drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / md / dm-vdo / funnel-workqueue.c
blobae11941c90a92bf86a2319bc0cba2222634cebbd
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2023 Red Hat
4 */
6 #include "funnel-workqueue.h"
8 #include <linux/atomic.h>
9 #include <linux/cache.h>
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/kthread.h>
13 #include <linux/percpu.h>
15 #include "funnel-queue.h"
16 #include "logger.h"
17 #include "memory-alloc.h"
18 #include "numeric.h"
19 #include "permassert.h"
20 #include "string-utils.h"
22 #include "completion.h"
23 #include "status-codes.h"
25 static DEFINE_PER_CPU(unsigned int, service_queue_rotor);
27 /**
28 * DOC: Work queue definition.
30 * There are two types of work queues: simple, with one worker thread, and round-robin, which uses
31 * a group of the former to do the work, and assigns work to them in round-robin fashion (roughly).
32 * Externally, both are represented via the same common sub-structure, though there's actually not
33 * a great deal of overlap between the two types internally.
35 struct vdo_work_queue {
36 /* Name of just the work queue (e.g., "cpuQ12") */
37 char *name;
38 bool round_robin_mode;
39 struct vdo_thread *owner;
40 /* Life cycle functions, etc */
41 const struct vdo_work_queue_type *type;
44 struct simple_work_queue {
45 struct vdo_work_queue common;
46 struct funnel_queue *priority_lists[VDO_WORK_Q_MAX_PRIORITY + 1];
47 void *private;
50 * The fields above are unchanged after setup but often read, and are good candidates for
51 * caching -- and if the max priority is 2, just fit in one x86-64 cache line if aligned.
52 * The fields below are often modified as we sleep and wake, so we want a separate cache
53 * line for performance.
56 /* Any (0 or 1) worker threads waiting for new work to do */
57 wait_queue_head_t waiting_worker_threads ____cacheline_aligned;
58 /* Hack to reduce wakeup calls if the worker thread is running */
59 atomic_t idle;
61 /* These are infrequently used so in terms of performance we don't care where they land. */
62 struct task_struct *thread;
63 /* Notify creator once worker has initialized */
64 struct completion *started;
67 struct round_robin_work_queue {
68 struct vdo_work_queue common;
69 struct simple_work_queue **service_queues;
70 unsigned int num_service_queues;
73 static inline struct simple_work_queue *as_simple_work_queue(struct vdo_work_queue *queue)
75 return ((queue == NULL) ?
76 NULL : container_of(queue, struct simple_work_queue, common));
79 static inline struct round_robin_work_queue *as_round_robin_work_queue(struct vdo_work_queue *queue)
81 return ((queue == NULL) ?
82 NULL :
83 container_of(queue, struct round_robin_work_queue, common));
86 /* Processing normal completions. */
89 * Dequeue and return the next waiting completion, if any.
91 * We scan the funnel queues from highest priority to lowest, once; there is therefore a race
92 * condition where a high-priority completion can be enqueued followed by a lower-priority one, and
93 * we'll grab the latter (but we'll catch the high-priority item on the next call). If strict
94 * enforcement of priorities becomes necessary, this function will need fixing.
96 static struct vdo_completion *poll_for_completion(struct simple_work_queue *queue)
98 int i;
100 for (i = queue->common.type->max_priority; i >= 0; i--) {
101 struct funnel_queue_entry *link = vdo_funnel_queue_poll(queue->priority_lists[i]);
103 if (link != NULL)
104 return container_of(link, struct vdo_completion, work_queue_entry_link);
107 return NULL;
110 static void enqueue_work_queue_completion(struct simple_work_queue *queue,
111 struct vdo_completion *completion)
113 VDO_ASSERT_LOG_ONLY(completion->my_queue == NULL,
114 "completion %px (fn %px) to enqueue (%px) is not already queued (%px)",
115 completion, completion->callback, queue, completion->my_queue);
116 if (completion->priority == VDO_WORK_Q_DEFAULT_PRIORITY)
117 completion->priority = queue->common.type->default_priority;
119 if (VDO_ASSERT(completion->priority <= queue->common.type->max_priority,
120 "priority is in range for queue") != VDO_SUCCESS)
121 completion->priority = 0;
123 completion->my_queue = &queue->common;
125 /* Funnel queue handles the synchronization for the put. */
126 vdo_funnel_queue_put(queue->priority_lists[completion->priority],
127 &completion->work_queue_entry_link);
130 * Due to how funnel queue synchronization is handled (just atomic operations), the
131 * simplest safe implementation here would be to wake-up any waiting threads after
132 * enqueueing each item. Even if the funnel queue is not empty at the time of adding an
133 * item to the queue, the consumer thread may not see this since it is not guaranteed to
134 * have the same view of the queue as a producer thread.
136 * However, the above is wasteful so instead we attempt to minimize the number of thread
137 * wakeups. Using an idle flag, and careful ordering using memory barriers, we should be
138 * able to determine when the worker thread might be asleep or going to sleep. We use
139 * cmpxchg to try to take ownership (vs other producer threads) of the responsibility for
140 * waking the worker thread, so multiple wakeups aren't tried at once.
142 * This was tuned for some x86 boxes that were handy; it's untested whether doing the read
143 * first is any better or worse for other platforms, even other x86 configurations.
145 smp_mb();
146 if ((atomic_read(&queue->idle) != 1) || (atomic_cmpxchg(&queue->idle, 1, 0) != 1))
147 return;
149 /* There's a maximum of one thread in this list. */
150 wake_up(&queue->waiting_worker_threads);
153 static void run_start_hook(struct simple_work_queue *queue)
155 if (queue->common.type->start != NULL)
156 queue->common.type->start(queue->private);
159 static void run_finish_hook(struct simple_work_queue *queue)
161 if (queue->common.type->finish != NULL)
162 queue->common.type->finish(queue->private);
166 * Wait for the next completion to process, or until kthread_should_stop indicates that it's time
167 * for us to shut down.
169 * If kthread_should_stop says it's time to stop but we have pending completions return a
170 * completion.
172 * Also update statistics relating to scheduler interactions.
174 static struct vdo_completion *wait_for_next_completion(struct simple_work_queue *queue)
176 struct vdo_completion *completion;
177 DEFINE_WAIT(wait);
179 while (true) {
180 prepare_to_wait(&queue->waiting_worker_threads, &wait,
181 TASK_INTERRUPTIBLE);
183 * Don't set the idle flag until a wakeup will not be lost.
185 * Force synchronization between setting the idle flag and checking the funnel
186 * queue; the producer side will do them in the reverse order. (There's still a
187 * race condition we've chosen to allow, because we've got a timeout below that
188 * unwedges us if we hit it, but this may narrow the window a little.)
190 atomic_set(&queue->idle, 1);
191 smp_mb(); /* store-load barrier between "idle" and funnel queue */
193 completion = poll_for_completion(queue);
194 if (completion != NULL)
195 break;
198 * We need to check for thread-stop after setting TASK_INTERRUPTIBLE state up
199 * above. Otherwise, schedule() will put the thread to sleep and might miss a
200 * wakeup from kthread_stop() call in vdo_finish_work_queue().
202 if (kthread_should_stop())
203 break;
205 schedule();
208 * Most of the time when we wake, it should be because there's work to do. If it
209 * was a spurious wakeup, continue looping.
211 completion = poll_for_completion(queue);
212 if (completion != NULL)
213 break;
216 finish_wait(&queue->waiting_worker_threads, &wait);
217 atomic_set(&queue->idle, 0);
219 return completion;
222 static void process_completion(struct simple_work_queue *queue,
223 struct vdo_completion *completion)
225 if (VDO_ASSERT(completion->my_queue == &queue->common,
226 "completion %px from queue %px marked as being in this queue (%px)",
227 completion, queue, completion->my_queue) == VDO_SUCCESS)
228 completion->my_queue = NULL;
230 vdo_run_completion(completion);
233 static void service_work_queue(struct simple_work_queue *queue)
235 run_start_hook(queue);
237 while (true) {
238 struct vdo_completion *completion = poll_for_completion(queue);
240 if (completion == NULL)
241 completion = wait_for_next_completion(queue);
243 if (completion == NULL) {
244 /* No completions but kthread_should_stop() was triggered. */
245 break;
248 process_completion(queue, completion);
251 * Be friendly to a CPU that has other work to do, if the kernel has told us to.
252 * This speeds up some performance tests; that "other work" might include other VDO
253 * threads.
255 if (need_resched())
256 cond_resched();
259 run_finish_hook(queue);
262 static int work_queue_runner(void *ptr)
264 struct simple_work_queue *queue = ptr;
266 complete(queue->started);
267 service_work_queue(queue);
268 return 0;
271 /* Creation & teardown */
273 static void free_simple_work_queue(struct simple_work_queue *queue)
275 unsigned int i;
277 for (i = 0; i <= VDO_WORK_Q_MAX_PRIORITY; i++)
278 vdo_free_funnel_queue(queue->priority_lists[i]);
279 vdo_free(queue->common.name);
280 vdo_free(queue);
283 static void free_round_robin_work_queue(struct round_robin_work_queue *queue)
285 struct simple_work_queue **queue_table = queue->service_queues;
286 unsigned int count = queue->num_service_queues;
287 unsigned int i;
289 queue->service_queues = NULL;
291 for (i = 0; i < count; i++)
292 free_simple_work_queue(queue_table[i]);
293 vdo_free(queue_table);
294 vdo_free(queue->common.name);
295 vdo_free(queue);
298 void vdo_free_work_queue(struct vdo_work_queue *queue)
300 if (queue == NULL)
301 return;
303 vdo_finish_work_queue(queue);
305 if (queue->round_robin_mode)
306 free_round_robin_work_queue(as_round_robin_work_queue(queue));
307 else
308 free_simple_work_queue(as_simple_work_queue(queue));
311 static int make_simple_work_queue(const char *thread_name_prefix, const char *name,
312 struct vdo_thread *owner, void *private,
313 const struct vdo_work_queue_type *type,
314 struct simple_work_queue **queue_ptr)
316 DECLARE_COMPLETION_ONSTACK(started);
317 struct simple_work_queue *queue;
318 int i;
319 struct task_struct *thread = NULL;
320 int result;
322 VDO_ASSERT_LOG_ONLY((type->max_priority <= VDO_WORK_Q_MAX_PRIORITY),
323 "queue priority count %u within limit %u", type->max_priority,
324 VDO_WORK_Q_MAX_PRIORITY);
326 result = vdo_allocate(1, struct simple_work_queue, "simple work queue", &queue);
327 if (result != VDO_SUCCESS)
328 return result;
330 queue->private = private;
331 queue->started = &started;
332 queue->common.type = type;
333 queue->common.owner = owner;
334 init_waitqueue_head(&queue->waiting_worker_threads);
336 result = vdo_duplicate_string(name, "queue name", &queue->common.name);
337 if (result != VDO_SUCCESS) {
338 vdo_free(queue);
339 return -ENOMEM;
342 for (i = 0; i <= type->max_priority; i++) {
343 result = vdo_make_funnel_queue(&queue->priority_lists[i]);
344 if (result != VDO_SUCCESS) {
345 free_simple_work_queue(queue);
346 return result;
350 thread = kthread_run(work_queue_runner, queue, "%s:%s", thread_name_prefix,
351 queue->common.name);
352 if (IS_ERR(thread)) {
353 free_simple_work_queue(queue);
354 return (int) PTR_ERR(thread);
357 queue->thread = thread;
360 * If we don't wait to ensure the thread is running VDO code, a quick kthread_stop (due to
361 * errors elsewhere) could cause it to never get as far as running VDO, skipping the
362 * cleanup code.
364 * Eventually we should just make that path safe too, and then we won't need this
365 * synchronization.
367 wait_for_completion(&started);
369 *queue_ptr = queue;
370 return VDO_SUCCESS;
374 * vdo_make_work_queue() - Create a work queue; if multiple threads are requested, completions will
375 * be distributed to them in round-robin fashion.
377 * Each queue is associated with a struct vdo_thread which has a single vdo thread id. Regardless
378 * of the actual number of queues and threads allocated here, code outside of the queue
379 * implementation will treat this as a single zone.
381 int vdo_make_work_queue(const char *thread_name_prefix, const char *name,
382 struct vdo_thread *owner, const struct vdo_work_queue_type *type,
383 unsigned int thread_count, void *thread_privates[],
384 struct vdo_work_queue **queue_ptr)
386 struct round_robin_work_queue *queue;
387 int result;
388 char thread_name[TASK_COMM_LEN];
389 unsigned int i;
391 if (thread_count == 1) {
392 struct simple_work_queue *simple_queue;
393 void *context = ((thread_privates != NULL) ? thread_privates[0] : NULL);
395 result = make_simple_work_queue(thread_name_prefix, name, owner, context,
396 type, &simple_queue);
397 if (result == VDO_SUCCESS)
398 *queue_ptr = &simple_queue->common;
399 return result;
402 result = vdo_allocate(1, struct round_robin_work_queue, "round-robin work queue",
403 &queue);
404 if (result != VDO_SUCCESS)
405 return result;
407 result = vdo_allocate(thread_count, struct simple_work_queue *,
408 "subordinate work queues", &queue->service_queues);
409 if (result != VDO_SUCCESS) {
410 vdo_free(queue);
411 return result;
414 queue->num_service_queues = thread_count;
415 queue->common.round_robin_mode = true;
416 queue->common.owner = owner;
418 result = vdo_duplicate_string(name, "queue name", &queue->common.name);
419 if (result != VDO_SUCCESS) {
420 vdo_free(queue->service_queues);
421 vdo_free(queue);
422 return -ENOMEM;
425 *queue_ptr = &queue->common;
427 for (i = 0; i < thread_count; i++) {
428 void *context = ((thread_privates != NULL) ? thread_privates[i] : NULL);
430 snprintf(thread_name, sizeof(thread_name), "%s%u", name, i);
431 result = make_simple_work_queue(thread_name_prefix, thread_name, owner,
432 context, type, &queue->service_queues[i]);
433 if (result != VDO_SUCCESS) {
434 queue->num_service_queues = i;
435 /* Destroy previously created subordinates. */
436 vdo_free_work_queue(vdo_forget(*queue_ptr));
437 return result;
441 return VDO_SUCCESS;
444 static void finish_simple_work_queue(struct simple_work_queue *queue)
446 if (queue->thread == NULL)
447 return;
449 /* Tells the worker thread to shut down and waits for it to exit. */
450 kthread_stop(queue->thread);
451 queue->thread = NULL;
454 static void finish_round_robin_work_queue(struct round_robin_work_queue *queue)
456 struct simple_work_queue **queue_table = queue->service_queues;
457 unsigned int count = queue->num_service_queues;
458 unsigned int i;
460 for (i = 0; i < count; i++)
461 finish_simple_work_queue(queue_table[i]);
464 /* No enqueueing of completions should be done once this function is called. */
465 void vdo_finish_work_queue(struct vdo_work_queue *queue)
467 if (queue == NULL)
468 return;
470 if (queue->round_robin_mode)
471 finish_round_robin_work_queue(as_round_robin_work_queue(queue));
472 else
473 finish_simple_work_queue(as_simple_work_queue(queue));
476 /* Debugging dumps */
478 static void dump_simple_work_queue(struct simple_work_queue *queue)
480 const char *thread_status = "no threads";
481 char task_state_report = '-';
483 if (queue->thread != NULL) {
484 task_state_report = task_state_to_char(queue->thread);
485 thread_status = atomic_read(&queue->idle) ? "idle" : "running";
488 vdo_log_info("workQ %px (%s) %s (%c)", &queue->common, queue->common.name,
489 thread_status, task_state_report);
491 /* ->waiting_worker_threads wait queue status? anyone waiting? */
495 * Write to the buffer some info about the completion, for logging. Since the common use case is
496 * dumping info about a lot of completions to syslog all at once, the format favors brevity over
497 * readability.
499 void vdo_dump_work_queue(struct vdo_work_queue *queue)
501 if (queue->round_robin_mode) {
502 struct round_robin_work_queue *round_robin = as_round_robin_work_queue(queue);
503 unsigned int i;
505 for (i = 0; i < round_robin->num_service_queues; i++)
506 dump_simple_work_queue(round_robin->service_queues[i]);
507 } else {
508 dump_simple_work_queue(as_simple_work_queue(queue));
512 static void get_function_name(void *pointer, char *buffer, size_t buffer_length)
514 if (pointer == NULL) {
516 * Format "%ps" logs a null pointer as "(null)" with a bunch of leading spaces. We
517 * sometimes use this when logging lots of data; don't be so verbose.
519 strscpy(buffer, "-", buffer_length);
520 } else {
522 * Use a pragma to defeat gcc's format checking, which doesn't understand that
523 * "%ps" actually does support a precision spec in Linux kernel code.
525 char *space;
527 #pragma GCC diagnostic push
528 #pragma GCC diagnostic ignored "-Wformat"
529 snprintf(buffer, buffer_length, "%.*ps", buffer_length - 1, pointer);
530 #pragma GCC diagnostic pop
532 space = strchr(buffer, ' ');
533 if (space != NULL)
534 *space = '\0';
538 void vdo_dump_completion_to_buffer(struct vdo_completion *completion, char *buffer,
539 size_t length)
541 size_t current_length =
542 scnprintf(buffer, length, "%.*s/", TASK_COMM_LEN,
543 (completion->my_queue == NULL ? "-" : completion->my_queue->name));
545 if (current_length < length - 1) {
546 get_function_name((void *) completion->callback, buffer + current_length,
547 length - current_length);
551 /* Completion submission */
553 * If the completion has a timeout that has already passed, the timeout handler function may be
554 * invoked by this function.
556 void vdo_enqueue_work_queue(struct vdo_work_queue *queue,
557 struct vdo_completion *completion)
560 * Convert the provided generic vdo_work_queue to the simple_work_queue to actually queue
561 * on.
563 struct simple_work_queue *simple_queue = NULL;
565 if (!queue->round_robin_mode) {
566 simple_queue = as_simple_work_queue(queue);
567 } else {
568 struct round_robin_work_queue *round_robin = as_round_robin_work_queue(queue);
571 * It shouldn't be a big deal if the same rotor gets used for multiple work queues.
572 * Any patterns that might develop are likely to be disrupted by random ordering of
573 * multiple completions and migration between cores, unless the load is so light as
574 * to be regular in ordering of tasks and the threads are confined to individual
575 * cores; with a load that light we won't care.
577 unsigned int rotor = this_cpu_inc_return(service_queue_rotor);
578 unsigned int index = rotor % round_robin->num_service_queues;
580 simple_queue = round_robin->service_queues[index];
583 enqueue_work_queue_completion(simple_queue, completion);
586 /* Misc */
589 * Return the work queue pointer recorded at initialization time in the work-queue stack handle
590 * initialized on the stack of the current thread, if any.
592 static struct simple_work_queue *get_current_thread_work_queue(void)
595 * In interrupt context, if a vdo thread is what got interrupted, the calls below will find
596 * the queue for the thread which was interrupted. However, the interrupted thread may have
597 * been processing a completion, in which case starting to process another would violate
598 * our concurrency assumptions.
600 if (in_interrupt())
601 return NULL;
603 if (kthread_func(current) != work_queue_runner)
604 /* Not a VDO work queue thread. */
605 return NULL;
607 return kthread_data(current);
610 struct vdo_work_queue *vdo_get_current_work_queue(void)
612 struct simple_work_queue *queue = get_current_thread_work_queue();
614 return (queue == NULL) ? NULL : &queue->common;
617 struct vdo_thread *vdo_get_work_queue_owner(struct vdo_work_queue *queue)
619 return queue->owner;
623 * vdo_get_work_queue_private_data() - Returns the private data for the current thread's work
624 * queue, or NULL if none or if the current thread is not a
625 * work queue thread.
627 void *vdo_get_work_queue_private_data(void)
629 struct simple_work_queue *queue = get_current_thread_work_queue();
631 return (queue != NULL) ? queue->private : NULL;
634 bool vdo_work_queue_type_is(struct vdo_work_queue *queue,
635 const struct vdo_work_queue_type *type)
637 return (queue->type == type);