1 // SPDX-License-Identifier: GPL-2.0
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
15 #include "writeback.h"
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
29 unsigned int bch_cutoff_writeback
;
30 unsigned int bch_cutoff_writeback_sync
;
32 static const char bcache_magic
[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
37 static const char invalid_uuid
[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
42 static struct kobject
*bcache_kobj
;
43 struct mutex bch_register_lock
;
44 bool bcache_is_reboot
;
45 LIST_HEAD(bch_cache_sets
);
46 static LIST_HEAD(uncached_devices
);
48 static int bcache_major
;
49 static DEFINE_IDA(bcache_device_idx
);
50 static wait_queue_head_t unregister_wait
;
51 struct workqueue_struct
*bcache_wq
;
52 struct workqueue_struct
*bch_flush_wq
;
53 struct workqueue_struct
*bch_journal_wq
;
56 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS 128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
64 static unsigned int get_bucket_size(struct cache_sb
*sb
, struct cache_sb_disk
*s
)
66 unsigned int bucket_size
= le16_to_cpu(s
->bucket_size
);
68 if (sb
->version
>= BCACHE_SB_VERSION_CDEV_WITH_FEATURES
) {
69 if (bch_has_feature_large_bucket(sb
)) {
70 unsigned int max
, order
;
72 max
= sizeof(unsigned int) * BITS_PER_BYTE
- 1;
73 order
= le16_to_cpu(s
->bucket_size
);
75 * bcache tool will make sure the overflow won't
76 * happen, an error message here is enough.
79 pr_err("Bucket size (1 << %u) overflows\n",
81 bucket_size
= 1 << order
;
82 } else if (bch_has_feature_obso_large_bucket(sb
)) {
84 le16_to_cpu(s
->obso_bucket_size_hi
) << 16;
91 static const char *read_super_common(struct cache_sb
*sb
, struct block_device
*bdev
,
92 struct cache_sb_disk
*s
)
97 sb
->first_bucket
= le16_to_cpu(s
->first_bucket
);
98 sb
->nbuckets
= le64_to_cpu(s
->nbuckets
);
99 sb
->bucket_size
= get_bucket_size(sb
, s
);
101 sb
->nr_in_set
= le16_to_cpu(s
->nr_in_set
);
102 sb
->nr_this_dev
= le16_to_cpu(s
->nr_this_dev
);
104 err
= "Too many journal buckets";
105 if (sb
->keys
> SB_JOURNAL_BUCKETS
)
108 err
= "Too many buckets";
109 if (sb
->nbuckets
> LONG_MAX
)
112 err
= "Not enough buckets";
113 if (sb
->nbuckets
< 1 << 7)
116 err
= "Bad block size (not power of 2)";
117 if (!is_power_of_2(sb
->block_size
))
120 err
= "Bad block size (larger than page size)";
121 if (sb
->block_size
> PAGE_SECTORS
)
124 err
= "Bad bucket size (not power of 2)";
125 if (!is_power_of_2(sb
->bucket_size
))
128 err
= "Bad bucket size (smaller than page size)";
129 if (sb
->bucket_size
< PAGE_SECTORS
)
132 err
= "Invalid superblock: device too small";
133 if (get_capacity(bdev
->bd_disk
) <
134 sb
->bucket_size
* sb
->nbuckets
)
138 if (bch_is_zero(sb
->set_uuid
, 16))
141 err
= "Bad cache device number in set";
142 if (!sb
->nr_in_set
||
143 sb
->nr_in_set
<= sb
->nr_this_dev
||
144 sb
->nr_in_set
> MAX_CACHES_PER_SET
)
147 err
= "Journal buckets not sequential";
148 for (i
= 0; i
< sb
->keys
; i
++)
149 if (sb
->d
[i
] != sb
->first_bucket
+ i
)
152 err
= "Too many journal buckets";
153 if (sb
->first_bucket
+ sb
->keys
> sb
->nbuckets
)
156 err
= "Invalid superblock: first bucket comes before end of super";
157 if (sb
->first_bucket
* sb
->bucket_size
< 16)
166 static const char *read_super(struct cache_sb
*sb
, struct block_device
*bdev
,
167 struct cache_sb_disk
**res
)
170 struct cache_sb_disk
*s
;
174 page
= read_cache_page_gfp(bdev
->bd_mapping
,
175 SB_OFFSET
>> PAGE_SHIFT
, GFP_KERNEL
);
178 s
= page_address(page
) + offset_in_page(SB_OFFSET
);
180 sb
->offset
= le64_to_cpu(s
->offset
);
181 sb
->version
= le64_to_cpu(s
->version
);
183 memcpy(sb
->magic
, s
->magic
, 16);
184 memcpy(sb
->uuid
, s
->uuid
, 16);
185 memcpy(sb
->set_uuid
, s
->set_uuid
, 16);
186 memcpy(sb
->label
, s
->label
, SB_LABEL_SIZE
);
188 sb
->flags
= le64_to_cpu(s
->flags
);
189 sb
->seq
= le64_to_cpu(s
->seq
);
190 sb
->last_mount
= le32_to_cpu(s
->last_mount
);
191 sb
->keys
= le16_to_cpu(s
->keys
);
193 for (i
= 0; i
< SB_JOURNAL_BUCKETS
; i
++)
194 sb
->d
[i
] = le64_to_cpu(s
->d
[i
]);
196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 sb
->version
, sb
->flags
, sb
->seq
, sb
->keys
);
199 err
= "Not a bcache superblock (bad offset)";
200 if (sb
->offset
!= SB_SECTOR
)
203 err
= "Not a bcache superblock (bad magic)";
204 if (memcmp(sb
->magic
, bcache_magic
, 16))
207 err
= "Bad checksum";
208 if (s
->csum
!= csum_set(s
))
212 if (bch_is_zero(sb
->uuid
, 16))
215 sb
->block_size
= le16_to_cpu(s
->block_size
);
217 err
= "Superblock block size smaller than device block size";
218 if (sb
->block_size
<< 9 < bdev_logical_block_size(bdev
))
221 switch (sb
->version
) {
222 case BCACHE_SB_VERSION_BDEV
:
223 sb
->data_offset
= BDEV_DATA_START_DEFAULT
;
225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET
:
226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES
:
227 sb
->data_offset
= le64_to_cpu(s
->data_offset
);
229 err
= "Bad data offset";
230 if (sb
->data_offset
< BDEV_DATA_START_DEFAULT
)
234 case BCACHE_SB_VERSION_CDEV
:
235 case BCACHE_SB_VERSION_CDEV_WITH_UUID
:
236 err
= read_super_common(sb
, bdev
, s
);
240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES
:
242 * Feature bits are needed in read_super_common(),
243 * convert them firstly.
245 sb
->feature_compat
= le64_to_cpu(s
->feature_compat
);
246 sb
->feature_incompat
= le64_to_cpu(s
->feature_incompat
);
247 sb
->feature_ro_compat
= le64_to_cpu(s
->feature_ro_compat
);
249 /* Check incompatible features */
250 err
= "Unsupported compatible feature found";
251 if (bch_has_unknown_compat_features(sb
))
254 err
= "Unsupported read-only compatible feature found";
255 if (bch_has_unknown_ro_compat_features(sb
))
258 err
= "Unsupported incompatible feature found";
259 if (bch_has_unknown_incompat_features(sb
))
262 err
= read_super_common(sb
, bdev
, s
);
267 err
= "Unsupported superblock version";
271 sb
->last_mount
= (u32
)ktime_get_real_seconds();
279 static void write_bdev_super_endio(struct bio
*bio
)
281 struct cached_dev
*dc
= bio
->bi_private
;
284 bch_count_backing_io_errors(dc
, bio
);
286 closure_put(&dc
->sb_write
);
289 static void __write_super(struct cache_sb
*sb
, struct cache_sb_disk
*out
,
294 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_META
;
295 bio
->bi_iter
.bi_sector
= SB_SECTOR
;
296 __bio_add_page(bio
, virt_to_page(out
), SB_SIZE
,
297 offset_in_page(out
));
299 out
->offset
= cpu_to_le64(sb
->offset
);
301 memcpy(out
->uuid
, sb
->uuid
, 16);
302 memcpy(out
->set_uuid
, sb
->set_uuid
, 16);
303 memcpy(out
->label
, sb
->label
, SB_LABEL_SIZE
);
305 out
->flags
= cpu_to_le64(sb
->flags
);
306 out
->seq
= cpu_to_le64(sb
->seq
);
308 out
->last_mount
= cpu_to_le32(sb
->last_mount
);
309 out
->first_bucket
= cpu_to_le16(sb
->first_bucket
);
310 out
->keys
= cpu_to_le16(sb
->keys
);
312 for (i
= 0; i
< sb
->keys
; i
++)
313 out
->d
[i
] = cpu_to_le64(sb
->d
[i
]);
315 if (sb
->version
>= BCACHE_SB_VERSION_CDEV_WITH_FEATURES
) {
316 out
->feature_compat
= cpu_to_le64(sb
->feature_compat
);
317 out
->feature_incompat
= cpu_to_le64(sb
->feature_incompat
);
318 out
->feature_ro_compat
= cpu_to_le64(sb
->feature_ro_compat
);
321 out
->version
= cpu_to_le64(sb
->version
);
322 out
->csum
= csum_set(out
);
324 pr_debug("ver %llu, flags %llu, seq %llu\n",
325 sb
->version
, sb
->flags
, sb
->seq
);
330 static CLOSURE_CALLBACK(bch_write_bdev_super_unlock
)
332 closure_type(dc
, struct cached_dev
, sb_write
);
334 up(&dc
->sb_write_mutex
);
337 void bch_write_bdev_super(struct cached_dev
*dc
, struct closure
*parent
)
339 struct closure
*cl
= &dc
->sb_write
;
340 struct bio
*bio
= &dc
->sb_bio
;
342 down(&dc
->sb_write_mutex
);
343 closure_init(cl
, parent
);
345 bio_init(bio
, dc
->bdev
, dc
->sb_bv
, 1, 0);
346 bio
->bi_end_io
= write_bdev_super_endio
;
347 bio
->bi_private
= dc
;
350 /* I/O request sent to backing device */
351 __write_super(&dc
->sb
, dc
->sb_disk
, bio
);
353 closure_return_with_destructor(cl
, bch_write_bdev_super_unlock
);
356 static void write_super_endio(struct bio
*bio
)
358 struct cache
*ca
= bio
->bi_private
;
361 bch_count_io_errors(ca
, bio
->bi_status
, 0,
362 "writing superblock");
363 closure_put(&ca
->set
->sb_write
);
366 static CLOSURE_CALLBACK(bcache_write_super_unlock
)
368 closure_type(c
, struct cache_set
, sb_write
);
370 up(&c
->sb_write_mutex
);
373 void bcache_write_super(struct cache_set
*c
)
375 struct closure
*cl
= &c
->sb_write
;
376 struct cache
*ca
= c
->cache
;
377 struct bio
*bio
= &ca
->sb_bio
;
378 unsigned int version
= BCACHE_SB_VERSION_CDEV_WITH_UUID
;
380 down(&c
->sb_write_mutex
);
381 closure_init(cl
, &c
->cl
);
385 if (ca
->sb
.version
< version
)
386 ca
->sb
.version
= version
;
388 bio_init(bio
, ca
->bdev
, ca
->sb_bv
, 1, 0);
389 bio
->bi_end_io
= write_super_endio
;
390 bio
->bi_private
= ca
;
393 __write_super(&ca
->sb
, ca
->sb_disk
, bio
);
395 closure_return_with_destructor(cl
, bcache_write_super_unlock
);
400 static void uuid_endio(struct bio
*bio
)
402 struct closure
*cl
= bio
->bi_private
;
403 struct cache_set
*c
= container_of(cl
, struct cache_set
, uuid_write
);
405 cache_set_err_on(bio
->bi_status
, c
, "accessing uuids");
406 bch_bbio_free(bio
, c
);
410 static CLOSURE_CALLBACK(uuid_io_unlock
)
412 closure_type(c
, struct cache_set
, uuid_write
);
414 up(&c
->uuid_write_mutex
);
417 static void uuid_io(struct cache_set
*c
, blk_opf_t opf
, struct bkey
*k
,
418 struct closure
*parent
)
420 struct closure
*cl
= &c
->uuid_write
;
421 struct uuid_entry
*u
;
426 down(&c
->uuid_write_mutex
);
427 closure_init(cl
, parent
);
429 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
430 struct bio
*bio
= bch_bbio_alloc(c
);
432 bio
->bi_opf
= opf
| REQ_SYNC
| REQ_META
;
433 bio
->bi_iter
.bi_size
= KEY_SIZE(k
) << 9;
435 bio
->bi_end_io
= uuid_endio
;
436 bio
->bi_private
= cl
;
437 bch_bio_map(bio
, c
->uuids
);
439 bch_submit_bbio(bio
, c
, k
, i
);
441 if ((opf
& REQ_OP_MASK
) != REQ_OP_WRITE
)
445 bch_extent_to_text(buf
, sizeof(buf
), k
);
446 pr_debug("%s UUIDs at %s\n", (opf
& REQ_OP_MASK
) == REQ_OP_WRITE
?
447 "wrote" : "read", buf
);
449 for (u
= c
->uuids
; u
< c
->uuids
+ c
->nr_uuids
; u
++)
450 if (!bch_is_zero(u
->uuid
, 16))
451 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
452 u
- c
->uuids
, u
->uuid
, u
->label
,
453 u
->first_reg
, u
->last_reg
, u
->invalidated
);
455 closure_return_with_destructor(cl
, uuid_io_unlock
);
458 static char *uuid_read(struct cache_set
*c
, struct jset
*j
, struct closure
*cl
)
460 struct bkey
*k
= &j
->uuid_bucket
;
462 if (__bch_btree_ptr_invalid(c
, k
))
463 return "bad uuid pointer";
465 bkey_copy(&c
->uuid_bucket
, k
);
466 uuid_io(c
, REQ_OP_READ
, k
, cl
);
468 if (j
->version
< BCACHE_JSET_VERSION_UUIDv1
) {
469 struct uuid_entry_v0
*u0
= (void *) c
->uuids
;
470 struct uuid_entry
*u1
= (void *) c
->uuids
;
476 * Since the new uuid entry is bigger than the old, we have to
477 * convert starting at the highest memory address and work down
478 * in order to do it in place
481 for (i
= c
->nr_uuids
- 1;
484 memcpy(u1
[i
].uuid
, u0
[i
].uuid
, 16);
485 memcpy(u1
[i
].label
, u0
[i
].label
, 32);
487 u1
[i
].first_reg
= u0
[i
].first_reg
;
488 u1
[i
].last_reg
= u0
[i
].last_reg
;
489 u1
[i
].invalidated
= u0
[i
].invalidated
;
499 static int __uuid_write(struct cache_set
*c
)
503 struct cache
*ca
= c
->cache
;
506 closure_init_stack(&cl
);
507 lockdep_assert_held(&bch_register_lock
);
509 if (bch_bucket_alloc_set(c
, RESERVE_BTREE
, &k
.key
, true))
512 size
= meta_bucket_pages(&ca
->sb
) * PAGE_SECTORS
;
513 SET_KEY_SIZE(&k
.key
, size
);
514 uuid_io(c
, REQ_OP_WRITE
, &k
.key
, &cl
);
517 /* Only one bucket used for uuid write */
518 atomic_long_add(ca
->sb
.bucket_size
, &ca
->meta_sectors_written
);
520 bkey_copy(&c
->uuid_bucket
, &k
.key
);
525 int bch_uuid_write(struct cache_set
*c
)
527 int ret
= __uuid_write(c
);
530 bch_journal_meta(c
, NULL
);
535 static struct uuid_entry
*uuid_find(struct cache_set
*c
, const char *uuid
)
537 struct uuid_entry
*u
;
540 u
< c
->uuids
+ c
->nr_uuids
; u
++)
541 if (!memcmp(u
->uuid
, uuid
, 16))
547 static struct uuid_entry
*uuid_find_empty(struct cache_set
*c
)
549 static const char zero_uuid
[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
551 return uuid_find(c
, zero_uuid
);
555 * Bucket priorities/gens:
557 * For each bucket, we store on disk its
561 * See alloc.c for an explanation of the gen. The priority is used to implement
562 * lru (and in the future other) cache replacement policies; for most purposes
563 * it's just an opaque integer.
565 * The gens and the priorities don't have a whole lot to do with each other, and
566 * it's actually the gens that must be written out at specific times - it's no
567 * big deal if the priorities don't get written, if we lose them we just reuse
568 * buckets in suboptimal order.
570 * On disk they're stored in a packed array, and in as many buckets are required
571 * to fit them all. The buckets we use to store them form a list; the journal
572 * header points to the first bucket, the first bucket points to the second
575 * This code is used by the allocation code; periodically (whenever it runs out
576 * of buckets to allocate from) the allocation code will invalidate some
577 * buckets, but it can't use those buckets until their new gens are safely on
581 static void prio_endio(struct bio
*bio
)
583 struct cache
*ca
= bio
->bi_private
;
585 cache_set_err_on(bio
->bi_status
, ca
->set
, "accessing priorities");
586 bch_bbio_free(bio
, ca
->set
);
587 closure_put(&ca
->prio
);
590 static void prio_io(struct cache
*ca
, uint64_t bucket
, blk_opf_t opf
)
592 struct closure
*cl
= &ca
->prio
;
593 struct bio
*bio
= bch_bbio_alloc(ca
->set
);
595 closure_init_stack(cl
);
597 bio
->bi_iter
.bi_sector
= bucket
* ca
->sb
.bucket_size
;
598 bio_set_dev(bio
, ca
->bdev
);
599 bio
->bi_iter
.bi_size
= meta_bucket_bytes(&ca
->sb
);
601 bio
->bi_end_io
= prio_endio
;
602 bio
->bi_private
= ca
;
603 bio
->bi_opf
= opf
| REQ_SYNC
| REQ_META
;
604 bch_bio_map(bio
, ca
->disk_buckets
);
606 closure_bio_submit(ca
->set
, bio
, &ca
->prio
);
610 int bch_prio_write(struct cache
*ca
, bool wait
)
616 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
617 fifo_used(&ca
->free
[RESERVE_PRIO
]),
618 fifo_used(&ca
->free
[RESERVE_NONE
]),
619 fifo_used(&ca
->free_inc
));
622 * Pre-check if there are enough free buckets. In the non-blocking
623 * scenario it's better to fail early rather than starting to allocate
624 * buckets and do a cleanup later in case of failure.
627 size_t avail
= fifo_used(&ca
->free
[RESERVE_PRIO
]) +
628 fifo_used(&ca
->free
[RESERVE_NONE
]);
629 if (prio_buckets(ca
) > avail
)
633 closure_init_stack(&cl
);
635 lockdep_assert_held(&ca
->set
->bucket_lock
);
637 ca
->disk_buckets
->seq
++;
639 atomic_long_add(ca
->sb
.bucket_size
* prio_buckets(ca
),
640 &ca
->meta_sectors_written
);
642 for (i
= prio_buckets(ca
) - 1; i
>= 0; --i
) {
644 struct prio_set
*p
= ca
->disk_buckets
;
645 struct bucket_disk
*d
= p
->data
;
646 struct bucket_disk
*end
= d
+ prios_per_bucket(ca
);
648 for (b
= ca
->buckets
+ i
* prios_per_bucket(ca
);
649 b
< ca
->buckets
+ ca
->sb
.nbuckets
&& d
< end
;
651 d
->prio
= cpu_to_le16(b
->prio
);
655 p
->next_bucket
= ca
->prio_buckets
[i
+ 1];
656 p
->magic
= pset_magic(&ca
->sb
);
657 p
->csum
= bch_crc64(&p
->magic
, meta_bucket_bytes(&ca
->sb
) - 8);
659 bucket
= bch_bucket_alloc(ca
, RESERVE_PRIO
, wait
);
660 BUG_ON(bucket
== -1);
662 mutex_unlock(&ca
->set
->bucket_lock
);
663 prio_io(ca
, bucket
, REQ_OP_WRITE
);
664 mutex_lock(&ca
->set
->bucket_lock
);
666 ca
->prio_buckets
[i
] = bucket
;
667 atomic_dec_bug(&ca
->buckets
[bucket
].pin
);
670 mutex_unlock(&ca
->set
->bucket_lock
);
672 bch_journal_meta(ca
->set
, &cl
);
675 mutex_lock(&ca
->set
->bucket_lock
);
678 * Don't want the old priorities to get garbage collected until after we
679 * finish writing the new ones, and they're journalled
681 for (i
= 0; i
< prio_buckets(ca
); i
++) {
682 if (ca
->prio_last_buckets
[i
])
683 __bch_bucket_free(ca
,
684 &ca
->buckets
[ca
->prio_last_buckets
[i
]]);
686 ca
->prio_last_buckets
[i
] = ca
->prio_buckets
[i
];
691 static int prio_read(struct cache
*ca
, uint64_t bucket
)
693 struct prio_set
*p
= ca
->disk_buckets
;
694 struct bucket_disk
*d
= p
->data
+ prios_per_bucket(ca
), *end
= d
;
696 unsigned int bucket_nr
= 0;
699 for (b
= ca
->buckets
;
700 b
< ca
->buckets
+ ca
->sb
.nbuckets
;
703 ca
->prio_buckets
[bucket_nr
] = bucket
;
704 ca
->prio_last_buckets
[bucket_nr
] = bucket
;
707 prio_io(ca
, bucket
, REQ_OP_READ
);
710 bch_crc64(&p
->magic
, meta_bucket_bytes(&ca
->sb
) - 8)) {
711 pr_warn("bad csum reading priorities\n");
715 if (p
->magic
!= pset_magic(&ca
->sb
)) {
716 pr_warn("bad magic reading priorities\n");
720 bucket
= p
->next_bucket
;
724 b
->prio
= le16_to_cpu(d
->prio
);
725 b
->gen
= b
->last_gc
= d
->gen
;
735 static int open_dev(struct gendisk
*disk
, blk_mode_t mode
)
737 struct bcache_device
*d
= disk
->private_data
;
739 if (test_bit(BCACHE_DEV_CLOSING
, &d
->flags
))
746 static void release_dev(struct gendisk
*b
)
748 struct bcache_device
*d
= b
->private_data
;
753 static int ioctl_dev(struct block_device
*b
, blk_mode_t mode
,
754 unsigned int cmd
, unsigned long arg
)
756 struct bcache_device
*d
= b
->bd_disk
->private_data
;
758 return d
->ioctl(d
, mode
, cmd
, arg
);
761 static const struct block_device_operations bcache_cached_ops
= {
762 .submit_bio
= cached_dev_submit_bio
,
764 .release
= release_dev
,
766 .owner
= THIS_MODULE
,
769 static const struct block_device_operations bcache_flash_ops
= {
770 .submit_bio
= flash_dev_submit_bio
,
772 .release
= release_dev
,
774 .owner
= THIS_MODULE
,
777 void bcache_device_stop(struct bcache_device
*d
)
779 if (!test_and_set_bit(BCACHE_DEV_CLOSING
, &d
->flags
))
782 * - cached device: cached_dev_flush()
783 * - flash dev: flash_dev_flush()
785 closure_queue(&d
->cl
);
788 static void bcache_device_unlink(struct bcache_device
*d
)
790 lockdep_assert_held(&bch_register_lock
);
792 if (d
->c
&& !test_and_set_bit(BCACHE_DEV_UNLINK_DONE
, &d
->flags
)) {
793 struct cache
*ca
= d
->c
->cache
;
795 sysfs_remove_link(&d
->c
->kobj
, d
->name
);
796 sysfs_remove_link(&d
->kobj
, "cache");
798 bd_unlink_disk_holder(ca
->bdev
, d
->disk
);
802 static void bcache_device_link(struct bcache_device
*d
, struct cache_set
*c
,
805 struct cache
*ca
= c
->cache
;
808 bd_link_disk_holder(ca
->bdev
, d
->disk
);
810 snprintf(d
->name
, BCACHEDEVNAME_SIZE
,
811 "%s%u", name
, d
->id
);
813 ret
= sysfs_create_link(&d
->kobj
, &c
->kobj
, "cache");
815 pr_err("Couldn't create device -> cache set symlink\n");
817 ret
= sysfs_create_link(&c
->kobj
, &d
->kobj
, d
->name
);
819 pr_err("Couldn't create cache set -> device symlink\n");
821 clear_bit(BCACHE_DEV_UNLINK_DONE
, &d
->flags
);
824 static void bcache_device_detach(struct bcache_device
*d
)
826 lockdep_assert_held(&bch_register_lock
);
828 atomic_dec(&d
->c
->attached_dev_nr
);
830 if (test_bit(BCACHE_DEV_DETACHING
, &d
->flags
)) {
831 struct uuid_entry
*u
= d
->c
->uuids
+ d
->id
;
833 SET_UUID_FLASH_ONLY(u
, 0);
834 memcpy(u
->uuid
, invalid_uuid
, 16);
835 u
->invalidated
= cpu_to_le32((u32
)ktime_get_real_seconds());
836 bch_uuid_write(d
->c
);
839 bcache_device_unlink(d
);
841 d
->c
->devices
[d
->id
] = NULL
;
842 closure_put(&d
->c
->caching
);
846 static void bcache_device_attach(struct bcache_device
*d
, struct cache_set
*c
,
853 if (id
>= c
->devices_max_used
)
854 c
->devices_max_used
= id
+ 1;
856 closure_get(&c
->caching
);
859 static inline int first_minor_to_idx(int first_minor
)
861 return (first_minor
/BCACHE_MINORS
);
864 static inline int idx_to_first_minor(int idx
)
866 return (idx
* BCACHE_MINORS
);
869 static void bcache_device_free(struct bcache_device
*d
)
871 struct gendisk
*disk
= d
->disk
;
873 lockdep_assert_held(&bch_register_lock
);
876 pr_info("%s stopped\n", disk
->disk_name
);
878 pr_err("bcache device (NULL gendisk) stopped\n");
881 bcache_device_detach(d
);
884 ida_free(&bcache_device_idx
,
885 first_minor_to_idx(disk
->first_minor
));
889 bioset_exit(&d
->bio_split
);
890 kvfree(d
->full_dirty_stripes
);
891 kvfree(d
->stripe_sectors_dirty
);
893 closure_debug_destroy(&d
->cl
);
896 static int bcache_device_init(struct bcache_device
*d
, unsigned int block_size
,
897 sector_t sectors
, struct block_device
*cached_bdev
,
898 const struct block_device_operations
*ops
)
900 const size_t max_stripes
= min_t(size_t, INT_MAX
,
901 SIZE_MAX
/ sizeof(atomic_t
));
902 struct queue_limits lim
= {
903 .max_hw_sectors
= UINT_MAX
,
904 .max_sectors
= UINT_MAX
,
905 .max_segment_size
= UINT_MAX
,
906 .max_segments
= BIO_MAX_VECS
,
907 .max_hw_discard_sectors
= UINT_MAX
,
908 .io_min
= block_size
,
909 .logical_block_size
= block_size
,
910 .physical_block_size
= block_size
,
911 .features
= BLK_FEAT_WRITE_CACHE
| BLK_FEAT_FUA
,
917 d
->stripe_size
= bdev_io_opt(cached_bdev
) >> SECTOR_SHIFT
;
918 lim
.io_opt
= umax(block_size
, bdev_io_opt(cached_bdev
));
921 d
->stripe_size
= 1 << 31;
922 else if (d
->stripe_size
< BCH_MIN_STRIPE_SZ
)
923 d
->stripe_size
= roundup(BCH_MIN_STRIPE_SZ
, d
->stripe_size
);
925 n
= DIV_ROUND_UP_ULL(sectors
, d
->stripe_size
);
926 if (!n
|| n
> max_stripes
) {
927 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
933 n
= d
->nr_stripes
* sizeof(atomic_t
);
934 d
->stripe_sectors_dirty
= kvzalloc(n
, GFP_KERNEL
);
935 if (!d
->stripe_sectors_dirty
)
938 n
= BITS_TO_LONGS(d
->nr_stripes
) * sizeof(unsigned long);
939 d
->full_dirty_stripes
= kvzalloc(n
, GFP_KERNEL
);
940 if (!d
->full_dirty_stripes
)
941 goto out_free_stripe_sectors_dirty
;
943 idx
= ida_alloc_max(&bcache_device_idx
, BCACHE_DEVICE_IDX_MAX
- 1,
946 goto out_free_full_dirty_stripes
;
948 if (bioset_init(&d
->bio_split
, 4, offsetof(struct bbio
, bio
),
949 BIOSET_NEED_BVECS
|BIOSET_NEED_RESCUER
))
952 if (lim
.logical_block_size
> PAGE_SIZE
&& cached_bdev
) {
954 * This should only happen with BCACHE_SB_VERSION_BDEV.
955 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
957 pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
958 idx
, lim
.logical_block_size
,
959 PAGE_SIZE
, bdev_logical_block_size(cached_bdev
));
961 /* This also adjusts physical block size/min io size if needed */
962 lim
.logical_block_size
= bdev_logical_block_size(cached_bdev
);
965 d
->disk
= blk_alloc_disk(&lim
, NUMA_NO_NODE
);
967 goto out_bioset_exit
;
969 set_capacity(d
->disk
, sectors
);
970 snprintf(d
->disk
->disk_name
, DISK_NAME_LEN
, "bcache%i", idx
);
972 d
->disk
->major
= bcache_major
;
973 d
->disk
->first_minor
= idx_to_first_minor(idx
);
974 d
->disk
->minors
= BCACHE_MINORS
;
976 d
->disk
->private_data
= d
;
980 bioset_exit(&d
->bio_split
);
982 ida_free(&bcache_device_idx
, idx
);
983 out_free_full_dirty_stripes
:
984 kvfree(d
->full_dirty_stripes
);
985 out_free_stripe_sectors_dirty
:
986 kvfree(d
->stripe_sectors_dirty
);
993 static void calc_cached_dev_sectors(struct cache_set
*c
)
995 uint64_t sectors
= 0;
996 struct cached_dev
*dc
;
998 list_for_each_entry(dc
, &c
->cached_devs
, list
)
999 sectors
+= bdev_nr_sectors(dc
->bdev
);
1001 c
->cached_dev_sectors
= sectors
;
1004 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1005 static int cached_dev_status_update(void *arg
)
1007 struct cached_dev
*dc
= arg
;
1008 struct request_queue
*q
;
1011 * If this delayed worker is stopping outside, directly quit here.
1012 * dc->io_disable might be set via sysfs interface, so check it
1015 while (!kthread_should_stop() && !dc
->io_disable
) {
1016 q
= bdev_get_queue(dc
->bdev
);
1017 if (blk_queue_dying(q
))
1018 dc
->offline_seconds
++;
1020 dc
->offline_seconds
= 0;
1022 if (dc
->offline_seconds
>= BACKING_DEV_OFFLINE_TIMEOUT
) {
1023 pr_err("%pg: device offline for %d seconds\n",
1025 BACKING_DEV_OFFLINE_TIMEOUT
);
1026 pr_err("%s: disable I/O request due to backing device offline\n",
1028 dc
->io_disable
= true;
1029 /* let others know earlier that io_disable is true */
1031 bcache_device_stop(&dc
->disk
);
1034 schedule_timeout_interruptible(HZ
);
1037 wait_for_kthread_stop();
1042 int bch_cached_dev_run(struct cached_dev
*dc
)
1045 struct bcache_device
*d
= &dc
->disk
;
1046 char *buf
= kmemdup_nul(dc
->sb
.label
, SB_LABEL_SIZE
, GFP_KERNEL
);
1049 kasprintf(GFP_KERNEL
, "CACHED_UUID=%pU", dc
->sb
.uuid
),
1050 kasprintf(GFP_KERNEL
, "CACHED_LABEL=%s", buf
? : ""),
1054 if (dc
->io_disable
) {
1055 pr_err("I/O disabled on cached dev %pg\n", dc
->bdev
);
1060 if (atomic_xchg(&dc
->running
, 1)) {
1061 pr_info("cached dev %pg is running already\n", dc
->bdev
);
1067 BDEV_STATE(&dc
->sb
) != BDEV_STATE_NONE
) {
1070 closure_init_stack(&cl
);
1072 SET_BDEV_STATE(&dc
->sb
, BDEV_STATE_STALE
);
1073 bch_write_bdev_super(dc
, &cl
);
1077 ret
= add_disk(d
->disk
);
1080 bd_link_disk_holder(dc
->bdev
, dc
->disk
.disk
);
1082 * won't show up in the uevent file, use udevadm monitor -e instead
1083 * only class / kset properties are persistent
1085 kobject_uevent_env(&disk_to_dev(d
->disk
)->kobj
, KOBJ_CHANGE
, env
);
1087 if (sysfs_create_link(&d
->kobj
, &disk_to_dev(d
->disk
)->kobj
, "dev") ||
1088 sysfs_create_link(&disk_to_dev(d
->disk
)->kobj
,
1089 &d
->kobj
, "bcache")) {
1090 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1095 dc
->status_update_thread
= kthread_run(cached_dev_status_update
,
1096 dc
, "bcache_status_update");
1097 if (IS_ERR(dc
->status_update_thread
)) {
1098 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1109 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1110 * work dc->writeback_rate_update is running. Wait until the routine
1111 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1112 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1113 * seconds, give up waiting here and continue to cancel it too.
1115 static void cancel_writeback_rate_update_dwork(struct cached_dev
*dc
)
1117 int time_out
= WRITEBACK_RATE_UPDATE_SECS_MAX
* HZ
;
1120 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING
,
1124 schedule_timeout_interruptible(1);
1125 } while (time_out
> 0);
1128 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1130 cancel_delayed_work_sync(&dc
->writeback_rate_update
);
1133 static void cached_dev_detach_finish(struct work_struct
*w
)
1135 struct cached_dev
*dc
= container_of(w
, struct cached_dev
, detach
);
1136 struct cache_set
*c
= dc
->disk
.c
;
1138 BUG_ON(!test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
));
1139 BUG_ON(refcount_read(&dc
->count
));
1142 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING
, &dc
->disk
.flags
))
1143 cancel_writeback_rate_update_dwork(dc
);
1145 if (!IS_ERR_OR_NULL(dc
->writeback_thread
)) {
1146 kthread_stop(dc
->writeback_thread
);
1147 dc
->writeback_thread
= NULL
;
1150 mutex_lock(&bch_register_lock
);
1152 bcache_device_detach(&dc
->disk
);
1153 list_move(&dc
->list
, &uncached_devices
);
1154 calc_cached_dev_sectors(c
);
1156 clear_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
);
1157 clear_bit(BCACHE_DEV_UNLINK_DONE
, &dc
->disk
.flags
);
1159 mutex_unlock(&bch_register_lock
);
1161 pr_info("Caching disabled for %pg\n", dc
->bdev
);
1163 /* Drop ref we took in cached_dev_detach() */
1164 closure_put(&dc
->disk
.cl
);
1167 void bch_cached_dev_detach(struct cached_dev
*dc
)
1169 lockdep_assert_held(&bch_register_lock
);
1171 if (test_bit(BCACHE_DEV_CLOSING
, &dc
->disk
.flags
))
1174 if (test_and_set_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
))
1178 * Block the device from being closed and freed until we're finished
1181 closure_get(&dc
->disk
.cl
);
1183 bch_writeback_queue(dc
);
1188 int bch_cached_dev_attach(struct cached_dev
*dc
, struct cache_set
*c
,
1191 uint32_t rtime
= cpu_to_le32((u32
)ktime_get_real_seconds());
1192 struct uuid_entry
*u
;
1193 struct cached_dev
*exist_dc
, *t
;
1196 if ((set_uuid
&& memcmp(set_uuid
, c
->set_uuid
, 16)) ||
1197 (!set_uuid
&& memcmp(dc
->sb
.set_uuid
, c
->set_uuid
, 16)))
1201 pr_err("Can't attach %pg: already attached\n", dc
->bdev
);
1205 if (test_bit(CACHE_SET_STOPPING
, &c
->flags
)) {
1206 pr_err("Can't attach %pg: shutting down\n", dc
->bdev
);
1210 if (dc
->sb
.block_size
< c
->cache
->sb
.block_size
) {
1212 pr_err("Couldn't attach %pg: block size less than set's block size\n",
1217 /* Check whether already attached */
1218 list_for_each_entry_safe(exist_dc
, t
, &c
->cached_devs
, list
) {
1219 if (!memcmp(dc
->sb
.uuid
, exist_dc
->sb
.uuid
, 16)) {
1220 pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1227 u
= uuid_find(c
, dc
->sb
.uuid
);
1230 (BDEV_STATE(&dc
->sb
) == BDEV_STATE_STALE
||
1231 BDEV_STATE(&dc
->sb
) == BDEV_STATE_NONE
)) {
1232 memcpy(u
->uuid
, invalid_uuid
, 16);
1233 u
->invalidated
= cpu_to_le32((u32
)ktime_get_real_seconds());
1238 if (BDEV_STATE(&dc
->sb
) == BDEV_STATE_DIRTY
) {
1239 pr_err("Couldn't find uuid for %pg in set\n", dc
->bdev
);
1243 u
= uuid_find_empty(c
);
1245 pr_err("Not caching %pg, no room for UUID\n", dc
->bdev
);
1251 * Deadlocks since we're called via sysfs...
1252 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1255 if (bch_is_zero(u
->uuid
, 16)) {
1258 closure_init_stack(&cl
);
1260 memcpy(u
->uuid
, dc
->sb
.uuid
, 16);
1261 memcpy(u
->label
, dc
->sb
.label
, SB_LABEL_SIZE
);
1262 u
->first_reg
= u
->last_reg
= rtime
;
1265 memcpy(dc
->sb
.set_uuid
, c
->set_uuid
, 16);
1266 SET_BDEV_STATE(&dc
->sb
, BDEV_STATE_CLEAN
);
1268 bch_write_bdev_super(dc
, &cl
);
1271 u
->last_reg
= rtime
;
1275 bcache_device_attach(&dc
->disk
, c
, u
- c
->uuids
);
1276 list_move(&dc
->list
, &c
->cached_devs
);
1277 calc_cached_dev_sectors(c
);
1280 * dc->c must be set before dc->count != 0 - paired with the mb in
1284 refcount_set(&dc
->count
, 1);
1286 /* Block writeback thread, but spawn it */
1287 down_write(&dc
->writeback_lock
);
1288 if (bch_cached_dev_writeback_start(dc
)) {
1289 up_write(&dc
->writeback_lock
);
1290 pr_err("Couldn't start writeback facilities for %s\n",
1291 dc
->disk
.disk
->disk_name
);
1295 if (BDEV_STATE(&dc
->sb
) == BDEV_STATE_DIRTY
) {
1296 atomic_set(&dc
->has_dirty
, 1);
1297 bch_writeback_queue(dc
);
1300 bch_sectors_dirty_init(&dc
->disk
);
1302 ret
= bch_cached_dev_run(dc
);
1303 if (ret
&& (ret
!= -EBUSY
)) {
1304 up_write(&dc
->writeback_lock
);
1306 * bch_register_lock is held, bcache_device_stop() is not
1307 * able to be directly called. The kthread and kworker
1308 * created previously in bch_cached_dev_writeback_start()
1309 * have to be stopped manually here.
1311 kthread_stop(dc
->writeback_thread
);
1312 cancel_writeback_rate_update_dwork(dc
);
1313 pr_err("Couldn't run cached device %pg\n", dc
->bdev
);
1317 bcache_device_link(&dc
->disk
, c
, "bdev");
1318 atomic_inc(&c
->attached_dev_nr
);
1320 if (bch_has_feature_obso_large_bucket(&(c
->cache
->sb
))) {
1321 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1322 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1323 set_disk_ro(dc
->disk
.disk
, 1);
1326 /* Allow the writeback thread to proceed */
1327 up_write(&dc
->writeback_lock
);
1329 pr_info("Caching %pg as %s on set %pU\n",
1331 dc
->disk
.disk
->disk_name
,
1332 dc
->disk
.c
->set_uuid
);
1336 /* when dc->disk.kobj released */
1337 void bch_cached_dev_release(struct kobject
*kobj
)
1339 struct cached_dev
*dc
= container_of(kobj
, struct cached_dev
,
1342 module_put(THIS_MODULE
);
1345 static CLOSURE_CALLBACK(cached_dev_free
)
1347 closure_type(dc
, struct cached_dev
, disk
.cl
);
1349 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING
, &dc
->disk
.flags
))
1350 cancel_writeback_rate_update_dwork(dc
);
1352 if (!IS_ERR_OR_NULL(dc
->writeback_thread
))
1353 kthread_stop(dc
->writeback_thread
);
1354 if (!IS_ERR_OR_NULL(dc
->status_update_thread
))
1355 kthread_stop(dc
->status_update_thread
);
1357 mutex_lock(&bch_register_lock
);
1359 if (atomic_read(&dc
->running
)) {
1360 bd_unlink_disk_holder(dc
->bdev
, dc
->disk
.disk
);
1361 del_gendisk(dc
->disk
.disk
);
1363 bcache_device_free(&dc
->disk
);
1364 list_del(&dc
->list
);
1366 mutex_unlock(&bch_register_lock
);
1369 put_page(virt_to_page(dc
->sb_disk
));
1372 fput(dc
->bdev_file
);
1374 wake_up(&unregister_wait
);
1376 kobject_put(&dc
->disk
.kobj
);
1379 static CLOSURE_CALLBACK(cached_dev_flush
)
1381 closure_type(dc
, struct cached_dev
, disk
.cl
);
1382 struct bcache_device
*d
= &dc
->disk
;
1384 mutex_lock(&bch_register_lock
);
1385 bcache_device_unlink(d
);
1386 mutex_unlock(&bch_register_lock
);
1388 bch_cache_accounting_destroy(&dc
->accounting
);
1389 kobject_del(&d
->kobj
);
1391 continue_at(cl
, cached_dev_free
, system_wq
);
1394 static int cached_dev_init(struct cached_dev
*dc
, unsigned int block_size
)
1398 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1400 __module_get(THIS_MODULE
);
1401 INIT_LIST_HEAD(&dc
->list
);
1402 closure_init(&dc
->disk
.cl
, NULL
);
1403 set_closure_fn(&dc
->disk
.cl
, cached_dev_flush
, system_wq
);
1404 kobject_init(&dc
->disk
.kobj
, &bch_cached_dev_ktype
);
1405 INIT_WORK(&dc
->detach
, cached_dev_detach_finish
);
1406 sema_init(&dc
->sb_write_mutex
, 1);
1407 INIT_LIST_HEAD(&dc
->io_lru
);
1408 spin_lock_init(&dc
->io_lock
);
1409 bch_cache_accounting_init(&dc
->accounting
, &dc
->disk
.cl
);
1411 dc
->sequential_cutoff
= 4 << 20;
1413 for (io
= dc
->io
; io
< dc
->io
+ RECENT_IO
; io
++) {
1414 list_add(&io
->lru
, &dc
->io_lru
);
1415 hlist_add_head(&io
->hash
, dc
->io_hash
+ RECENT_IO
);
1418 if (bdev_io_opt(dc
->bdev
))
1419 dc
->partial_stripes_expensive
= !!(q
->limits
.features
&
1420 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE
);
1422 ret
= bcache_device_init(&dc
->disk
, block_size
,
1423 bdev_nr_sectors(dc
->bdev
) - dc
->sb
.data_offset
,
1424 dc
->bdev
, &bcache_cached_ops
);
1428 atomic_set(&dc
->io_errors
, 0);
1429 dc
->io_disable
= false;
1430 dc
->error_limit
= DEFAULT_CACHED_DEV_ERROR_LIMIT
;
1431 /* default to auto */
1432 dc
->stop_when_cache_set_failed
= BCH_CACHED_DEV_STOP_AUTO
;
1434 bch_cached_dev_request_init(dc
);
1435 bch_cached_dev_writeback_init(dc
);
1439 /* Cached device - bcache superblock */
1441 static int register_bdev(struct cache_sb
*sb
, struct cache_sb_disk
*sb_disk
,
1442 struct file
*bdev_file
,
1443 struct cached_dev
*dc
)
1445 const char *err
= "cannot allocate memory";
1446 struct cache_set
*c
;
1449 memcpy(&dc
->sb
, sb
, sizeof(struct cache_sb
));
1450 dc
->bdev_file
= bdev_file
;
1451 dc
->bdev
= file_bdev(bdev_file
);
1452 dc
->sb_disk
= sb_disk
;
1454 if (cached_dev_init(dc
, sb
->block_size
<< 9))
1457 err
= "error creating kobject";
1458 if (kobject_add(&dc
->disk
.kobj
, bdev_kobj(dc
->bdev
), "bcache"))
1460 if (bch_cache_accounting_add_kobjs(&dc
->accounting
, &dc
->disk
.kobj
))
1463 pr_info("registered backing device %pg\n", dc
->bdev
);
1465 list_add(&dc
->list
, &uncached_devices
);
1466 /* attach to a matched cache set if it exists */
1467 list_for_each_entry(c
, &bch_cache_sets
, list
)
1468 bch_cached_dev_attach(dc
, c
, NULL
);
1470 if (BDEV_STATE(&dc
->sb
) == BDEV_STATE_NONE
||
1471 BDEV_STATE(&dc
->sb
) == BDEV_STATE_STALE
) {
1472 err
= "failed to run cached device";
1473 ret
= bch_cached_dev_run(dc
);
1480 pr_notice("error %pg: %s\n", dc
->bdev
, err
);
1481 bcache_device_stop(&dc
->disk
);
1485 /* Flash only volumes */
1487 /* When d->kobj released */
1488 void bch_flash_dev_release(struct kobject
*kobj
)
1490 struct bcache_device
*d
= container_of(kobj
, struct bcache_device
,
1495 static CLOSURE_CALLBACK(flash_dev_free
)
1497 closure_type(d
, struct bcache_device
, cl
);
1499 mutex_lock(&bch_register_lock
);
1500 atomic_long_sub(bcache_dev_sectors_dirty(d
),
1501 &d
->c
->flash_dev_dirty_sectors
);
1502 del_gendisk(d
->disk
);
1503 bcache_device_free(d
);
1504 mutex_unlock(&bch_register_lock
);
1505 kobject_put(&d
->kobj
);
1508 static CLOSURE_CALLBACK(flash_dev_flush
)
1510 closure_type(d
, struct bcache_device
, cl
);
1512 mutex_lock(&bch_register_lock
);
1513 bcache_device_unlink(d
);
1514 mutex_unlock(&bch_register_lock
);
1515 kobject_del(&d
->kobj
);
1516 continue_at(cl
, flash_dev_free
, system_wq
);
1519 static int flash_dev_run(struct cache_set
*c
, struct uuid_entry
*u
)
1522 struct bcache_device
*d
= kzalloc(sizeof(struct bcache_device
),
1527 closure_init(&d
->cl
, NULL
);
1528 set_closure_fn(&d
->cl
, flash_dev_flush
, system_wq
);
1530 kobject_init(&d
->kobj
, &bch_flash_dev_ktype
);
1532 if (bcache_device_init(d
, block_bytes(c
->cache
), u
->sectors
,
1533 NULL
, &bcache_flash_ops
))
1536 bcache_device_attach(d
, c
, u
- c
->uuids
);
1537 bch_sectors_dirty_init(d
);
1538 bch_flash_dev_request_init(d
);
1539 err
= add_disk(d
->disk
);
1543 err
= kobject_add(&d
->kobj
, &disk_to_dev(d
->disk
)->kobj
, "bcache");
1547 bcache_device_link(d
, c
, "volume");
1549 if (bch_has_feature_obso_large_bucket(&c
->cache
->sb
)) {
1550 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1551 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1552 set_disk_ro(d
->disk
, 1);
1557 kobject_put(&d
->kobj
);
1562 static int flash_devs_run(struct cache_set
*c
)
1565 struct uuid_entry
*u
;
1568 u
< c
->uuids
+ c
->nr_uuids
&& !ret
;
1570 if (UUID_FLASH_ONLY(u
))
1571 ret
= flash_dev_run(c
, u
);
1576 int bch_flash_dev_create(struct cache_set
*c
, uint64_t size
)
1578 struct uuid_entry
*u
;
1580 if (test_bit(CACHE_SET_STOPPING
, &c
->flags
))
1583 if (!test_bit(CACHE_SET_RUNNING
, &c
->flags
))
1586 u
= uuid_find_empty(c
);
1588 pr_err("Can't create volume, no room for UUID\n");
1592 get_random_bytes(u
->uuid
, 16);
1593 memset(u
->label
, 0, 32);
1594 u
->first_reg
= u
->last_reg
= cpu_to_le32((u32
)ktime_get_real_seconds());
1596 SET_UUID_FLASH_ONLY(u
, 1);
1597 u
->sectors
= size
>> 9;
1601 return flash_dev_run(c
, u
);
1604 bool bch_cached_dev_error(struct cached_dev
*dc
)
1606 if (!dc
|| test_bit(BCACHE_DEV_CLOSING
, &dc
->disk
.flags
))
1609 dc
->io_disable
= true;
1610 /* make others know io_disable is true earlier */
1613 pr_err("stop %s: too many IO errors on backing device %pg\n",
1614 dc
->disk
.disk
->disk_name
, dc
->bdev
);
1616 bcache_device_stop(&dc
->disk
);
1623 bool bch_cache_set_error(struct cache_set
*c
, const char *fmt
, ...)
1625 struct va_format vaf
;
1628 if (c
->on_error
!= ON_ERROR_PANIC
&&
1629 test_bit(CACHE_SET_STOPPING
, &c
->flags
))
1632 if (test_and_set_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1633 pr_info("CACHE_SET_IO_DISABLE already set\n");
1636 * XXX: we can be called from atomic context
1637 * acquire_console_sem();
1640 va_start(args
, fmt
);
1645 pr_err("error on %pU: %pV, disabling caching\n",
1650 if (c
->on_error
== ON_ERROR_PANIC
)
1651 panic("panic forced after error\n");
1653 bch_cache_set_unregister(c
);
1657 /* When c->kobj released */
1658 void bch_cache_set_release(struct kobject
*kobj
)
1660 struct cache_set
*c
= container_of(kobj
, struct cache_set
, kobj
);
1663 module_put(THIS_MODULE
);
1666 static CLOSURE_CALLBACK(cache_set_free
)
1668 closure_type(c
, struct cache_set
, cl
);
1671 debugfs_remove(c
->debug
);
1673 bch_open_buckets_free(c
);
1674 bch_btree_cache_free(c
);
1675 bch_journal_free(c
);
1677 mutex_lock(&bch_register_lock
);
1678 bch_bset_sort_state_free(&c
->sort
);
1679 free_pages((unsigned long) c
->uuids
, ilog2(meta_bucket_pages(&c
->cache
->sb
)));
1685 kobject_put(&ca
->kobj
);
1689 if (c
->moving_gc_wq
)
1690 destroy_workqueue(c
->moving_gc_wq
);
1691 bioset_exit(&c
->bio_split
);
1692 mempool_exit(&c
->fill_iter
);
1693 mempool_exit(&c
->bio_meta
);
1694 mempool_exit(&c
->search
);
1698 mutex_unlock(&bch_register_lock
);
1700 pr_info("Cache set %pU unregistered\n", c
->set_uuid
);
1701 wake_up(&unregister_wait
);
1703 closure_debug_destroy(&c
->cl
);
1704 kobject_put(&c
->kobj
);
1707 static CLOSURE_CALLBACK(cache_set_flush
)
1709 closure_type(c
, struct cache_set
, caching
);
1710 struct cache
*ca
= c
->cache
;
1713 bch_cache_accounting_destroy(&c
->accounting
);
1715 kobject_put(&c
->internal
);
1716 kobject_del(&c
->kobj
);
1718 if (!IS_ERR_OR_NULL(c
->gc_thread
))
1719 kthread_stop(c
->gc_thread
);
1721 if (!IS_ERR_OR_NULL(c
->root
))
1722 list_add(&c
->root
->list
, &c
->btree_cache
);
1725 * Avoid flushing cached nodes if cache set is retiring
1726 * due to too many I/O errors detected.
1728 if (!test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1729 list_for_each_entry(b
, &c
->btree_cache
, list
) {
1730 mutex_lock(&b
->write_lock
);
1731 if (btree_node_dirty(b
))
1732 __bch_btree_node_write(b
, NULL
);
1733 mutex_unlock(&b
->write_lock
);
1736 if (ca
->alloc_thread
)
1737 kthread_stop(ca
->alloc_thread
);
1739 if (c
->journal
.cur
) {
1740 cancel_delayed_work_sync(&c
->journal
.work
);
1741 /* flush last journal entry if needed */
1742 c
->journal
.work
.work
.func(&c
->journal
.work
.work
);
1749 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1750 * cache set is unregistering due to too many I/O errors. In this condition,
1751 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1752 * value and whether the broken cache has dirty data:
1754 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1755 * BCH_CACHED_STOP_AUTO 0 NO
1756 * BCH_CACHED_STOP_AUTO 1 YES
1757 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1758 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1760 * The expected behavior is, if stop_when_cache_set_failed is configured to
1761 * "auto" via sysfs interface, the bcache device will not be stopped if the
1762 * backing device is clean on the broken cache device.
1764 static void conditional_stop_bcache_device(struct cache_set
*c
,
1765 struct bcache_device
*d
,
1766 struct cached_dev
*dc
)
1768 if (dc
->stop_when_cache_set_failed
== BCH_CACHED_DEV_STOP_ALWAYS
) {
1769 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1770 d
->disk
->disk_name
, c
->set_uuid
);
1771 bcache_device_stop(d
);
1772 } else if (atomic_read(&dc
->has_dirty
)) {
1774 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1775 * and dc->has_dirty == 1
1777 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1778 d
->disk
->disk_name
);
1780 * There might be a small time gap that cache set is
1781 * released but bcache device is not. Inside this time
1782 * gap, regular I/O requests will directly go into
1783 * backing device as no cache set attached to. This
1784 * behavior may also introduce potential inconsistence
1785 * data in writeback mode while cache is dirty.
1786 * Therefore before calling bcache_device_stop() due
1787 * to a broken cache device, dc->io_disable should be
1788 * explicitly set to true.
1790 dc
->io_disable
= true;
1791 /* make others know io_disable is true earlier */
1793 bcache_device_stop(d
);
1796 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1797 * and dc->has_dirty == 0
1799 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1800 d
->disk
->disk_name
);
1804 static CLOSURE_CALLBACK(__cache_set_unregister
)
1806 closure_type(c
, struct cache_set
, caching
);
1807 struct cached_dev
*dc
;
1808 struct bcache_device
*d
;
1811 mutex_lock(&bch_register_lock
);
1813 for (i
= 0; i
< c
->devices_max_used
; i
++) {
1818 if (!UUID_FLASH_ONLY(&c
->uuids
[i
]) &&
1819 test_bit(CACHE_SET_UNREGISTERING
, &c
->flags
)) {
1820 dc
= container_of(d
, struct cached_dev
, disk
);
1821 bch_cached_dev_detach(dc
);
1822 if (test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1823 conditional_stop_bcache_device(c
, d
, dc
);
1825 bcache_device_stop(d
);
1829 mutex_unlock(&bch_register_lock
);
1831 continue_at(cl
, cache_set_flush
, system_wq
);
1834 void bch_cache_set_stop(struct cache_set
*c
)
1836 if (!test_and_set_bit(CACHE_SET_STOPPING
, &c
->flags
))
1837 /* closure_fn set to __cache_set_unregister() */
1838 closure_queue(&c
->caching
);
1841 void bch_cache_set_unregister(struct cache_set
*c
)
1843 set_bit(CACHE_SET_UNREGISTERING
, &c
->flags
);
1844 bch_cache_set_stop(c
);
1847 #define alloc_meta_bucket_pages(gfp, sb) \
1848 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1850 struct cache_set
*bch_cache_set_alloc(struct cache_sb
*sb
)
1853 struct cache
*ca
= container_of(sb
, struct cache
, sb
);
1854 struct cache_set
*c
= kzalloc(sizeof(struct cache_set
), GFP_KERNEL
);
1859 __module_get(THIS_MODULE
);
1860 closure_init(&c
->cl
, NULL
);
1861 set_closure_fn(&c
->cl
, cache_set_free
, system_wq
);
1863 closure_init(&c
->caching
, &c
->cl
);
1864 set_closure_fn(&c
->caching
, __cache_set_unregister
, system_wq
);
1866 /* Maybe create continue_at_noreturn() and use it here? */
1867 closure_set_stopped(&c
->cl
);
1868 closure_put(&c
->cl
);
1870 kobject_init(&c
->kobj
, &bch_cache_set_ktype
);
1871 kobject_init(&c
->internal
, &bch_cache_set_internal_ktype
);
1873 bch_cache_accounting_init(&c
->accounting
, &c
->cl
);
1875 memcpy(c
->set_uuid
, sb
->set_uuid
, 16);
1879 c
->bucket_bits
= ilog2(sb
->bucket_size
);
1880 c
->block_bits
= ilog2(sb
->block_size
);
1881 c
->nr_uuids
= meta_bucket_bytes(sb
) / sizeof(struct uuid_entry
);
1882 c
->devices_max_used
= 0;
1883 atomic_set(&c
->attached_dev_nr
, 0);
1884 c
->btree_pages
= meta_bucket_pages(sb
);
1885 if (c
->btree_pages
> BTREE_MAX_PAGES
)
1886 c
->btree_pages
= max_t(int, c
->btree_pages
/ 4,
1889 sema_init(&c
->sb_write_mutex
, 1);
1890 mutex_init(&c
->bucket_lock
);
1891 init_waitqueue_head(&c
->btree_cache_wait
);
1892 spin_lock_init(&c
->btree_cannibalize_lock
);
1893 init_waitqueue_head(&c
->bucket_wait
);
1894 init_waitqueue_head(&c
->gc_wait
);
1895 sema_init(&c
->uuid_write_mutex
, 1);
1897 spin_lock_init(&c
->btree_gc_time
.lock
);
1898 spin_lock_init(&c
->btree_split_time
.lock
);
1899 spin_lock_init(&c
->btree_read_time
.lock
);
1901 bch_moving_init_cache_set(c
);
1903 INIT_LIST_HEAD(&c
->list
);
1904 INIT_LIST_HEAD(&c
->cached_devs
);
1905 INIT_LIST_HEAD(&c
->btree_cache
);
1906 INIT_LIST_HEAD(&c
->btree_cache_freeable
);
1907 INIT_LIST_HEAD(&c
->btree_cache_freed
);
1908 INIT_LIST_HEAD(&c
->data_buckets
);
1910 iter_size
= ((meta_bucket_pages(sb
) * PAGE_SECTORS
) / sb
->block_size
) *
1911 sizeof(struct btree_iter_set
);
1913 c
->devices
= kcalloc(c
->nr_uuids
, sizeof(void *), GFP_KERNEL
);
1917 if (mempool_init_slab_pool(&c
->search
, 32, bch_search_cache
))
1920 if (mempool_init_kmalloc_pool(&c
->bio_meta
, 2,
1921 sizeof(struct bbio
) +
1922 sizeof(struct bio_vec
) * meta_bucket_pages(sb
)))
1925 if (mempool_init_kmalloc_pool(&c
->fill_iter
, 1, iter_size
))
1928 if (bioset_init(&c
->bio_split
, 4, offsetof(struct bbio
, bio
),
1929 BIOSET_NEED_RESCUER
))
1932 c
->uuids
= alloc_meta_bucket_pages(GFP_KERNEL
, sb
);
1936 c
->moving_gc_wq
= alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM
, 0);
1937 if (!c
->moving_gc_wq
)
1940 if (bch_journal_alloc(c
))
1943 if (bch_btree_cache_alloc(c
))
1946 if (bch_open_buckets_alloc(c
))
1949 if (bch_bset_sort_state_init(&c
->sort
, ilog2(c
->btree_pages
)))
1952 c
->congested_read_threshold_us
= 2000;
1953 c
->congested_write_threshold_us
= 20000;
1954 c
->error_limit
= DEFAULT_IO_ERROR_LIMIT
;
1955 c
->idle_max_writeback_rate_enabled
= 1;
1956 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE
, &c
->flags
));
1960 bch_cache_set_unregister(c
);
1964 static int run_cache_set(struct cache_set
*c
)
1966 const char *err
= "cannot allocate memory";
1967 struct cached_dev
*dc
, *t
;
1968 struct cache
*ca
= c
->cache
;
1971 struct journal_replay
*l
;
1973 closure_init_stack(&cl
);
1975 c
->nbuckets
= ca
->sb
.nbuckets
;
1978 if (CACHE_SYNC(&c
->cache
->sb
)) {
1982 err
= "cannot allocate memory for journal";
1983 if (bch_journal_read(c
, &journal
))
1986 pr_debug("btree_journal_read() done\n");
1988 err
= "no journal entries found";
1989 if (list_empty(&journal
))
1992 j
= &list_entry(journal
.prev
, struct journal_replay
, list
)->j
;
1994 err
= "IO error reading priorities";
1995 if (prio_read(ca
, j
->prio_bucket
[ca
->sb
.nr_this_dev
]))
1999 * If prio_read() fails it'll call cache_set_error and we'll
2000 * tear everything down right away, but if we perhaps checked
2001 * sooner we could avoid journal replay.
2006 err
= "bad btree root";
2007 if (__bch_btree_ptr_invalid(c
, k
))
2010 err
= "error reading btree root";
2011 c
->root
= bch_btree_node_get(c
, NULL
, k
,
2014 if (IS_ERR(c
->root
))
2017 list_del_init(&c
->root
->list
);
2018 rw_unlock(true, c
->root
);
2020 err
= uuid_read(c
, j
, &cl
);
2024 err
= "error in recovery";
2025 if (bch_btree_check(c
))
2028 bch_journal_mark(c
, &journal
);
2029 bch_initial_gc_finish(c
);
2030 pr_debug("btree_check() done\n");
2033 * bcache_journal_next() can't happen sooner, or
2034 * btree_gc_finish() will give spurious errors about last_gc >
2035 * gc_gen - this is a hack but oh well.
2037 bch_journal_next(&c
->journal
);
2039 err
= "error starting allocator thread";
2040 if (bch_cache_allocator_start(ca
))
2044 * First place it's safe to allocate: btree_check() and
2045 * btree_gc_finish() have to run before we have buckets to
2046 * allocate, and bch_bucket_alloc_set() might cause a journal
2047 * entry to be written so bcache_journal_next() has to be called
2050 * If the uuids were in the old format we have to rewrite them
2051 * before the next journal entry is written:
2053 if (j
->version
< BCACHE_JSET_VERSION_UUID
)
2056 err
= "bcache: replay journal failed";
2057 if (bch_journal_replay(c
, &journal
))
2062 pr_notice("invalidating existing data\n");
2063 ca
->sb
.keys
= clamp_t(int, ca
->sb
.nbuckets
>> 7,
2064 2, SB_JOURNAL_BUCKETS
);
2066 for (j
= 0; j
< ca
->sb
.keys
; j
++)
2067 ca
->sb
.d
[j
] = ca
->sb
.first_bucket
+ j
;
2069 bch_initial_gc_finish(c
);
2071 err
= "error starting allocator thread";
2072 if (bch_cache_allocator_start(ca
))
2075 mutex_lock(&c
->bucket_lock
);
2076 bch_prio_write(ca
, true);
2077 mutex_unlock(&c
->bucket_lock
);
2079 err
= "cannot allocate new UUID bucket";
2080 if (__uuid_write(c
))
2083 err
= "cannot allocate new btree root";
2084 c
->root
= __bch_btree_node_alloc(c
, NULL
, 0, true, NULL
);
2085 if (IS_ERR(c
->root
))
2088 mutex_lock(&c
->root
->write_lock
);
2089 bkey_copy_key(&c
->root
->key
, &MAX_KEY
);
2090 bch_btree_node_write(c
->root
, &cl
);
2091 mutex_unlock(&c
->root
->write_lock
);
2093 bch_btree_set_root(c
->root
);
2094 rw_unlock(true, c
->root
);
2097 * We don't want to write the first journal entry until
2098 * everything is set up - fortunately journal entries won't be
2099 * written until the SET_CACHE_SYNC() here:
2101 SET_CACHE_SYNC(&c
->cache
->sb
, true);
2103 bch_journal_next(&c
->journal
);
2104 bch_journal_meta(c
, &cl
);
2107 err
= "error starting gc thread";
2108 if (bch_gc_thread_start(c
))
2112 c
->cache
->sb
.last_mount
= (u32
)ktime_get_real_seconds();
2113 bcache_write_super(c
);
2115 if (bch_has_feature_obso_large_bucket(&c
->cache
->sb
))
2116 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2118 list_for_each_entry_safe(dc
, t
, &uncached_devices
, list
)
2119 bch_cached_dev_attach(dc
, c
, NULL
);
2123 bch_journal_space_reserve(&c
->journal
);
2124 set_bit(CACHE_SET_RUNNING
, &c
->flags
);
2127 while (!list_empty(&journal
)) {
2128 l
= list_first_entry(&journal
, struct journal_replay
, list
);
2135 bch_cache_set_error(c
, "%s", err
);
2140 static const char *register_cache_set(struct cache
*ca
)
2143 const char *err
= "cannot allocate memory";
2144 struct cache_set
*c
;
2146 list_for_each_entry(c
, &bch_cache_sets
, list
)
2147 if (!memcmp(c
->set_uuid
, ca
->sb
.set_uuid
, 16)) {
2149 return "duplicate cache set member";
2154 c
= bch_cache_set_alloc(&ca
->sb
);
2158 err
= "error creating kobject";
2159 if (kobject_add(&c
->kobj
, bcache_kobj
, "%pU", c
->set_uuid
) ||
2160 kobject_add(&c
->internal
, &c
->kobj
, "internal"))
2163 if (bch_cache_accounting_add_kobjs(&c
->accounting
, &c
->kobj
))
2166 bch_debug_init_cache_set(c
);
2168 list_add(&c
->list
, &bch_cache_sets
);
2170 sprintf(buf
, "cache%i", ca
->sb
.nr_this_dev
);
2171 if (sysfs_create_link(&ca
->kobj
, &c
->kobj
, "set") ||
2172 sysfs_create_link(&c
->kobj
, &ca
->kobj
, buf
))
2175 kobject_get(&ca
->kobj
);
2177 ca
->set
->cache
= ca
;
2179 err
= "failed to run cache set";
2180 if (run_cache_set(c
) < 0)
2185 bch_cache_set_unregister(c
);
2191 /* When ca->kobj released */
2192 void bch_cache_release(struct kobject
*kobj
)
2194 struct cache
*ca
= container_of(kobj
, struct cache
, kobj
);
2198 BUG_ON(ca
->set
->cache
!= ca
);
2199 ca
->set
->cache
= NULL
;
2202 free_pages((unsigned long) ca
->disk_buckets
, ilog2(meta_bucket_pages(&ca
->sb
)));
2203 kfree(ca
->prio_buckets
);
2206 free_heap(&ca
->heap
);
2207 free_fifo(&ca
->free_inc
);
2209 for (i
= 0; i
< RESERVE_NR
; i
++)
2210 free_fifo(&ca
->free
[i
]);
2213 put_page(virt_to_page(ca
->sb_disk
));
2216 fput(ca
->bdev_file
);
2219 module_put(THIS_MODULE
);
2222 static int cache_alloc(struct cache
*ca
)
2225 size_t btree_buckets
;
2228 const char *err
= NULL
;
2230 __module_get(THIS_MODULE
);
2231 kobject_init(&ca
->kobj
, &bch_cache_ktype
);
2233 bio_init(&ca
->journal
.bio
, NULL
, ca
->journal
.bio
.bi_inline_vecs
, 8, 0);
2236 * when ca->sb.njournal_buckets is not zero, journal exists,
2237 * and in bch_journal_replay(), tree node may split,
2238 * so bucket of RESERVE_BTREE type is needed,
2239 * the worst situation is all journal buckets are valid journal,
2240 * and all the keys need to replay,
2241 * so the number of RESERVE_BTREE type buckets should be as much
2242 * as journal buckets
2244 btree_buckets
= ca
->sb
.njournal_buckets
?: 8;
2245 free
= roundup_pow_of_two(ca
->sb
.nbuckets
) >> 10;
2248 err
= "ca->sb.nbuckets is too small";
2252 if (!init_fifo(&ca
->free
[RESERVE_BTREE
], btree_buckets
,
2254 err
= "ca->free[RESERVE_BTREE] alloc failed";
2255 goto err_btree_alloc
;
2258 if (!init_fifo_exact(&ca
->free
[RESERVE_PRIO
], prio_buckets(ca
),
2260 err
= "ca->free[RESERVE_PRIO] alloc failed";
2261 goto err_prio_alloc
;
2264 if (!init_fifo(&ca
->free
[RESERVE_MOVINGGC
], free
, GFP_KERNEL
)) {
2265 err
= "ca->free[RESERVE_MOVINGGC] alloc failed";
2266 goto err_movinggc_alloc
;
2269 if (!init_fifo(&ca
->free
[RESERVE_NONE
], free
, GFP_KERNEL
)) {
2270 err
= "ca->free[RESERVE_NONE] alloc failed";
2271 goto err_none_alloc
;
2274 if (!init_fifo(&ca
->free_inc
, free
<< 2, GFP_KERNEL
)) {
2275 err
= "ca->free_inc alloc failed";
2276 goto err_free_inc_alloc
;
2279 if (!init_heap(&ca
->heap
, free
<< 3, GFP_KERNEL
)) {
2280 err
= "ca->heap alloc failed";
2281 goto err_heap_alloc
;
2284 ca
->buckets
= vzalloc(array_size(sizeof(struct bucket
),
2287 err
= "ca->buckets alloc failed";
2288 goto err_buckets_alloc
;
2291 ca
->prio_buckets
= kzalloc(array3_size(sizeof(uint64_t),
2292 prio_buckets(ca
), 2),
2294 if (!ca
->prio_buckets
) {
2295 err
= "ca->prio_buckets alloc failed";
2296 goto err_prio_buckets_alloc
;
2299 ca
->disk_buckets
= alloc_meta_bucket_pages(GFP_KERNEL
, &ca
->sb
);
2300 if (!ca
->disk_buckets
) {
2301 err
= "ca->disk_buckets alloc failed";
2302 goto err_disk_buckets_alloc
;
2305 ca
->prio_last_buckets
= ca
->prio_buckets
+ prio_buckets(ca
);
2307 for_each_bucket(b
, ca
)
2308 atomic_set(&b
->pin
, 0);
2311 err_disk_buckets_alloc
:
2312 kfree(ca
->prio_buckets
);
2313 err_prio_buckets_alloc
:
2316 free_heap(&ca
->heap
);
2318 free_fifo(&ca
->free_inc
);
2320 free_fifo(&ca
->free
[RESERVE_NONE
]);
2322 free_fifo(&ca
->free
[RESERVE_MOVINGGC
]);
2324 free_fifo(&ca
->free
[RESERVE_PRIO
]);
2326 free_fifo(&ca
->free
[RESERVE_BTREE
]);
2329 module_put(THIS_MODULE
);
2331 pr_notice("error %pg: %s\n", ca
->bdev
, err
);
2335 static int register_cache(struct cache_sb
*sb
, struct cache_sb_disk
*sb_disk
,
2336 struct file
*bdev_file
,
2339 const char *err
= NULL
; /* must be set for any error case */
2342 memcpy(&ca
->sb
, sb
, sizeof(struct cache_sb
));
2343 ca
->bdev_file
= bdev_file
;
2344 ca
->bdev
= file_bdev(bdev_file
);
2345 ca
->sb_disk
= sb_disk
;
2347 if (bdev_max_discard_sectors(file_bdev(bdev_file
)))
2348 ca
->discard
= CACHE_DISCARD(&ca
->sb
);
2350 ret
= cache_alloc(ca
);
2353 err
= "cache_alloc(): -ENOMEM";
2354 else if (ret
== -EPERM
)
2355 err
= "cache_alloc(): cache device is too small";
2357 err
= "cache_alloc(): unknown error";
2358 pr_notice("error %pg: %s\n", file_bdev(bdev_file
), err
);
2360 * If we failed here, it means ca->kobj is not initialized yet,
2361 * kobject_put() won't be called and there is no chance to
2362 * call fput() to bdev in bch_cache_release(). So
2363 * we explicitly call fput() on the block device here.
2369 if (kobject_add(&ca
->kobj
, bdev_kobj(file_bdev(bdev_file
)), "bcache")) {
2370 pr_notice("error %pg: error calling kobject_add\n",
2371 file_bdev(bdev_file
));
2376 mutex_lock(&bch_register_lock
);
2377 err
= register_cache_set(ca
);
2378 mutex_unlock(&bch_register_lock
);
2385 pr_info("registered cache device %pg\n", file_bdev(ca
->bdev_file
));
2388 kobject_put(&ca
->kobj
);
2392 /* Global interfaces/init */
2394 static ssize_t
register_bcache(struct kobject
*k
, struct kobj_attribute
*attr
,
2395 const char *buffer
, size_t size
);
2396 static ssize_t
bch_pending_bdevs_cleanup(struct kobject
*k
,
2397 struct kobj_attribute
*attr
,
2398 const char *buffer
, size_t size
);
2400 kobj_attribute_write(register, register_bcache
);
2401 kobj_attribute_write(register_quiet
, register_bcache
);
2402 kobj_attribute_write(pendings_cleanup
, bch_pending_bdevs_cleanup
);
2404 static bool bch_is_open_backing(dev_t dev
)
2406 struct cache_set
*c
, *tc
;
2407 struct cached_dev
*dc
, *t
;
2409 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
)
2410 list_for_each_entry_safe(dc
, t
, &c
->cached_devs
, list
)
2411 if (dc
->bdev
->bd_dev
== dev
)
2413 list_for_each_entry_safe(dc
, t
, &uncached_devices
, list
)
2414 if (dc
->bdev
->bd_dev
== dev
)
2419 static bool bch_is_open_cache(dev_t dev
)
2421 struct cache_set
*c
, *tc
;
2423 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
) {
2424 struct cache
*ca
= c
->cache
;
2426 if (ca
->bdev
->bd_dev
== dev
)
2433 static bool bch_is_open(dev_t dev
)
2435 return bch_is_open_cache(dev
) || bch_is_open_backing(dev
);
2438 struct async_reg_args
{
2439 struct delayed_work reg_work
;
2441 struct cache_sb
*sb
;
2442 struct cache_sb_disk
*sb_disk
;
2443 struct file
*bdev_file
;
2447 static void register_bdev_worker(struct work_struct
*work
)
2450 struct async_reg_args
*args
=
2451 container_of(work
, struct async_reg_args
, reg_work
.work
);
2453 mutex_lock(&bch_register_lock
);
2454 if (register_bdev(args
->sb
, args
->sb_disk
, args
->bdev_file
,
2457 mutex_unlock(&bch_register_lock
);
2460 pr_info("error %s: fail to register backing device\n",
2465 module_put(THIS_MODULE
);
2468 static void register_cache_worker(struct work_struct
*work
)
2471 struct async_reg_args
*args
=
2472 container_of(work
, struct async_reg_args
, reg_work
.work
);
2474 /* blkdev_put() will be called in bch_cache_release() */
2475 if (register_cache(args
->sb
, args
->sb_disk
, args
->bdev_file
,
2480 pr_info("error %s: fail to register cache device\n",
2485 module_put(THIS_MODULE
);
2488 static void register_device_async(struct async_reg_args
*args
)
2490 if (SB_IS_BDEV(args
->sb
))
2491 INIT_DELAYED_WORK(&args
->reg_work
, register_bdev_worker
);
2493 INIT_DELAYED_WORK(&args
->reg_work
, register_cache_worker
);
2495 /* 10 jiffies is enough for a delay */
2496 queue_delayed_work(system_wq
, &args
->reg_work
, 10);
2499 static void *alloc_holder_object(struct cache_sb
*sb
)
2502 return kzalloc(sizeof(struct cached_dev
), GFP_KERNEL
);
2503 return kzalloc(sizeof(struct cache
), GFP_KERNEL
);
2506 static ssize_t
register_bcache(struct kobject
*k
, struct kobj_attribute
*attr
,
2507 const char *buffer
, size_t size
)
2511 struct cache_sb
*sb
;
2512 struct cache_sb_disk
*sb_disk
;
2513 struct file
*bdev_file
, *bdev_file2
;
2514 void *holder
= NULL
;
2516 bool async_registration
= false;
2519 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2520 async_registration
= true;
2524 err
= "failed to reference bcache module";
2525 if (!try_module_get(THIS_MODULE
))
2528 /* For latest state of bcache_is_reboot */
2530 err
= "bcache is in reboot";
2531 if (bcache_is_reboot
)
2532 goto out_module_put
;
2535 err
= "cannot allocate memory";
2536 path
= kstrndup(buffer
, size
, GFP_KERNEL
);
2538 goto out_module_put
;
2540 sb
= kmalloc(sizeof(struct cache_sb
), GFP_KERNEL
);
2545 err
= "failed to open device";
2546 bdev_file
= bdev_file_open_by_path(strim(path
), BLK_OPEN_READ
, NULL
, NULL
);
2547 if (IS_ERR(bdev_file
))
2550 err
= read_super(sb
, file_bdev(bdev_file
), &sb_disk
);
2552 goto out_blkdev_put
;
2554 holder
= alloc_holder_object(sb
);
2557 err
= "cannot allocate memory";
2558 goto out_put_sb_page
;
2561 /* Now reopen in exclusive mode with proper holder */
2562 bdev_file2
= bdev_file_open_by_dev(file_bdev(bdev_file
)->bd_dev
,
2563 BLK_OPEN_READ
| BLK_OPEN_WRITE
, holder
, NULL
);
2565 bdev_file
= bdev_file2
;
2566 if (IS_ERR(bdev_file
)) {
2567 ret
= PTR_ERR(bdev_file
);
2569 if (ret
== -EBUSY
) {
2572 mutex_lock(&bch_register_lock
);
2573 if (lookup_bdev(strim(path
), &dev
) == 0 &&
2575 err
= "device already registered";
2577 err
= "device busy";
2578 mutex_unlock(&bch_register_lock
);
2579 if (attr
== &ksysfs_register_quiet
) {
2584 goto out_free_holder
;
2587 err
= "failed to register device";
2589 if (async_registration
) {
2590 /* register in asynchronous way */
2591 struct async_reg_args
*args
=
2592 kzalloc(sizeof(struct async_reg_args
), GFP_KERNEL
);
2596 err
= "cannot allocate memory";
2597 goto out_free_holder
;
2602 args
->sb_disk
= sb_disk
;
2603 args
->bdev_file
= bdev_file
;
2604 args
->holder
= holder
;
2605 register_device_async(args
);
2606 /* No wait and returns to user space */
2610 if (SB_IS_BDEV(sb
)) {
2611 mutex_lock(&bch_register_lock
);
2612 ret
= register_bdev(sb
, sb_disk
, bdev_file
, holder
);
2613 mutex_unlock(&bch_register_lock
);
2614 /* blkdev_put() will be called in cached_dev_free() */
2618 /* blkdev_put() will be called in bch_cache_release() */
2619 ret
= register_cache(sb
, sb_disk
, bdev_file
, holder
);
2626 module_put(THIS_MODULE
);
2633 put_page(virt_to_page(sb_disk
));
2643 module_put(THIS_MODULE
);
2646 pr_info("error %s: %s\n", path
?path
:"", err
);
2652 struct list_head list
;
2653 struct cached_dev
*dc
;
2656 static ssize_t
bch_pending_bdevs_cleanup(struct kobject
*k
,
2657 struct kobj_attribute
*attr
,
2661 LIST_HEAD(pending_devs
);
2663 struct cached_dev
*dc
, *tdc
;
2664 struct pdev
*pdev
, *tpdev
;
2665 struct cache_set
*c
, *tc
;
2667 mutex_lock(&bch_register_lock
);
2668 list_for_each_entry_safe(dc
, tdc
, &uncached_devices
, list
) {
2669 pdev
= kmalloc(sizeof(struct pdev
), GFP_KERNEL
);
2673 list_add(&pdev
->list
, &pending_devs
);
2676 list_for_each_entry_safe(pdev
, tpdev
, &pending_devs
, list
) {
2677 char *pdev_set_uuid
= pdev
->dc
->sb
.set_uuid
;
2678 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
) {
2679 char *set_uuid
= c
->set_uuid
;
2681 if (!memcmp(pdev_set_uuid
, set_uuid
, 16)) {
2682 list_del(&pdev
->list
);
2688 mutex_unlock(&bch_register_lock
);
2690 list_for_each_entry_safe(pdev
, tpdev
, &pending_devs
, list
) {
2691 pr_info("delete pdev %p\n", pdev
);
2692 list_del(&pdev
->list
);
2693 bcache_device_stop(&pdev
->dc
->disk
);
2700 static int bcache_reboot(struct notifier_block
*n
, unsigned long code
, void *x
)
2702 if (bcache_is_reboot
)
2705 if (code
== SYS_DOWN
||
2707 code
== SYS_POWER_OFF
) {
2709 unsigned long start
= jiffies
;
2710 bool stopped
= false;
2712 struct cache_set
*c
, *tc
;
2713 struct cached_dev
*dc
, *tdc
;
2715 mutex_lock(&bch_register_lock
);
2717 if (bcache_is_reboot
)
2720 /* New registration is rejected since now */
2721 bcache_is_reboot
= true;
2723 * Make registering caller (if there is) on other CPU
2724 * core know bcache_is_reboot set to true earlier
2728 if (list_empty(&bch_cache_sets
) &&
2729 list_empty(&uncached_devices
))
2732 mutex_unlock(&bch_register_lock
);
2734 pr_info("Stopping all devices:\n");
2737 * The reason bch_register_lock is not held to call
2738 * bch_cache_set_stop() and bcache_device_stop() is to
2739 * avoid potential deadlock during reboot, because cache
2740 * set or bcache device stopping process will acquire
2741 * bch_register_lock too.
2743 * We are safe here because bcache_is_reboot sets to
2744 * true already, register_bcache() will reject new
2745 * registration now. bcache_is_reboot also makes sure
2746 * bcache_reboot() won't be re-entered on by other thread,
2747 * so there is no race in following list iteration by
2748 * list_for_each_entry_safe().
2750 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
)
2751 bch_cache_set_stop(c
);
2753 list_for_each_entry_safe(dc
, tdc
, &uncached_devices
, list
)
2754 bcache_device_stop(&dc
->disk
);
2758 * Give an early chance for other kthreads and
2759 * kworkers to stop themselves
2763 /* What's a condition variable? */
2765 long timeout
= start
+ 10 * HZ
- jiffies
;
2767 mutex_lock(&bch_register_lock
);
2768 stopped
= list_empty(&bch_cache_sets
) &&
2769 list_empty(&uncached_devices
);
2771 if (timeout
< 0 || stopped
)
2774 prepare_to_wait(&unregister_wait
, &wait
,
2775 TASK_UNINTERRUPTIBLE
);
2777 mutex_unlock(&bch_register_lock
);
2778 schedule_timeout(timeout
);
2781 finish_wait(&unregister_wait
, &wait
);
2784 pr_info("All devices stopped\n");
2786 pr_notice("Timeout waiting for devices to be closed\n");
2788 mutex_unlock(&bch_register_lock
);
2794 static struct notifier_block reboot
= {
2795 .notifier_call
= bcache_reboot
,
2796 .priority
= INT_MAX
, /* before any real devices */
2799 static void bcache_exit(void)
2804 kobject_put(bcache_kobj
);
2806 destroy_workqueue(bcache_wq
);
2808 destroy_workqueue(bch_journal_wq
);
2810 destroy_workqueue(bch_flush_wq
);
2814 unregister_blkdev(bcache_major
, "bcache");
2815 unregister_reboot_notifier(&reboot
);
2816 mutex_destroy(&bch_register_lock
);
2819 /* Check and fixup module parameters */
2820 static void check_module_parameters(void)
2822 if (bch_cutoff_writeback_sync
== 0)
2823 bch_cutoff_writeback_sync
= CUTOFF_WRITEBACK_SYNC
;
2824 else if (bch_cutoff_writeback_sync
> CUTOFF_WRITEBACK_SYNC_MAX
) {
2825 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2826 bch_cutoff_writeback_sync
, CUTOFF_WRITEBACK_SYNC_MAX
);
2827 bch_cutoff_writeback_sync
= CUTOFF_WRITEBACK_SYNC_MAX
;
2830 if (bch_cutoff_writeback
== 0)
2831 bch_cutoff_writeback
= CUTOFF_WRITEBACK
;
2832 else if (bch_cutoff_writeback
> CUTOFF_WRITEBACK_MAX
) {
2833 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2834 bch_cutoff_writeback
, CUTOFF_WRITEBACK_MAX
);
2835 bch_cutoff_writeback
= CUTOFF_WRITEBACK_MAX
;
2838 if (bch_cutoff_writeback
> bch_cutoff_writeback_sync
) {
2839 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2840 bch_cutoff_writeback
, bch_cutoff_writeback_sync
);
2841 bch_cutoff_writeback
= bch_cutoff_writeback_sync
;
2845 static int __init
bcache_init(void)
2847 static const struct attribute
*files
[] = {
2848 &ksysfs_register
.attr
,
2849 &ksysfs_register_quiet
.attr
,
2850 &ksysfs_pendings_cleanup
.attr
,
2854 check_module_parameters();
2856 mutex_init(&bch_register_lock
);
2857 init_waitqueue_head(&unregister_wait
);
2858 register_reboot_notifier(&reboot
);
2860 bcache_major
= register_blkdev(0, "bcache");
2861 if (bcache_major
< 0) {
2862 unregister_reboot_notifier(&reboot
);
2863 mutex_destroy(&bch_register_lock
);
2864 return bcache_major
;
2867 if (bch_btree_init())
2870 bcache_wq
= alloc_workqueue("bcache", WQ_MEM_RECLAIM
, 0);
2875 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2877 * 1. It used `system_wq` before which also does no memory reclaim.
2878 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2879 * reduced throughput can be observed.
2881 * We still want to user our own queue to not congest the `system_wq`.
2883 bch_flush_wq
= alloc_workqueue("bch_flush", 0, 0);
2887 bch_journal_wq
= alloc_workqueue("bch_journal", WQ_MEM_RECLAIM
, 0);
2888 if (!bch_journal_wq
)
2891 bcache_kobj
= kobject_create_and_add("bcache", fs_kobj
);
2895 if (bch_request_init() ||
2896 sysfs_create_files(bcache_kobj
, files
))
2901 bcache_is_reboot
= false;
2912 module_exit(bcache_exit
);
2913 module_init(bcache_init
);
2915 module_param(bch_cutoff_writeback
, uint
, 0);
2916 MODULE_PARM_DESC(bch_cutoff_writeback
, "threshold to cutoff writeback");
2918 module_param(bch_cutoff_writeback_sync
, uint
, 0);
2919 MODULE_PARM_DESC(bch_cutoff_writeback_sync
, "hard threshold to cutoff writeback");
2921 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2922 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2923 MODULE_LICENSE("GPL");