drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / md / dm-vdo / indexer / radix-sort.c
blob66b8c706a1ef9a19c5aea930af5914bdfa29b1a5
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2023 Red Hat
4 */
6 #include "radix-sort.h"
8 #include <linux/limits.h>
9 #include <linux/types.h>
11 #include "memory-alloc.h"
12 #include "string-utils.h"
15 * This implementation allocates one large object to do the sorting, which can be reused as many
16 * times as desired. The amount of memory required is logarithmically proportional to the number of
17 * keys to be sorted.
20 /* Piles smaller than this are handled with a simple insertion sort. */
21 #define INSERTION_SORT_THRESHOLD 12
23 /* Sort keys are pointers to immutable fixed-length arrays of bytes. */
24 typedef const u8 *sort_key_t;
27 * The keys are separated into piles based on the byte in each keys at the current offset, so the
28 * number of keys with each byte must be counted.
30 struct histogram {
31 /* The number of non-empty bins */
32 u16 used;
33 /* The index (key byte) of the first non-empty bin */
34 u16 first;
35 /* The index (key byte) of the last non-empty bin */
36 u16 last;
37 /* The number of occurrences of each specific byte */
38 u32 size[256];
42 * Sub-tasks are manually managed on a stack, both for performance and to put a logarithmic bound
43 * on the stack space needed.
45 struct task {
46 /* Pointer to the first key to sort. */
47 sort_key_t *first_key;
48 /* Pointer to the last key to sort. */
49 sort_key_t *last_key;
50 /* The offset into the key at which to continue sorting. */
51 u16 offset;
52 /* The number of bytes remaining in the sort keys. */
53 u16 length;
56 struct radix_sorter {
57 unsigned int count;
58 struct histogram bins;
59 sort_key_t *pile[256];
60 struct task *end_of_stack;
61 struct task insertion_list[256];
62 struct task stack[];
65 /* Compare a segment of two fixed-length keys starting at an offset. */
66 static inline int compare(sort_key_t key1, sort_key_t key2, u16 offset, u16 length)
68 return memcmp(&key1[offset], &key2[offset], length);
71 /* Insert the next unsorted key into an array of sorted keys. */
72 static inline void insert_key(const struct task task, sort_key_t *next)
74 /* Pull the unsorted key out, freeing up the array slot. */
75 sort_key_t unsorted = *next;
77 /* Compare the key to the preceding sorted entries, shifting down ones that are larger. */
78 while ((--next >= task.first_key) &&
79 (compare(unsorted, next[0], task.offset, task.length) < 0))
80 next[1] = next[0];
82 /* Insert the key into the last slot that was cleared, sorting it. */
83 next[1] = unsorted;
87 * Sort a range of key segments using an insertion sort. This simple sort is faster than the
88 * 256-way radix sort when the number of keys to sort is small.
90 static inline void insertion_sort(const struct task task)
92 sort_key_t *next;
94 for (next = task.first_key + 1; next <= task.last_key; next++)
95 insert_key(task, next);
98 /* Push a sorting task onto a task stack. */
99 static inline void push_task(struct task **stack_pointer, sort_key_t *first_key,
100 u32 count, u16 offset, u16 length)
102 struct task *task = (*stack_pointer)++;
104 task->first_key = first_key;
105 task->last_key = &first_key[count - 1];
106 task->offset = offset;
107 task->length = length;
110 static inline void swap_keys(sort_key_t *a, sort_key_t *b)
112 sort_key_t c = *a;
113 *a = *b;
114 *b = c;
118 * Count the number of times each byte value appears in the arrays of keys to sort at the current
119 * offset, keeping track of the number of non-empty bins, and the index of the first and last
120 * non-empty bin.
122 static inline void measure_bins(const struct task task, struct histogram *bins)
124 sort_key_t *key_ptr;
127 * Subtle invariant: bins->used and bins->size[] are zero because the sorting code clears
128 * it all out as it goes. Even though this structure is re-used, we don't need to pay to
129 * zero it before starting a new tally.
131 bins->first = U8_MAX;
132 bins->last = 0;
134 for (key_ptr = task.first_key; key_ptr <= task.last_key; key_ptr++) {
135 /* Increment the count for the byte in the key at the current offset. */
136 u8 bin = (*key_ptr)[task.offset];
137 u32 size = ++bins->size[bin];
139 /* Track non-empty bins. */
140 if (size == 1) {
141 bins->used += 1;
142 if (bin < bins->first)
143 bins->first = bin;
145 if (bin > bins->last)
146 bins->last = bin;
152 * Convert the bin sizes to pointers to where each pile goes.
154 * pile[0] = first_key + bin->size[0],
155 * pile[1] = pile[0] + bin->size[1], etc.
157 * After the keys are moved to the appropriate pile, we'll need to sort each of the piles by the
158 * next radix position. A new task is put on the stack for each pile containing lots of keys, or a
159 * new task is put on the list for each pile containing few keys.
161 * @stack: pointer the top of the stack
162 * @end_of_stack: the end of the stack
163 * @list: pointer the head of the list
164 * @pile: array for pointers to the end of each pile
165 * @bins: the histogram of the sizes of each pile
166 * @first_key: the first key of the stack
167 * @offset: the next radix position to sort by
168 * @length: the number of bytes remaining in the sort keys
170 * Return: UDS_SUCCESS or an error code
172 static inline int push_bins(struct task **stack, struct task *end_of_stack,
173 struct task **list, sort_key_t *pile[],
174 struct histogram *bins, sort_key_t *first_key,
175 u16 offset, u16 length)
177 sort_key_t *pile_start = first_key;
178 int bin;
180 for (bin = bins->first; ; bin++) {
181 u32 size = bins->size[bin];
183 /* Skip empty piles. */
184 if (size == 0)
185 continue;
187 /* There's no need to sort empty keys. */
188 if (length > 0) {
189 if (size > INSERTION_SORT_THRESHOLD) {
190 if (*stack >= end_of_stack)
191 return UDS_BAD_STATE;
193 push_task(stack, pile_start, size, offset, length);
194 } else if (size > 1) {
195 push_task(list, pile_start, size, offset, length);
199 pile_start += size;
200 pile[bin] = pile_start;
201 if (--bins->used == 0)
202 break;
205 return UDS_SUCCESS;
208 int uds_make_radix_sorter(unsigned int count, struct radix_sorter **sorter)
210 int result;
211 unsigned int stack_size = count / INSERTION_SORT_THRESHOLD;
212 struct radix_sorter *radix_sorter;
214 result = vdo_allocate_extended(struct radix_sorter, stack_size, struct task,
215 __func__, &radix_sorter);
216 if (result != VDO_SUCCESS)
217 return result;
219 radix_sorter->count = count;
220 radix_sorter->end_of_stack = radix_sorter->stack + stack_size;
221 *sorter = radix_sorter;
222 return UDS_SUCCESS;
225 void uds_free_radix_sorter(struct radix_sorter *sorter)
227 vdo_free(sorter);
231 * Sort pointers to fixed-length keys (arrays of bytes) using a radix sort. The sort implementation
232 * is unstable, so the relative ordering of equal keys is not preserved.
234 int uds_radix_sort(struct radix_sorter *sorter, const unsigned char *keys[],
235 unsigned int count, unsigned short length)
237 struct task start;
238 struct histogram *bins = &sorter->bins;
239 sort_key_t **pile = sorter->pile;
240 struct task *task_stack = sorter->stack;
242 /* All zero-length keys are identical and therefore already sorted. */
243 if ((count == 0) || (length == 0))
244 return UDS_SUCCESS;
246 /* The initial task is to sort the entire length of all the keys. */
247 start = (struct task) {
248 .first_key = keys,
249 .last_key = &keys[count - 1],
250 .offset = 0,
251 .length = length,
254 if (count <= INSERTION_SORT_THRESHOLD) {
255 insertion_sort(start);
256 return UDS_SUCCESS;
259 if (count > sorter->count)
260 return UDS_INVALID_ARGUMENT;
263 * Repeatedly consume a sorting task from the stack and process it, pushing new sub-tasks
264 * onto the stack for each radix-sorted pile. When all tasks and sub-tasks have been
265 * processed, the stack will be empty and all the keys in the starting task will be fully
266 * sorted.
268 for (*task_stack = start; task_stack >= sorter->stack; task_stack--) {
269 const struct task task = *task_stack;
270 struct task *insertion_task_list;
271 int result;
272 sort_key_t *fence;
273 sort_key_t *end;
275 measure_bins(task, bins);
278 * Now that we know how large each bin is, generate pointers for each of the piles
279 * and push a new task to sort each pile by the next radix byte.
281 insertion_task_list = sorter->insertion_list;
282 result = push_bins(&task_stack, sorter->end_of_stack,
283 &insertion_task_list, pile, bins, task.first_key,
284 task.offset + 1, task.length - 1);
285 if (result != UDS_SUCCESS) {
286 memset(bins, 0, sizeof(*bins));
287 return result;
290 /* Now bins->used is zero again. */
293 * Don't bother processing the last pile: when piles 0..N-1 are all in place, then
294 * pile N must also be in place.
296 end = task.last_key - bins->size[bins->last];
297 bins->size[bins->last] = 0;
299 for (fence = task.first_key; fence <= end; ) {
300 u8 bin;
301 sort_key_t key = *fence;
304 * The radix byte of the key tells us which pile it belongs in. Swap it for
305 * an unprocessed item just below that pile, and repeat.
307 while (--pile[bin = key[task.offset]] > fence)
308 swap_keys(pile[bin], &key);
311 * The pile reached the fence. Put the key at the bottom of that pile,
312 * completing it, and advance the fence to the next pile.
314 *fence = key;
315 fence += bins->size[bin];
316 bins->size[bin] = 0;
319 /* Now bins->size[] is all zero again. */
322 * When the number of keys in a task gets small enough, it is faster to use an
323 * insertion sort than to keep subdividing into tiny piles.
325 while (--insertion_task_list >= sorter->insertion_list)
326 insertion_sort(*insertion_task_list);
329 return UDS_SUCCESS;