
- 1);
1846 /* store coefficient */
1847 coeff
[co
<< 1] = mantissa
;
1849 /* read W(n) coefficient */
1850 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1851 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1852 if (debug
& DEBUG_HFCMULTI_DTMF
)
1853 printk(" %04x", w_float
);
1855 /* decode float (see chip doc) */
1856 mantissa
= w_float
& 0x0fff;
1857 if (w_float
& 0x8000)
1858 mantissa
|= 0xfffff000;
1859 exponent
= (w_float
>> 12) & 0x7;
1862 mantissa
<<= (exponent
- 1);
1865 /* store coefficient */
1866 coeff
[(co
<< 1) | 1] = mantissa
;
1868 if (debug
& DEBUG_HFCMULTI_DTMF
)
1869 printk(" DTMF ready %08x %08x %08x %08x "
1870 "%08x %08x %08x %08x\n",
1871 coeff
[0], coeff
[1], coeff
[2], coeff
[3],
1872 coeff
[4], coeff
[5], coeff
[6], coeff
[7]);
1873 hc
->chan
[ch
].coeff_count
++;
1874 if (hc
->chan
[ch
].coeff_count
== 8) {
1875 hc
->chan
[ch
].coeff_count
= 0;
1876 skb
= mI_alloc_skb(512, GFP_ATOMIC
);
1878 printk(KERN_DEBUG
"%s: No memory for skb\n",
1882 hh
= mISDN_HEAD_P(skb
);
1883 hh
->prim
= PH_CONTROL_IND
;
1884 hh
->id
= DTMF_HFC_COEF
;
1885 skb_put_data(skb
, hc
->chan
[ch
].coeff
, 512);
1886 recv_Bchannel_skb(bch
, skb
);
1890 /* restart DTMF processing */
1893 HFC_outb_nodebug(hc
, R_DTMF
, hc
->hw
.r_dtmf
| V_RST_DTMF
);
1898 * fill fifo as much as possible
1902 hfcmulti_tx(struct hfc_multi
*hc
, int ch
)
1904 int i
, ii
, temp
, tmp_len
, len
= 0;
1905 int Zspace
, z1
, z2
; /* must be int for calculation */
1908 int *txpending
, slot_tx
;
1909 struct bchannel
*bch
;
1910 struct dchannel
*dch
;
1911 struct sk_buff
**sp
= NULL
;
1914 bch
= hc
->chan
[ch
].bch
;
1915 dch
= hc
->chan
[ch
].dch
;
1916 if ((!dch
) && (!bch
))
1919 txpending
= &hc
->chan
[ch
].txpending
;
1920 slot_tx
= hc
->chan
[ch
].slot_tx
;
1922 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
1925 idxp
= &dch
->tx_idx
;
1927 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
1930 idxp
= &bch
->tx_idx
;
1935 if ((!len
) && *txpending
!= 1)
1936 return; /* no data */
1938 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
1939 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
1940 (hc
->chan
[ch
].slot_rx
< 0) &&
1941 (hc
->chan
[ch
].slot_tx
< 0))
1942 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<< 1));
1944 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
1945 HFC_wait_nodebug(hc
);
1947 if (*txpending
== 2) {
1949 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
1950 HFC_wait_nodebug(hc
);
1951 HFC_outb(hc
, A_SUBCH_CFG
, 0);
1955 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
1956 f1
= HFC_inb_nodebug(hc
, A_F1
);
1957 f2
= HFC_inb_nodebug(hc
, A_F2
);
1958 while (f2
!= (temp
= HFC_inb_nodebug(hc
, A_F2
))) {
1959 if (debug
& DEBUG_HFCMULTI_FIFO
)
1961 "%s(card %d): reread f2 because %d!=%d\n",
1962 __func__
, hc
->id
+ 1, temp
, f2
);
1963 f2
= temp
; /* repeat until F2 is equal */
1965 Fspace
= f2
- f1
- 1;
1969 * Old FIFO handling doesn't give us the current Z2 read
1970 * pointer, so we cannot send the next frame before the fifo
1971 * is empty. It makes no difference except for a slightly
1972 * lower performance.
1974 if (test_bit(HFC_CHIP_REVISION0
, &hc
->chip
)) {
1980 /* one frame only for ST D-channels, to allow resending */
1981 if (hc
->ctype
!= HFC_TYPE_E1
&& dch
) {
1985 /* F-counter full condition */
1989 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
1990 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
1991 while (z2
!= (temp
= (HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
))) {
1992 if (debug
& DEBUG_HFCMULTI_FIFO
)
1993 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
1994 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
1995 z2
= temp
; /* repeat unti Z2 is equal */
1997 hc
->chan
[ch
].Zfill
= z1
- z2
;
1998 if (hc
->chan
[ch
].Zfill
< 0)
1999 hc
->chan
[ch
].Zfill
+= hc
->Zlen
;
2003 Zspace
-= 4; /* keep not too full, so pointers will not overrun */
2004 /* fill transparent data only to maximum transparent load (minus 4) */
2005 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2006 Zspace
= Zspace
- hc
->Zlen
+ hc
->max_trans
;
2007 if (Zspace
<= 0) /* no space of 4 bytes */
2012 if (z1
== z2
) { /* empty */
2013 /* if done with FIFO audio data during PCM connection */
2014 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) &&
2015 *txpending
&& slot_tx
>= 0) {
2016 if (debug
& DEBUG_HFCMULTI_MODE
)
2018 "%s: reconnecting PCM due to no "
2019 "more FIFO data: channel %d "
2021 __func__
, ch
, slot_tx
);
2023 if (hc
->ctype
== HFC_TYPE_XHFC
)
2024 HFC_outb(hc
, A_CON_HDLC
, 0xc0
2025 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2026 /* Enable FIFO, no interrupt */
2028 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
2029 V_HDLC_TRP
| V_IFF
);
2030 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1 | 1);
2031 HFC_wait_nodebug(hc
);
2032 if (hc
->ctype
== HFC_TYPE_XHFC
)
2033 HFC_outb(hc
, A_CON_HDLC
, 0xc0
2034 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2035 /* Enable FIFO, no interrupt */
2037 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
2038 V_HDLC_TRP
| V_IFF
);
2039 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
2040 HFC_wait_nodebug(hc
);
2044 return; /* no data */
2047 /* "fill fifo if empty" feature */
2048 if (bch
&& test_bit(FLG_FILLEMPTY
, &bch
->Flags
)
2049 && !test_bit(FLG_HDLC
, &bch
->Flags
) && z2
== z1
) {
2050 if (debug
& DEBUG_HFCMULTI_FILL
)
2051 printk(KERN_DEBUG
"%s: buffer empty, so we have "
2052 "underrun\n", __func__
);
2053 /* fill buffer, to prevent future underrun */
2054 hc
->write_fifo(hc
, hc
->silence_data
, poll
>> 1);
2055 Zspace
-= (poll
>> 1);
2058 /* if audio data and connected slot */
2059 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) && (!*txpending
)
2061 if (debug
& DEBUG_HFCMULTI_MODE
)
2062 printk(KERN_DEBUG
"%s: disconnecting PCM due to "
2063 "FIFO data: channel %d slot_tx %d\n",
2064 __func__
, ch
, slot_tx
);
2065 /* disconnect slot */
2066 if (hc
->ctype
== HFC_TYPE_XHFC
)
2067 HFC_outb(hc
, A_CON_HDLC
, 0x80
2068 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2069 /* Enable FIFO, no interrupt */
2071 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 |
2072 V_HDLC_TRP
| V_IFF
);
2073 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1 | 1);
2074 HFC_wait_nodebug(hc
);
2075 if (hc
->ctype
== HFC_TYPE_XHFC
)
2076 HFC_outb(hc
, A_CON_HDLC
, 0x80
2077 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2078 /* Enable FIFO, no interrupt */
2080 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 |
2081 V_HDLC_TRP
| V_IFF
);
2082 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
2083 HFC_wait_nodebug(hc
);
2089 hc
->activity_tx
|= 1 << hc
->chan
[ch
].port
;
2091 /* fill fifo to what we have left */
2093 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
))
2098 d
= (*sp
)->data
+ i
;
2099 if (ii
- i
> Zspace
)
2101 if (debug
& DEBUG_HFCMULTI_FIFO
)
2102 printk(KERN_DEBUG
"%s(card %d): fifo(%d) has %d bytes space "
2103 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2104 __func__
, hc
->id
+ 1, ch
, Zspace
, z1
, z2
, ii
-i
, len
-i
,
2105 temp
? "HDLC" : "TRANS");
2107 /* Have to prep the audio data */
2108 hc
->write_fifo(hc
, d
, ii
- i
);
2109 hc
->chan
[ch
].Zfill
+= ii
- i
;
2112 /* if not all data has been written */
2114 /* NOTE: fifo is started by the calling function */
2118 /* if all data has been written, terminate frame */
2119 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2120 /* increment f-counter */
2121 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2122 HFC_wait_nodebug(hc
);
2125 tmp_len
= (*sp
)->len
;
2127 /* check for next frame */
2128 if (bch
&& get_next_bframe(bch
)) {
2132 if (dch
&& get_next_dframe(dch
)) {
2138 * now we have no more data, so in case of transparent,
2139 * we set the last byte in fifo to 'silence' in case we will get
2140 * no more data at all. this prevents sending an undefined value.
2142 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2143 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
2147 /* NOTE: only called if E1 card is in active state */
2149 hfcmulti_rx(struct hfc_multi
*hc
, int ch
)
2152 int Zsize
, z1
, z2
= 0; /* = 0, to make GCC happy */
2153 int f1
= 0, f2
= 0; /* = 0, to make GCC happy */
2155 struct bchannel
*bch
;
2156 struct dchannel
*dch
= NULL
;
2157 struct sk_buff
*skb
, **sp
= NULL
;
2160 bch
= hc
->chan
[ch
].bch
;
2162 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
2164 } else if (hc
->chan
[ch
].dch
) {
2165 dch
= hc
->chan
[ch
].dch
;
2166 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
2172 /* on first AND before getting next valid frame, R_FIFO must be written
2174 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
2175 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
2176 (hc
->chan
[ch
].slot_rx
< 0) &&
2177 (hc
->chan
[ch
].slot_tx
< 0))
2178 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<< 1) | 1);
2180 HFC_outb_nodebug(hc
, R_FIFO
, (ch
<< 1) | 1);
2181 HFC_wait_nodebug(hc
);
2183 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2184 if (hc
->chan
[ch
].rx_off
) {
2186 bch
->dropcnt
+= poll
; /* not exact but fair enough */
2190 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2191 f1
= HFC_inb_nodebug(hc
, A_F1
);
2192 while (f1
!= (temp
= HFC_inb_nodebug(hc
, A_F1
))) {
2193 if (debug
& DEBUG_HFCMULTI_FIFO
)
2195 "%s(card %d): reread f1 because %d!=%d\n",
2196 __func__
, hc
->id
+ 1, temp
, f1
);
2197 f1
= temp
; /* repeat until F1 is equal */
2199 f2
= HFC_inb_nodebug(hc
, A_F2
);
2201 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
2202 while (z1
!= (temp
= (HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
))) {
2203 if (debug
& DEBUG_HFCMULTI_FIFO
)
2204 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
2205 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
2206 z1
= temp
; /* repeat until Z1 is equal */
2208 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
2210 if ((dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) && f1
!= f2
)
2211 /* complete hdlc frame */
2215 /* if buffer is empty */
2220 maxlen
= bchannel_get_rxbuf(bch
, Zsize
);
2222 pr_warn("card%d.B%d: No bufferspace for %d bytes\n",
2223 hc
->id
+ 1, bch
->nr
, Zsize
);
2227 maxlen
= bch
->maxlen
;
2228 } else { /* Dchannel */
2230 maxlen
= dch
->maxlen
+ 3;
2232 *sp
= mI_alloc_skb(maxlen
, GFP_ATOMIC
);
2234 pr_warn("card%d: No mem for dch rx_skb\n",
2242 hc
->activity_rx
|= 1 << hc
->chan
[ch
].port
;
2244 /* empty fifo with what we have */
2245 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2246 if (debug
& DEBUG_HFCMULTI_FIFO
)
2247 printk(KERN_DEBUG
"%s(card %d): fifo(%d) reading %d "
2248 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2249 "got=%d (again %d)\n", __func__
, hc
->id
+ 1, ch
,
2250 Zsize
, z1
, z2
, (f1
== f2
) ? "fragment" : "COMPLETE",
2251 f1
, f2
, Zsize
+ (*sp
)->len
, again
);
2253 if ((Zsize
+ (*sp
)->len
) > maxlen
) {
2254 if (debug
& DEBUG_HFCMULTI_FIFO
)
2256 "%s(card %d): hdlc-frame too large.\n",
2257 __func__
, hc
->id
+ 1);
2259 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
2260 HFC_wait_nodebug(hc
);
2264 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2267 /* increment Z2,F2-counter */
2268 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2269 HFC_wait_nodebug(hc
);
2271 if ((*sp
)->len
< 4) {
2272 if (debug
& DEBUG_HFCMULTI_FIFO
)
2274 "%s(card %d): Frame below minimum "
2275 "size\n", __func__
, hc
->id
+ 1);
2279 /* there is at least one complete frame, check crc */
2280 if ((*sp
)->data
[(*sp
)->len
- 1]) {
2281 if (debug
& DEBUG_HFCMULTI_CRC
)
2283 "%s: CRC-error\n", __func__
);
2287 skb_trim(*sp
, (*sp
)->len
- 3);
2288 if ((*sp
)->len
< MISDN_COPY_SIZE
) {
2290 *sp
= mI_alloc_skb(skb
->len
, GFP_ATOMIC
);
2292 skb_put_data(*sp
, skb
->data
, skb
->len
);
2295 printk(KERN_DEBUG
"%s: No mem\n",
2303 if (debug
& DEBUG_HFCMULTI_FIFO
) {
2304 printk(KERN_DEBUG
"%s(card %d):",
2305 __func__
, hc
->id
+ 1);
2307 while (temp
< (*sp
)->len
)
2308 printk(" %02x", (*sp
)->data
[temp
++]);
2314 recv_Bchannel(bch
, MISDN_ID_ANY
, false);
2319 /* there is an incomplete frame */
2322 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2323 if (debug
& DEBUG_HFCMULTI_FIFO
)
2325 "%s(card %d): fifo(%d) reading %d bytes "
2326 "(z1=%04x, z2=%04x) TRANS\n",
2327 __func__
, hc
->id
+ 1, ch
, Zsize
, z1
, z2
);
2328 /* only bch is transparent */
2329 recv_Bchannel(bch
, hc
->chan
[ch
].Zfill
, false);
2338 signal_state_up(struct dchannel
*dch
, int info
, char *msg
)
2340 struct sk_buff
*skb
;
2341 int id
, data
= info
;
2343 if (debug
& DEBUG_HFCMULTI_STATE
)
2344 printk(KERN_DEBUG
"%s: %s\n", __func__
, msg
);
2346 id
= TEI_SAPI
| (GROUP_TEI
<< 8); /* manager address */
2348 skb
= _alloc_mISDN_skb(MPH_INFORMATION_IND
, id
, sizeof(data
), &data
,
2352 recv_Dchannel_skb(dch
, skb
);
2356 handle_timer_irq(struct hfc_multi
*hc
)
2359 struct dchannel
*dch
;
2362 /* process queued resync jobs */
2363 if (hc
->e1_resync
) {
2364 /* lock, so e1_resync gets not changed */
2365 spin_lock_irqsave(&HFClock
, flags
);
2366 if (hc
->e1_resync
& 1) {
2367 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2368 printk(KERN_DEBUG
"Enable SYNC_I\n");
2369 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
);
2370 /* disable JATT, if RX_SYNC is set */
2371 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
2372 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
2374 if (hc
->e1_resync
& 2) {
2375 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2376 printk(KERN_DEBUG
"Enable jatt PLL\n");
2377 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
2379 if (hc
->e1_resync
& 4) {
2380 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2382 "Enable QUARTZ for HFC-E1\n");
2383 /* set jatt to quartz */
2384 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
2386 /* switch to JATT, in case it is not already */
2387 HFC_outb(hc
, R_SYNC_OUT
, 0);
2390 spin_unlock_irqrestore(&HFClock
, flags
);
2393 if (hc
->ctype
!= HFC_TYPE_E1
|| hc
->e1_state
== 1)
2394 for (ch
= 0; ch
<= 31; ch
++) {
2395 if (hc
->created
[hc
->chan
[ch
].port
]) {
2396 hfcmulti_tx(hc
, ch
);
2397 /* fifo is started when switching to rx-fifo */
2398 hfcmulti_rx(hc
, ch
);
2399 if (hc
->chan
[ch
].dch
&&
2400 hc
->chan
[ch
].nt_timer
> -1) {
2401 dch
= hc
->chan
[ch
].dch
;
2402 if (!(--hc
->chan
[ch
].nt_timer
)) {
2406 DEBUG_HFCMULTI_STATE
)
2416 if (hc
->ctype
== HFC_TYPE_E1
&& hc
->created
[0]) {
2417 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
2419 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_SIG_LOS
;
2420 hc
->chan
[hc
->dnum
[0]].los
= temp
;
2421 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2422 if (!temp
&& hc
->chan
[hc
->dnum
[0]].los
)
2423 signal_state_up(dch
, L1_SIGNAL_LOS_ON
,
2425 if (temp
&& !hc
->chan
[hc
->dnum
[0]].los
)
2426 signal_state_up(dch
, L1_SIGNAL_LOS_OFF
,
2429 if (test_bit(HFC_CFG_REPORT_AIS
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2431 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_AIS
;
2432 if (!temp
&& hc
->chan
[hc
->dnum
[0]].ais
)
2433 signal_state_up(dch
, L1_SIGNAL_AIS_ON
,
2435 if (temp
&& !hc
->chan
[hc
->dnum
[0]].ais
)
2436 signal_state_up(dch
, L1_SIGNAL_AIS_OFF
,
2438 hc
->chan
[hc
->dnum
[0]].ais
= temp
;
2440 if (test_bit(HFC_CFG_REPORT_SLIP
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2442 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_RX
;
2443 if (!temp
&& hc
->chan
[hc
->dnum
[0]].slip_rx
)
2444 signal_state_up(dch
, L1_SIGNAL_SLIP_RX
,
2445 " bit SLIP detected RX");
2446 hc
->chan
[hc
->dnum
[0]].slip_rx
= temp
;
2447 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_TX
;
2448 if (!temp
&& hc
->chan
[hc
->dnum
[0]].slip_tx
)
2449 signal_state_up(dch
, L1_SIGNAL_SLIP_TX
,
2450 " bit SLIP detected TX");
2451 hc
->chan
[hc
->dnum
[0]].slip_tx
= temp
;
2453 if (test_bit(HFC_CFG_REPORT_RDI
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2455 temp
= HFC_inb_nodebug(hc
, R_RX_SL0_0
) & V_A
;
2456 if (!temp
&& hc
->chan
[hc
->dnum
[0]].rdi
)
2457 signal_state_up(dch
, L1_SIGNAL_RDI_ON
,
2459 if (temp
&& !hc
->chan
[hc
->dnum
[0]].rdi
)
2460 signal_state_up(dch
, L1_SIGNAL_RDI_OFF
,
2462 hc
->chan
[hc
->dnum
[0]].rdi
= temp
;
2464 temp
= HFC_inb_nodebug(hc
, R_JATT_DIR
);
2465 switch (hc
->chan
[hc
->dnum
[0]].sync
) {
2467 if ((temp
& 0x60) == 0x60) {
2468 if (debug
& DEBUG_HFCMULTI_SYNC
)
2470 "%s: (id=%d) E1 now "
2473 HFC_outb(hc
, R_RX_OFF
,
2474 hc
->chan
[hc
->dnum
[0]].jitter
| V_RX_INIT
);
2475 HFC_outb(hc
, R_TX_OFF
,
2476 hc
->chan
[hc
->dnum
[0]].jitter
| V_RX_INIT
);
2477 hc
->chan
[hc
->dnum
[0]].sync
= 1;
2478 goto check_framesync
;
2482 if ((temp
& 0x60) != 0x60) {
2483 if (debug
& DEBUG_HFCMULTI_SYNC
)
2486 "lost clock sync\n",
2488 hc
->chan
[hc
->dnum
[0]].sync
= 0;
2492 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2494 if (debug
& DEBUG_HFCMULTI_SYNC
)
2497 "now in frame sync\n",
2499 hc
->chan
[hc
->dnum
[0]].sync
= 2;
2503 if ((temp
& 0x60) != 0x60) {
2504 if (debug
& DEBUG_HFCMULTI_SYNC
)
2506 "%s: (id=%d) E1 lost "
2507 "clock & frame sync\n",
2509 hc
->chan
[hc
->dnum
[0]].sync
= 0;
2512 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2514 if (debug
& DEBUG_HFCMULTI_SYNC
)
2517 "lost frame sync\n",
2519 hc
->chan
[hc
->dnum
[0]].sync
= 1;
2525 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
2526 hfcmulti_watchdog(hc
);
2533 ph_state_irq(struct hfc_multi
*hc
, u_char r_irq_statech
)
2535 struct dchannel
*dch
;
2538 u_char st_status
, temp
;
2541 for (ch
= 0; ch
<= 31; ch
++) {
2542 if (hc
->chan
[ch
].dch
) {
2543 dch
= hc
->chan
[ch
].dch
;
2544 if (r_irq_statech
& 1) {
2545 HFC_outb_nodebug(hc
, R_ST_SEL
,
2547 /* undocumented: delay after R_ST_SEL */
2549 /* undocumented: status changes during read */
2550 st_status
= HFC_inb_nodebug(hc
, A_ST_RD_STATE
);
2551 while (st_status
!= (temp
=
2552 HFC_inb_nodebug(hc
, A_ST_RD_STATE
))) {
2553 if (debug
& DEBUG_HFCMULTI_STATE
)
2554 printk(KERN_DEBUG
"%s: reread "
2555 "STATE because %d!=%d\n",
2558 st_status
= temp
; /* repeat */
2561 /* Speech Design TE-sync indication */
2562 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) &&
2563 dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
2564 if (st_status
& V_FR_SYNC_ST
)
2566 (1 << hc
->chan
[ch
].port
);
2569 ~(1 << hc
->chan
[ch
].port
);
2571 dch
->state
= st_status
& 0x0f;
2572 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
2576 if (dch
->state
== active
) {
2577 HFC_outb_nodebug(hc
, R_FIFO
,
2579 HFC_wait_nodebug(hc
);
2580 HFC_outb_nodebug(hc
,
2581 R_INC_RES_FIFO
, V_RES_F
);
2582 HFC_wait_nodebug(hc
);
2585 schedule_event(dch
, FLG_PHCHANGE
);
2586 if (debug
& DEBUG_HFCMULTI_STATE
)
2588 "%s: S/T newstate %x port %d\n",
2589 __func__
, dch
->state
,
2592 r_irq_statech
>>= 1;
2595 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2596 plxsd_checksync(hc
, 0);
2600 fifo_irq(struct hfc_multi
*hc
, int block
)
2603 struct dchannel
*dch
;
2604 struct bchannel
*bch
;
2605 u_char r_irq_fifo_bl
;
2607 r_irq_fifo_bl
= HFC_inb_nodebug(hc
, R_IRQ_FIFO_BL0
+ block
);
2610 ch
= (block
<< 2) + (j
>> 1);
2611 dch
= hc
->chan
[ch
].dch
;
2612 bch
= hc
->chan
[ch
].bch
;
2613 if (((!dch
) && (!bch
)) || (!hc
->created
[hc
->chan
[ch
].port
])) {
2617 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2618 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2619 hfcmulti_tx(hc
, ch
);
2621 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2622 HFC_wait_nodebug(hc
);
2624 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2625 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2626 hfcmulti_tx(hc
, ch
);
2628 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2629 HFC_wait_nodebug(hc
);
2632 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2633 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2634 hfcmulti_rx(hc
, ch
);
2636 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2637 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2638 hfcmulti_rx(hc
, ch
);
2648 hfcmulti_interrupt(int intno
, void *dev_id
)
2650 #ifdef IRQCOUNT_DEBUG
2651 static int iq1
= 0, iq2
= 0, iq3
= 0, iq4
= 0,
2652 iq5
= 0, iq6
= 0, iqcnt
= 0;
2654 struct hfc_multi
*hc
= dev_id
;
2655 struct dchannel
*dch
;
2656 u_char r_irq_statech
, status
, r_irq_misc
, r_irq_oview
;
2658 void __iomem
*plx_acc
;
2660 u_char e1_syncsta
, temp
, temp2
;
2664 printk(KERN_ERR
"HFC-multi: Spurious interrupt!\n");
2668 spin_lock(&hc
->lock
);
2672 printk(KERN_ERR
"irq for card %d during irq from "
2673 "card %d, this is no bug.\n", hc
->id
+ 1, irqsem
);
2674 irqsem
= hc
->id
+ 1;
2676 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2677 if (hc
->immap
->im_cpm
.cp_pbdat
& hc
->pb_irqmsk
)
2680 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
2681 spin_lock_irqsave(&plx_lock
, flags
);
2682 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
2683 wval
= readw(plx_acc
);
2684 spin_unlock_irqrestore(&plx_lock
, flags
);
2685 if (!(wval
& PLX_INTCSR_LINTI1_STATUS
))
2689 status
= HFC_inb_nodebug(hc
, R_STATUS
);
2690 r_irq_statech
= HFC_inb_nodebug(hc
, R_IRQ_STATECH
);
2691 #ifdef IRQCOUNT_DEBUG
2694 if (status
& V_DTMF_STA
)
2696 if (status
& V_LOST_STA
)
2698 if (status
& V_EXT_IRQSTA
)
2700 if (status
& V_MISC_IRQSTA
)
2702 if (status
& V_FR_IRQSTA
)
2704 if (iqcnt
++ > 5000) {
2705 printk(KERN_ERR
"iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2706 iq1
, iq2
, iq3
, iq4
, iq5
, iq6
);
2711 if (!r_irq_statech
&&
2712 !(status
& (V_DTMF_STA
| V_LOST_STA
| V_EXT_IRQSTA
|
2713 V_MISC_IRQSTA
| V_FR_IRQSTA
))) {
2714 /* irq is not for us */
2718 if (r_irq_statech
) {
2719 if (hc
->ctype
!= HFC_TYPE_E1
)
2720 ph_state_irq(hc
, r_irq_statech
);
2722 if (status
& V_LOST_STA
) {
2724 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_LOST
); /* clear irq! */
2726 if (status
& V_MISC_IRQSTA
) {
2728 r_irq_misc
= HFC_inb_nodebug(hc
, R_IRQ_MISC
);
2729 r_irq_misc
&= hc
->hw
.r_irqmsk_misc
; /* ignore disabled irqs */
2730 if (r_irq_misc
& V_STA_IRQ
) {
2731 if (hc
->ctype
== HFC_TYPE_E1
) {
2733 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
2734 e1_syncsta
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2735 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
2736 && hc
->e1_getclock
) {
2737 if (e1_syncsta
& V_FR_SYNC_E1
)
2738 hc
->syncronized
= 1;
2740 hc
->syncronized
= 0;
2742 /* undocumented: status changes during read */
2743 temp
= HFC_inb_nodebug(hc
, R_E1_RD_STA
);
2744 while (temp
!= (temp2
=
2745 HFC_inb_nodebug(hc
, R_E1_RD_STA
))) {
2746 if (debug
& DEBUG_HFCMULTI_STATE
)
2747 printk(KERN_DEBUG
"%s: reread "
2748 "STATE because %d!=%d\n",
2749 __func__
, temp
, temp2
);
2750 temp
= temp2
; /* repeat */
2752 /* broadcast state change to all fragments */
2753 if (debug
& DEBUG_HFCMULTI_STATE
)
2755 "%s: E1 (id=%d) newstate %x\n",
2756 __func__
, hc
->id
, temp
& 0x7);
2757 for (i
= 0; i
< hc
->ports
; i
++) {
2758 dch
= hc
->chan
[hc
->dnum
[i
]].dch
;
2759 dch
->state
= temp
& 0x7;
2760 schedule_event(dch
, FLG_PHCHANGE
);
2763 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2764 plxsd_checksync(hc
, 0);
2767 if (r_irq_misc
& V_TI_IRQ
) {
2769 mISDN_clock_update(hc
->iclock
, poll
, NULL
);
2770 handle_timer_irq(hc
);
2773 if (r_irq_misc
& V_DTMF_IRQ
)
2776 if (r_irq_misc
& V_IRQ_PROC
) {
2777 static int irq_proc_cnt
;
2778 if (!irq_proc_cnt
++)
2779 printk(KERN_DEBUG
"%s: got V_IRQ_PROC -"
2780 " this should not happen\n", __func__
);
2784 if (status
& V_FR_IRQSTA
) {
2786 r_irq_oview
= HFC_inb_nodebug(hc
, R_IRQ_OVIEW
);
2787 for (i
= 0; i
< 8; i
++) {
2788 if (r_irq_oview
& (1 << i
))
2796 spin_unlock(&hc
->lock
);
2803 spin_unlock(&hc
->lock
);
2809 * timer callback for D-chan busy resolution. Currently no function
2813 hfcmulti_dbusy_timer(struct timer_list
*t
)
2819 * activate/deactivate hardware for selected channels and mode
2821 * configure B-channel with the given protocol
2822 * ch eqals to the HFC-channel (0-31)
2823 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2824 * for S/T, 1-31 for E1)
2825 * the hdlc interrupts will be set/unset
2828 mode_hfcmulti(struct hfc_multi
*hc
, int ch
, int protocol
, int slot_tx
,
2829 int bank_tx
, int slot_rx
, int bank_rx
)
2831 int flow_tx
= 0, flow_rx
= 0, routing
= 0;
2832 int oslot_tx
, oslot_rx
;
2835 if (ch
< 0 || ch
> 31)
2837 oslot_tx
= hc
->chan
[ch
].slot_tx
;
2838 oslot_rx
= hc
->chan
[ch
].slot_rx
;
2839 conf
= hc
->chan
[ch
].conf
;
2841 if (debug
& DEBUG_HFCMULTI_MODE
)
2843 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2844 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2845 __func__
, hc
->id
, ch
, protocol
, oslot_tx
, slot_tx
,
2846 bank_tx
, oslot_rx
, slot_rx
, bank_rx
);
2848 if (oslot_tx
>= 0 && slot_tx
!= oslot_tx
) {
2849 /* remove from slot */
2850 if (debug
& DEBUG_HFCMULTI_MODE
)
2851 printk(KERN_DEBUG
"%s: remove from slot %d (TX)\n",
2852 __func__
, oslot_tx
);
2853 if (hc
->slot_owner
[oslot_tx
<< 1] == ch
) {
2854 HFC_outb(hc
, R_SLOT
, oslot_tx
<< 1);
2855 HFC_outb(hc
, A_SL_CFG
, 0);
2856 if (hc
->ctype
!= HFC_TYPE_XHFC
)
2857 HFC_outb(hc
, A_CONF
, 0);
2858 hc
->slot_owner
[oslot_tx
<< 1] = -1;
2860 if (debug
& DEBUG_HFCMULTI_MODE
)
2862 "%s: we are not owner of this tx slot "
2863 "anymore, channel %d is.\n",
2864 __func__
, hc
->slot_owner
[oslot_tx
<< 1]);
2868 if (oslot_rx
>= 0 && slot_rx
!= oslot_rx
) {
2869 /* remove from slot */
2870 if (debug
& DEBUG_HFCMULTI_MODE
)
2872 "%s: remove from slot %d (RX)\n",
2873 __func__
, oslot_rx
);
2874 if (hc
->slot_owner
[(oslot_rx
<< 1) | 1] == ch
) {
2875 HFC_outb(hc
, R_SLOT
, (oslot_rx
<< 1) | V_SL_DIR
);
2876 HFC_outb(hc
, A_SL_CFG
, 0);
2877 hc
->slot_owner
[(oslot_rx
<< 1) | 1] = -1;
2879 if (debug
& DEBUG_HFCMULTI_MODE
)
2881 "%s: we are not owner of this rx slot "
2882 "anymore, channel %d is.\n",
2884 hc
->slot_owner
[(oslot_rx
<< 1) | 1]);
2889 flow_tx
= 0x80; /* FIFO->ST */
2890 /* disable pcm slot */
2891 hc
->chan
[ch
].slot_tx
= -1;
2892 hc
->chan
[ch
].bank_tx
= 0;
2895 if (hc
->chan
[ch
].txpending
)
2896 flow_tx
= 0x80; /* FIFO->ST */
2898 flow_tx
= 0xc0; /* PCM->ST */
2900 routing
= bank_tx
? 0xc0 : 0x80;
2901 if (conf
>= 0 || bank_tx
> 1)
2902 routing
= 0x40; /* loop */
2903 if (debug
& DEBUG_HFCMULTI_MODE
)
2904 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2905 " %d flow %02x routing %02x conf %d (TX)\n",
2906 __func__
, ch
, slot_tx
, bank_tx
,
2907 flow_tx
, routing
, conf
);
2908 HFC_outb(hc
, R_SLOT
, slot_tx
<< 1);
2909 HFC_outb(hc
, A_SL_CFG
, (ch
<< 1) | routing
);
2910 if (hc
->ctype
!= HFC_TYPE_XHFC
)
2911 HFC_outb(hc
, A_CONF
,
2912 (conf
< 0) ? 0 : (conf
| V_CONF_SL
));
2913 hc
->slot_owner
[slot_tx
<< 1] = ch
;
2914 hc
->chan
[ch
].slot_tx
= slot_tx
;
2915 hc
->chan
[ch
].bank_tx
= bank_tx
;
2918 /* disable pcm slot */
2919 flow_rx
= 0x80; /* ST->FIFO */
2920 hc
->chan
[ch
].slot_rx
= -1;
2921 hc
->chan
[ch
].bank_rx
= 0;
2924 if (hc
->chan
[ch
].txpending
)
2925 flow_rx
= 0x80; /* ST->FIFO */
2927 flow_rx
= 0xc0; /* ST->(FIFO,PCM) */
2929 routing
= bank_rx
? 0x80 : 0xc0; /* reversed */
2930 if (conf
>= 0 || bank_rx
> 1)
2931 routing
= 0x40; /* loop */
2932 if (debug
& DEBUG_HFCMULTI_MODE
)
2933 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2934 " %d flow %02x routing %02x conf %d (RX)\n",
2935 __func__
, ch
, slot_rx
, bank_rx
,
2936 flow_rx
, routing
, conf
);
2937 HFC_outb(hc
, R_SLOT
, (slot_rx
<< 1) | V_SL_DIR
);
2938 HFC_outb(hc
, A_SL_CFG
, (ch
<< 1) | V_CH_DIR
| routing
);
2939 hc
->slot_owner
[(slot_rx
<< 1) | 1] = ch
;
2940 hc
->chan
[ch
].slot_rx
= slot_rx
;
2941 hc
->chan
[ch
].bank_rx
= bank_rx
;
2946 /* disable TX fifo */
2947 HFC_outb(hc
, R_FIFO
, ch
<< 1);
2949 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 | V_IFF
);
2950 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2951 HFC_outb(hc
, A_IRQ_MSK
, 0);
2952 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2954 /* disable RX fifo */
2955 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
2957 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00);
2958 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2959 HFC_outb(hc
, A_IRQ_MSK
, 0);
2960 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2962 if (hc
->chan
[ch
].bch
&& hc
->ctype
!= HFC_TYPE_E1
) {
2963 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] &=
2964 ((ch
& 0x3) == 0) ? ~V_B1_EN
: ~V_B2_EN
;
2965 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
2966 /* undocumented: delay after R_ST_SEL */
2968 HFC_outb(hc
, A_ST_CTRL0
,
2969 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
2971 if (hc
->chan
[ch
].bch
) {
2972 test_and_clear_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
2973 test_and_clear_bit(FLG_TRANSPARENT
,
2974 &hc
->chan
[ch
].bch
->Flags
);
2977 case (ISDN_P_B_RAW
): /* B-channel */
2979 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
2980 (hc
->chan
[ch
].slot_rx
< 0) &&
2981 (hc
->chan
[ch
].slot_tx
< 0)) {
2984 "Setting B-channel %d to echo cancelable "
2985 "state on PCM slot %d\n", ch
,
2986 ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1);
2988 "Enabling pass through for channel\n");
2989 vpm_out(hc
, ch
, ((ch
/ 4) * 8) +
2990 ((ch
% 4) * 4) + 1, 0x01);
2993 HFC_outb(hc
, R_FIFO
, (ch
<< 1));
2995 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
2996 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
2997 ((ch
% 4) * 4) + 1) << 1);
2998 HFC_outb(hc
, A_SL_CFG
, 0x80 | (ch
<< 1));
3001 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1) | 1);
3003 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
3004 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3005 HFC_outb(hc
, A_IRQ_MSK
, 0);
3006 if (hc
->chan
[ch
].protocol
!= protocol
) {
3007 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3010 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
3011 ((ch
% 4) * 4) + 1) << 1) | 1);
3012 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1) | 1);
3016 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3018 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
3019 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
3020 ((ch
% 4) * 4)) << 1) | 1);
3021 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x40 | (ch
<< 1) | 1);
3024 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1));
3026 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
3027 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3028 HFC_outb(hc
, A_IRQ_MSK
, 0);
3029 if (hc
->chan
[ch
].protocol
!= protocol
) {
3030 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3034 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
3035 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
3036 ((ch
% 4) * 4)) << 1);
3037 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1));
3039 /* enable TX fifo */
3040 HFC_outb(hc
, R_FIFO
, ch
<< 1);
3042 if (hc
->ctype
== HFC_TYPE_XHFC
)
3043 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x07 << 2 |
3044 V_HDLC_TRP
| V_IFF
);
3045 /* Enable FIFO, no interrupt */
3047 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 |
3048 V_HDLC_TRP
| V_IFF
);
3049 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3050 HFC_outb(hc
, A_IRQ_MSK
, 0);
3051 if (hc
->chan
[ch
].protocol
!= protocol
) {
3052 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3056 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
3057 /* enable RX fifo */
3058 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3060 if (hc
->ctype
== HFC_TYPE_XHFC
)
3061 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x07 << 2 |
3063 /* Enable FIFO, no interrupt*/
3065 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00 |
3067 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3068 HFC_outb(hc
, A_IRQ_MSK
, 0);
3069 if (hc
->chan
[ch
].protocol
!= protocol
) {
3070 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3074 if (hc
->ctype
!= HFC_TYPE_E1
) {
3075 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
3076 ((ch
& 0x3) == 0) ? V_B1_EN
: V_B2_EN
;
3077 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3078 /* undocumented: delay after R_ST_SEL */
3080 HFC_outb(hc
, A_ST_CTRL0
,
3081 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3083 if (hc
->chan
[ch
].bch
)
3084 test_and_set_bit(FLG_TRANSPARENT
,
3085 &hc
->chan
[ch
].bch
->Flags
);
3087 case (ISDN_P_B_HDLC
): /* B-channel */
3088 case (ISDN_P_TE_S0
): /* D-channel */
3089 case (ISDN_P_NT_S0
):
3090 case (ISDN_P_TE_E1
):
3091 case (ISDN_P_NT_E1
):
3092 /* enable TX fifo */
3093 HFC_outb(hc
, R_FIFO
, ch
<< 1);
3095 if (hc
->ctype
== HFC_TYPE_E1
|| hc
->chan
[ch
].bch
) {
3096 /* E1 or B-channel */
3097 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04);
3098 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3100 /* D-Channel without HDLC fill flags */
3101 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04 | V_IFF
);
3102 HFC_outb(hc
, A_SUBCH_CFG
, 2);
3104 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3105 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3107 /* enable RX fifo */
3108 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3110 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x04);
3111 if (hc
->ctype
== HFC_TYPE_E1
|| hc
->chan
[ch
].bch
)
3112 HFC_outb(hc
, A_SUBCH_CFG
, 0); /* full 8 bits */
3114 HFC_outb(hc
, A_SUBCH_CFG
, 2); /* 2 bits dchannel */
3115 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3116 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3118 if (hc
->chan
[ch
].bch
) {
3119 test_and_set_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
3120 if (hc
->ctype
!= HFC_TYPE_E1
) {
3121 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
3122 ((ch
& 0x3) == 0) ? V_B1_EN
: V_B2_EN
;
3123 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3124 /* undocumented: delay after R_ST_SEL */
3126 HFC_outb(hc
, A_ST_CTRL0
,
3127 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3132 printk(KERN_DEBUG
"%s: protocol not known %x\n",
3133 __func__
, protocol
);
3134 hc
->chan
[ch
].protocol
= ISDN_P_NONE
;
3135 return -ENOPROTOOPT
;
3137 hc
->chan
[ch
].protocol
= protocol
;
3143 * connect/disconnect PCM
3147 hfcmulti_pcm(struct hfc_multi
*hc
, int ch
, int slot_tx
, int bank_tx
,
3148 int slot_rx
, int bank_rx
)
3150 if (slot_tx
< 0 || slot_rx
< 0 || bank_tx
< 0 || bank_rx
< 0) {
3152 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, -1, 0, -1, 0);
3157 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, slot_tx
, bank_tx
,
3162 * set/disable conference
3166 hfcmulti_conf(struct hfc_multi
*hc
, int ch
, int num
)
3168 if (num
>= 0 && num
<= 7)
3169 hc
->chan
[ch
].conf
= num
;
3171 hc
->chan
[ch
].conf
= -1;
3172 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, hc
->chan
[ch
].slot_tx
,
3173 hc
->chan
[ch
].bank_tx
, hc
->chan
[ch
].slot_rx
,
3174 hc
->chan
[ch
].bank_rx
);
3179 * set/disable sample loop
3182 /* NOTE: this function is experimental and therefore disabled */
3185 * Layer 1 callback function
3188 hfcm_l1callback(struct dchannel
*dch
, u_int cmd
)
3190 struct hfc_multi
*hc
= dch
->hw
;
3191 struct sk_buff_head free_queue
;
3199 /* start activation */
3200 spin_lock_irqsave(&hc
->lock
, flags
);
3201 if (hc
->ctype
== HFC_TYPE_E1
) {
3202 if (debug
& DEBUG_HFCMULTI_MSG
)
3204 "%s: HW_RESET_REQ no BRI\n",
3207 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3208 /* undocumented: delay after R_ST_SEL */
3210 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 3); /* F3 */
3211 udelay(6); /* wait at least 5,21us */
3212 HFC_outb(hc
, A_ST_WR_STATE
, 3);
3213 HFC_outb(hc
, A_ST_WR_STATE
, 3 | (V_ST_ACT
* 3));
3216 spin_unlock_irqrestore(&hc
->lock
, flags
);
3217 l1_event(dch
->l1
, HW_POWERUP_IND
);
3220 __skb_queue_head_init(&free_queue
);
3221 /* start deactivation */
3222 spin_lock_irqsave(&hc
->lock
, flags
);
3223 if (hc
->ctype
== HFC_TYPE_E1
) {
3224 if (debug
& DEBUG_HFCMULTI_MSG
)
3226 "%s: HW_DEACT_REQ no BRI\n",
3229 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3230 /* undocumented: delay after R_ST_SEL */
3232 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
* 2);
3234 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3236 ~(1 << hc
->chan
[dch
->slot
].port
);
3237 plxsd_checksync(hc
, 0);
3240 skb_queue_splice_init(&dch
->squeue
, &free_queue
);
3242 __skb_queue_tail(&free_queue
, dch
->tx_skb
);
3247 __skb_queue_tail(&free_queue
, dch
->rx_skb
);
3250 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3251 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3252 del_timer(&dch
->timer
);
3253 spin_unlock_irqrestore(&hc
->lock
, flags
);
3254 __skb_queue_purge(&free_queue
);
3256 case HW_POWERUP_REQ
:
3257 spin_lock_irqsave(&hc
->lock
, flags
);
3258 if (hc
->ctype
== HFC_TYPE_E1
) {
3259 if (debug
& DEBUG_HFCMULTI_MSG
)
3261 "%s: HW_POWERUP_REQ no BRI\n",
3264 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3265 /* undocumented: delay after R_ST_SEL */
3267 HFC_outb(hc
, A_ST_WR_STATE
, 3 | 0x10); /* activate */
3268 udelay(6); /* wait at least 5,21us */
3269 HFC_outb(hc
, A_ST_WR_STATE
, 3); /* activate */
3271 spin_unlock_irqrestore(&hc
->lock
, flags
);
3273 case PH_ACTIVATE_IND
:
3274 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3275 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3278 case PH_DEACTIVATE_IND
:
3279 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3280 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3284 if (dch
->debug
& DEBUG_HW
)
3285 printk(KERN_DEBUG
"%s: unknown command %x\n",
3293 * Layer2 -> Layer 1 Transfer
3297 handle_dmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3299 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
3300 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
3301 struct hfc_multi
*hc
= dch
->hw
;
3302 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3311 spin_lock_irqsave(&hc
->lock
, flags
);
3312 ret
= dchannel_senddata(dch
, skb
);
3313 if (ret
> 0) { /* direct TX */
3314 id
= hh
->id
; /* skb can be freed */
3315 hfcmulti_tx(hc
, dch
->slot
);
3318 HFC_outb(hc
, R_FIFO
, 0);
3320 spin_unlock_irqrestore(&hc
->lock
, flags
);
3321 queue_ch_frame(ch
, PH_DATA_CNF
, id
, NULL
);
3323 spin_unlock_irqrestore(&hc
->lock
, flags
);
3325 case PH_ACTIVATE_REQ
:
3326 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3327 spin_lock_irqsave(&hc
->lock
, flags
);
3329 if (debug
& DEBUG_HFCMULTI_MSG
)
3331 "%s: PH_ACTIVATE port %d (0..%d)\n",
3332 __func__
, hc
->chan
[dch
->slot
].port
,
3334 /* start activation */
3335 if (hc
->ctype
== HFC_TYPE_E1
) {
3336 ph_state_change(dch
);
3337 if (debug
& DEBUG_HFCMULTI_STATE
)
3339 "%s: E1 report state %x \n",
3340 __func__
, dch
->state
);
3342 HFC_outb(hc
, R_ST_SEL
,
3343 hc
->chan
[dch
->slot
].port
);
3344 /* undocumented: delay after R_ST_SEL */
3346 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 1);
3348 udelay(6); /* wait at least 5,21us */
3349 HFC_outb(hc
, A_ST_WR_STATE
, 1);
3350 HFC_outb(hc
, A_ST_WR_STATE
, 1 |
3351 (V_ST_ACT
* 3)); /* activate */
3354 spin_unlock_irqrestore(&hc
->lock
, flags
);
3356 ret
= l1_event(dch
->l1
, hh
->prim
);
3358 case PH_DEACTIVATE_REQ
:
3359 test_and_clear_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
3360 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3361 struct sk_buff_head free_queue
;
3363 __skb_queue_head_init(&free_queue
);
3364 spin_lock_irqsave(&hc
->lock
, flags
);
3365 if (debug
& DEBUG_HFCMULTI_MSG
)
3367 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3368 __func__
, hc
->chan
[dch
->slot
].port
,
3370 /* start deactivation */
3371 if (hc
->ctype
== HFC_TYPE_E1
) {
3372 if (debug
& DEBUG_HFCMULTI_MSG
)
3374 "%s: PH_DEACTIVATE no BRI\n",
3377 HFC_outb(hc
, R_ST_SEL
,
3378 hc
->chan
[dch
->slot
].port
);
3379 /* undocumented: delay after R_ST_SEL */
3381 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
* 2);
3385 skb_queue_splice_init(&dch
->squeue
, &free_queue
);
3387 __skb_queue_tail(&free_queue
, dch
->tx_skb
);
3392 __skb_queue_tail(&free_queue
, dch
->rx_skb
);
3395 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3396 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3397 del_timer(&dch
->timer
);
3399 if (test_and_clear_bit(FLG_L1_BUSY
, &dch
->Flags
))
3400 dchannel_sched_event(&hc
->dch
, D_CLEARBUSY
);
3403 spin_unlock_irqrestore(&hc
->lock
, flags
);
3404 __skb_queue_purge(&free_queue
);
3406 ret
= l1_event(dch
->l1
, hh
->prim
);
3415 deactivate_bchannel(struct bchannel
*bch
)
3417 struct hfc_multi
*hc
= bch
->hw
;
3420 spin_lock_irqsave(&hc
->lock
, flags
);
3421 mISDN_clear_bchannel(bch
);
3422 hc
->chan
[bch
->slot
].coeff_count
= 0;
3423 hc
->chan
[bch
->slot
].rx_off
= 0;
3424 hc
->chan
[bch
->slot
].conf
= -1;
3425 mode_hfcmulti(hc
, bch
->slot
, ISDN_P_NONE
, -1, 0, -1, 0);
3426 spin_unlock_irqrestore(&hc
->lock
, flags
);
3430 handle_bmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3432 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3433 struct hfc_multi
*hc
= bch
->hw
;
3435 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3436 unsigned long flags
;
3442 spin_lock_irqsave(&hc
->lock
, flags
);
3443 ret
= bchannel_senddata(bch
, skb
);
3444 if (ret
> 0) { /* direct TX */
3445 hfcmulti_tx(hc
, bch
->slot
);
3448 HFC_outb_nodebug(hc
, R_FIFO
, 0);
3449 HFC_wait_nodebug(hc
);
3451 spin_unlock_irqrestore(&hc
->lock
, flags
);
3453 case PH_ACTIVATE_REQ
:
3454 if (debug
& DEBUG_HFCMULTI_MSG
)
3455 printk(KERN_DEBUG
"%s: PH_ACTIVATE ch %d (0..32)\n",
3456 __func__
, bch
->slot
);
3457 spin_lock_irqsave(&hc
->lock
, flags
);
3458 /* activate B-channel if not already activated */
3459 if (!test_and_set_bit(FLG_ACTIVE
, &bch
->Flags
)) {
3460 hc
->chan
[bch
->slot
].txpending
= 0;
3461 ret
= mode_hfcmulti(hc
, bch
->slot
,
3463 hc
->chan
[bch
->slot
].slot_tx
,
3464 hc
->chan
[bch
->slot
].bank_tx
,
3465 hc
->chan
[bch
->slot
].slot_rx
,
3466 hc
->chan
[bch
->slot
].bank_rx
);
3468 if (ch
->protocol
== ISDN_P_B_RAW
&& !hc
->dtmf
3469 && test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
3472 if (debug
& DEBUG_HFCMULTI_DTMF
)
3474 "%s: start dtmf decoder\n",
3476 HFC_outb(hc
, R_DTMF
, hc
->hw
.r_dtmf
|
3482 spin_unlock_irqrestore(&hc
->lock
, flags
);
3484 _queue_data(ch
, PH_ACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3487 case PH_CONTROL_REQ
:
3488 spin_lock_irqsave(&hc
->lock
, flags
);
3490 case HFC_SPL_LOOP_ON
: /* set sample loop */
3491 if (debug
& DEBUG_HFCMULTI_MSG
)
3493 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3494 __func__
, skb
->len
);
3497 case HFC_SPL_LOOP_OFF
: /* set silence */
3498 if (debug
& DEBUG_HFCMULTI_MSG
)
3499 printk(KERN_DEBUG
"%s: HFC_SPL_LOOP_OFF\n",
3505 "%s: unknown PH_CONTROL_REQ info %x\n",
3509 spin_unlock_irqrestore(&hc
->lock
, flags
);
3511 case PH_DEACTIVATE_REQ
:
3512 deactivate_bchannel(bch
); /* locked there */
3513 _queue_data(ch
, PH_DEACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3524 * bchannel control function
3527 channel_bctrl(struct bchannel
*bch
, struct mISDN_ctrl_req
*cq
)
3530 struct dsp_features
*features
=
3531 (struct dsp_features
*)(*((u_long
*)&cq
->p1
));
3532 struct hfc_multi
*hc
= bch
->hw
;
3540 case MISDN_CTRL_GETOP
:
3541 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3542 cq
->op
|= MISDN_CTRL_HFC_OP
| MISDN_CTRL_HW_FEATURES_OP
;
3544 case MISDN_CTRL_RX_OFF
: /* turn off / on rx stream */
3545 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3546 hc
->chan
[bch
->slot
].rx_off
= !!cq
->p1
;
3547 if (!hc
->chan
[bch
->slot
].rx_off
) {
3548 /* reset fifo on rx on */
3549 HFC_outb_nodebug(hc
, R_FIFO
, (bch
->slot
<< 1) | 1);
3550 HFC_wait_nodebug(hc
);
3551 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
3552 HFC_wait_nodebug(hc
);
3554 if (debug
& DEBUG_HFCMULTI_MSG
)
3555 printk(KERN_DEBUG
"%s: RX_OFF request (nr=%d off=%d)\n",
3556 __func__
, bch
->nr
, hc
->chan
[bch
->slot
].rx_off
);
3558 case MISDN_CTRL_FILL_EMPTY
:
3559 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3560 hc
->silence
= bch
->fill
[0];
3561 memset(hc
->silence_data
, hc
->silence
, sizeof(hc
->silence_data
));
3563 case MISDN_CTRL_HW_FEATURES
: /* fill features structure */
3564 if (debug
& DEBUG_HFCMULTI_MSG
)
3565 printk(KERN_DEBUG
"%s: HW_FEATURE request\n",
3567 /* create confirm */
3568 features
->hfc_id
= hc
->id
;
3569 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
))
3570 features
->hfc_dtmf
= 1;
3571 if (test_bit(HFC_CHIP_CONF
, &hc
->chip
))
3572 features
->hfc_conf
= 1;
3573 features
->hfc_loops
= 0;
3574 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
3575 features
->hfc_echocanhw
= 1;
3577 features
->pcm_id
= hc
->pcm
;
3578 features
->pcm_slots
= hc
->slots
;
3579 features
->pcm_banks
= 2;
3582 case MISDN_CTRL_HFC_PCM_CONN
: /* connect to pcm timeslot (0..N) */
3583 slot_tx
= cq
->p1
& 0xff;
3584 bank_tx
= cq
->p1
>> 8;
3585 slot_rx
= cq
->p2
& 0xff;
3586 bank_rx
= cq
->p2
>> 8;
3587 if (debug
& DEBUG_HFCMULTI_MSG
)
3589 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3590 "slot %d bank %d (RX)\n",
3591 __func__
, slot_tx
, bank_tx
,
3593 if (slot_tx
< hc
->slots
&& bank_tx
<= 2 &&
3594 slot_rx
< hc
->slots
&& bank_rx
<= 2)
3595 hfcmulti_pcm(hc
, bch
->slot
,
3596 slot_tx
, bank_tx
, slot_rx
, bank_rx
);
3599 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3600 "slot %d bank %d (RX) out of range\n",
3601 __func__
, slot_tx
, bank_tx
,
3606 case MISDN_CTRL_HFC_PCM_DISC
: /* release interface from pcm timeslot */
3607 if (debug
& DEBUG_HFCMULTI_MSG
)
3608 printk(KERN_DEBUG
"%s: HFC_PCM_DISC\n",
3610 hfcmulti_pcm(hc
, bch
->slot
, -1, 0, -1, 0);
3612 case MISDN_CTRL_HFC_CONF_JOIN
: /* join conference (0..7) */
3613 num
= cq
->p1
& 0xff;
3614 if (debug
& DEBUG_HFCMULTI_MSG
)
3615 printk(KERN_DEBUG
"%s: HFC_CONF_JOIN conf %d\n",
3618 hfcmulti_conf(hc
, bch
->slot
, num
);
3621 "%s: HW_CONF_JOIN conf %d out of range\n",
3626 case MISDN_CTRL_HFC_CONF_SPLIT
: /* split conference */
3627 if (debug
& DEBUG_HFCMULTI_MSG
)
3628 printk(KERN_DEBUG
"%s: HFC_CONF_SPLIT\n", __func__
);
3629 hfcmulti_conf(hc
, bch
->slot
, -1);
3631 case MISDN_CTRL_HFC_ECHOCAN_ON
:
3632 if (debug
& DEBUG_HFCMULTI_MSG
)
3633 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_ON\n", __func__
);
3634 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3635 vpm_echocan_on(hc
, bch
->slot
, cq
->p1
);
3640 case MISDN_CTRL_HFC_ECHOCAN_OFF
:
3641 if (debug
& DEBUG_HFCMULTI_MSG
)
3642 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_OFF\n",
3644 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3645 vpm_echocan_off(hc
, bch
->slot
);
3650 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3657 hfcm_bctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
3659 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3660 struct hfc_multi
*hc
= bch
->hw
;
3664 if (bch
->debug
& DEBUG_HW
)
3665 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
3666 __func__
, cmd
, arg
);
3669 test_and_clear_bit(FLG_OPEN
, &bch
->Flags
);
3670 deactivate_bchannel(bch
); /* locked there */
3671 ch
->protocol
= ISDN_P_NONE
;
3673 module_put(THIS_MODULE
);
3676 case CONTROL_CHANNEL
:
3677 spin_lock_irqsave(&hc
->lock
, flags
);
3678 err
= channel_bctrl(bch
, arg
);
3679 spin_unlock_irqrestore(&hc
->lock
, flags
);
3682 printk(KERN_WARNING
"%s: unknown prim(%x)\n",
3689 * handle D-channel events
3691 * handle state change event
3694 ph_state_change(struct dchannel
*dch
)
3696 struct hfc_multi
*hc
;
3700 printk(KERN_WARNING
"%s: ERROR given dch is NULL\n", __func__
);
3706 if (hc
->ctype
== HFC_TYPE_E1
) {
3707 if (dch
->dev
.D
.protocol
== ISDN_P_TE_E1
) {
3708 if (debug
& DEBUG_HFCMULTI_STATE
)
3710 "%s: E1 TE (id=%d) newstate %x\n",
3711 __func__
, hc
->id
, dch
->state
);
3713 if (debug
& DEBUG_HFCMULTI_STATE
)
3715 "%s: E1 NT (id=%d) newstate %x\n",
3716 __func__
, hc
->id
, dch
->state
);
3718 switch (dch
->state
) {
3720 if (hc
->e1_state
!= 1) {
3721 for (i
= 1; i
<= 31; i
++) {
3722 /* reset fifos on e1 activation */
3723 HFC_outb_nodebug(hc
, R_FIFO
,
3725 HFC_wait_nodebug(hc
);
3726 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
,
3728 HFC_wait_nodebug(hc
);
3731 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3732 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3733 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3737 if (hc
->e1_state
!= 1)
3739 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3740 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3741 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3743 hc
->e1_state
= dch
->state
;
3745 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
3746 if (debug
& DEBUG_HFCMULTI_STATE
)
3748 "%s: S/T TE newstate %x\n",
3749 __func__
, dch
->state
);
3750 switch (dch
->state
) {
3752 l1_event(dch
->l1
, HW_RESET_IND
);
3755 l1_event(dch
->l1
, HW_DEACT_IND
);
3759 l1_event(dch
->l1
, ANYSIGNAL
);
3762 l1_event(dch
->l1
, INFO2
);
3765 l1_event(dch
->l1
, INFO4_P8
);
3769 if (debug
& DEBUG_HFCMULTI_STATE
)
3770 printk(KERN_DEBUG
"%s: S/T NT newstate %x\n",
3771 __func__
, dch
->state
);
3772 switch (dch
->state
) {
3774 if (hc
->chan
[ch
].nt_timer
== 0) {
3775 hc
->chan
[ch
].nt_timer
= -1;
3776 HFC_outb(hc
, R_ST_SEL
,
3778 /* undocumented: delay after R_ST_SEL */
3780 HFC_outb(hc
, A_ST_WR_STATE
, 4 |
3781 V_ST_LD_STA
); /* G4 */
3782 udelay(6); /* wait at least 5,21us */
3783 HFC_outb(hc
, A_ST_WR_STATE
, 4);
3786 /* one extra count for the next event */
3787 hc
->chan
[ch
].nt_timer
=
3788 nt_t1_count
[poll_timer
] + 1;
3789 HFC_outb(hc
, R_ST_SEL
,
3791 /* undocumented: delay after R_ST_SEL */
3793 /* allow G2 -> G3 transition */
3794 HFC_outb(hc
, A_ST_WR_STATE
, 2 |
3799 hc
->chan
[ch
].nt_timer
= -1;
3800 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3801 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3802 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3805 hc
->chan
[ch
].nt_timer
= -1;
3808 hc
->chan
[ch
].nt_timer
= -1;
3809 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3810 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3811 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3819 * called for card mode init message
3823 hfcmulti_initmode(struct dchannel
*dch
)
3825 struct hfc_multi
*hc
= dch
->hw
;
3826 u_char a_st_wr_state
, r_e1_wr_sta
;
3829 if (debug
& DEBUG_HFCMULTI_INIT
)
3830 printk(KERN_DEBUG
"%s: entered\n", __func__
);
3833 pt
= hc
->chan
[i
].port
;
3834 if (hc
->ctype
== HFC_TYPE_E1
) {
3836 hc
->chan
[hc
->dnum
[pt
]].slot_tx
= -1;
3837 hc
->chan
[hc
->dnum
[pt
]].slot_rx
= -1;
3838 hc
->chan
[hc
->dnum
[pt
]].conf
= -1;
3840 mode_hfcmulti(hc
, dch
->slot
, dch
->dev
.D
.protocol
,
3842 timer_setup(&dch
->timer
, hfcmulti_dbusy_timer
, 0);
3844 for (i
= 1; i
<= 31; i
++) {
3845 if (!((1 << i
) & hc
->bmask
[pt
])) /* skip unused chan */
3847 hc
->chan
[i
].slot_tx
= -1;
3848 hc
->chan
[i
].slot_rx
= -1;
3849 hc
->chan
[i
].conf
= -1;
3850 mode_hfcmulti(hc
, i
, ISDN_P_NONE
, -1, 0, -1, 0);
3853 if (hc
->ctype
== HFC_TYPE_E1
&& pt
== 0) {
3855 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
3856 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
3857 HFC_outb(hc
, R_LOS0
, 255); /* 2 ms */
3858 HFC_outb(hc
, R_LOS1
, 255); /* 512 ms */
3860 if (test_bit(HFC_CFG_OPTICAL
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
3861 HFC_outb(hc
, R_RX0
, 0);
3862 hc
->hw
.r_tx0
= 0 | V_OUT_EN
;
3864 HFC_outb(hc
, R_RX0
, 1);
3865 hc
->hw
.r_tx0
= 1 | V_OUT_EN
;
3867 hc
->hw
.r_tx1
= V_ATX
| V_NTRI
;
3868 HFC_outb(hc
, R_TX0
, hc
->hw
.r_tx0
);
3869 HFC_outb(hc
, R_TX1
, hc
->hw
.r_tx1
);
3870 HFC_outb(hc
, R_TX_FR0
, 0x00);
3871 HFC_outb(hc
, R_TX_FR1
, 0xf8);
3873 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dnum
[0]].cfg
))
3874 HFC_outb(hc
, R_TX_FR2
, V_TX_MF
| V_TX_E
| V_NEG_E
);
3876 HFC_outb(hc
, R_RX_FR0
, V_AUTO_RESYNC
| V_AUTO_RECO
| 0);
3878 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dnum
[0]].cfg
))
3879 HFC_outb(hc
, R_RX_FR1
, V_RX_MF
| V_RX_MF_SYNC
);
3881 if (dch
->dev
.D
.protocol
== ISDN_P_NT_E1
) {
3882 if (debug
& DEBUG_HFCMULTI_INIT
)
3883 printk(KERN_DEBUG
"%s: E1 port is NT-mode\n",
3885 r_e1_wr_sta
= 0; /* G0 */
3886 hc
->e1_getclock
= 0;
3888 if (debug
& DEBUG_HFCMULTI_INIT
)
3889 printk(KERN_DEBUG
"%s: E1 port is TE-mode\n",
3891 r_e1_wr_sta
= 0; /* F0 */
3892 hc
->e1_getclock
= 1;
3894 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
3895 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
3897 HFC_outb(hc
, R_SYNC_OUT
, 0);
3898 if (test_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
))
3899 hc
->e1_getclock
= 1;
3900 if (test_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
))
3901 hc
->e1_getclock
= 0;
3902 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
3903 /* SLAVE (clock master) */
3904 if (debug
& DEBUG_HFCMULTI_INIT
)
3906 "%s: E1 port is clock master "
3907 "(clock from PCM)\n", __func__
);
3908 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
| V_PCM_SYNC
);
3910 if (hc
->e1_getclock
) {
3911 /* MASTER (clock slave) */
3912 if (debug
& DEBUG_HFCMULTI_INIT
)
3914 "%s: E1 port is clock slave "
3915 "(clock to PCM)\n", __func__
);
3916 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
3918 /* MASTER (clock master) */
3919 if (debug
& DEBUG_HFCMULTI_INIT
)
3920 printk(KERN_DEBUG
"%s: E1 port is "
3922 "(clock from QUARTZ)\n",
3924 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
|
3925 V_PCM_SYNC
| V_JATT_OFF
);
3926 HFC_outb(hc
, R_SYNC_OUT
, 0);
3929 HFC_outb(hc
, R_JATT_ATT
, 0x9c); /* undoc register */
3930 HFC_outb(hc
, R_PWM_MD
, V_PWM0_MD
);
3931 HFC_outb(hc
, R_PWM0
, 0x50);
3932 HFC_outb(hc
, R_PWM1
, 0xff);
3933 /* state machine setup */
3934 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
| V_E1_LD_STA
);
3935 udelay(6); /* wait at least 5,21us */
3936 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
);
3937 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3938 hc
->syncronized
= 0;
3939 plxsd_checksync(hc
, 0);
3942 if (hc
->ctype
!= HFC_TYPE_E1
) {
3944 hc
->chan
[i
].slot_tx
= -1;
3945 hc
->chan
[i
].slot_rx
= -1;
3946 hc
->chan
[i
].conf
= -1;
3947 mode_hfcmulti(hc
, i
, dch
->dev
.D
.protocol
, -1, 0, -1, 0);
3948 timer_setup(&dch
->timer
, hfcmulti_dbusy_timer
, 0);
3949 hc
->chan
[i
- 2].slot_tx
= -1;
3950 hc
->chan
[i
- 2].slot_rx
= -1;
3951 hc
->chan
[i
- 2].conf
= -1;
3952 mode_hfcmulti(hc
, i
- 2, ISDN_P_NONE
, -1, 0, -1, 0);
3953 hc
->chan
[i
- 1].slot_tx
= -1;
3954 hc
->chan
[i
- 1].slot_rx
= -1;
3955 hc
->chan
[i
- 1].conf
= -1;
3956 mode_hfcmulti(hc
, i
- 1, ISDN_P_NONE
, -1, 0, -1, 0);
3957 /* select interface */
3958 HFC_outb(hc
, R_ST_SEL
, pt
);
3959 /* undocumented: delay after R_ST_SEL */
3961 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) {
3962 if (debug
& DEBUG_HFCMULTI_INIT
)
3964 "%s: ST port %d is NT-mode\n",
3967 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_nt
);
3968 a_st_wr_state
= 1; /* G1 */
3969 hc
->hw
.a_st_ctrl0
[pt
] = V_ST_MD
;
3971 if (debug
& DEBUG_HFCMULTI_INIT
)
3973 "%s: ST port %d is TE-mode\n",
3976 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_te
);
3977 a_st_wr_state
= 2; /* F2 */
3978 hc
->hw
.a_st_ctrl0
[pt
] = 0;
3980 if (!test_bit(HFC_CFG_NONCAP_TX
, &hc
->chan
[i
].cfg
))
3981 hc
->hw
.a_st_ctrl0
[pt
] |= V_TX_LI
;
3982 if (hc
->ctype
== HFC_TYPE_XHFC
) {
3983 hc
->hw
.a_st_ctrl0
[pt
] |= 0x40 /* V_ST_PU_CTRL */;
3984 HFC_outb(hc
, 0x35 /* A_ST_CTRL3 */,
3985 0x7c << 1 /* V_ST_PULSE */);
3988 HFC_outb(hc
, A_ST_CTRL0
, hc
->hw
.a_st_ctrl0
[pt
]);
3989 /* disable E-channel */
3990 if ((dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) ||
3991 test_bit(HFC_CFG_DIS_ECHANNEL
, &hc
->chan
[i
].cfg
))
3992 HFC_outb(hc
, A_ST_CTRL1
, V_E_IGNO
);
3994 HFC_outb(hc
, A_ST_CTRL1
, 0);
3995 /* enable B-channel receive */
3996 HFC_outb(hc
, A_ST_CTRL2
, V_B1_RX_EN
| V_B2_RX_EN
);
3997 /* state machine setup */
3998 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
| V_ST_LD_STA
);
3999 udelay(6); /* wait at least 5,21us */
4000 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
);
4001 hc
->hw
.r_sci_msk
|= 1 << pt
;
4002 /* state machine interrupts */
4003 HFC_outb(hc
, R_SCI_MSK
, hc
->hw
.r_sci_msk
);
4004 /* unset sync on port */
4005 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4007 ~(1 << hc
->chan
[dch
->slot
].port
);
4008 plxsd_checksync(hc
, 0);
4011 if (debug
& DEBUG_HFCMULTI_INIT
)
4012 printk("%s: done\n", __func__
);
4017 open_dchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
4018 struct channel_req
*rq
)
4023 if (debug
& DEBUG_HW_OPEN
)
4024 printk(KERN_DEBUG
"%s: dev(%d) open from %p\n", __func__
,
4025 dch
->dev
.id
, __builtin_return_address(0));
4026 if (rq
->protocol
== ISDN_P_NONE
)
4028 if ((dch
->dev
.D
.protocol
!= ISDN_P_NONE
) &&
4029 (dch
->dev
.D
.protocol
!= rq
->protocol
)) {
4030 if (debug
& DEBUG_HFCMULTI_MODE
)
4031 printk(KERN_DEBUG
"%s: change protocol %x to %x\n",
4032 __func__
, dch
->dev
.D
.protocol
, rq
->protocol
);
4034 if ((dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) &&
4035 (rq
->protocol
!= ISDN_P_TE_S0
))
4036 l1_event(dch
->l1
, CLOSE_CHANNEL
);
4037 if (dch
->dev
.D
.protocol
!= rq
->protocol
) {
4038 if (rq
->protocol
== ISDN_P_TE_S0
) {
4039 err
= create_l1(dch
, hfcm_l1callback
);
4043 dch
->dev
.D
.protocol
= rq
->protocol
;
4044 spin_lock_irqsave(&hc
->lock
, flags
);
4045 hfcmulti_initmode(dch
);
4046 spin_unlock_irqrestore(&hc
->lock
, flags
);
4048 if (test_bit(FLG_ACTIVE
, &dch
->Flags
))
4049 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
, MISDN_ID_ANY
,
4050 0, NULL
, GFP_KERNEL
);
4051 rq
->ch
= &dch
->dev
.D
;
4052 if (!try_module_get(THIS_MODULE
))
4053 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
4058 open_bchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
4059 struct channel_req
*rq
)
4061 struct bchannel
*bch
;
4064 if (!test_channelmap(rq
->adr
.channel
, dch
->dev
.channelmap
))
4066 if (rq
->protocol
== ISDN_P_NONE
)
4068 if (hc
->ctype
== HFC_TYPE_E1
)
4069 ch
= rq
->adr
.channel
;
4071 ch
= (rq
->adr
.channel
- 1) + (dch
->slot
- 2);
4072 bch
= hc
->chan
[ch
].bch
;
4074 printk(KERN_ERR
"%s:internal error ch %d has no bch\n",
4078 if (test_and_set_bit(FLG_OPEN
, &bch
->Flags
))
4079 return -EBUSY
; /* b-channel can be only open once */
4080 bch
->ch
.protocol
= rq
->protocol
;
4081 hc
->chan
[ch
].rx_off
= 0;
4083 if (!try_module_get(THIS_MODULE
))
4084 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
4089 * device control function
4092 channel_dctrl(struct dchannel
*dch
, struct mISDN_ctrl_req
*cq
)
4094 struct hfc_multi
*hc
= dch
->hw
;
4096 int wd_mode
, wd_cnt
;
4099 case MISDN_CTRL_GETOP
:
4100 cq
->op
= MISDN_CTRL_HFC_OP
| MISDN_CTRL_L1_TIMER3
;
4102 case MISDN_CTRL_HFC_WD_INIT
: /* init the watchdog */
4103 wd_cnt
= cq
->p1
& 0xf;
4104 wd_mode
= !!(cq
->p1
>> 4);
4105 if (debug
& DEBUG_HFCMULTI_MSG
)
4106 printk(KERN_DEBUG
"%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4107 ", counter 0x%x\n", __func__
,
4108 wd_mode
? "AUTO" : "MANUAL", wd_cnt
);
4109 /* set the watchdog timer */
4110 HFC_outb(hc
, R_TI_WD
, poll_timer
| (wd_cnt
<< 4));
4111 hc
->hw
.r_bert_wd_md
= (wd_mode
? V_AUTO_WD_RES
: 0);
4112 if (hc
->ctype
== HFC_TYPE_XHFC
)
4113 hc
->hw
.r_bert_wd_md
|= 0x40 /* V_WD_EN */;
4114 /* init the watchdog register and reset the counter */
4115 HFC_outb(hc
, R_BERT_WD_MD
, hc
->hw
.r_bert_wd_md
| V_WD_RES
);
4116 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4117 /* enable the watchdog output for Speech-Design */
4118 HFC_outb(hc
, R_GPIO_SEL
, V_GPIO_SEL7
);
4119 HFC_outb(hc
, R_GPIO_EN1
, V_GPIO_EN15
);
4120 HFC_outb(hc
, R_GPIO_OUT1
, 0);
4121 HFC_outb(hc
, R_GPIO_OUT1
, V_GPIO_OUT15
);
4124 case MISDN_CTRL_HFC_WD_RESET
: /* reset the watchdog counter */
4125 if (debug
& DEBUG_HFCMULTI_MSG
)
4126 printk(KERN_DEBUG
"%s: MISDN_CTRL_HFC_WD_RESET\n",
4128 HFC_outb(hc
, R_BERT_WD_MD
, hc
->hw
.r_bert_wd_md
| V_WD_RES
);
4130 case MISDN_CTRL_L1_TIMER3
:
4131 ret
= l1_event(dch
->l1
, HW_TIMER3_VALUE
| (cq
->p1
& 0xff));
4134 printk(KERN_WARNING
"%s: unknown Op %x\n",
4143 hfcm_dctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
4145 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
4146 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
4147 struct hfc_multi
*hc
= dch
->hw
;
4148 struct channel_req
*rq
;
4152 if (dch
->debug
& DEBUG_HW
)
4153 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
4154 __func__
, cmd
, arg
);
4158 switch (rq
->protocol
) {
4161 if (hc
->ctype
== HFC_TYPE_E1
) {
4165 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4169 if (hc
->ctype
!= HFC_TYPE_E1
) {
4173 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4176 spin_lock_irqsave(&hc
->lock
, flags
);
4177 err
= open_bchannel(hc
, dch
, rq
);
4178 spin_unlock_irqrestore(&hc
->lock
, flags
);
4182 if (debug
& DEBUG_HW_OPEN
)
4183 printk(KERN_DEBUG
"%s: dev(%d) close from %p\n",
4184 __func__
, dch
->dev
.id
,
4185 __builtin_return_address(0));
4186 module_put(THIS_MODULE
);
4188 case CONTROL_CHANNEL
:
4189 spin_lock_irqsave(&hc
->lock
, flags
);
4190 err
= channel_dctrl(dch
, arg
);
4191 spin_unlock_irqrestore(&hc
->lock
, flags
);
4194 if (dch
->debug
& DEBUG_HW
)
4195 printk(KERN_DEBUG
"%s: unknown command %x\n",
4203 clockctl(void *priv
, int enable
)
4205 struct hfc_multi
*hc
= priv
;
4207 hc
->iclock_on
= enable
;
4212 * initialize the card
4216 * start timer irq, wait some time and check if we have interrupts.
4217 * if not, reset chip and try again.
4220 init_card(struct hfc_multi
*hc
)
4224 void __iomem
*plx_acc
;
4227 if (debug
& DEBUG_HFCMULTI_INIT
)
4228 printk(KERN_DEBUG
"%s: entered\n", __func__
);
4230 spin_lock_irqsave(&hc
->lock
, flags
);
4231 /* set interrupts but leave global interrupt disabled */
4232 hc
->hw
.r_irq_ctrl
= V_FIFO_IRQ
;
4234 spin_unlock_irqrestore(&hc
->lock
, flags
);
4236 if (request_irq(hc
->irq
, hfcmulti_interrupt
, IRQF_SHARED
,
4238 printk(KERN_WARNING
"mISDN: Could not get interrupt %d.\n",
4244 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4245 spin_lock_irqsave(&plx_lock
, plx_flags
);
4246 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
4247 writew((PLX_INTCSR_PCIINT_ENABLE
| PLX_INTCSR_LINTI1_ENABLE
),
4248 plx_acc
); /* enable PCI & LINT1 irq */
4249 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4252 if (debug
& DEBUG_HFCMULTI_INIT
)
4253 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4254 __func__
, hc
->irq
, hc
->irqcnt
);
4255 err
= init_chip(hc
);
4259 * Finally enable IRQ output
4260 * this is only allowed, if an IRQ routine is already
4261 * established for this HFC, so don't do that earlier
4263 spin_lock_irqsave(&hc
->lock
, flags
);
4265 spin_unlock_irqrestore(&hc
->lock
, flags
);
4266 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4267 set_current_state(TASK_UNINTERRUPTIBLE
);
4268 schedule_timeout((100 * HZ
) / 1000); /* Timeout 100ms */
4269 /* turn IRQ off until chip is completely initialized */
4270 spin_lock_irqsave(&hc
->lock
, flags
);
4272 spin_unlock_irqrestore(&hc
->lock
, flags
);
4273 if (debug
& DEBUG_HFCMULTI_INIT
)
4274 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4275 __func__
, hc
->irq
, hc
->irqcnt
);
4277 if (debug
& DEBUG_HFCMULTI_INIT
)
4278 printk(KERN_DEBUG
"%s: done\n", __func__
);
4282 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
4283 printk(KERN_INFO
"ignoring missing interrupts\n");
4287 printk(KERN_ERR
"HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4293 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4294 spin_lock_irqsave(&plx_lock
, plx_flags
);
4295 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
4296 writew(0x00, plx_acc
); /*disable IRQs*/
4297 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4300 if (debug
& DEBUG_HFCMULTI_INIT
)
4301 printk(KERN_DEBUG
"%s: free irq %d\n", __func__
, hc
->irq
);
4303 free_irq(hc
->irq
, hc
);
4307 if (debug
& DEBUG_HFCMULTI_INIT
)
4308 printk(KERN_DEBUG
"%s: done (err=%d)\n", __func__
, err
);
4313 * find pci device and set it up
4317 setup_pci(struct hfc_multi
*hc
, struct pci_dev
*pdev
,
4318 const struct pci_device_id
*ent
)
4320 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
4323 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4324 m
->vendor_name
, m
->card_name
, m
->clock2
? "double" : "normal");
4328 test_and_set_bit(HFC_CHIP_CLOCK2
, &hc
->chip
);
4330 if (ent
->vendor
== PCI_VENDOR_ID_DIGIUM
&&
4331 ent
->device
== PCI_DEVICE_ID_DIGIUM_HFC4S
) {
4332 test_and_set_bit(HFC_CHIP_B410P
, &hc
->chip
);
4333 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
4334 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
4338 if (hc
->pci_dev
->irq
<= 0) {
4339 printk(KERN_WARNING
"HFC-multi: No IRQ for PCI card found.\n");
4342 if (pci_enable_device(hc
->pci_dev
)) {
4343 printk(KERN_WARNING
"HFC-multi: Error enabling PCI card.\n");
4347 hc
->ledstate
= 0xAFFEAFFE;
4348 hc
->opticalsupport
= m
->opticalsupport
;
4351 hc
->pci_membase
= NULL
;
4352 hc
->plx_membase
= NULL
;
4354 /* set memory access methods */
4355 if (m
->io_mode
) /* use mode from card config */
4356 hc
->io_mode
= m
->io_mode
;
4357 switch (hc
->io_mode
) {
4358 case HFC_IO_MODE_PLXSD
:
4359 test_and_set_bit(HFC_CHIP_PLXSD
, &hc
->chip
);
4360 hc
->slots
= 128; /* required */
4361 hc
->HFC_outb
= HFC_outb_pcimem
;
4362 hc
->HFC_inb
= HFC_inb_pcimem
;
4363 hc
->HFC_inw
= HFC_inw_pcimem
;
4364 hc
->HFC_wait
= HFC_wait_pcimem
;
4365 hc
->read_fifo
= read_fifo_pcimem
;
4366 hc
->write_fifo
= write_fifo_pcimem
;
4367 hc
->plx_origmembase
= hc
->pci_dev
->resource
[0].start
;
4368 /* MEMBASE 1 is PLX PCI Bridge */
4370 if (!hc
->plx_origmembase
) {
4372 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4373 pci_disable_device(hc
->pci_dev
);
4377 hc
->plx_membase
= ioremap(hc
->plx_origmembase
, 0x80);
4378 if (!hc
->plx_membase
) {
4380 "HFC-multi: failed to remap plx address space. "
4381 "(internal error)\n");
4382 pci_disable_device(hc
->pci_dev
);
4386 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4387 (u_long
)hc
->plx_membase
, hc
->plx_origmembase
);
4389 hc
->pci_origmembase
= hc
->pci_dev
->resource
[2].start
;
4390 /* MEMBASE 1 is PLX PCI Bridge */
4391 if (!hc
->pci_origmembase
) {
4393 "HFC-multi: No IO-Memory for PCI card found\n");
4394 pci_disable_device(hc
->pci_dev
);
4398 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 0x400);
4399 if (!hc
->pci_membase
) {
4400 printk(KERN_WARNING
"HFC-multi: failed to remap io "
4401 "address space. (internal error)\n");
4402 pci_disable_device(hc
->pci_dev
);
4407 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4409 hc
->id
, (u_long
)hc
->pci_membase
, hc
->pci_origmembase
,
4410 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4411 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4413 case HFC_IO_MODE_PCIMEM
:
4414 hc
->HFC_outb
= HFC_outb_pcimem
;
4415 hc
->HFC_inb
= HFC_inb_pcimem
;
4416 hc
->HFC_inw
= HFC_inw_pcimem
;
4417 hc
->HFC_wait
= HFC_wait_pcimem
;
4418 hc
->read_fifo
= read_fifo_pcimem
;
4419 hc
->write_fifo
= write_fifo_pcimem
;
4420 hc
->pci_origmembase
= hc
->pci_dev
->resource
[1].start
;
4421 if (!hc
->pci_origmembase
) {
4423 "HFC-multi: No IO-Memory for PCI card found\n");
4424 pci_disable_device(hc
->pci_dev
);
4428 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 256);
4429 if (!hc
->pci_membase
) {
4431 "HFC-multi: failed to remap io address space. "
4432 "(internal error)\n");
4433 pci_disable_device(hc
->pci_dev
);
4436 printk(KERN_INFO
"card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4437 "%d HZ %d leds-type %d\n", hc
->id
, (u_long
)hc
->pci_membase
,
4438 hc
->pci_origmembase
, hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4439 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4441 case HFC_IO_MODE_REGIO
:
4442 hc
->HFC_outb
= HFC_outb_regio
;
4443 hc
->HFC_inb
= HFC_inb_regio
;
4444 hc
->HFC_inw
= HFC_inw_regio
;
4445 hc
->HFC_wait
= HFC_wait_regio
;
4446 hc
->read_fifo
= read_fifo_regio
;
4447 hc
->write_fifo
= write_fifo_regio
;
4448 hc
->pci_iobase
= (u_int
) hc
->pci_dev
->resource
[0].start
;
4449 if (!hc
->pci_iobase
) {
4451 "HFC-multi: No IO for PCI card found\n");
4452 pci_disable_device(hc
->pci_dev
);
4456 if (!request_region(hc
->pci_iobase
, 8, "hfcmulti")) {
4457 printk(KERN_WARNING
"HFC-multi: failed to request "
4458 "address space at 0x%08lx (internal error)\n",
4460 pci_disable_device(hc
->pci_dev
);
4465 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4466 m
->vendor_name
, m
->card_name
, (u_int
) hc
->pci_iobase
,
4467 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4468 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_REGIO
);
4471 printk(KERN_WARNING
"HFC-multi: Invalid IO mode.\n");
4472 pci_disable_device(hc
->pci_dev
);
4476 pci_set_drvdata(hc
->pci_dev
, hc
);
4478 /* At this point the needed PCI config is done */
4479 /* fifos are still not enabled */
4489 release_port(struct hfc_multi
*hc
, struct dchannel
*dch
)
4493 struct bchannel
*pb
;
4496 pt
= hc
->chan
[ci
].port
;
4498 if (debug
& DEBUG_HFCMULTI_INIT
)
4499 printk(KERN_DEBUG
"%s: entered for port %d\n",
4502 if (pt
>= hc
->ports
) {
4503 printk(KERN_WARNING
"%s: ERROR port out of range (%d).\n",
4508 if (debug
& DEBUG_HFCMULTI_INIT
)
4509 printk(KERN_DEBUG
"%s: releasing port=%d\n",
4512 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
4513 l1_event(dch
->l1
, CLOSE_CHANNEL
);
4515 hc
->chan
[ci
].dch
= NULL
;
4517 if (hc
->created
[pt
]) {
4518 hc
->created
[pt
] = 0;
4519 mISDN_unregister_device(&dch
->dev
);
4522 spin_lock_irqsave(&hc
->lock
, flags
);
4524 if (dch
->timer
.function
) {
4525 del_timer(&dch
->timer
);
4526 dch
->timer
.function
= NULL
;
4529 if (hc
->ctype
== HFC_TYPE_E1
) { /* E1 */
4531 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4532 hc
->syncronized
= 0;
4533 plxsd_checksync(hc
, 1);
4536 for (i
= 0; i
<= 31; i
++) {
4537 if (!((1 << i
) & hc
->bmask
[pt
])) /* skip unused chan */
4539 if (hc
->chan
[i
].bch
) {
4540 if (debug
& DEBUG_HFCMULTI_INIT
)
4542 "%s: free port %d channel %d\n",
4543 __func__
, hc
->chan
[i
].port
+ 1, i
);
4544 pb
= hc
->chan
[i
].bch
;
4545 hc
->chan
[i
].bch
= NULL
;
4546 spin_unlock_irqrestore(&hc
->lock
, flags
);
4547 mISDN_freebchannel(pb
);
4549 kfree(hc
->chan
[i
].coeff
);
4550 spin_lock_irqsave(&hc
->lock
, flags
);
4555 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4557 ~(1 << hc
->chan
[ci
].port
);
4558 plxsd_checksync(hc
, 1);
4561 if (hc
->chan
[ci
- 2].bch
) {
4562 if (debug
& DEBUG_HFCMULTI_INIT
)
4564 "%s: free port %d channel %d\n",
4565 __func__
, hc
->chan
[ci
- 2].port
+ 1,
4567 pb
= hc
->chan
[ci
- 2].bch
;
4568 hc
->chan
[ci
- 2].bch
= NULL
;
4569 spin_unlock_irqrestore(&hc
->lock
, flags
);
4570 mISDN_freebchannel(pb
);
4572 kfree(hc
->chan
[ci
- 2].coeff
);
4573 spin_lock_irqsave(&hc
->lock
, flags
);
4575 if (hc
->chan
[ci
- 1].bch
) {
4576 if (debug
& DEBUG_HFCMULTI_INIT
)
4578 "%s: free port %d channel %d\n",
4579 __func__
, hc
->chan
[ci
- 1].port
+ 1,
4581 pb
= hc
->chan
[ci
- 1].bch
;
4582 hc
->chan
[ci
- 1].bch
= NULL
;
4583 spin_unlock_irqrestore(&hc
->lock
, flags
);
4584 mISDN_freebchannel(pb
);
4586 kfree(hc
->chan
[ci
- 1].coeff
);
4587 spin_lock_irqsave(&hc
->lock
, flags
);
4591 spin_unlock_irqrestore(&hc
->lock
, flags
);
4593 if (debug
& DEBUG_HFCMULTI_INIT
)
4594 printk(KERN_DEBUG
"%s: free port %d channel D(%d)\n", __func__
,
4596 mISDN_freedchannel(dch
);
4599 if (debug
& DEBUG_HFCMULTI_INIT
)
4600 printk(KERN_DEBUG
"%s: done!\n", __func__
);
4604 release_card(struct hfc_multi
*hc
)
4609 if (debug
& DEBUG_HFCMULTI_INIT
)
4610 printk(KERN_DEBUG
"%s: release card (%d) entered\n",
4613 /* unregister clock source */
4615 mISDN_unregister_clock(hc
->iclock
);
4617 /* disable and free irq */
4618 spin_lock_irqsave(&hc
->lock
, flags
);
4620 spin_unlock_irqrestore(&hc
->lock
, flags
);
4623 if (debug
& DEBUG_HFCMULTI_INIT
)
4624 printk(KERN_DEBUG
"%s: free irq %d (hc=%p)\n",
4625 __func__
, hc
->irq
, hc
);
4626 free_irq(hc
->irq
, hc
);
4631 /* disable D-channels & B-channels */
4632 if (debug
& DEBUG_HFCMULTI_INIT
)
4633 printk(KERN_DEBUG
"%s: disable all channels (d and b)\n",
4635 for (ch
= 0; ch
<= 31; ch
++) {
4636 if (hc
->chan
[ch
].dch
)
4637 release_port(hc
, hc
->chan
[ch
].dch
);
4644 /* release hardware */
4645 release_io_hfcmulti(hc
);
4647 if (debug
& DEBUG_HFCMULTI_INIT
)
4648 printk(KERN_DEBUG
"%s: remove instance from list\n",
4650 list_del(&hc
->list
);
4652 if (debug
& DEBUG_HFCMULTI_INIT
)
4653 printk(KERN_DEBUG
"%s: delete instance\n", __func__
);
4654 if (hc
== syncmaster
)
4657 if (debug
& DEBUG_HFCMULTI_INIT
)
4658 printk(KERN_DEBUG
"%s: card successfully removed\n",
4663 init_e1_port_hw(struct hfc_multi
*hc
, struct hm_map
*m
)
4665 /* set optical line type */
4666 if (port
[Port_cnt
] & 0x001) {
4667 if (!m
->opticalsupport
) {
4669 "This board has no optical "
4672 if (debug
& DEBUG_HFCMULTI_INIT
)
4674 "%s: PORT set optical "
4675 "interface: card(%d) "
4679 test_and_set_bit(HFC_CFG_OPTICAL
,
4680 &hc
->chan
[hc
->dnum
[0]].cfg
);
4683 /* set LOS report */
4684 if (port
[Port_cnt
] & 0x004) {
4685 if (debug
& DEBUG_HFCMULTI_INIT
)
4686 printk(KERN_DEBUG
"%s: PORT set "
4687 "LOS report: card(%d) port(%d)\n",
4688 __func__
, HFC_cnt
+ 1, 1);
4689 test_and_set_bit(HFC_CFG_REPORT_LOS
,
4690 &hc
->chan
[hc
->dnum
[0]].cfg
);
4692 /* set AIS report */
4693 if (port
[Port_cnt
] & 0x008) {
4694 if (debug
& DEBUG_HFCMULTI_INIT
)
4695 printk(KERN_DEBUG
"%s: PORT set "
4696 "AIS report: card(%d) port(%d)\n",
4697 __func__
, HFC_cnt
+ 1, 1);
4698 test_and_set_bit(HFC_CFG_REPORT_AIS
,
4699 &hc
->chan
[hc
->dnum
[0]].cfg
);
4701 /* set SLIP report */
4702 if (port
[Port_cnt
] & 0x010) {
4703 if (debug
& DEBUG_HFCMULTI_INIT
)
4705 "%s: PORT set SLIP report: "
4706 "card(%d) port(%d)\n",
4707 __func__
, HFC_cnt
+ 1, 1);
4708 test_and_set_bit(HFC_CFG_REPORT_SLIP
,
4709 &hc
->chan
[hc
->dnum
[0]].cfg
);
4711 /* set RDI report */
4712 if (port
[Port_cnt
] & 0x020) {
4713 if (debug
& DEBUG_HFCMULTI_INIT
)
4715 "%s: PORT set RDI report: "
4716 "card(%d) port(%d)\n",
4717 __func__
, HFC_cnt
+ 1, 1);
4718 test_and_set_bit(HFC_CFG_REPORT_RDI
,
4719 &hc
->chan
[hc
->dnum
[0]].cfg
);
4721 /* set CRC-4 Mode */
4722 if (!(port
[Port_cnt
] & 0x100)) {
4723 if (debug
& DEBUG_HFCMULTI_INIT
)
4724 printk(KERN_DEBUG
"%s: PORT turn on CRC4 report:"
4725 " card(%d) port(%d)\n",
4726 __func__
, HFC_cnt
+ 1, 1);
4727 test_and_set_bit(HFC_CFG_CRC4
,
4728 &hc
->chan
[hc
->dnum
[0]].cfg
);
4730 if (debug
& DEBUG_HFCMULTI_INIT
)
4731 printk(KERN_DEBUG
"%s: PORT turn off CRC4"
4732 " report: card(%d) port(%d)\n",
4733 __func__
, HFC_cnt
+ 1, 1);
4735 /* set forced clock */
4736 if (port
[Port_cnt
] & 0x0200) {
4737 if (debug
& DEBUG_HFCMULTI_INIT
)
4738 printk(KERN_DEBUG
"%s: PORT force getting clock from "
4739 "E1: card(%d) port(%d)\n",
4740 __func__
, HFC_cnt
+ 1, 1);
4741 test_and_set_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
);
4743 if (port
[Port_cnt
] & 0x0400) {
4744 if (debug
& DEBUG_HFCMULTI_INIT
)
4745 printk(KERN_DEBUG
"%s: PORT force putting clock to "
4746 "E1: card(%d) port(%d)\n",
4747 __func__
, HFC_cnt
+ 1, 1);
4748 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
);
4751 if (port
[Port_cnt
] & 0x0800) {
4752 if (debug
& DEBUG_HFCMULTI_INIT
)
4753 printk(KERN_DEBUG
"%s: PORT disable JATT PLL on "
4754 "E1: card(%d) port(%d)\n",
4755 __func__
, HFC_cnt
+ 1, 1);
4756 test_and_set_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
);
4758 /* set elastic jitter buffer */
4759 if (port
[Port_cnt
] & 0x3000) {
4760 hc
->chan
[hc
->dnum
[0]].jitter
= (port
[Port_cnt
]>>12) & 0x3;
4761 if (debug
& DEBUG_HFCMULTI_INIT
)
4763 "%s: PORT set elastic "
4764 "buffer to %d: card(%d) port(%d)\n",
4765 __func__
, hc
->chan
[hc
->dnum
[0]].jitter
,
4768 hc
->chan
[hc
->dnum
[0]].jitter
= 2; /* default */
4772 init_e1_port(struct hfc_multi
*hc
, struct hm_map
*m
, int pt
)
4774 struct dchannel
*dch
;
4775 struct bchannel
*bch
;
4777 char name
[MISDN_MAX_IDLEN
];
4780 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4784 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4786 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_E1
) | (1 << ISDN_P_NT_E1
);
4787 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4788 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4789 dch
->dev
.D
.send
= handle_dmsg
;
4790 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4791 dch
->slot
= hc
->dnum
[pt
];
4792 hc
->chan
[hc
->dnum
[pt
]].dch
= dch
;
4793 hc
->chan
[hc
->dnum
[pt
]].port
= pt
;
4794 hc
->chan
[hc
->dnum
[pt
]].nt_timer
= -1;
4795 for (ch
= 1; ch
<= 31; ch
++) {
4796 if (!((1 << ch
) & hc
->bmask
[pt
])) /* skip unused channel */
4798 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4800 printk(KERN_ERR
"%s: no memory for bchannel\n",
4805 hc
->chan
[ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4806 if (!hc
->chan
[ch
].coeff
) {
4807 printk(KERN_ERR
"%s: no memory for coeffs\n",
4816 mISDN_initbchannel(bch
, MAX_DATA_MEM
, poll
>> 1);
4818 bch
->ch
.send
= handle_bmsg
;
4819 bch
->ch
.ctrl
= hfcm_bctrl
;
4821 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4822 hc
->chan
[ch
].bch
= bch
;
4823 hc
->chan
[ch
].port
= pt
;
4824 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4827 dch
->dev
.nrbchan
= bcount
;
4829 init_e1_port_hw(hc
, m
);
4831 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-e1.%d-%d",
4834 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-e1.%d", HFC_cnt
+ 1);
4835 ret
= mISDN_register_device(&dch
->dev
, &hc
->pci_dev
->dev
, name
);
4838 hc
->created
[pt
] = 1;
4841 release_port(hc
, dch
);
4846 init_multi_port(struct hfc_multi
*hc
, int pt
)
4848 struct dchannel
*dch
;
4849 struct bchannel
*bch
;
4851 char name
[MISDN_MAX_IDLEN
];
4853 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4857 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4859 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_S0
) | (1 << ISDN_P_NT_S0
);
4860 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4861 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4862 dch
->dev
.D
.send
= handle_dmsg
;
4863 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4864 dch
->dev
.nrbchan
= 2;
4867 hc
->chan
[i
+ 2].dch
= dch
;
4868 hc
->chan
[i
+ 2].port
= pt
;
4869 hc
->chan
[i
+ 2].nt_timer
= -1;
4870 for (ch
= 0; ch
< dch
->dev
.nrbchan
; ch
++) {
4871 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4873 printk(KERN_ERR
"%s: no memory for bchannel\n",
4878 hc
->chan
[i
+ ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4879 if (!hc
->chan
[i
+ ch
].coeff
) {
4880 printk(KERN_ERR
"%s: no memory for coeffs\n",
4889 mISDN_initbchannel(bch
, MAX_DATA_MEM
, poll
>> 1);
4891 bch
->ch
.send
= handle_bmsg
;
4892 bch
->ch
.ctrl
= hfcm_bctrl
;
4893 bch
->ch
.nr
= ch
+ 1;
4894 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4895 hc
->chan
[i
+ ch
].bch
= bch
;
4896 hc
->chan
[i
+ ch
].port
= pt
;
4897 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4899 /* set master clock */
4900 if (port
[Port_cnt
] & 0x001) {
4901 if (debug
& DEBUG_HFCMULTI_INIT
)
4903 "%s: PROTOCOL set master clock: "
4904 "card(%d) port(%d)\n",
4905 __func__
, HFC_cnt
+ 1, pt
+ 1);
4906 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
4907 printk(KERN_ERR
"Error: Master clock "
4908 "for port(%d) of card(%d) is only"
4909 " possible with TE-mode\n",
4910 pt
+ 1, HFC_cnt
+ 1);
4914 if (hc
->masterclk
>= 0) {
4915 printk(KERN_ERR
"Error: Master clock "
4916 "for port(%d) of card(%d) already "
4917 "defined for port(%d)\n",
4918 pt
+ 1, HFC_cnt
+ 1, hc
->masterclk
+ 1);
4924 /* set transmitter line to non capacitive */
4925 if (port
[Port_cnt
] & 0x002) {
4926 if (debug
& DEBUG_HFCMULTI_INIT
)
4928 "%s: PROTOCOL set non capacitive "
4929 "transmitter: card(%d) port(%d)\n",
4930 __func__
, HFC_cnt
+ 1, pt
+ 1);
4931 test_and_set_bit(HFC_CFG_NONCAP_TX
,
4932 &hc
->chan
[i
+ 2].cfg
);
4934 /* disable E-channel */
4935 if (port
[Port_cnt
] & 0x004) {
4936 if (debug
& DEBUG_HFCMULTI_INIT
)
4938 "%s: PROTOCOL disable E-channel: "
4939 "card(%d) port(%d)\n",
4940 __func__
, HFC_cnt
+ 1, pt
+ 1);
4941 test_and_set_bit(HFC_CFG_DIS_ECHANNEL
,
4942 &hc
->chan
[i
+ 2].cfg
);
4944 if (hc
->ctype
== HFC_TYPE_XHFC
) {
4945 snprintf(name
, MISDN_MAX_IDLEN
- 1, "xhfc.%d-%d",
4946 HFC_cnt
+ 1, pt
+ 1);
4947 ret
= mISDN_register_device(&dch
->dev
, NULL
, name
);
4949 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-%ds.%d-%d",
4950 hc
->ctype
, HFC_cnt
+ 1, pt
+ 1);
4951 ret
= mISDN_register_device(&dch
->dev
, &hc
->pci_dev
->dev
, name
);
4955 hc
->created
[pt
] = 1;
4958 release_port(hc
, dch
);
4963 hfcmulti_init(struct hm_map
*m
, struct pci_dev
*pdev
,
4964 const struct pci_device_id
*ent
)
4968 struct hfc_multi
*hc
;
4970 u_char dips
= 0, pmj
= 0; /* dip settings, port mode Jumpers */
4974 if (HFC_cnt
>= MAX_CARDS
) {
4975 printk(KERN_ERR
"too many cards (max=%d).\n",
4979 if ((type
[HFC_cnt
] & 0xff) && (type
[HFC_cnt
] & 0xff) != m
->type
) {
4980 printk(KERN_WARNING
"HFC-MULTI: Card '%s:%s' type %d found but "
4981 "type[%d] %d was supplied as module parameter\n",
4982 m
->vendor_name
, m
->card_name
, m
->type
, HFC_cnt
,
4983 type
[HFC_cnt
] & 0xff);
4984 printk(KERN_WARNING
"HFC-MULTI: Load module without parameters "
4985 "first, to see cards and their types.");
4988 if (debug
& DEBUG_HFCMULTI_INIT
)
4989 printk(KERN_DEBUG
"%s: Registering %s:%s chip type %d (0x%x)\n",
4990 __func__
, m
->vendor_name
, m
->card_name
, m
->type
,
4993 /* allocate card+fifo structure */
4994 hc
= kzalloc(sizeof(struct hfc_multi
), GFP_KERNEL
);
4996 printk(KERN_ERR
"No kmem for HFC-Multi card\n");
4999 spin_lock_init(&hc
->lock
);
5001 hc
->ctype
= m
->type
;
5002 hc
->ports
= m
->ports
;
5004 hc
->pcm
= pcm
[HFC_cnt
];
5005 hc
->io_mode
= iomode
[HFC_cnt
];
5006 if (hc
->ctype
== HFC_TYPE_E1
&& dmask
[E1_cnt
]) {
5010 for (ch
= 0; ch
<= 31; ch
++) {
5011 if (!((1 << ch
) & dmask
[E1_cnt
]))
5014 hc
->bmask
[pt
] = bmask
[bmask_cnt
++];
5015 if ((maskcheck
& hc
->bmask
[pt
])
5016 || (dmask
[E1_cnt
] & hc
->bmask
[pt
])) {
5018 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5023 maskcheck
|= hc
->bmask
[pt
];
5025 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5026 E1_cnt
+ 1, ch
, hc
->bmask
[pt
]);
5031 if (hc
->ctype
== HFC_TYPE_E1
&& !dmask
[E1_cnt
]) {
5032 /* default card layout */
5034 hc
->bmask
[0] = 0xfffefffe;
5038 /* set chip specific features */
5040 if (type
[HFC_cnt
] & 0x100) {
5041 test_and_set_bit(HFC_CHIP_ULAW
, &hc
->chip
);
5042 hc
->silence
= 0xff; /* ulaw silence */
5044 hc
->silence
= 0x2a; /* alaw silence */
5045 if ((poll
>> 1) > sizeof(hc
->silence_data
)) {
5046 printk(KERN_ERR
"HFCMULTI error: silence_data too small, "
5051 for (i
= 0; i
< (poll
>> 1); i
++)
5052 hc
->silence_data
[i
] = hc
->silence
;
5054 if (hc
->ctype
!= HFC_TYPE_XHFC
) {
5055 if (!(type
[HFC_cnt
] & 0x200))
5056 test_and_set_bit(HFC_CHIP_DTMF
, &hc
->chip
);
5057 test_and_set_bit(HFC_CHIP_CONF
, &hc
->chip
);
5060 if (type
[HFC_cnt
] & 0x800)
5061 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
5062 if (type
[HFC_cnt
] & 0x1000) {
5063 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
5064 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
5066 if (type
[HFC_cnt
] & 0x4000)
5067 test_and_set_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
);
5068 if (type
[HFC_cnt
] & 0x8000)
5069 test_and_set_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
);
5071 if (type
[HFC_cnt
] & 0x10000)
5073 if (type
[HFC_cnt
] & 0x20000)
5075 if (type
[HFC_cnt
] & 0x80000) {
5076 test_and_set_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
);
5078 hc
->wdbyte
= V_GPIO_OUT2
;
5079 printk(KERN_NOTICE
"Watchdog enabled\n");
5083 /* setup pci, hc->slots may change due to PLXSD */
5084 ret_err
= setup_pci(hc
, pdev
, ent
);
5086 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5087 ret_err
= setup_embedded(hc
, m
);
5090 printk(KERN_WARNING
"Embedded IO Mode not selected\n");
5095 if (hc
== syncmaster
)
5101 hc
->HFC_outb_nodebug
= hc
->HFC_outb
;
5102 hc
->HFC_inb_nodebug
= hc
->HFC_inb
;
5103 hc
->HFC_inw_nodebug
= hc
->HFC_inw
;
5104 hc
->HFC_wait_nodebug
= hc
->HFC_wait
;
5105 #ifdef HFC_REGISTER_DEBUG
5106 hc
->HFC_outb
= HFC_outb_debug
;
5107 hc
->HFC_inb
= HFC_inb_debug
;
5108 hc
->HFC_inw
= HFC_inw_debug
;
5109 hc
->HFC_wait
= HFC_wait_debug
;
5111 /* create channels */
5112 for (pt
= 0; pt
< hc
->ports
; pt
++) {
5113 if (Port_cnt
>= MAX_PORTS
) {
5114 printk(KERN_ERR
"too many ports (max=%d).\n",
5119 if (hc
->ctype
== HFC_TYPE_E1
)
5120 ret_err
= init_e1_port(hc
, m
, pt
);
5122 ret_err
= init_multi_port(hc
, pt
);
5123 if (debug
& DEBUG_HFCMULTI_INIT
)
5125 "%s: Registering D-channel, card(%d) port(%d) "
5127 __func__
, HFC_cnt
+ 1, pt
+ 1, ret_err
);
5130 while (pt
) { /* release already registered ports */
5132 if (hc
->ctype
== HFC_TYPE_E1
)
5134 hc
->chan
[hc
->dnum
[pt
]].dch
);
5137 hc
->chan
[(pt
<< 2) + 2].dch
);
5141 if (hc
->ctype
!= HFC_TYPE_E1
)
5142 Port_cnt
++; /* for each S0 port */
5144 if (hc
->ctype
== HFC_TYPE_E1
) {
5145 Port_cnt
++; /* for each E1 port */
5150 switch (m
->dip_type
) {
5153 * Get DIP setting for beroNet 1S/2S/4S cards
5154 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5155 * GPI 19/23 (R_GPI_IN2))
5157 dips
= ((~HFC_inb(hc
, R_GPIO_IN1
) & 0xE0) >> 5) |
5158 ((~HFC_inb(hc
, R_GPI_IN2
) & 0x80) >> 3) |
5159 (~HFC_inb(hc
, R_GPI_IN2
) & 0x08);
5161 /* Port mode (TE/NT) jumpers */
5162 pmj
= ((HFC_inb(hc
, R_GPI_IN3
) >> 4) & 0xf);
5164 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
5167 printk(KERN_INFO
"%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5168 m
->vendor_name
, m
->card_name
, dips
, pmj
);
5172 * Get DIP Setting for beroNet 8S0+ cards
5173 * Enable PCI auxbridge function
5175 HFC_outb(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
5176 /* prepare access to auxport */
5177 outw(0x4000, hc
->pci_iobase
+ 4);
5179 * some dummy reads are required to
5180 * read valid DIP switch data
5182 dips
= inb(hc
->pci_iobase
);
5183 dips
= inb(hc
->pci_iobase
);
5184 dips
= inb(hc
->pci_iobase
);
5185 dips
= ~inb(hc
->pci_iobase
) & 0x3F;
5186 outw(0x0, hc
->pci_iobase
+ 4);
5187 /* disable PCI auxbridge function */
5188 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
5189 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
5190 m
->vendor_name
, m
->card_name
, dips
);
5194 * get DIP Setting for beroNet E1 cards
5195 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5197 dips
= (~HFC_inb(hc
, R_GPI_IN0
) & 0xF0) >> 4;
5198 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
5199 m
->vendor_name
, m
->card_name
, dips
);
5204 spin_lock_irqsave(&HFClock
, flags
);
5205 list_add_tail(&hc
->list
, &HFClist
);
5206 spin_unlock_irqrestore(&HFClock
, flags
);
5208 /* use as clock source */
5209 if (clock
== HFC_cnt
+ 1)
5210 hc
->iclock
= mISDN_register_clock("HFCMulti", 0, clockctl
, hc
);
5212 /* initialize hardware */
5213 hc
->irq
= (m
->irq
) ? : hc
->pci_dev
->irq
;
5214 ret_err
= init_card(hc
);
5216 printk(KERN_ERR
"init card returns %d\n", ret_err
);
5221 /* start IRQ and return */
5222 spin_lock_irqsave(&hc
->lock
, flags
);
5224 spin_unlock_irqrestore(&hc
->lock
, flags
);
5228 release_io_hfcmulti(hc
);
5229 if (hc
== syncmaster
)
5235 static void hfc_remove_pci(struct pci_dev
*pdev
)
5237 struct hfc_multi
*card
= pci_get_drvdata(pdev
);
5241 printk(KERN_INFO
"removing hfc_multi card vendor:%x "
5242 "device:%x subvendor:%x subdevice:%x\n",
5243 pdev
->vendor
, pdev
->device
,
5244 pdev
->subsystem_vendor
, pdev
->subsystem_device
);
5247 spin_lock_irqsave(&HFClock
, flags
);
5249 spin_unlock_irqrestore(&HFClock
, flags
);
5252 printk(KERN_DEBUG
"%s: drvdata already removed\n",
5257 #define VENDOR_CCD "Cologne Chip AG"
5258 #define VENDOR_BN "beroNet GmbH"
5259 #define VENDOR_DIG "Digium Inc."
5260 #define VENDOR_JH "Junghanns.NET GmbH"
5261 #define VENDOR_PRIM "PrimuX"
5263 static const struct hm_map hfcm_map
[] = {
5264 /*0*/ {VENDOR_BN
, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S
, 0, 0},
5265 /*1*/ {VENDOR_BN
, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5266 /*2*/ {VENDOR_BN
, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5267 /*3*/ {VENDOR_BN
, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5268 /*4*/ {VENDOR_BN
, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5269 /*5*/ {VENDOR_CCD
, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5270 /*6*/ {VENDOR_CCD
, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5271 /*7*/ {VENDOR_CCD
, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5272 /*8*/ {VENDOR_DIG
, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO
, 0},
5273 /*9*/ {VENDOR_CCD
, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5274 /*10*/ {VENDOR_JH
, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5275 /*11*/ {VENDOR_PRIM
, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5277 /*12*/ {VENDOR_BN
, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5278 /*13*/ {VENDOR_BN
, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S
,
5279 HFC_IO_MODE_REGIO
, 0},
5280 /*14*/ {VENDOR_CCD
, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5281 /*15*/ {VENDOR_CCD
, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5283 /*16*/ {VENDOR_CCD
, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5284 /*17*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5285 /*18*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5287 /*19*/ {VENDOR_BN
, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5288 /*20*/ {VENDOR_BN
, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5289 /*21*/ {VENDOR_BN
, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5290 /*22*/ {VENDOR_BN
, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5292 /*23*/ {VENDOR_CCD
, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5293 /*24*/ {VENDOR_CCD
, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5294 /*25*/ {VENDOR_CCD
, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5296 /*26*/ {VENDOR_CCD
, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5297 HFC_IO_MODE_PLXSD
, 0},
5298 /*27*/ {VENDOR_CCD
, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5299 HFC_IO_MODE_PLXSD
, 0},
5300 /*28*/ {VENDOR_CCD
, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5301 /*29*/ {VENDOR_CCD
, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5302 /*30*/ {VENDOR_CCD
, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5303 /*31*/ {VENDOR_CCD
, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5304 HFC_IO_MODE_EMBSD
, XHFC_IRQ
},
5305 /*32*/ {VENDOR_JH
, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5306 /*33*/ {VENDOR_BN
, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5307 /*34*/ {VENDOR_BN
, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5311 #define H(x) ((unsigned long)&hfcm_map[x])
5312 static const struct pci_device_id hfmultipci_ids
[] = {
5314 /* Cards with HFC-4S Chip */
5315 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5316 PCI_SUBDEVICE_ID_CCD_BN1SM
, 0, 0, H(0)}, /* BN1S mini PCI */
5317 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5318 PCI_SUBDEVICE_ID_CCD_BN2S
, 0, 0, H(1)}, /* BN2S */
5319 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5320 PCI_SUBDEVICE_ID_CCD_BN2SM
, 0, 0, H(2)}, /* BN2S mini PCI */
5321 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5322 PCI_SUBDEVICE_ID_CCD_BN4S
, 0, 0, H(3)}, /* BN4S */
5323 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5324 PCI_SUBDEVICE_ID_CCD_BN4SM
, 0, 0, H(4)}, /* BN4S mini PCI */
5325 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5326 PCI_DEVICE_ID_CCD_HFC4S
, 0, 0, H(5)}, /* Old Eval */
5327 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5328 PCI_SUBDEVICE_ID_CCD_IOB4ST
, 0, 0, H(6)}, /* IOB4ST */
5329 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5330 PCI_SUBDEVICE_ID_CCD_HFC4S
, 0, 0, H(7)}, /* 4S */
5331 { PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
,
5332 PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
, 0, 0, H(8)},
5333 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5334 PCI_SUBDEVICE_ID_CCD_SWYX4S
, 0, 0, H(9)}, /* 4S Swyx */
5335 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5336 PCI_SUBDEVICE_ID_CCD_JH4S20
, 0, 0, H(10)},
5337 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5338 PCI_SUBDEVICE_ID_CCD_PMX2S
, 0, 0, H(11)}, /* Primux */
5339 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5340 PCI_SUBDEVICE_ID_CCD_OV4S
, 0, 0, H(28)}, /* OpenVox 4 */
5341 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5342 PCI_SUBDEVICE_ID_CCD_OV2S
, 0, 0, H(29)}, /* OpenVox 2 */
5343 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5344 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5345 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5346 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5348 /* Cards with HFC-8S Chip */
5349 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5350 PCI_SUBDEVICE_ID_CCD_BN8S
, 0, 0, H(12)}, /* BN8S */
5351 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5352 PCI_SUBDEVICE_ID_CCD_BN8SP
, 0, 0, H(13)}, /* BN8S+ */
5353 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5354 PCI_DEVICE_ID_CCD_HFC8S
, 0, 0, H(14)}, /* old Eval */
5355 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5356 PCI_SUBDEVICE_ID_CCD_IOB8STR
, 0, 0, H(15)}, /* IOB8ST Recording */
5357 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5358 PCI_SUBDEVICE_ID_CCD_IOB8ST
, 0, 0, H(16)}, /* IOB8ST */
5359 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5360 PCI_SUBDEVICE_ID_CCD_IOB8ST_1
, 0, 0, H(17)}, /* IOB8ST */
5361 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5362 PCI_SUBDEVICE_ID_CCD_HFC8S
, 0, 0, H(18)}, /* 8S */
5363 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5364 PCI_SUBDEVICE_ID_CCD_OV8S
, 0, 0, H(30)}, /* OpenVox 8 */
5365 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5366 PCI_SUBDEVICE_ID_CCD_JH8S
, 0, 0, H(32)}, /* Junganns 8S */
5369 /* Cards with HFC-E1 Chip */
5370 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5371 PCI_SUBDEVICE_ID_CCD_BNE1
, 0, 0, H(19)}, /* BNE1 */
5372 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5373 PCI_SUBDEVICE_ID_CCD_BNE1M
, 0, 0, H(20)}, /* BNE1 mini PCI */
5374 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5375 PCI_SUBDEVICE_ID_CCD_BNE1DP
, 0, 0, H(21)}, /* BNE1 + (Dual) */
5376 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5377 PCI_SUBDEVICE_ID_CCD_BNE1D
, 0, 0, H(22)}, /* BNE1 (Dual) */
5379 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5380 PCI_DEVICE_ID_CCD_HFCE1
, 0, 0, H(23)}, /* Old Eval */
5381 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5382 PCI_SUBDEVICE_ID_CCD_IOB1E1
, 0, 0, H(24)}, /* IOB1E1 */
5383 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5384 PCI_SUBDEVICE_ID_CCD_HFCE1
, 0, 0, H(25)}, /* E1 */
5386 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5387 PCI_SUBDEVICE_ID_CCD_SPD4S
, 0, 0, H(26)}, /* PLX PCI Bridge */
5388 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5389 PCI_SUBDEVICE_ID_CCD_SPDE1
, 0, 0, H(27)}, /* PLX PCI Bridge */
5391 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5392 PCI_SUBDEVICE_ID_CCD_JHSE1
, 0, 0, H(25)}, /* Junghanns E1 */
5394 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFC4S
), 0 },
5395 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFC8S
), 0 },
5396 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFCE1
), 0 },
5401 MODULE_DEVICE_TABLE(pci
, hfmultipci_ids
);
5404 hfcmulti_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
5406 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
5409 if (m
== NULL
&& ent
->vendor
== PCI_VENDOR_ID_CCD
&& (
5410 ent
->device
== PCI_DEVICE_ID_CCD_HFC4S
||
5411 ent
->device
== PCI_DEVICE_ID_CCD_HFC8S
||
5412 ent
->device
== PCI_DEVICE_ID_CCD_HFCE1
)) {
5414 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5415 "subvendor:%04x subdevice:%04x)\n", pdev
->vendor
,
5416 pdev
->device
, pdev
->subsystem_vendor
,
5417 pdev
->subsystem_device
);
5419 "Please contact the driver maintainer for support.\n");
5422 ret
= hfcmulti_init(m
, pdev
, ent
);
5426 printk(KERN_INFO
"%d devices registered\n", HFC_cnt
);
5430 static struct pci_driver hfcmultipci_driver
= {
5431 .name
= "hfc_multi",
5432 .probe
= hfcmulti_probe
,
5433 .remove
= hfc_remove_pci
,
5434 .id_table
= hfmultipci_ids
,
5438 HFCmulti_cleanup(void)
5440 struct hfc_multi
*card
, *next
;
5442 /* get rid of all devices of this driver */
5443 list_for_each_entry_safe(card
, next
, &HFClist
, list
)
5445 pci_unregister_driver(&hfcmultipci_driver
);
5455 printk(KERN_INFO
"mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION
);
5458 printk(KERN_DEBUG
"%s: IRQ_DEBUG IS ENABLED!\n", __func__
);
5461 if (debug
& DEBUG_HFCMULTI_INIT
)
5462 printk(KERN_DEBUG
"%s: init entered\n", __func__
);
5489 "%s: Wrong poll value (%d).\n", __func__
, poll
);
5498 /* Register the embedded devices.
5499 * This should be done before the PCI cards registration */
5517 for (i
= 0; i
< xhfc
; ++i
) {
5518 err
= hfcmulti_init(&m
, NULL
, NULL
);
5520 printk(KERN_ERR
"error registering embedded driver: "
5525 printk(KERN_INFO
"%d devices registered\n", HFC_cnt
);
5528 /* Register the PCI cards */
5529 err
= pci_register_driver(&hfcmultipci_driver
);
5531 printk(KERN_ERR
"error registering pci driver: %x\n", err
);
5539 module_init(HFCmulti_init
);
5540 module_exit(HFCmulti_cleanup
);