1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 Red Hat. All rights reserved.
5 * This file is released under the GPL.
9 #include "dm-bio-prison-v2.h"
10 #include "dm-bio-record.h"
11 #include "dm-cache-metadata.h"
12 #include "dm-io-tracker.h"
13 #include "dm-cache-background-tracker.h"
15 #include <linux/dm-io.h>
16 #include <linux/dm-kcopyd.h>
17 #include <linux/jiffies.h>
18 #include <linux/init.h>
19 #include <linux/mempool.h>
20 #include <linux/module.h>
21 #include <linux/rwsem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
25 #define DM_MSG_PREFIX "cache"
27 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle
,
28 "A percentage of time allocated for copying to and/or from cache");
30 /*----------------------------------------------------------------*/
35 * oblock: index of an origin block
36 * cblock: index of a cache block
37 * promotion: movement of a block from origin to cache
38 * demotion: movement of a block from cache to origin
39 * migration: movement of a block between the origin and cache device,
43 /*----------------------------------------------------------------*/
46 * Represents a chunk of future work. 'input' allows continuations to pass
47 * values between themselves, typically error values.
50 struct work_struct ws
;
54 static inline void init_continuation(struct continuation
*k
,
55 void (*fn
)(struct work_struct
*))
57 INIT_WORK(&k
->ws
, fn
);
61 static inline void queue_continuation(struct workqueue_struct
*wq
,
62 struct continuation
*k
)
64 queue_work(wq
, &k
->ws
);
67 /*----------------------------------------------------------------*/
70 * The batcher collects together pieces of work that need a particular
71 * operation to occur before they can proceed (typically a commit).
75 * The operation that everyone is waiting for.
77 blk_status_t (*commit_op
)(void *context
);
81 * This is how bios should be issued once the commit op is complete
82 * (accounted_request).
84 void (*issue_op
)(struct bio
*bio
, void *context
);
88 * Queued work gets put on here after commit.
90 struct workqueue_struct
*wq
;
93 struct list_head work_items
;
95 struct work_struct commit_work
;
97 bool commit_scheduled
;
100 static void __commit(struct work_struct
*_ws
)
102 struct batcher
*b
= container_of(_ws
, struct batcher
, commit_work
);
104 struct list_head work_items
;
105 struct work_struct
*ws
, *tmp
;
106 struct continuation
*k
;
108 struct bio_list bios
;
110 INIT_LIST_HEAD(&work_items
);
111 bio_list_init(&bios
);
114 * We have to grab these before the commit_op to avoid a race
117 spin_lock_irq(&b
->lock
);
118 list_splice_init(&b
->work_items
, &work_items
);
119 bio_list_merge_init(&bios
, &b
->bios
);
120 b
->commit_scheduled
= false;
121 spin_unlock_irq(&b
->lock
);
123 r
= b
->commit_op(b
->commit_context
);
125 list_for_each_entry_safe(ws
, tmp
, &work_items
, entry
) {
126 k
= container_of(ws
, struct continuation
, ws
);
128 INIT_LIST_HEAD(&ws
->entry
); /* to avoid a WARN_ON */
129 queue_work(b
->wq
, ws
);
132 while ((bio
= bio_list_pop(&bios
))) {
137 b
->issue_op(bio
, b
->issue_context
);
141 static void batcher_init(struct batcher
*b
,
142 blk_status_t (*commit_op
)(void *),
143 void *commit_context
,
144 void (*issue_op
)(struct bio
*bio
, void *),
146 struct workqueue_struct
*wq
)
148 b
->commit_op
= commit_op
;
149 b
->commit_context
= commit_context
;
150 b
->issue_op
= issue_op
;
151 b
->issue_context
= issue_context
;
154 spin_lock_init(&b
->lock
);
155 INIT_LIST_HEAD(&b
->work_items
);
156 bio_list_init(&b
->bios
);
157 INIT_WORK(&b
->commit_work
, __commit
);
158 b
->commit_scheduled
= false;
161 static void async_commit(struct batcher
*b
)
163 queue_work(b
->wq
, &b
->commit_work
);
166 static void continue_after_commit(struct batcher
*b
, struct continuation
*k
)
168 bool commit_scheduled
;
170 spin_lock_irq(&b
->lock
);
171 commit_scheduled
= b
->commit_scheduled
;
172 list_add_tail(&k
->ws
.entry
, &b
->work_items
);
173 spin_unlock_irq(&b
->lock
);
175 if (commit_scheduled
)
180 * Bios are errored if commit failed.
182 static void issue_after_commit(struct batcher
*b
, struct bio
*bio
)
184 bool commit_scheduled
;
186 spin_lock_irq(&b
->lock
);
187 commit_scheduled
= b
->commit_scheduled
;
188 bio_list_add(&b
->bios
, bio
);
189 spin_unlock_irq(&b
->lock
);
191 if (commit_scheduled
)
196 * Call this if some urgent work is waiting for the commit to complete.
198 static void schedule_commit(struct batcher
*b
)
202 spin_lock_irq(&b
->lock
);
203 immediate
= !list_empty(&b
->work_items
) || !bio_list_empty(&b
->bios
);
204 b
->commit_scheduled
= true;
205 spin_unlock_irq(&b
->lock
);
212 * There are a couple of places where we let a bio run, but want to do some
213 * work before calling its endio function. We do this by temporarily
214 * changing the endio fn.
216 struct dm_hook_info
{
217 bio_end_io_t
*bi_end_io
;
220 static void dm_hook_bio(struct dm_hook_info
*h
, struct bio
*bio
,
221 bio_end_io_t
*bi_end_io
, void *bi_private
)
223 h
->bi_end_io
= bio
->bi_end_io
;
225 bio
->bi_end_io
= bi_end_io
;
226 bio
->bi_private
= bi_private
;
229 static void dm_unhook_bio(struct dm_hook_info
*h
, struct bio
*bio
)
231 bio
->bi_end_io
= h
->bi_end_io
;
234 /*----------------------------------------------------------------*/
236 #define MIGRATION_POOL_SIZE 128
237 #define COMMIT_PERIOD HZ
238 #define MIGRATION_COUNT_WINDOW 10
241 * The block size of the device holding cache data must be
242 * between 32KB and 1GB.
244 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
245 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
247 enum cache_metadata_mode
{
248 CM_WRITE
, /* metadata may be changed */
249 CM_READ_ONLY
, /* metadata may not be changed */
255 * Data is written to cached blocks only. These blocks are marked
256 * dirty. If you lose the cache device you will lose data.
257 * Potential performance increase for both reads and writes.
262 * Data is written to both cache and origin. Blocks are never
263 * dirty. Potential performance benfit for reads only.
268 * A degraded mode useful for various cache coherency situations
269 * (eg, rolling back snapshots). Reads and writes always go to the
270 * origin. If a write goes to a cached oblock, then the cache
271 * block is invalidated.
276 struct cache_features
{
277 enum cache_metadata_mode mode
;
278 enum cache_io_mode io_mode
;
279 unsigned int metadata_version
;
280 bool discard_passdown
:1;
291 atomic_t copies_avoided
;
292 atomic_t cache_cell_clash
;
293 atomic_t commit_count
;
294 atomic_t discard_count
;
298 struct dm_target
*ti
;
302 * Fields for converting from sectors to blocks.
304 int sectors_per_block_shift
;
305 sector_t sectors_per_block
;
307 struct dm_cache_metadata
*cmd
;
310 * Metadata is written to this device.
312 struct dm_dev
*metadata_dev
;
315 * The slower of the two data devices. Typically a spindle.
317 struct dm_dev
*origin_dev
;
320 * The faster of the two data devices. Typically an SSD.
322 struct dm_dev
*cache_dev
;
325 * Size of the origin device in _complete_ blocks and native sectors.
327 dm_oblock_t origin_blocks
;
328 sector_t origin_sectors
;
331 * Size of the cache device in blocks.
333 dm_cblock_t cache_size
;
336 * Invalidation fields.
338 spinlock_t invalidation_lock
;
339 struct list_head invalidation_requests
;
341 sector_t migration_threshold
;
342 wait_queue_head_t migration_wait
;
343 atomic_t nr_allocated_migrations
;
346 * The number of in flight migrations that are performing
347 * background io. eg, promotion, writeback.
349 atomic_t nr_io_migrations
;
351 struct bio_list deferred_bios
;
353 struct rw_semaphore quiesce_lock
;
356 * origin_blocks entries, discarded if set.
358 dm_dblock_t discard_nr_blocks
;
359 unsigned long *discard_bitset
;
360 uint32_t discard_block_size
; /* a power of 2 times sectors per block */
363 * Rather than reconstructing the table line for the status we just
364 * save it and regurgitate.
366 unsigned int nr_ctr_args
;
367 const char **ctr_args
;
369 struct dm_kcopyd_client
*copier
;
370 struct work_struct deferred_bio_worker
;
371 struct work_struct migration_worker
;
372 struct workqueue_struct
*wq
;
373 struct delayed_work waker
;
374 struct dm_bio_prison_v2
*prison
;
377 * cache_size entries, dirty if set
379 unsigned long *dirty_bitset
;
382 unsigned int policy_nr_args
;
383 struct dm_cache_policy
*policy
;
386 * Cache features such as write-through.
388 struct cache_features features
;
390 struct cache_stats stats
;
392 bool need_tick_bio
:1;
395 bool commit_requested
:1;
396 bool loaded_mappings
:1;
397 bool loaded_discards
:1;
399 struct rw_semaphore background_work_lock
;
401 struct batcher committer
;
402 struct work_struct commit_ws
;
404 struct dm_io_tracker tracker
;
406 mempool_t migration_pool
;
411 struct per_bio_data
{
413 unsigned int req_nr
:2;
414 struct dm_bio_prison_cell_v2
*cell
;
415 struct dm_hook_info hook_info
;
419 struct dm_cache_migration
{
420 struct continuation k
;
423 struct policy_work
*op
;
424 struct bio
*overwrite_bio
;
425 struct dm_bio_prison_cell_v2
*cell
;
427 dm_cblock_t invalidate_cblock
;
428 dm_oblock_t invalidate_oblock
;
431 /*----------------------------------------------------------------*/
433 static bool writethrough_mode(struct cache
*cache
)
435 return cache
->features
.io_mode
== CM_IO_WRITETHROUGH
;
438 static bool writeback_mode(struct cache
*cache
)
440 return cache
->features
.io_mode
== CM_IO_WRITEBACK
;
443 static inline bool passthrough_mode(struct cache
*cache
)
445 return unlikely(cache
->features
.io_mode
== CM_IO_PASSTHROUGH
);
448 /*----------------------------------------------------------------*/
450 static void wake_deferred_bio_worker(struct cache
*cache
)
452 queue_work(cache
->wq
, &cache
->deferred_bio_worker
);
455 static void wake_migration_worker(struct cache
*cache
)
457 if (passthrough_mode(cache
))
460 queue_work(cache
->wq
, &cache
->migration_worker
);
463 /*----------------------------------------------------------------*/
465 static struct dm_bio_prison_cell_v2
*alloc_prison_cell(struct cache
*cache
)
467 return dm_bio_prison_alloc_cell_v2(cache
->prison
, GFP_NOIO
);
470 static void free_prison_cell(struct cache
*cache
, struct dm_bio_prison_cell_v2
*cell
)
472 dm_bio_prison_free_cell_v2(cache
->prison
, cell
);
475 static struct dm_cache_migration
*alloc_migration(struct cache
*cache
)
477 struct dm_cache_migration
*mg
;
479 mg
= mempool_alloc(&cache
->migration_pool
, GFP_NOIO
);
481 memset(mg
, 0, sizeof(*mg
));
484 atomic_inc(&cache
->nr_allocated_migrations
);
489 static void free_migration(struct dm_cache_migration
*mg
)
491 struct cache
*cache
= mg
->cache
;
493 if (atomic_dec_and_test(&cache
->nr_allocated_migrations
))
494 wake_up(&cache
->migration_wait
);
496 mempool_free(mg
, &cache
->migration_pool
);
499 /*----------------------------------------------------------------*/
501 static inline dm_oblock_t
oblock_succ(dm_oblock_t b
)
503 return to_oblock(from_oblock(b
) + 1ull);
506 static void build_key(dm_oblock_t begin
, dm_oblock_t end
, struct dm_cell_key_v2
*key
)
510 key
->block_begin
= from_oblock(begin
);
511 key
->block_end
= from_oblock(end
);
515 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
516 * level 1 which prevents *both* READs and WRITEs.
518 #define WRITE_LOCK_LEVEL 0
519 #define READ_WRITE_LOCK_LEVEL 1
521 static unsigned int lock_level(struct bio
*bio
)
523 return bio_data_dir(bio
) == WRITE
?
525 READ_WRITE_LOCK_LEVEL
;
529 *--------------------------------------------------------------
531 *--------------------------------------------------------------
534 static struct per_bio_data
*get_per_bio_data(struct bio
*bio
)
536 struct per_bio_data
*pb
= dm_per_bio_data(bio
, sizeof(struct per_bio_data
));
542 static struct per_bio_data
*init_per_bio_data(struct bio
*bio
)
544 struct per_bio_data
*pb
= get_per_bio_data(bio
);
547 pb
->req_nr
= dm_bio_get_target_bio_nr(bio
);
554 /*----------------------------------------------------------------*/
556 static void defer_bio(struct cache
*cache
, struct bio
*bio
)
558 spin_lock_irq(&cache
->lock
);
559 bio_list_add(&cache
->deferred_bios
, bio
);
560 spin_unlock_irq(&cache
->lock
);
562 wake_deferred_bio_worker(cache
);
565 static void defer_bios(struct cache
*cache
, struct bio_list
*bios
)
567 spin_lock_irq(&cache
->lock
);
568 bio_list_merge_init(&cache
->deferred_bios
, bios
);
569 spin_unlock_irq(&cache
->lock
);
571 wake_deferred_bio_worker(cache
);
574 /*----------------------------------------------------------------*/
576 static bool bio_detain_shared(struct cache
*cache
, dm_oblock_t oblock
, struct bio
*bio
)
579 struct per_bio_data
*pb
;
580 struct dm_cell_key_v2 key
;
581 dm_oblock_t end
= to_oblock(from_oblock(oblock
) + 1ULL);
582 struct dm_bio_prison_cell_v2
*cell_prealloc
, *cell
;
584 cell_prealloc
= alloc_prison_cell(cache
); /* FIXME: allow wait if calling from worker */
586 build_key(oblock
, end
, &key
);
587 r
= dm_cell_get_v2(cache
->prison
, &key
, lock_level(bio
), bio
, cell_prealloc
, &cell
);
590 * Failed to get the lock.
592 free_prison_cell(cache
, cell_prealloc
);
596 if (cell
!= cell_prealloc
)
597 free_prison_cell(cache
, cell_prealloc
);
599 pb
= get_per_bio_data(bio
);
605 /*----------------------------------------------------------------*/
607 static bool is_dirty(struct cache
*cache
, dm_cblock_t b
)
609 return test_bit(from_cblock(b
), cache
->dirty_bitset
);
612 static void set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
614 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
615 atomic_inc(&cache
->nr_dirty
);
616 policy_set_dirty(cache
->policy
, cblock
);
621 * These two are called when setting after migrations to force the policy
622 * and dirty bitset to be in sync.
624 static void force_set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
626 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
))
627 atomic_inc(&cache
->nr_dirty
);
628 policy_set_dirty(cache
->policy
, cblock
);
631 static void force_clear_dirty(struct cache
*cache
, dm_cblock_t cblock
)
633 if (test_and_clear_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
634 if (atomic_dec_return(&cache
->nr_dirty
) == 0)
635 dm_table_event(cache
->ti
->table
);
638 policy_clear_dirty(cache
->policy
, cblock
);
641 /*----------------------------------------------------------------*/
643 static bool block_size_is_power_of_two(struct cache
*cache
)
645 return cache
->sectors_per_block_shift
>= 0;
648 static dm_block_t
block_div(dm_block_t b
, uint32_t n
)
655 static dm_block_t
oblocks_per_dblock(struct cache
*cache
)
657 dm_block_t oblocks
= cache
->discard_block_size
;
659 if (block_size_is_power_of_two(cache
))
660 oblocks
>>= cache
->sectors_per_block_shift
;
662 oblocks
= block_div(oblocks
, cache
->sectors_per_block
);
667 static dm_dblock_t
oblock_to_dblock(struct cache
*cache
, dm_oblock_t oblock
)
669 return to_dblock(block_div(from_oblock(oblock
),
670 oblocks_per_dblock(cache
)));
673 static void set_discard(struct cache
*cache
, dm_dblock_t b
)
675 BUG_ON(from_dblock(b
) >= from_dblock(cache
->discard_nr_blocks
));
676 atomic_inc(&cache
->stats
.discard_count
);
678 spin_lock_irq(&cache
->lock
);
679 set_bit(from_dblock(b
), cache
->discard_bitset
);
680 spin_unlock_irq(&cache
->lock
);
683 static void clear_discard(struct cache
*cache
, dm_dblock_t b
)
685 spin_lock_irq(&cache
->lock
);
686 clear_bit(from_dblock(b
), cache
->discard_bitset
);
687 spin_unlock_irq(&cache
->lock
);
690 static bool is_discarded(struct cache
*cache
, dm_dblock_t b
)
694 spin_lock_irq(&cache
->lock
);
695 r
= test_bit(from_dblock(b
), cache
->discard_bitset
);
696 spin_unlock_irq(&cache
->lock
);
701 static bool is_discarded_oblock(struct cache
*cache
, dm_oblock_t b
)
705 spin_lock_irq(&cache
->lock
);
706 r
= test_bit(from_dblock(oblock_to_dblock(cache
, b
)),
707 cache
->discard_bitset
);
708 spin_unlock_irq(&cache
->lock
);
714 * -------------------------------------------------------------
716 *--------------------------------------------------------------
718 static void remap_to_origin(struct cache
*cache
, struct bio
*bio
)
720 bio_set_dev(bio
, cache
->origin_dev
->bdev
);
723 static void remap_to_cache(struct cache
*cache
, struct bio
*bio
,
726 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
727 sector_t block
= from_cblock(cblock
);
729 bio_set_dev(bio
, cache
->cache_dev
->bdev
);
730 if (!block_size_is_power_of_two(cache
))
731 bio
->bi_iter
.bi_sector
=
732 (block
* cache
->sectors_per_block
) +
733 sector_div(bi_sector
, cache
->sectors_per_block
);
735 bio
->bi_iter
.bi_sector
=
736 (block
<< cache
->sectors_per_block_shift
) |
737 (bi_sector
& (cache
->sectors_per_block
- 1));
740 static void check_if_tick_bio_needed(struct cache
*cache
, struct bio
*bio
)
742 struct per_bio_data
*pb
;
744 spin_lock_irq(&cache
->lock
);
745 if (cache
->need_tick_bio
&& !op_is_flush(bio
->bi_opf
) &&
746 bio_op(bio
) != REQ_OP_DISCARD
) {
747 pb
= get_per_bio_data(bio
);
749 cache
->need_tick_bio
= false;
751 spin_unlock_irq(&cache
->lock
);
754 static void remap_to_origin_clear_discard(struct cache
*cache
, struct bio
*bio
,
757 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
758 check_if_tick_bio_needed(cache
, bio
);
759 remap_to_origin(cache
, bio
);
760 if (bio_data_dir(bio
) == WRITE
)
761 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
764 static void remap_to_cache_dirty(struct cache
*cache
, struct bio
*bio
,
765 dm_oblock_t oblock
, dm_cblock_t cblock
)
767 check_if_tick_bio_needed(cache
, bio
);
768 remap_to_cache(cache
, bio
, cblock
);
769 if (bio_data_dir(bio
) == WRITE
) {
770 set_dirty(cache
, cblock
);
771 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
775 static dm_oblock_t
get_bio_block(struct cache
*cache
, struct bio
*bio
)
777 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
779 if (!block_size_is_power_of_two(cache
))
780 (void) sector_div(block_nr
, cache
->sectors_per_block
);
782 block_nr
>>= cache
->sectors_per_block_shift
;
784 return to_oblock(block_nr
);
787 static bool accountable_bio(struct cache
*cache
, struct bio
*bio
)
789 return bio_op(bio
) != REQ_OP_DISCARD
;
792 static void accounted_begin(struct cache
*cache
, struct bio
*bio
)
794 struct per_bio_data
*pb
;
796 if (accountable_bio(cache
, bio
)) {
797 pb
= get_per_bio_data(bio
);
798 pb
->len
= bio_sectors(bio
);
799 dm_iot_io_begin(&cache
->tracker
, pb
->len
);
803 static void accounted_complete(struct cache
*cache
, struct bio
*bio
)
805 struct per_bio_data
*pb
= get_per_bio_data(bio
);
807 dm_iot_io_end(&cache
->tracker
, pb
->len
);
810 static void accounted_request(struct cache
*cache
, struct bio
*bio
)
812 accounted_begin(cache
, bio
);
813 dm_submit_bio_remap(bio
, NULL
);
816 static void issue_op(struct bio
*bio
, void *context
)
818 struct cache
*cache
= context
;
820 accounted_request(cache
, bio
);
824 * When running in writethrough mode we need to send writes to clean blocks
825 * to both the cache and origin devices. Clone the bio and send them in parallel.
827 static void remap_to_origin_and_cache(struct cache
*cache
, struct bio
*bio
,
828 dm_oblock_t oblock
, dm_cblock_t cblock
)
830 struct bio
*origin_bio
= bio_alloc_clone(cache
->origin_dev
->bdev
, bio
,
831 GFP_NOIO
, &cache
->bs
);
835 bio_chain(origin_bio
, bio
);
837 if (bio_data_dir(origin_bio
) == WRITE
)
838 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
839 submit_bio(origin_bio
);
841 remap_to_cache(cache
, bio
, cblock
);
845 *--------------------------------------------------------------
847 *--------------------------------------------------------------
849 static enum cache_metadata_mode
get_cache_mode(struct cache
*cache
)
851 return cache
->features
.mode
;
854 static const char *cache_device_name(struct cache
*cache
)
856 return dm_table_device_name(cache
->ti
->table
);
859 static void notify_mode_switch(struct cache
*cache
, enum cache_metadata_mode mode
)
861 static const char *descs
[] = {
867 dm_table_event(cache
->ti
->table
);
868 DMINFO("%s: switching cache to %s mode",
869 cache_device_name(cache
), descs
[(int)mode
]);
872 static void set_cache_mode(struct cache
*cache
, enum cache_metadata_mode new_mode
)
875 enum cache_metadata_mode old_mode
= get_cache_mode(cache
);
877 if (dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
)) {
878 DMERR("%s: unable to read needs_check flag, setting failure mode.",
879 cache_device_name(cache
));
883 if (new_mode
== CM_WRITE
&& needs_check
) {
884 DMERR("%s: unable to switch cache to write mode until repaired.",
885 cache_device_name(cache
));
886 if (old_mode
!= new_mode
)
889 new_mode
= CM_READ_ONLY
;
892 /* Never move out of fail mode */
893 if (old_mode
== CM_FAIL
)
899 dm_cache_metadata_set_read_only(cache
->cmd
);
903 dm_cache_metadata_set_read_write(cache
->cmd
);
907 cache
->features
.mode
= new_mode
;
909 if (new_mode
!= old_mode
)
910 notify_mode_switch(cache
, new_mode
);
913 static void abort_transaction(struct cache
*cache
)
915 const char *dev_name
= cache_device_name(cache
);
917 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
920 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
921 if (dm_cache_metadata_abort(cache
->cmd
)) {
922 DMERR("%s: failed to abort metadata transaction", dev_name
);
923 set_cache_mode(cache
, CM_FAIL
);
926 if (dm_cache_metadata_set_needs_check(cache
->cmd
)) {
927 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
928 set_cache_mode(cache
, CM_FAIL
);
932 static void metadata_operation_failed(struct cache
*cache
, const char *op
, int r
)
934 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
935 cache_device_name(cache
), op
, r
);
936 abort_transaction(cache
);
937 set_cache_mode(cache
, CM_READ_ONLY
);
940 /*----------------------------------------------------------------*/
942 static void load_stats(struct cache
*cache
)
944 struct dm_cache_statistics stats
;
946 dm_cache_metadata_get_stats(cache
->cmd
, &stats
);
947 atomic_set(&cache
->stats
.read_hit
, stats
.read_hits
);
948 atomic_set(&cache
->stats
.read_miss
, stats
.read_misses
);
949 atomic_set(&cache
->stats
.write_hit
, stats
.write_hits
);
950 atomic_set(&cache
->stats
.write_miss
, stats
.write_misses
);
953 static void save_stats(struct cache
*cache
)
955 struct dm_cache_statistics stats
;
957 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
960 stats
.read_hits
= atomic_read(&cache
->stats
.read_hit
);
961 stats
.read_misses
= atomic_read(&cache
->stats
.read_miss
);
962 stats
.write_hits
= atomic_read(&cache
->stats
.write_hit
);
963 stats
.write_misses
= atomic_read(&cache
->stats
.write_miss
);
965 dm_cache_metadata_set_stats(cache
->cmd
, &stats
);
968 static void update_stats(struct cache_stats
*stats
, enum policy_operation op
)
972 atomic_inc(&stats
->promotion
);
976 atomic_inc(&stats
->demotion
);
979 case POLICY_WRITEBACK
:
980 atomic_inc(&stats
->writeback
);
986 *---------------------------------------------------------------------
987 * Migration processing
989 * Migration covers moving data from the origin device to the cache, or
991 *---------------------------------------------------------------------
993 static void inc_io_migrations(struct cache
*cache
)
995 atomic_inc(&cache
->nr_io_migrations
);
998 static void dec_io_migrations(struct cache
*cache
)
1000 atomic_dec(&cache
->nr_io_migrations
);
1003 static bool discard_or_flush(struct bio
*bio
)
1005 return bio_op(bio
) == REQ_OP_DISCARD
|| op_is_flush(bio
->bi_opf
);
1008 static void calc_discard_block_range(struct cache
*cache
, struct bio
*bio
,
1009 dm_dblock_t
*b
, dm_dblock_t
*e
)
1011 sector_t sb
= bio
->bi_iter
.bi_sector
;
1012 sector_t se
= bio_end_sector(bio
);
1014 *b
= to_dblock(dm_sector_div_up(sb
, cache
->discard_block_size
));
1016 if (se
- sb
< cache
->discard_block_size
)
1019 *e
= to_dblock(block_div(se
, cache
->discard_block_size
));
1022 /*----------------------------------------------------------------*/
1024 static void prevent_background_work(struct cache
*cache
)
1027 down_write(&cache
->background_work_lock
);
1031 static void allow_background_work(struct cache
*cache
)
1034 up_write(&cache
->background_work_lock
);
1038 static bool background_work_begin(struct cache
*cache
)
1043 r
= down_read_trylock(&cache
->background_work_lock
);
1049 static void background_work_end(struct cache
*cache
)
1052 up_read(&cache
->background_work_lock
);
1056 /*----------------------------------------------------------------*/
1058 static bool bio_writes_complete_block(struct cache
*cache
, struct bio
*bio
)
1060 return (bio_data_dir(bio
) == WRITE
) &&
1061 (bio
->bi_iter
.bi_size
== (cache
->sectors_per_block
<< SECTOR_SHIFT
));
1064 static bool optimisable_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
)
1066 return writeback_mode(cache
) &&
1067 (is_discarded_oblock(cache
, block
) || bio_writes_complete_block(cache
, bio
));
1070 static void quiesce(struct dm_cache_migration
*mg
,
1071 void (*continuation
)(struct work_struct
*))
1073 init_continuation(&mg
->k
, continuation
);
1074 dm_cell_quiesce_v2(mg
->cache
->prison
, mg
->cell
, &mg
->k
.ws
);
1077 static struct dm_cache_migration
*ws_to_mg(struct work_struct
*ws
)
1079 struct continuation
*k
= container_of(ws
, struct continuation
, ws
);
1081 return container_of(k
, struct dm_cache_migration
, k
);
1084 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
1086 struct dm_cache_migration
*mg
= container_of(context
, struct dm_cache_migration
, k
);
1088 if (read_err
|| write_err
)
1089 mg
->k
.input
= BLK_STS_IOERR
;
1091 queue_continuation(mg
->cache
->wq
, &mg
->k
);
1094 static void copy(struct dm_cache_migration
*mg
, bool promote
)
1096 struct dm_io_region o_region
, c_region
;
1097 struct cache
*cache
= mg
->cache
;
1099 o_region
.bdev
= cache
->origin_dev
->bdev
;
1100 o_region
.sector
= from_oblock(mg
->op
->oblock
) * cache
->sectors_per_block
;
1101 o_region
.count
= cache
->sectors_per_block
;
1103 c_region
.bdev
= cache
->cache_dev
->bdev
;
1104 c_region
.sector
= from_cblock(mg
->op
->cblock
) * cache
->sectors_per_block
;
1105 c_region
.count
= cache
->sectors_per_block
;
1108 dm_kcopyd_copy(cache
->copier
, &o_region
, 1, &c_region
, 0, copy_complete
, &mg
->k
);
1110 dm_kcopyd_copy(cache
->copier
, &c_region
, 1, &o_region
, 0, copy_complete
, &mg
->k
);
1113 static void bio_drop_shared_lock(struct cache
*cache
, struct bio
*bio
)
1115 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1117 if (pb
->cell
&& dm_cell_put_v2(cache
->prison
, pb
->cell
))
1118 free_prison_cell(cache
, pb
->cell
);
1122 static void overwrite_endio(struct bio
*bio
)
1124 struct dm_cache_migration
*mg
= bio
->bi_private
;
1125 struct cache
*cache
= mg
->cache
;
1126 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1128 dm_unhook_bio(&pb
->hook_info
, bio
);
1131 mg
->k
.input
= bio
->bi_status
;
1133 queue_continuation(cache
->wq
, &mg
->k
);
1136 static void overwrite(struct dm_cache_migration
*mg
,
1137 void (*continuation
)(struct work_struct
*))
1139 struct bio
*bio
= mg
->overwrite_bio
;
1140 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1142 dm_hook_bio(&pb
->hook_info
, bio
, overwrite_endio
, mg
);
1145 * The overwrite bio is part of the copy operation, as such it does
1146 * not set/clear discard or dirty flags.
1148 if (mg
->op
->op
== POLICY_PROMOTE
)
1149 remap_to_cache(mg
->cache
, bio
, mg
->op
->cblock
);
1151 remap_to_origin(mg
->cache
, bio
);
1153 init_continuation(&mg
->k
, continuation
);
1154 accounted_request(mg
->cache
, bio
);
1160 * 1) exclusive lock preventing WRITEs
1162 * 3) copy or issue overwrite bio
1163 * 4) upgrade to exclusive lock preventing READs and WRITEs
1165 * 6) update metadata and commit
1168 static void mg_complete(struct dm_cache_migration
*mg
, bool success
)
1170 struct bio_list bios
;
1171 struct cache
*cache
= mg
->cache
;
1172 struct policy_work
*op
= mg
->op
;
1173 dm_cblock_t cblock
= op
->cblock
;
1176 update_stats(&cache
->stats
, op
->op
);
1179 case POLICY_PROMOTE
:
1180 clear_discard(cache
, oblock_to_dblock(cache
, op
->oblock
));
1181 policy_complete_background_work(cache
->policy
, op
, success
);
1183 if (mg
->overwrite_bio
) {
1185 force_set_dirty(cache
, cblock
);
1186 else if (mg
->k
.input
)
1187 mg
->overwrite_bio
->bi_status
= mg
->k
.input
;
1189 mg
->overwrite_bio
->bi_status
= BLK_STS_IOERR
;
1190 bio_endio(mg
->overwrite_bio
);
1193 force_clear_dirty(cache
, cblock
);
1194 dec_io_migrations(cache
);
1200 * We clear dirty here to update the nr_dirty counter.
1203 force_clear_dirty(cache
, cblock
);
1204 policy_complete_background_work(cache
->policy
, op
, success
);
1205 dec_io_migrations(cache
);
1208 case POLICY_WRITEBACK
:
1210 force_clear_dirty(cache
, cblock
);
1211 policy_complete_background_work(cache
->policy
, op
, success
);
1212 dec_io_migrations(cache
);
1216 bio_list_init(&bios
);
1218 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1219 free_prison_cell(cache
, mg
->cell
);
1223 defer_bios(cache
, &bios
);
1224 wake_migration_worker(cache
);
1226 background_work_end(cache
);
1229 static void mg_success(struct work_struct
*ws
)
1231 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1233 mg_complete(mg
, mg
->k
.input
== 0);
1236 static void mg_update_metadata(struct work_struct
*ws
)
1239 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1240 struct cache
*cache
= mg
->cache
;
1241 struct policy_work
*op
= mg
->op
;
1244 case POLICY_PROMOTE
:
1245 r
= dm_cache_insert_mapping(cache
->cmd
, op
->cblock
, op
->oblock
);
1247 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1248 cache_device_name(cache
));
1249 metadata_operation_failed(cache
, "dm_cache_insert_mapping", r
);
1251 mg_complete(mg
, false);
1254 mg_complete(mg
, true);
1258 r
= dm_cache_remove_mapping(cache
->cmd
, op
->cblock
);
1260 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1261 cache_device_name(cache
));
1262 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1264 mg_complete(mg
, false);
1269 * It would be nice if we only had to commit when a REQ_FLUSH
1270 * comes through. But there's one scenario that we have to
1273 * - vblock x in a cache block
1275 * - cache block gets reallocated and over written
1278 * When we recover, because there was no commit the cache will
1279 * rollback to having the data for vblock x in the cache block.
1280 * But the cache block has since been overwritten, so it'll end
1281 * up pointing to data that was never in 'x' during the history
1284 * To avoid this issue we require a commit as part of the
1285 * demotion operation.
1287 init_continuation(&mg
->k
, mg_success
);
1288 continue_after_commit(&cache
->committer
, &mg
->k
);
1289 schedule_commit(&cache
->committer
);
1292 case POLICY_WRITEBACK
:
1293 mg_complete(mg
, true);
1298 static void mg_update_metadata_after_copy(struct work_struct
*ws
)
1300 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1303 * Did the copy succeed?
1306 mg_complete(mg
, false);
1308 mg_update_metadata(ws
);
1311 static void mg_upgrade_lock(struct work_struct
*ws
)
1314 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1317 * Did the copy succeed?
1320 mg_complete(mg
, false);
1324 * Now we want the lock to prevent both reads and writes.
1326 r
= dm_cell_lock_promote_v2(mg
->cache
->prison
, mg
->cell
,
1327 READ_WRITE_LOCK_LEVEL
);
1329 mg_complete(mg
, false);
1332 quiesce(mg
, mg_update_metadata
);
1335 mg_update_metadata(ws
);
1339 static void mg_full_copy(struct work_struct
*ws
)
1341 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1342 struct cache
*cache
= mg
->cache
;
1343 struct policy_work
*op
= mg
->op
;
1344 bool is_policy_promote
= (op
->op
== POLICY_PROMOTE
);
1346 if ((!is_policy_promote
&& !is_dirty(cache
, op
->cblock
)) ||
1347 is_discarded_oblock(cache
, op
->oblock
)) {
1348 mg_upgrade_lock(ws
);
1352 init_continuation(&mg
->k
, mg_upgrade_lock
);
1353 copy(mg
, is_policy_promote
);
1356 static void mg_copy(struct work_struct
*ws
)
1358 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1360 if (mg
->overwrite_bio
) {
1362 * No exclusive lock was held when we last checked if the bio
1363 * was optimisable. So we have to check again in case things
1364 * have changed (eg, the block may no longer be discarded).
1366 if (!optimisable_bio(mg
->cache
, mg
->overwrite_bio
, mg
->op
->oblock
)) {
1368 * Fallback to a real full copy after doing some tidying up.
1370 bool rb
= bio_detain_shared(mg
->cache
, mg
->op
->oblock
, mg
->overwrite_bio
);
1372 BUG_ON(rb
); /* An exclusive lock must _not_ be held for this block */
1373 mg
->overwrite_bio
= NULL
;
1374 inc_io_migrations(mg
->cache
);
1380 * It's safe to do this here, even though it's new data
1381 * because all IO has been locked out of the block.
1383 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1384 * so _not_ using mg_upgrade_lock() as continutation.
1386 overwrite(mg
, mg_update_metadata_after_copy
);
1392 static int mg_lock_writes(struct dm_cache_migration
*mg
)
1395 struct dm_cell_key_v2 key
;
1396 struct cache
*cache
= mg
->cache
;
1397 struct dm_bio_prison_cell_v2
*prealloc
;
1399 prealloc
= alloc_prison_cell(cache
);
1402 * Prevent writes to the block, but allow reads to continue.
1403 * Unless we're using an overwrite bio, in which case we lock
1406 build_key(mg
->op
->oblock
, oblock_succ(mg
->op
->oblock
), &key
);
1407 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1408 mg
->overwrite_bio
? READ_WRITE_LOCK_LEVEL
: WRITE_LOCK_LEVEL
,
1409 prealloc
, &mg
->cell
);
1411 free_prison_cell(cache
, prealloc
);
1412 mg_complete(mg
, false);
1416 if (mg
->cell
!= prealloc
)
1417 free_prison_cell(cache
, prealloc
);
1422 quiesce(mg
, mg_copy
);
1427 static int mg_start(struct cache
*cache
, struct policy_work
*op
, struct bio
*bio
)
1429 struct dm_cache_migration
*mg
;
1431 if (!background_work_begin(cache
)) {
1432 policy_complete_background_work(cache
->policy
, op
, false);
1436 mg
= alloc_migration(cache
);
1439 mg
->overwrite_bio
= bio
;
1442 inc_io_migrations(cache
);
1444 return mg_lock_writes(mg
);
1448 *--------------------------------------------------------------
1449 * invalidation processing
1450 *--------------------------------------------------------------
1453 static void invalidate_complete(struct dm_cache_migration
*mg
, bool success
)
1455 struct bio_list bios
;
1456 struct cache
*cache
= mg
->cache
;
1458 bio_list_init(&bios
);
1459 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1460 free_prison_cell(cache
, mg
->cell
);
1462 if (!success
&& mg
->overwrite_bio
)
1463 bio_io_error(mg
->overwrite_bio
);
1466 defer_bios(cache
, &bios
);
1468 background_work_end(cache
);
1471 static void invalidate_completed(struct work_struct
*ws
)
1473 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1475 invalidate_complete(mg
, !mg
->k
.input
);
1478 static int invalidate_cblock(struct cache
*cache
, dm_cblock_t cblock
)
1482 r
= policy_invalidate_mapping(cache
->policy
, cblock
);
1484 r
= dm_cache_remove_mapping(cache
->cmd
, cblock
);
1486 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1487 cache_device_name(cache
));
1488 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1491 } else if (r
== -ENODATA
) {
1493 * Harmless, already unmapped.
1498 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache
));
1503 static void invalidate_remove(struct work_struct
*ws
)
1506 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1507 struct cache
*cache
= mg
->cache
;
1509 r
= invalidate_cblock(cache
, mg
->invalidate_cblock
);
1511 invalidate_complete(mg
, false);
1515 init_continuation(&mg
->k
, invalidate_completed
);
1516 continue_after_commit(&cache
->committer
, &mg
->k
);
1517 remap_to_origin_clear_discard(cache
, mg
->overwrite_bio
, mg
->invalidate_oblock
);
1518 mg
->overwrite_bio
= NULL
;
1519 schedule_commit(&cache
->committer
);
1522 static int invalidate_lock(struct dm_cache_migration
*mg
)
1525 struct dm_cell_key_v2 key
;
1526 struct cache
*cache
= mg
->cache
;
1527 struct dm_bio_prison_cell_v2
*prealloc
;
1529 prealloc
= alloc_prison_cell(cache
);
1531 build_key(mg
->invalidate_oblock
, oblock_succ(mg
->invalidate_oblock
), &key
);
1532 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1533 READ_WRITE_LOCK_LEVEL
, prealloc
, &mg
->cell
);
1535 free_prison_cell(cache
, prealloc
);
1536 invalidate_complete(mg
, false);
1540 if (mg
->cell
!= prealloc
)
1541 free_prison_cell(cache
, prealloc
);
1544 quiesce(mg
, invalidate_remove
);
1548 * We can't call invalidate_remove() directly here because we
1549 * might still be in request context.
1551 init_continuation(&mg
->k
, invalidate_remove
);
1552 queue_work(cache
->wq
, &mg
->k
.ws
);
1558 static int invalidate_start(struct cache
*cache
, dm_cblock_t cblock
,
1559 dm_oblock_t oblock
, struct bio
*bio
)
1561 struct dm_cache_migration
*mg
;
1563 if (!background_work_begin(cache
))
1566 mg
= alloc_migration(cache
);
1568 mg
->overwrite_bio
= bio
;
1569 mg
->invalidate_cblock
= cblock
;
1570 mg
->invalidate_oblock
= oblock
;
1572 return invalidate_lock(mg
);
1576 *--------------------------------------------------------------
1578 *--------------------------------------------------------------
1586 static enum busy
spare_migration_bandwidth(struct cache
*cache
)
1588 bool idle
= dm_iot_idle_for(&cache
->tracker
, HZ
);
1589 sector_t current_volume
= (atomic_read(&cache
->nr_io_migrations
) + 1) *
1590 cache
->sectors_per_block
;
1592 if (idle
&& current_volume
<= cache
->migration_threshold
)
1598 static void inc_hit_counter(struct cache
*cache
, struct bio
*bio
)
1600 atomic_inc(bio_data_dir(bio
) == READ
?
1601 &cache
->stats
.read_hit
: &cache
->stats
.write_hit
);
1604 static void inc_miss_counter(struct cache
*cache
, struct bio
*bio
)
1606 atomic_inc(bio_data_dir(bio
) == READ
?
1607 &cache
->stats
.read_miss
: &cache
->stats
.write_miss
);
1610 /*----------------------------------------------------------------*/
1612 static int map_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
,
1613 bool *commit_needed
)
1616 bool rb
, background_queued
;
1619 *commit_needed
= false;
1621 rb
= bio_detain_shared(cache
, block
, bio
);
1624 * An exclusive lock is held for this block, so we have to
1625 * wait. We set the commit_needed flag so the current
1626 * transaction will be committed asap, allowing this lock
1629 *commit_needed
= true;
1630 return DM_MAPIO_SUBMITTED
;
1633 data_dir
= bio_data_dir(bio
);
1635 if (optimisable_bio(cache
, bio
, block
)) {
1636 struct policy_work
*op
= NULL
;
1638 r
= policy_lookup_with_work(cache
->policy
, block
, &cblock
, data_dir
, true, &op
);
1639 if (unlikely(r
&& r
!= -ENOENT
)) {
1640 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1641 cache_device_name(cache
), r
);
1643 return DM_MAPIO_SUBMITTED
;
1646 if (r
== -ENOENT
&& op
) {
1647 bio_drop_shared_lock(cache
, bio
);
1648 BUG_ON(op
->op
!= POLICY_PROMOTE
);
1649 mg_start(cache
, op
, bio
);
1650 return DM_MAPIO_SUBMITTED
;
1653 r
= policy_lookup(cache
->policy
, block
, &cblock
, data_dir
, false, &background_queued
);
1654 if (unlikely(r
&& r
!= -ENOENT
)) {
1655 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1656 cache_device_name(cache
), r
);
1658 return DM_MAPIO_SUBMITTED
;
1661 if (background_queued
)
1662 wake_migration_worker(cache
);
1666 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1671 inc_miss_counter(cache
, bio
);
1672 if (pb
->req_nr
== 0) {
1673 accounted_begin(cache
, bio
);
1674 remap_to_origin_clear_discard(cache
, bio
, block
);
1677 * This is a duplicate writethrough io that is no
1678 * longer needed because the block has been demoted.
1681 return DM_MAPIO_SUBMITTED
;
1687 inc_hit_counter(cache
, bio
);
1690 * Passthrough always maps to the origin, invalidating any
1691 * cache blocks that are written to.
1693 if (passthrough_mode(cache
)) {
1694 if (bio_data_dir(bio
) == WRITE
) {
1695 bio_drop_shared_lock(cache
, bio
);
1696 atomic_inc(&cache
->stats
.demotion
);
1697 invalidate_start(cache
, cblock
, block
, bio
);
1699 remap_to_origin_clear_discard(cache
, bio
, block
);
1701 if (bio_data_dir(bio
) == WRITE
&& writethrough_mode(cache
) &&
1702 !is_dirty(cache
, cblock
)) {
1703 remap_to_origin_and_cache(cache
, bio
, block
, cblock
);
1704 accounted_begin(cache
, bio
);
1706 remap_to_cache_dirty(cache
, bio
, block
, cblock
);
1711 * dm core turns FUA requests into a separate payload and FLUSH req.
1713 if (bio
->bi_opf
& REQ_FUA
) {
1715 * issue_after_commit will call accounted_begin a second time. So
1716 * we call accounted_complete() to avoid double accounting.
1718 accounted_complete(cache
, bio
);
1719 issue_after_commit(&cache
->committer
, bio
);
1720 *commit_needed
= true;
1721 return DM_MAPIO_SUBMITTED
;
1724 return DM_MAPIO_REMAPPED
;
1727 static bool process_bio(struct cache
*cache
, struct bio
*bio
)
1731 if (map_bio(cache
, bio
, get_bio_block(cache
, bio
), &commit_needed
) == DM_MAPIO_REMAPPED
)
1732 dm_submit_bio_remap(bio
, NULL
);
1734 return commit_needed
;
1738 * A non-zero return indicates read_only or fail_io mode.
1740 static int commit(struct cache
*cache
, bool clean_shutdown
)
1744 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1747 atomic_inc(&cache
->stats
.commit_count
);
1748 r
= dm_cache_commit(cache
->cmd
, clean_shutdown
);
1750 metadata_operation_failed(cache
, "dm_cache_commit", r
);
1756 * Used by the batcher.
1758 static blk_status_t
commit_op(void *context
)
1760 struct cache
*cache
= context
;
1762 if (dm_cache_changed_this_transaction(cache
->cmd
))
1763 return errno_to_blk_status(commit(cache
, false));
1768 /*----------------------------------------------------------------*/
1770 static bool process_flush_bio(struct cache
*cache
, struct bio
*bio
)
1772 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1775 remap_to_origin(cache
, bio
);
1777 remap_to_cache(cache
, bio
, 0);
1779 issue_after_commit(&cache
->committer
, bio
);
1783 static bool process_discard_bio(struct cache
*cache
, struct bio
*bio
)
1788 * FIXME: do we need to lock the region? Or can we just assume the
1789 * user wont be so foolish as to issue discard concurrently with
1792 calc_discard_block_range(cache
, bio
, &b
, &e
);
1794 set_discard(cache
, b
);
1795 b
= to_dblock(from_dblock(b
) + 1);
1798 if (cache
->features
.discard_passdown
) {
1799 remap_to_origin(cache
, bio
);
1800 dm_submit_bio_remap(bio
, NULL
);
1807 static void process_deferred_bios(struct work_struct
*ws
)
1809 struct cache
*cache
= container_of(ws
, struct cache
, deferred_bio_worker
);
1811 bool commit_needed
= false;
1812 struct bio_list bios
;
1815 bio_list_init(&bios
);
1817 spin_lock_irq(&cache
->lock
);
1818 bio_list_merge_init(&bios
, &cache
->deferred_bios
);
1819 spin_unlock_irq(&cache
->lock
);
1821 while ((bio
= bio_list_pop(&bios
))) {
1822 if (bio
->bi_opf
& REQ_PREFLUSH
)
1823 commit_needed
= process_flush_bio(cache
, bio
) || commit_needed
;
1825 else if (bio_op(bio
) == REQ_OP_DISCARD
)
1826 commit_needed
= process_discard_bio(cache
, bio
) || commit_needed
;
1829 commit_needed
= process_bio(cache
, bio
) || commit_needed
;
1834 schedule_commit(&cache
->committer
);
1838 *--------------------------------------------------------------
1840 *--------------------------------------------------------------
1842 static void requeue_deferred_bios(struct cache
*cache
)
1845 struct bio_list bios
;
1847 bio_list_init(&bios
);
1848 bio_list_merge_init(&bios
, &cache
->deferred_bios
);
1850 while ((bio
= bio_list_pop(&bios
))) {
1851 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
1858 * We want to commit periodically so that not too much
1859 * unwritten metadata builds up.
1861 static void do_waker(struct work_struct
*ws
)
1863 struct cache
*cache
= container_of(to_delayed_work(ws
), struct cache
, waker
);
1865 policy_tick(cache
->policy
, true);
1866 wake_migration_worker(cache
);
1867 schedule_commit(&cache
->committer
);
1868 queue_delayed_work(cache
->wq
, &cache
->waker
, COMMIT_PERIOD
);
1871 static void check_migrations(struct work_struct
*ws
)
1874 struct policy_work
*op
;
1875 struct cache
*cache
= container_of(ws
, struct cache
, migration_worker
);
1879 b
= spare_migration_bandwidth(cache
);
1881 r
= policy_get_background_work(cache
->policy
, b
== IDLE
, &op
);
1886 DMERR_LIMIT("%s: policy_background_work failed",
1887 cache_device_name(cache
));
1891 r
= mg_start(cache
, op
, NULL
);
1900 *--------------------------------------------------------------
1902 *--------------------------------------------------------------
1906 * This function gets called on the error paths of the constructor, so we
1907 * have to cope with a partially initialised struct.
1909 static void __destroy(struct cache
*cache
)
1911 mempool_exit(&cache
->migration_pool
);
1914 dm_bio_prison_destroy_v2(cache
->prison
);
1917 destroy_workqueue(cache
->wq
);
1919 if (cache
->dirty_bitset
)
1920 free_bitset(cache
->dirty_bitset
);
1922 if (cache
->discard_bitset
)
1923 free_bitset(cache
->discard_bitset
);
1926 dm_kcopyd_client_destroy(cache
->copier
);
1929 dm_cache_metadata_close(cache
->cmd
);
1931 if (cache
->metadata_dev
)
1932 dm_put_device(cache
->ti
, cache
->metadata_dev
);
1934 if (cache
->origin_dev
)
1935 dm_put_device(cache
->ti
, cache
->origin_dev
);
1937 if (cache
->cache_dev
)
1938 dm_put_device(cache
->ti
, cache
->cache_dev
);
1941 dm_cache_policy_destroy(cache
->policy
);
1943 bioset_exit(&cache
->bs
);
1948 static void destroy(struct cache
*cache
)
1952 cancel_delayed_work_sync(&cache
->waker
);
1954 for (i
= 0; i
< cache
->nr_ctr_args
; i
++)
1955 kfree(cache
->ctr_args
[i
]);
1956 kfree(cache
->ctr_args
);
1961 static void cache_dtr(struct dm_target
*ti
)
1963 struct cache
*cache
= ti
->private;
1968 static sector_t
get_dev_size(struct dm_dev
*dev
)
1970 return bdev_nr_sectors(dev
->bdev
);
1973 /*----------------------------------------------------------------*/
1976 * Construct a cache device mapping.
1978 * cache <metadata dev> <cache dev> <origin dev> <block size>
1979 * <#feature args> [<feature arg>]*
1980 * <policy> <#policy args> [<policy arg>]*
1982 * metadata dev : fast device holding the persistent metadata
1983 * cache dev : fast device holding cached data blocks
1984 * origin dev : slow device holding original data blocks
1985 * block size : cache unit size in sectors
1987 * #feature args : number of feature arguments passed
1988 * feature args : writethrough. (The default is writeback.)
1990 * policy : the replacement policy to use
1991 * #policy args : an even number of policy arguments corresponding
1992 * to key/value pairs passed to the policy
1993 * policy args : key/value pairs passed to the policy
1994 * E.g. 'sequential_threshold 1024'
1995 * See cache-policies.txt for details.
1997 * Optional feature arguments are:
1998 * writethrough : write through caching that prohibits cache block
1999 * content from being different from origin block content.
2000 * Without this argument, the default behaviour is to write
2001 * back cache block contents later for performance reasons,
2002 * so they may differ from the corresponding origin blocks.
2005 struct dm_target
*ti
;
2007 struct dm_dev
*metadata_dev
;
2009 struct dm_dev
*cache_dev
;
2010 sector_t cache_sectors
;
2012 struct dm_dev
*origin_dev
;
2014 uint32_t block_size
;
2016 const char *policy_name
;
2018 const char **policy_argv
;
2020 struct cache_features features
;
2023 static void destroy_cache_args(struct cache_args
*ca
)
2025 if (ca
->metadata_dev
)
2026 dm_put_device(ca
->ti
, ca
->metadata_dev
);
2029 dm_put_device(ca
->ti
, ca
->cache_dev
);
2032 dm_put_device(ca
->ti
, ca
->origin_dev
);
2037 static bool at_least_one_arg(struct dm_arg_set
*as
, char **error
)
2040 *error
= "Insufficient args";
2047 static int parse_metadata_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2051 sector_t metadata_dev_size
;
2053 if (!at_least_one_arg(as
, error
))
2056 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
),
2057 BLK_OPEN_READ
| BLK_OPEN_WRITE
, &ca
->metadata_dev
);
2059 *error
= "Error opening metadata device";
2063 metadata_dev_size
= get_dev_size(ca
->metadata_dev
);
2064 if (metadata_dev_size
> DM_CACHE_METADATA_MAX_SECTORS_WARNING
)
2065 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2066 ca
->metadata_dev
->bdev
, THIN_METADATA_MAX_SECTORS
);
2071 static int parse_cache_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2076 if (!at_least_one_arg(as
, error
))
2079 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
),
2080 BLK_OPEN_READ
| BLK_OPEN_WRITE
, &ca
->cache_dev
);
2082 *error
= "Error opening cache device";
2085 ca
->cache_sectors
= get_dev_size(ca
->cache_dev
);
2090 static int parse_origin_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2093 sector_t origin_sectors
;
2096 if (!at_least_one_arg(as
, error
))
2099 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
),
2100 BLK_OPEN_READ
| BLK_OPEN_WRITE
, &ca
->origin_dev
);
2102 *error
= "Error opening origin device";
2106 origin_sectors
= get_dev_size(ca
->origin_dev
);
2107 if (ca
->ti
->len
> origin_sectors
) {
2108 *error
= "Device size larger than cached device";
2115 static int parse_block_size(struct cache_args
*ca
, struct dm_arg_set
*as
,
2118 unsigned long block_size
;
2120 if (!at_least_one_arg(as
, error
))
2123 if (kstrtoul(dm_shift_arg(as
), 10, &block_size
) || !block_size
||
2124 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2125 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2126 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2127 *error
= "Invalid data block size";
2131 if (block_size
> ca
->cache_sectors
) {
2132 *error
= "Data block size is larger than the cache device";
2136 ca
->block_size
= block_size
;
2141 static void init_features(struct cache_features
*cf
)
2143 cf
->mode
= CM_WRITE
;
2144 cf
->io_mode
= CM_IO_WRITEBACK
;
2145 cf
->metadata_version
= 1;
2146 cf
->discard_passdown
= true;
2149 static int parse_features(struct cache_args
*ca
, struct dm_arg_set
*as
,
2152 static const struct dm_arg _args
[] = {
2153 {0, 3, "Invalid number of cache feature arguments"},
2156 int r
, mode_ctr
= 0;
2159 struct cache_features
*cf
= &ca
->features
;
2163 r
= dm_read_arg_group(_args
, as
, &argc
, error
);
2168 arg
= dm_shift_arg(as
);
2170 if (!strcasecmp(arg
, "writeback")) {
2171 cf
->io_mode
= CM_IO_WRITEBACK
;
2175 else if (!strcasecmp(arg
, "writethrough")) {
2176 cf
->io_mode
= CM_IO_WRITETHROUGH
;
2180 else if (!strcasecmp(arg
, "passthrough")) {
2181 cf
->io_mode
= CM_IO_PASSTHROUGH
;
2185 else if (!strcasecmp(arg
, "metadata2"))
2186 cf
->metadata_version
= 2;
2188 else if (!strcasecmp(arg
, "no_discard_passdown"))
2189 cf
->discard_passdown
= false;
2192 *error
= "Unrecognised cache feature requested";
2198 *error
= "Duplicate cache io_mode features requested";
2205 static int parse_policy(struct cache_args
*ca
, struct dm_arg_set
*as
,
2208 static const struct dm_arg _args
[] = {
2209 {0, 1024, "Invalid number of policy arguments"},
2214 if (!at_least_one_arg(as
, error
))
2217 ca
->policy_name
= dm_shift_arg(as
);
2219 r
= dm_read_arg_group(_args
, as
, &ca
->policy_argc
, error
);
2223 ca
->policy_argv
= (const char **)as
->argv
;
2224 dm_consume_args(as
, ca
->policy_argc
);
2229 static int parse_cache_args(struct cache_args
*ca
, int argc
, char **argv
,
2233 struct dm_arg_set as
;
2238 r
= parse_metadata_dev(ca
, &as
, error
);
2242 r
= parse_cache_dev(ca
, &as
, error
);
2246 r
= parse_origin_dev(ca
, &as
, error
);
2250 r
= parse_block_size(ca
, &as
, error
);
2254 r
= parse_features(ca
, &as
, error
);
2258 r
= parse_policy(ca
, &as
, error
);
2265 /*----------------------------------------------------------------*/
2267 static struct kmem_cache
*migration_cache
= NULL
;
2269 #define NOT_CORE_OPTION 1
2271 static int process_config_option(struct cache
*cache
, const char *key
, const char *value
)
2275 if (!strcasecmp(key
, "migration_threshold")) {
2276 if (kstrtoul(value
, 10, &tmp
))
2279 cache
->migration_threshold
= tmp
;
2283 return NOT_CORE_OPTION
;
2286 static int set_config_value(struct cache
*cache
, const char *key
, const char *value
)
2288 int r
= process_config_option(cache
, key
, value
);
2290 if (r
== NOT_CORE_OPTION
)
2291 r
= policy_set_config_value(cache
->policy
, key
, value
);
2294 DMWARN("bad config value for %s: %s", key
, value
);
2299 static int set_config_values(struct cache
*cache
, int argc
, const char **argv
)
2304 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2309 r
= set_config_value(cache
, argv
[0], argv
[1]);
2320 static int create_cache_policy(struct cache
*cache
, struct cache_args
*ca
,
2323 struct dm_cache_policy
*p
= dm_cache_policy_create(ca
->policy_name
,
2325 cache
->origin_sectors
,
2326 cache
->sectors_per_block
);
2328 *error
= "Error creating cache's policy";
2332 BUG_ON(!cache
->policy
);
2338 * We want the discard block size to be at least the size of the cache
2339 * block size and have no more than 2^14 discard blocks across the origin.
2341 #define MAX_DISCARD_BLOCKS (1 << 14)
2343 static bool too_many_discard_blocks(sector_t discard_block_size
,
2344 sector_t origin_size
)
2346 (void) sector_div(origin_size
, discard_block_size
);
2348 return origin_size
> MAX_DISCARD_BLOCKS
;
2351 static sector_t
calculate_discard_block_size(sector_t cache_block_size
,
2352 sector_t origin_size
)
2354 sector_t discard_block_size
= cache_block_size
;
2357 while (too_many_discard_blocks(discard_block_size
, origin_size
))
2358 discard_block_size
*= 2;
2360 return discard_block_size
;
2363 static void set_cache_size(struct cache
*cache
, dm_cblock_t size
)
2365 dm_block_t nr_blocks
= from_cblock(size
);
2367 if (nr_blocks
> (1 << 20) && cache
->cache_size
!= size
)
2368 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2369 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2370 "Please consider increasing the cache block size to reduce the overall cache block count.",
2371 (unsigned long long) nr_blocks
);
2373 cache
->cache_size
= size
;
2376 #define DEFAULT_MIGRATION_THRESHOLD 2048
2378 static int cache_create(struct cache_args
*ca
, struct cache
**result
)
2381 char **error
= &ca
->ti
->error
;
2382 struct cache
*cache
;
2383 struct dm_target
*ti
= ca
->ti
;
2384 dm_block_t origin_blocks
;
2385 struct dm_cache_metadata
*cmd
;
2386 bool may_format
= ca
->features
.mode
== CM_WRITE
;
2388 cache
= kzalloc(sizeof(*cache
), GFP_KERNEL
);
2393 ti
->private = cache
;
2394 ti
->accounts_remapped_io
= true;
2395 ti
->num_flush_bios
= 2;
2396 ti
->flush_supported
= true;
2398 ti
->num_discard_bios
= 1;
2399 ti
->discards_supported
= true;
2401 ti
->per_io_data_size
= sizeof(struct per_bio_data
);
2403 cache
->features
= ca
->features
;
2404 if (writethrough_mode(cache
)) {
2405 /* Create bioset for writethrough bios issued to origin */
2406 r
= bioset_init(&cache
->bs
, BIO_POOL_SIZE
, 0, 0);
2411 cache
->metadata_dev
= ca
->metadata_dev
;
2412 cache
->origin_dev
= ca
->origin_dev
;
2413 cache
->cache_dev
= ca
->cache_dev
;
2415 ca
->metadata_dev
= ca
->origin_dev
= ca
->cache_dev
= NULL
;
2417 origin_blocks
= cache
->origin_sectors
= ti
->len
;
2418 origin_blocks
= block_div(origin_blocks
, ca
->block_size
);
2419 cache
->origin_blocks
= to_oblock(origin_blocks
);
2421 cache
->sectors_per_block
= ca
->block_size
;
2422 if (dm_set_target_max_io_len(ti
, cache
->sectors_per_block
)) {
2427 if (ca
->block_size
& (ca
->block_size
- 1)) {
2428 dm_block_t cache_size
= ca
->cache_sectors
;
2430 cache
->sectors_per_block_shift
= -1;
2431 cache_size
= block_div(cache_size
, ca
->block_size
);
2432 set_cache_size(cache
, to_cblock(cache_size
));
2434 cache
->sectors_per_block_shift
= __ffs(ca
->block_size
);
2435 set_cache_size(cache
, to_cblock(ca
->cache_sectors
>> cache
->sectors_per_block_shift
));
2438 r
= create_cache_policy(cache
, ca
, error
);
2442 cache
->policy_nr_args
= ca
->policy_argc
;
2443 cache
->migration_threshold
= DEFAULT_MIGRATION_THRESHOLD
;
2445 r
= set_config_values(cache
, ca
->policy_argc
, ca
->policy_argv
);
2447 *error
= "Error setting cache policy's config values";
2451 cmd
= dm_cache_metadata_open(cache
->metadata_dev
->bdev
,
2452 ca
->block_size
, may_format
,
2453 dm_cache_policy_get_hint_size(cache
->policy
),
2454 ca
->features
.metadata_version
);
2456 *error
= "Error creating metadata object";
2461 set_cache_mode(cache
, CM_WRITE
);
2462 if (get_cache_mode(cache
) != CM_WRITE
) {
2463 *error
= "Unable to get write access to metadata, please check/repair metadata.";
2468 if (passthrough_mode(cache
)) {
2471 r
= dm_cache_metadata_all_clean(cache
->cmd
, &all_clean
);
2473 *error
= "dm_cache_metadata_all_clean() failed";
2478 *error
= "Cannot enter passthrough mode unless all blocks are clean";
2483 policy_allow_migrations(cache
->policy
, false);
2486 spin_lock_init(&cache
->lock
);
2487 bio_list_init(&cache
->deferred_bios
);
2488 atomic_set(&cache
->nr_allocated_migrations
, 0);
2489 atomic_set(&cache
->nr_io_migrations
, 0);
2490 init_waitqueue_head(&cache
->migration_wait
);
2493 atomic_set(&cache
->nr_dirty
, 0);
2494 cache
->dirty_bitset
= alloc_bitset(from_cblock(cache
->cache_size
));
2495 if (!cache
->dirty_bitset
) {
2496 *error
= "could not allocate dirty bitset";
2499 clear_bitset(cache
->dirty_bitset
, from_cblock(cache
->cache_size
));
2501 cache
->discard_block_size
=
2502 calculate_discard_block_size(cache
->sectors_per_block
,
2503 cache
->origin_sectors
);
2504 cache
->discard_nr_blocks
= to_dblock(dm_sector_div_up(cache
->origin_sectors
,
2505 cache
->discard_block_size
));
2506 cache
->discard_bitset
= alloc_bitset(from_dblock(cache
->discard_nr_blocks
));
2507 if (!cache
->discard_bitset
) {
2508 *error
= "could not allocate discard bitset";
2511 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
2513 cache
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2514 if (IS_ERR(cache
->copier
)) {
2515 *error
= "could not create kcopyd client";
2516 r
= PTR_ERR(cache
->copier
);
2520 cache
->wq
= alloc_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
, 0);
2522 *error
= "could not create workqueue for metadata object";
2525 INIT_WORK(&cache
->deferred_bio_worker
, process_deferred_bios
);
2526 INIT_WORK(&cache
->migration_worker
, check_migrations
);
2527 INIT_DELAYED_WORK(&cache
->waker
, do_waker
);
2529 cache
->prison
= dm_bio_prison_create_v2(cache
->wq
);
2530 if (!cache
->prison
) {
2531 *error
= "could not create bio prison";
2535 r
= mempool_init_slab_pool(&cache
->migration_pool
, MIGRATION_POOL_SIZE
,
2538 *error
= "Error creating cache's migration mempool";
2542 cache
->need_tick_bio
= true;
2543 cache
->sized
= false;
2544 cache
->invalidate
= false;
2545 cache
->commit_requested
= false;
2546 cache
->loaded_mappings
= false;
2547 cache
->loaded_discards
= false;
2551 atomic_set(&cache
->stats
.demotion
, 0);
2552 atomic_set(&cache
->stats
.promotion
, 0);
2553 atomic_set(&cache
->stats
.copies_avoided
, 0);
2554 atomic_set(&cache
->stats
.cache_cell_clash
, 0);
2555 atomic_set(&cache
->stats
.commit_count
, 0);
2556 atomic_set(&cache
->stats
.discard_count
, 0);
2558 spin_lock_init(&cache
->invalidation_lock
);
2559 INIT_LIST_HEAD(&cache
->invalidation_requests
);
2561 batcher_init(&cache
->committer
, commit_op
, cache
,
2562 issue_op
, cache
, cache
->wq
);
2563 dm_iot_init(&cache
->tracker
);
2565 init_rwsem(&cache
->background_work_lock
);
2566 prevent_background_work(cache
);
2575 static int copy_ctr_args(struct cache
*cache
, int argc
, const char **argv
)
2580 copy
= kcalloc(argc
, sizeof(*copy
), GFP_KERNEL
);
2583 for (i
= 0; i
< argc
; i
++) {
2584 copy
[i
] = kstrdup(argv
[i
], GFP_KERNEL
);
2593 cache
->nr_ctr_args
= argc
;
2594 cache
->ctr_args
= copy
;
2599 static int cache_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
2602 struct cache_args
*ca
;
2603 struct cache
*cache
= NULL
;
2605 ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
2607 ti
->error
= "Error allocating memory for cache";
2612 r
= parse_cache_args(ca
, argc
, argv
, &ti
->error
);
2616 r
= cache_create(ca
, &cache
);
2620 r
= copy_ctr_args(cache
, argc
- 3, (const char **)argv
+ 3);
2626 ti
->private = cache
;
2628 destroy_cache_args(ca
);
2632 /*----------------------------------------------------------------*/
2634 static int cache_map(struct dm_target
*ti
, struct bio
*bio
)
2636 struct cache
*cache
= ti
->private;
2640 dm_oblock_t block
= get_bio_block(cache
, bio
);
2642 init_per_bio_data(bio
);
2643 if (unlikely(from_oblock(block
) >= from_oblock(cache
->origin_blocks
))) {
2645 * This can only occur if the io goes to a partial block at
2646 * the end of the origin device. We don't cache these.
2647 * Just remap to the origin and carry on.
2649 remap_to_origin(cache
, bio
);
2650 accounted_begin(cache
, bio
);
2651 return DM_MAPIO_REMAPPED
;
2654 if (discard_or_flush(bio
)) {
2655 defer_bio(cache
, bio
);
2656 return DM_MAPIO_SUBMITTED
;
2659 r
= map_bio(cache
, bio
, block
, &commit_needed
);
2661 schedule_commit(&cache
->committer
);
2666 static int cache_end_io(struct dm_target
*ti
, struct bio
*bio
, blk_status_t
*error
)
2668 struct cache
*cache
= ti
->private;
2669 unsigned long flags
;
2670 struct per_bio_data
*pb
= get_per_bio_data(bio
);
2673 policy_tick(cache
->policy
, false);
2675 spin_lock_irqsave(&cache
->lock
, flags
);
2676 cache
->need_tick_bio
= true;
2677 spin_unlock_irqrestore(&cache
->lock
, flags
);
2680 bio_drop_shared_lock(cache
, bio
);
2681 accounted_complete(cache
, bio
);
2683 return DM_ENDIO_DONE
;
2686 static int write_dirty_bitset(struct cache
*cache
)
2690 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2693 r
= dm_cache_set_dirty_bits(cache
->cmd
, from_cblock(cache
->cache_size
), cache
->dirty_bitset
);
2695 metadata_operation_failed(cache
, "dm_cache_set_dirty_bits", r
);
2700 static int write_discard_bitset(struct cache
*cache
)
2704 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2707 r
= dm_cache_discard_bitset_resize(cache
->cmd
, cache
->discard_block_size
,
2708 cache
->discard_nr_blocks
);
2710 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache
));
2711 metadata_operation_failed(cache
, "dm_cache_discard_bitset_resize", r
);
2715 for (i
= 0; i
< from_dblock(cache
->discard_nr_blocks
); i
++) {
2716 r
= dm_cache_set_discard(cache
->cmd
, to_dblock(i
),
2717 is_discarded(cache
, to_dblock(i
)));
2719 metadata_operation_failed(cache
, "dm_cache_set_discard", r
);
2727 static int write_hints(struct cache
*cache
)
2731 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2734 r
= dm_cache_write_hints(cache
->cmd
, cache
->policy
);
2736 metadata_operation_failed(cache
, "dm_cache_write_hints", r
);
2744 * returns true on success
2746 static bool sync_metadata(struct cache
*cache
)
2750 r1
= write_dirty_bitset(cache
);
2752 DMERR("%s: could not write dirty bitset", cache_device_name(cache
));
2754 r2
= write_discard_bitset(cache
);
2756 DMERR("%s: could not write discard bitset", cache_device_name(cache
));
2760 r3
= write_hints(cache
);
2762 DMERR("%s: could not write hints", cache_device_name(cache
));
2765 * If writing the above metadata failed, we still commit, but don't
2766 * set the clean shutdown flag. This will effectively force every
2767 * dirty bit to be set on reload.
2769 r4
= commit(cache
, !r1
&& !r2
&& !r3
);
2771 DMERR("%s: could not write cache metadata", cache_device_name(cache
));
2773 return !r1
&& !r2
&& !r3
&& !r4
;
2776 static void cache_postsuspend(struct dm_target
*ti
)
2778 struct cache
*cache
= ti
->private;
2780 prevent_background_work(cache
);
2781 BUG_ON(atomic_read(&cache
->nr_io_migrations
));
2783 cancel_delayed_work_sync(&cache
->waker
);
2784 drain_workqueue(cache
->wq
);
2785 WARN_ON(cache
->tracker
.in_flight
);
2788 * If it's a flush suspend there won't be any deferred bios, so this
2791 requeue_deferred_bios(cache
);
2793 if (get_cache_mode(cache
) == CM_WRITE
)
2794 (void) sync_metadata(cache
);
2797 static int load_mapping(void *context
, dm_oblock_t oblock
, dm_cblock_t cblock
,
2798 bool dirty
, uint32_t hint
, bool hint_valid
)
2800 struct cache
*cache
= context
;
2803 set_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2804 atomic_inc(&cache
->nr_dirty
);
2806 clear_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2808 return policy_load_mapping(cache
->policy
, oblock
, cblock
, dirty
, hint
, hint_valid
);
2812 * The discard block size in the on disk metadata is not
2813 * necessarily the same as we're currently using. So we have to
2814 * be careful to only set the discarded attribute if we know it
2815 * covers a complete block of the new size.
2817 struct discard_load_info
{
2818 struct cache
*cache
;
2821 * These blocks are sized using the on disk dblock size, rather
2822 * than the current one.
2824 dm_block_t block_size
;
2825 dm_block_t discard_begin
, discard_end
;
2828 static void discard_load_info_init(struct cache
*cache
,
2829 struct discard_load_info
*li
)
2832 li
->discard_begin
= li
->discard_end
= 0;
2835 static void set_discard_range(struct discard_load_info
*li
)
2839 if (li
->discard_begin
== li
->discard_end
)
2843 * Convert to sectors.
2845 b
= li
->discard_begin
* li
->block_size
;
2846 e
= li
->discard_end
* li
->block_size
;
2849 * Then convert back to the current dblock size.
2851 b
= dm_sector_div_up(b
, li
->cache
->discard_block_size
);
2852 sector_div(e
, li
->cache
->discard_block_size
);
2855 * The origin may have shrunk, so we need to check we're still in
2858 if (e
> from_dblock(li
->cache
->discard_nr_blocks
))
2859 e
= from_dblock(li
->cache
->discard_nr_blocks
);
2862 set_discard(li
->cache
, to_dblock(b
));
2865 static int load_discard(void *context
, sector_t discard_block_size
,
2866 dm_dblock_t dblock
, bool discard
)
2868 struct discard_load_info
*li
= context
;
2870 li
->block_size
= discard_block_size
;
2873 if (from_dblock(dblock
) == li
->discard_end
)
2875 * We're already in a discard range, just extend it.
2877 li
->discard_end
= li
->discard_end
+ 1ULL;
2881 * Emit the old range and start a new one.
2883 set_discard_range(li
);
2884 li
->discard_begin
= from_dblock(dblock
);
2885 li
->discard_end
= li
->discard_begin
+ 1ULL;
2888 set_discard_range(li
);
2889 li
->discard_begin
= li
->discard_end
= 0;
2895 static dm_cblock_t
get_cache_dev_size(struct cache
*cache
)
2897 sector_t size
= get_dev_size(cache
->cache_dev
);
2898 (void) sector_div(size
, cache
->sectors_per_block
);
2899 return to_cblock(size
);
2902 static bool can_resize(struct cache
*cache
, dm_cblock_t new_size
)
2904 if (from_cblock(new_size
) > from_cblock(cache
->cache_size
)) {
2905 DMERR("%s: unable to extend cache due to missing cache table reload",
2906 cache_device_name(cache
));
2911 * We can't drop a dirty block when shrinking the cache.
2913 if (cache
->loaded_mappings
) {
2914 new_size
= to_cblock(find_next_bit(cache
->dirty_bitset
,
2915 from_cblock(cache
->cache_size
),
2916 from_cblock(new_size
)));
2917 if (new_size
!= cache
->cache_size
) {
2918 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2919 cache_device_name(cache
),
2920 (unsigned long long) from_cblock(new_size
));
2928 static int resize_cache_dev(struct cache
*cache
, dm_cblock_t new_size
)
2932 r
= dm_cache_resize(cache
->cmd
, new_size
);
2934 DMERR("%s: could not resize cache metadata", cache_device_name(cache
));
2935 metadata_operation_failed(cache
, "dm_cache_resize", r
);
2939 set_cache_size(cache
, new_size
);
2944 static int cache_preresume(struct dm_target
*ti
)
2947 struct cache
*cache
= ti
->private;
2948 dm_cblock_t csize
= get_cache_dev_size(cache
);
2951 * Check to see if the cache has resized.
2953 if (!cache
->sized
|| csize
!= cache
->cache_size
) {
2954 if (!can_resize(cache
, csize
))
2957 r
= resize_cache_dev(cache
, csize
);
2961 cache
->sized
= true;
2964 if (!cache
->loaded_mappings
) {
2965 r
= dm_cache_load_mappings(cache
->cmd
, cache
->policy
,
2966 load_mapping
, cache
);
2968 DMERR("%s: could not load cache mappings", cache_device_name(cache
));
2969 metadata_operation_failed(cache
, "dm_cache_load_mappings", r
);
2973 cache
->loaded_mappings
= true;
2976 if (!cache
->loaded_discards
) {
2977 struct discard_load_info li
;
2980 * The discard bitset could have been resized, or the
2981 * discard block size changed. To be safe we start by
2982 * setting every dblock to not discarded.
2984 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
2986 discard_load_info_init(cache
, &li
);
2987 r
= dm_cache_load_discards(cache
->cmd
, load_discard
, &li
);
2989 DMERR("%s: could not load origin discards", cache_device_name(cache
));
2990 metadata_operation_failed(cache
, "dm_cache_load_discards", r
);
2993 set_discard_range(&li
);
2995 cache
->loaded_discards
= true;
3001 static void cache_resume(struct dm_target
*ti
)
3003 struct cache
*cache
= ti
->private;
3005 cache
->need_tick_bio
= true;
3006 allow_background_work(cache
);
3007 do_waker(&cache
->waker
.work
);
3010 static void emit_flags(struct cache
*cache
, char *result
,
3011 unsigned int maxlen
, ssize_t
*sz_ptr
)
3013 ssize_t sz
= *sz_ptr
;
3014 struct cache_features
*cf
= &cache
->features
;
3015 unsigned int count
= (cf
->metadata_version
== 2) + !cf
->discard_passdown
+ 1;
3017 DMEMIT("%u ", count
);
3019 if (cf
->metadata_version
== 2)
3020 DMEMIT("metadata2 ");
3022 if (writethrough_mode(cache
))
3023 DMEMIT("writethrough ");
3025 else if (passthrough_mode(cache
))
3026 DMEMIT("passthrough ");
3028 else if (writeback_mode(cache
))
3029 DMEMIT("writeback ");
3033 DMERR("%s: internal error: unknown io mode: %d",
3034 cache_device_name(cache
), (int) cf
->io_mode
);
3037 if (!cf
->discard_passdown
)
3038 DMEMIT("no_discard_passdown ");
3046 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3047 * <cache block size> <#used cache blocks>/<#total cache blocks>
3048 * <#read hits> <#read misses> <#write hits> <#write misses>
3049 * <#demotions> <#promotions> <#dirty>
3050 * <#features> <features>*
3051 * <#core args> <core args>
3052 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3054 static void cache_status(struct dm_target
*ti
, status_type_t type
,
3055 unsigned int status_flags
, char *result
, unsigned int maxlen
)
3060 dm_block_t nr_free_blocks_metadata
= 0;
3061 dm_block_t nr_blocks_metadata
= 0;
3062 char buf
[BDEVNAME_SIZE
];
3063 struct cache
*cache
= ti
->private;
3064 dm_cblock_t residency
;
3068 case STATUSTYPE_INFO
:
3069 if (get_cache_mode(cache
) == CM_FAIL
) {
3074 /* Commit to ensure statistics aren't out-of-date */
3075 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3076 (void) commit(cache
, false);
3078 r
= dm_cache_get_free_metadata_block_count(cache
->cmd
, &nr_free_blocks_metadata
);
3080 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3081 cache_device_name(cache
), r
);
3085 r
= dm_cache_get_metadata_dev_size(cache
->cmd
, &nr_blocks_metadata
);
3087 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3088 cache_device_name(cache
), r
);
3092 residency
= policy_residency(cache
->policy
);
3094 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3095 (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE
,
3096 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3097 (unsigned long long)nr_blocks_metadata
,
3098 (unsigned long long)cache
->sectors_per_block
,
3099 (unsigned long long) from_cblock(residency
),
3100 (unsigned long long) from_cblock(cache
->cache_size
),
3101 (unsigned int) atomic_read(&cache
->stats
.read_hit
),
3102 (unsigned int) atomic_read(&cache
->stats
.read_miss
),
3103 (unsigned int) atomic_read(&cache
->stats
.write_hit
),
3104 (unsigned int) atomic_read(&cache
->stats
.write_miss
),
3105 (unsigned int) atomic_read(&cache
->stats
.demotion
),
3106 (unsigned int) atomic_read(&cache
->stats
.promotion
),
3107 (unsigned long) atomic_read(&cache
->nr_dirty
));
3109 emit_flags(cache
, result
, maxlen
, &sz
);
3111 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache
->migration_threshold
);
3113 DMEMIT("%s ", dm_cache_policy_get_name(cache
->policy
));
3115 r
= policy_emit_config_values(cache
->policy
, result
, maxlen
, &sz
);
3117 DMERR("%s: policy_emit_config_values returned %d",
3118 cache_device_name(cache
), r
);
3121 if (get_cache_mode(cache
) == CM_READ_ONLY
)
3126 r
= dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
);
3128 if (r
|| needs_check
)
3129 DMEMIT("needs_check ");
3135 case STATUSTYPE_TABLE
:
3136 format_dev_t(buf
, cache
->metadata_dev
->bdev
->bd_dev
);
3138 format_dev_t(buf
, cache
->cache_dev
->bdev
->bd_dev
);
3140 format_dev_t(buf
, cache
->origin_dev
->bdev
->bd_dev
);
3143 for (i
= 0; i
< cache
->nr_ctr_args
- 1; i
++)
3144 DMEMIT(" %s", cache
->ctr_args
[i
]);
3145 if (cache
->nr_ctr_args
)
3146 DMEMIT(" %s", cache
->ctr_args
[cache
->nr_ctr_args
- 1]);
3149 case STATUSTYPE_IMA
:
3150 DMEMIT_TARGET_NAME_VERSION(ti
->type
);
3151 if (get_cache_mode(cache
) == CM_FAIL
)
3152 DMEMIT(",metadata_mode=fail");
3153 else if (get_cache_mode(cache
) == CM_READ_ONLY
)
3154 DMEMIT(",metadata_mode=ro");
3156 DMEMIT(",metadata_mode=rw");
3158 format_dev_t(buf
, cache
->metadata_dev
->bdev
->bd_dev
);
3159 DMEMIT(",cache_metadata_device=%s", buf
);
3160 format_dev_t(buf
, cache
->cache_dev
->bdev
->bd_dev
);
3161 DMEMIT(",cache_device=%s", buf
);
3162 format_dev_t(buf
, cache
->origin_dev
->bdev
->bd_dev
);
3163 DMEMIT(",cache_origin_device=%s", buf
);
3164 DMEMIT(",writethrough=%c", writethrough_mode(cache
) ? 'y' : 'n');
3165 DMEMIT(",writeback=%c", writeback_mode(cache
) ? 'y' : 'n');
3166 DMEMIT(",passthrough=%c", passthrough_mode(cache
) ? 'y' : 'n');
3167 DMEMIT(",metadata2=%c", cache
->features
.metadata_version
== 2 ? 'y' : 'n');
3168 DMEMIT(",no_discard_passdown=%c", cache
->features
.discard_passdown
? 'n' : 'y');
3180 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3181 * the one-past-the-end value.
3183 struct cblock_range
{
3189 * A cache block range can take two forms:
3191 * i) A single cblock, eg. '3456'
3192 * ii) A begin and end cblock with a dash between, eg. 123-234
3194 static int parse_cblock_range(struct cache
*cache
, const char *str
,
3195 struct cblock_range
*result
)
3202 * Try and parse form (ii) first.
3204 r
= sscanf(str
, "%llu-%llu%c", &b
, &e
, &dummy
);
3207 result
->begin
= to_cblock(b
);
3208 result
->end
= to_cblock(e
);
3213 * That didn't work, try form (i).
3215 r
= sscanf(str
, "%llu%c", &b
, &dummy
);
3218 result
->begin
= to_cblock(b
);
3219 result
->end
= to_cblock(from_cblock(result
->begin
) + 1u);
3223 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache
), str
);
3227 static int validate_cblock_range(struct cache
*cache
, struct cblock_range
*range
)
3229 uint64_t b
= from_cblock(range
->begin
);
3230 uint64_t e
= from_cblock(range
->end
);
3231 uint64_t n
= from_cblock(cache
->cache_size
);
3234 DMERR("%s: begin cblock out of range: %llu >= %llu",
3235 cache_device_name(cache
), b
, n
);
3240 DMERR("%s: end cblock out of range: %llu > %llu",
3241 cache_device_name(cache
), e
, n
);
3246 DMERR("%s: invalid cblock range: %llu >= %llu",
3247 cache_device_name(cache
), b
, e
);
3254 static inline dm_cblock_t
cblock_succ(dm_cblock_t b
)
3256 return to_cblock(from_cblock(b
) + 1);
3259 static int request_invalidation(struct cache
*cache
, struct cblock_range
*range
)
3264 * We don't need to do any locking here because we know we're in
3265 * passthrough mode. There's is potential for a race between an
3266 * invalidation triggered by an io and an invalidation message. This
3267 * is harmless, we must not worry if the policy call fails.
3269 while (range
->begin
!= range
->end
) {
3270 r
= invalidate_cblock(cache
, range
->begin
);
3274 range
->begin
= cblock_succ(range
->begin
);
3277 cache
->commit_requested
= true;
3281 static int process_invalidate_cblocks_message(struct cache
*cache
, unsigned int count
,
3282 const char **cblock_ranges
)
3286 struct cblock_range range
;
3288 if (!passthrough_mode(cache
)) {
3289 DMERR("%s: cache has to be in passthrough mode for invalidation",
3290 cache_device_name(cache
));
3294 for (i
= 0; i
< count
; i
++) {
3295 r
= parse_cblock_range(cache
, cblock_ranges
[i
], &range
);
3299 r
= validate_cblock_range(cache
, &range
);
3304 * Pass begin and end origin blocks to the worker and wake it.
3306 r
= request_invalidation(cache
, &range
);
3318 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3320 * The key migration_threshold is supported by the cache target core.
3322 static int cache_message(struct dm_target
*ti
, unsigned int argc
, char **argv
,
3323 char *result
, unsigned int maxlen
)
3325 struct cache
*cache
= ti
->private;
3330 if (get_cache_mode(cache
) >= CM_READ_ONLY
) {
3331 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3332 cache_device_name(cache
));
3336 if (!strcasecmp(argv
[0], "invalidate_cblocks"))
3337 return process_invalidate_cblocks_message(cache
, argc
- 1, (const char **) argv
+ 1);
3342 return set_config_value(cache
, argv
[0], argv
[1]);
3345 static int cache_iterate_devices(struct dm_target
*ti
,
3346 iterate_devices_callout_fn fn
, void *data
)
3349 struct cache
*cache
= ti
->private;
3351 r
= fn(ti
, cache
->cache_dev
, 0, get_dev_size(cache
->cache_dev
), data
);
3353 r
= fn(ti
, cache
->origin_dev
, 0, ti
->len
, data
);
3359 * If discard_passdown was enabled verify that the origin device
3360 * supports discards. Disable discard_passdown if not.
3362 static void disable_passdown_if_not_supported(struct cache
*cache
)
3364 struct block_device
*origin_bdev
= cache
->origin_dev
->bdev
;
3365 struct queue_limits
*origin_limits
= bdev_limits(origin_bdev
);
3366 const char *reason
= NULL
;
3368 if (!cache
->features
.discard_passdown
)
3371 if (!bdev_max_discard_sectors(origin_bdev
))
3372 reason
= "discard unsupported";
3374 else if (origin_limits
->max_discard_sectors
< cache
->sectors_per_block
)
3375 reason
= "max discard sectors smaller than a block";
3378 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3379 origin_bdev
, reason
);
3380 cache
->features
.discard_passdown
= false;
3384 static void set_discard_limits(struct cache
*cache
, struct queue_limits
*limits
)
3386 struct block_device
*origin_bdev
= cache
->origin_dev
->bdev
;
3387 struct queue_limits
*origin_limits
= bdev_limits(origin_bdev
);
3389 if (!cache
->features
.discard_passdown
) {
3390 /* No passdown is done so setting own virtual limits */
3391 limits
->max_hw_discard_sectors
= min_t(sector_t
, cache
->discard_block_size
* 1024,
3392 cache
->origin_sectors
);
3393 limits
->discard_granularity
= cache
->discard_block_size
<< SECTOR_SHIFT
;
3398 * cache_iterate_devices() is stacking both origin and fast device limits
3399 * but discards aren't passed to fast device, so inherit origin's limits.
3401 limits
->max_hw_discard_sectors
= origin_limits
->max_hw_discard_sectors
;
3402 limits
->discard_granularity
= origin_limits
->discard_granularity
;
3403 limits
->discard_alignment
= origin_limits
->discard_alignment
;
3406 static void cache_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3408 struct cache
*cache
= ti
->private;
3409 uint64_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3412 * If the system-determined stacked limits are compatible with the
3413 * cache's blocksize (io_opt is a factor) do not override them.
3415 if (io_opt_sectors
< cache
->sectors_per_block
||
3416 do_div(io_opt_sectors
, cache
->sectors_per_block
)) {
3417 limits
->io_min
= cache
->sectors_per_block
<< SECTOR_SHIFT
;
3418 limits
->io_opt
= cache
->sectors_per_block
<< SECTOR_SHIFT
;
3421 disable_passdown_if_not_supported(cache
);
3422 set_discard_limits(cache
, limits
);
3425 /*----------------------------------------------------------------*/
3427 static struct target_type cache_target
= {
3429 .version
= {2, 2, 0},
3430 .module
= THIS_MODULE
,
3434 .end_io
= cache_end_io
,
3435 .postsuspend
= cache_postsuspend
,
3436 .preresume
= cache_preresume
,
3437 .resume
= cache_resume
,
3438 .status
= cache_status
,
3439 .message
= cache_message
,
3440 .iterate_devices
= cache_iterate_devices
,
3441 .io_hints
= cache_io_hints
,
3444 static int __init
dm_cache_init(void)
3448 migration_cache
= KMEM_CACHE(dm_cache_migration
, 0);
3449 if (!migration_cache
) {
3454 btracker_work_cache
= kmem_cache_create("dm_cache_bt_work",
3455 sizeof(struct bt_work
), __alignof__(struct bt_work
), 0, NULL
);
3456 if (!btracker_work_cache
) {
3461 r
= dm_register_target(&cache_target
);
3469 kmem_cache_destroy(migration_cache
);
3470 kmem_cache_destroy(btracker_work_cache
);
3474 static void __exit
dm_cache_exit(void)
3476 dm_unregister_target(&cache_target
);
3477 kmem_cache_destroy(migration_cache
);
3478 kmem_cache_destroy(btracker_work_cache
);
3481 module_init(dm_cache_init
);
3482 module_exit(dm_cache_exit
);
3484 MODULE_DESCRIPTION(DM_NAME
" cache target");
3485 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3486 MODULE_LICENSE("GPL");