drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / media / common / videobuf2 / videobuf2-core.c
blob2df566f409b65eb99fa7fbe308b8e3afe1bdcbca
1 /*
2 * videobuf2-core.c - video buffer 2 core framework
4 * Copyright (C) 2010 Samsung Electronics
6 * Author: Pawel Osciak <pawel@osciak.com>
7 * Marek Szyprowski <m.szyprowski@samsung.com>
9 * The vb2_thread implementation was based on code from videobuf-dvb.c:
10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/err.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/poll.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/freezer.h>
27 #include <linux/kthread.h>
29 #include <media/videobuf2-core.h>
30 #include <media/v4l2-mc.h>
32 #include <trace/events/vb2.h>
34 #define PLANE_INDEX_BITS 3
35 #define PLANE_INDEX_SHIFT (PAGE_SHIFT + PLANE_INDEX_BITS)
36 #define PLANE_INDEX_MASK (BIT_MASK(PLANE_INDEX_BITS) - 1)
37 #define MAX_BUFFER_INDEX BIT_MASK(30 - PLANE_INDEX_SHIFT)
38 #define BUFFER_INDEX_MASK (MAX_BUFFER_INDEX - 1)
40 #if BIT(PLANE_INDEX_BITS) != VIDEO_MAX_PLANES
41 #error PLANE_INDEX_BITS order must be equal to VIDEO_MAX_PLANES
42 #endif
44 static int debug;
45 module_param(debug, int, 0644);
47 #define dprintk(q, level, fmt, arg...) \
48 do { \
49 if (debug >= level) \
50 pr_info("[%s] %s: " fmt, (q)->name, __func__, \
51 ## arg); \
52 } while (0)
54 #ifdef CONFIG_VIDEO_ADV_DEBUG
57 * If advanced debugging is on, then count how often each op is called
58 * successfully, which can either be per-buffer or per-queue.
60 * This makes it easy to check that the 'init' and 'cleanup'
61 * (and variations thereof) stay balanced.
64 #define log_memop(vb, op) \
65 dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n", \
66 (vb)->index, #op, \
67 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
69 #define call_memop(vb, op, args...) \
70 ({ \
71 struct vb2_queue *_q = (vb)->vb2_queue; \
72 int err; \
74 log_memop(vb, op); \
75 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \
76 if (!err) \
77 (vb)->cnt_mem_ ## op++; \
78 err; \
81 #define call_ptr_memop(op, vb, args...) \
82 ({ \
83 struct vb2_queue *_q = (vb)->vb2_queue; \
84 void *ptr; \
86 log_memop(vb, op); \
87 ptr = _q->mem_ops->op ? _q->mem_ops->op(vb, args) : NULL; \
88 if (!IS_ERR_OR_NULL(ptr)) \
89 (vb)->cnt_mem_ ## op++; \
90 ptr; \
93 #define call_void_memop(vb, op, args...) \
94 ({ \
95 struct vb2_queue *_q = (vb)->vb2_queue; \
97 log_memop(vb, op); \
98 if (_q->mem_ops->op) \
99 _q->mem_ops->op(args); \
100 (vb)->cnt_mem_ ## op++; \
103 #define log_qop(q, op) \
104 dprintk(q, 2, "call_qop(%s)%s\n", #op, \
105 (q)->ops->op ? "" : " (nop)")
107 #define call_qop(q, op, args...) \
108 ({ \
109 int err; \
111 log_qop(q, op); \
112 err = (q)->ops->op ? (q)->ops->op(args) : 0; \
113 if (!err) \
114 (q)->cnt_ ## op++; \
115 err; \
118 #define call_void_qop(q, op, args...) \
119 ({ \
120 log_qop(q, op); \
121 if ((q)->ops->op) \
122 (q)->ops->op(args); \
123 (q)->cnt_ ## op++; \
126 #define log_vb_qop(vb, op, args...) \
127 dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n", \
128 (vb)->index, #op, \
129 (vb)->vb2_queue->ops->op ? "" : " (nop)")
131 #define call_vb_qop(vb, op, args...) \
132 ({ \
133 int err; \
135 log_vb_qop(vb, op); \
136 err = (vb)->vb2_queue->ops->op ? \
137 (vb)->vb2_queue->ops->op(args) : 0; \
138 if (!err) \
139 (vb)->cnt_ ## op++; \
140 err; \
143 #define call_void_vb_qop(vb, op, args...) \
144 ({ \
145 log_vb_qop(vb, op); \
146 if ((vb)->vb2_queue->ops->op) \
147 (vb)->vb2_queue->ops->op(args); \
148 (vb)->cnt_ ## op++; \
151 #else
153 #define call_memop(vb, op, args...) \
154 ((vb)->vb2_queue->mem_ops->op ? \
155 (vb)->vb2_queue->mem_ops->op(args) : 0)
157 #define call_ptr_memop(op, vb, args...) \
158 ((vb)->vb2_queue->mem_ops->op ? \
159 (vb)->vb2_queue->mem_ops->op(vb, args) : NULL)
161 #define call_void_memop(vb, op, args...) \
162 do { \
163 if ((vb)->vb2_queue->mem_ops->op) \
164 (vb)->vb2_queue->mem_ops->op(args); \
165 } while (0)
167 #define call_qop(q, op, args...) \
168 ((q)->ops->op ? (q)->ops->op(args) : 0)
170 #define call_void_qop(q, op, args...) \
171 do { \
172 if ((q)->ops->op) \
173 (q)->ops->op(args); \
174 } while (0)
176 #define call_vb_qop(vb, op, args...) \
177 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
179 #define call_void_vb_qop(vb, op, args...) \
180 do { \
181 if ((vb)->vb2_queue->ops->op) \
182 (vb)->vb2_queue->ops->op(args); \
183 } while (0)
185 #endif
187 #define call_bufop(q, op, args...) \
188 ({ \
189 int ret = 0; \
190 if (q && q->buf_ops && q->buf_ops->op) \
191 ret = q->buf_ops->op(args); \
192 ret; \
195 #define call_void_bufop(q, op, args...) \
196 ({ \
197 if (q && q->buf_ops && q->buf_ops->op) \
198 q->buf_ops->op(args); \
201 static void __vb2_queue_cancel(struct vb2_queue *q);
203 static const char *vb2_state_name(enum vb2_buffer_state s)
205 static const char * const state_names[] = {
206 [VB2_BUF_STATE_DEQUEUED] = "dequeued",
207 [VB2_BUF_STATE_IN_REQUEST] = "in request",
208 [VB2_BUF_STATE_PREPARING] = "preparing",
209 [VB2_BUF_STATE_QUEUED] = "queued",
210 [VB2_BUF_STATE_ACTIVE] = "active",
211 [VB2_BUF_STATE_DONE] = "done",
212 [VB2_BUF_STATE_ERROR] = "error",
215 if ((unsigned int)(s) < ARRAY_SIZE(state_names))
216 return state_names[s];
217 return "unknown";
221 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
223 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
225 struct vb2_queue *q = vb->vb2_queue;
226 void *mem_priv;
227 int plane;
228 int ret = -ENOMEM;
231 * Allocate memory for all planes in this buffer
232 * NOTE: mmapped areas should be page aligned
234 for (plane = 0; plane < vb->num_planes; ++plane) {
235 /* Memops alloc requires size to be page aligned. */
236 unsigned long size = PAGE_ALIGN(vb->planes[plane].length);
238 /* Did it wrap around? */
239 if (size < vb->planes[plane].length)
240 goto free;
242 mem_priv = call_ptr_memop(alloc,
244 q->alloc_devs[plane] ? : q->dev,
245 size);
246 if (IS_ERR_OR_NULL(mem_priv)) {
247 if (mem_priv)
248 ret = PTR_ERR(mem_priv);
249 goto free;
252 /* Associate allocator private data with this plane */
253 vb->planes[plane].mem_priv = mem_priv;
256 return 0;
257 free:
258 /* Free already allocated memory if one of the allocations failed */
259 for (; plane > 0; --plane) {
260 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
261 vb->planes[plane - 1].mem_priv = NULL;
264 return ret;
268 * __vb2_buf_mem_free() - free memory of the given buffer
270 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
272 unsigned int plane;
274 for (plane = 0; plane < vb->num_planes; ++plane) {
275 call_void_memop(vb, put, vb->planes[plane].mem_priv);
276 vb->planes[plane].mem_priv = NULL;
277 dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n",
278 plane, vb->index);
283 * __vb2_buf_userptr_put() - release userspace memory associated with
284 * a USERPTR buffer
286 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
288 unsigned int plane;
290 for (plane = 0; plane < vb->num_planes; ++plane) {
291 if (vb->planes[plane].mem_priv)
292 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
293 vb->planes[plane].mem_priv = NULL;
298 * __vb2_plane_dmabuf_put() - release memory associated with
299 * a DMABUF shared plane
301 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
303 if (!p->mem_priv)
304 return;
306 if (!p->dbuf_duplicated) {
307 if (p->dbuf_mapped)
308 call_void_memop(vb, unmap_dmabuf, p->mem_priv);
310 call_void_memop(vb, detach_dmabuf, p->mem_priv);
313 dma_buf_put(p->dbuf);
314 p->mem_priv = NULL;
315 p->dbuf = NULL;
316 p->dbuf_mapped = 0;
317 p->bytesused = 0;
318 p->length = 0;
319 p->m.fd = 0;
320 p->data_offset = 0;
321 p->dbuf_duplicated = false;
325 * __vb2_buf_dmabuf_put() - release memory associated with
326 * a DMABUF shared buffer
328 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
330 int plane;
333 * When multiple planes share the same DMA buffer attachment, the plane
334 * with the lowest index owns the mem_priv.
335 * Put planes in the reversed order so that we don't leave invalid
336 * mem_priv behind.
338 for (plane = vb->num_planes - 1; plane >= 0; --plane)
339 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
343 * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory
344 * to sync caches
346 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb)
348 unsigned int plane;
350 if (vb->synced)
351 return;
353 vb->synced = 1;
354 for (plane = 0; plane < vb->num_planes; ++plane)
355 call_void_memop(vb, prepare, vb->planes[plane].mem_priv);
359 * __vb2_buf_mem_finish() - call ->finish on buffer's private memory
360 * to sync caches
362 static void __vb2_buf_mem_finish(struct vb2_buffer *vb)
364 unsigned int plane;
366 if (!vb->synced)
367 return;
369 vb->synced = 0;
370 for (plane = 0; plane < vb->num_planes; ++plane)
371 call_void_memop(vb, finish, vb->planes[plane].mem_priv);
375 * __setup_offsets() - setup unique offsets ("cookies") for every plane in
376 * the buffer.
378 static void __setup_offsets(struct vb2_buffer *vb)
380 struct vb2_queue *q = vb->vb2_queue;
381 unsigned int plane;
382 unsigned long offset = 0;
385 * The offset "cookie" value has the following constraints:
386 * - a buffer can have up to 8 planes.
387 * - v4l2 mem2mem uses bit 30 to distinguish between
388 * OUTPUT (aka "source", bit 30 is 0) and
389 * CAPTURE (aka "destination", bit 30 is 1) buffers.
390 * - must be page aligned
391 * That led to this bit mapping when PAGE_SHIFT = 12:
392 * |30 |29 15|14 12|11 0|
393 * |DST_QUEUE_OFF_BASE|buffer index|plane index| 0 |
394 * where there are 15 bits to store the buffer index.
395 * Depending on PAGE_SHIFT value we can have fewer bits
396 * to store the buffer index.
398 offset = vb->index << PLANE_INDEX_SHIFT;
400 for (plane = 0; plane < vb->num_planes; ++plane) {
401 vb->planes[plane].m.offset = offset + (plane << PAGE_SHIFT);
403 dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n",
404 vb->index, plane, offset);
408 static void init_buffer_cache_hints(struct vb2_queue *q, struct vb2_buffer *vb)
411 * DMA exporter should take care of cache syncs, so we can avoid
412 * explicit ->prepare()/->finish() syncs. For other ->memory types
413 * we always need ->prepare() or/and ->finish() cache sync.
415 if (q->memory == VB2_MEMORY_DMABUF) {
416 vb->skip_cache_sync_on_finish = 1;
417 vb->skip_cache_sync_on_prepare = 1;
418 return;
422 * ->finish() cache sync can be avoided when queue direction is
423 * TO_DEVICE.
425 if (q->dma_dir == DMA_TO_DEVICE)
426 vb->skip_cache_sync_on_finish = 1;
430 * vb2_queue_add_buffer() - add a buffer to a queue
431 * @q: pointer to &struct vb2_queue with videobuf2 queue.
432 * @vb: pointer to &struct vb2_buffer to be added to the queue.
433 * @index: index where add vb2_buffer in the queue
435 static void vb2_queue_add_buffer(struct vb2_queue *q, struct vb2_buffer *vb, unsigned int index)
437 WARN_ON(index >= q->max_num_buffers || test_bit(index, q->bufs_bitmap) || vb->vb2_queue);
439 q->bufs[index] = vb;
440 vb->index = index;
441 vb->vb2_queue = q;
442 set_bit(index, q->bufs_bitmap);
446 * vb2_queue_remove_buffer() - remove a buffer from a queue
447 * @vb: pointer to &struct vb2_buffer to be removed from the queue.
449 static void vb2_queue_remove_buffer(struct vb2_buffer *vb)
451 clear_bit(vb->index, vb->vb2_queue->bufs_bitmap);
452 vb->vb2_queue->bufs[vb->index] = NULL;
453 vb->vb2_queue = NULL;
457 * __vb2_queue_alloc() - allocate vb2 buffer structures and (for MMAP type)
458 * video buffer memory for all buffers/planes on the queue and initializes the
459 * queue
460 * @first_index: index of the first created buffer, all newly allocated buffers
461 * have indices in the range [first_index..first_index+count-1]
463 * Returns the number of buffers successfully allocated.
465 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory,
466 unsigned int num_buffers, unsigned int num_planes,
467 const unsigned int plane_sizes[VB2_MAX_PLANES],
468 unsigned int *first_index)
470 unsigned int buffer, plane;
471 struct vb2_buffer *vb;
472 unsigned long index = q->max_num_buffers;
473 int ret;
476 * Ensure that the number of already queue + the number of buffers already
477 * in the queue is below q->max_num_buffers
479 num_buffers = min_t(unsigned int, num_buffers,
480 q->max_num_buffers - vb2_get_num_buffers(q));
482 while (num_buffers) {
483 index = bitmap_find_next_zero_area(q->bufs_bitmap, q->max_num_buffers,
484 0, num_buffers, 0);
486 if (index < q->max_num_buffers)
487 break;
488 /* Try to find free space for less buffers */
489 num_buffers--;
492 /* If there is no space left to allocate buffers return 0 to indicate the error */
493 if (!num_buffers) {
494 *first_index = 0;
495 return 0;
498 *first_index = index;
500 for (buffer = 0; buffer < num_buffers; ++buffer) {
501 /* Allocate vb2 buffer structures */
502 vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
503 if (!vb) {
504 dprintk(q, 1, "memory alloc for buffer struct failed\n");
505 break;
508 vb->state = VB2_BUF_STATE_DEQUEUED;
509 vb->num_planes = num_planes;
510 vb->type = q->type;
511 vb->memory = memory;
512 init_buffer_cache_hints(q, vb);
513 for (plane = 0; plane < num_planes; ++plane) {
514 vb->planes[plane].length = plane_sizes[plane];
515 vb->planes[plane].min_length = plane_sizes[plane];
518 vb2_queue_add_buffer(q, vb, index++);
519 call_void_bufop(q, init_buffer, vb);
521 /* Allocate video buffer memory for the MMAP type */
522 if (memory == VB2_MEMORY_MMAP) {
523 ret = __vb2_buf_mem_alloc(vb);
524 if (ret) {
525 dprintk(q, 1, "failed allocating memory for buffer %d\n",
526 buffer);
527 vb2_queue_remove_buffer(vb);
528 kfree(vb);
529 break;
531 __setup_offsets(vb);
533 * Call the driver-provided buffer initialization
534 * callback, if given. An error in initialization
535 * results in queue setup failure.
537 ret = call_vb_qop(vb, buf_init, vb);
538 if (ret) {
539 dprintk(q, 1, "buffer %d %p initialization failed\n",
540 buffer, vb);
541 __vb2_buf_mem_free(vb);
542 vb2_queue_remove_buffer(vb);
543 kfree(vb);
544 break;
549 dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n",
550 buffer, num_planes);
552 return buffer;
556 * __vb2_free_mem() - release video buffer memory for a given range of
557 * buffers in a given queue
559 static void __vb2_free_mem(struct vb2_queue *q, unsigned int start, unsigned int count)
561 unsigned int i;
562 struct vb2_buffer *vb;
564 for (i = start; i < start + count; i++) {
565 vb = vb2_get_buffer(q, i);
566 if (!vb)
567 continue;
569 /* Free MMAP buffers or release USERPTR buffers */
570 if (q->memory == VB2_MEMORY_MMAP)
571 __vb2_buf_mem_free(vb);
572 else if (q->memory == VB2_MEMORY_DMABUF)
573 __vb2_buf_dmabuf_put(vb);
574 else
575 __vb2_buf_userptr_put(vb);
580 * __vb2_queue_free() - free @count buffers from @start index of the queue - video memory and
581 * related information, if no buffers are left return the queue to an
582 * uninitialized state. Might be called even if the queue has already been freed.
584 static void __vb2_queue_free(struct vb2_queue *q, unsigned int start, unsigned int count)
586 unsigned int i;
588 lockdep_assert_held(&q->mmap_lock);
590 /* Call driver-provided cleanup function for each buffer, if provided */
591 for (i = start; i < start + count; i++) {
592 struct vb2_buffer *vb = vb2_get_buffer(q, i);
594 if (vb && vb->planes[0].mem_priv)
595 call_void_vb_qop(vb, buf_cleanup, vb);
598 /* Release video buffer memory */
599 __vb2_free_mem(q, start, count);
601 #ifdef CONFIG_VIDEO_ADV_DEBUG
603 * Check that all the calls were balanced during the life-time of this
604 * queue. If not then dump the counters to the kernel log.
606 if (vb2_get_num_buffers(q)) {
607 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
608 q->cnt_prepare_streaming != q->cnt_unprepare_streaming ||
609 q->cnt_wait_prepare != q->cnt_wait_finish;
611 if (unbalanced) {
612 pr_info("unbalanced counters for queue %p:\n", q);
613 if (q->cnt_start_streaming != q->cnt_stop_streaming)
614 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n",
615 q->cnt_queue_setup, q->cnt_start_streaming,
616 q->cnt_stop_streaming);
617 if (q->cnt_prepare_streaming != q->cnt_unprepare_streaming)
618 pr_info(" prepare_streaming: %u unprepare_streaming: %u\n",
619 q->cnt_prepare_streaming, q->cnt_unprepare_streaming);
620 if (q->cnt_wait_prepare != q->cnt_wait_finish)
621 pr_info(" wait_prepare: %u wait_finish: %u\n",
622 q->cnt_wait_prepare, q->cnt_wait_finish);
624 q->cnt_queue_setup = 0;
625 q->cnt_wait_prepare = 0;
626 q->cnt_wait_finish = 0;
627 q->cnt_prepare_streaming = 0;
628 q->cnt_start_streaming = 0;
629 q->cnt_stop_streaming = 0;
630 q->cnt_unprepare_streaming = 0;
632 for (i = start; i < start + count; i++) {
633 struct vb2_buffer *vb = vb2_get_buffer(q, i);
634 bool unbalanced;
636 if (!vb)
637 continue;
639 unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
640 vb->cnt_mem_prepare != vb->cnt_mem_finish ||
641 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
642 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
643 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
644 vb->cnt_buf_queue != vb->cnt_buf_done ||
645 vb->cnt_buf_prepare != vb->cnt_buf_finish ||
646 vb->cnt_buf_init != vb->cnt_buf_cleanup;
648 if (unbalanced) {
649 pr_info("unbalanced counters for queue %p, buffer %d:\n",
650 q, i);
651 if (vb->cnt_buf_init != vb->cnt_buf_cleanup)
652 pr_info(" buf_init: %u buf_cleanup: %u\n",
653 vb->cnt_buf_init, vb->cnt_buf_cleanup);
654 if (vb->cnt_buf_prepare != vb->cnt_buf_finish)
655 pr_info(" buf_prepare: %u buf_finish: %u\n",
656 vb->cnt_buf_prepare, vb->cnt_buf_finish);
657 if (vb->cnt_buf_queue != vb->cnt_buf_done)
658 pr_info(" buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n",
659 vb->cnt_buf_out_validate, vb->cnt_buf_queue,
660 vb->cnt_buf_done, vb->cnt_buf_request_complete);
661 if (vb->cnt_mem_alloc != vb->cnt_mem_put)
662 pr_info(" alloc: %u put: %u\n",
663 vb->cnt_mem_alloc, vb->cnt_mem_put);
664 if (vb->cnt_mem_prepare != vb->cnt_mem_finish)
665 pr_info(" prepare: %u finish: %u\n",
666 vb->cnt_mem_prepare, vb->cnt_mem_finish);
667 if (vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr)
668 pr_info(" get_userptr: %u put_userptr: %u\n",
669 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
670 if (vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf)
671 pr_info(" attach_dmabuf: %u detach_dmabuf: %u\n",
672 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf);
673 if (vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf)
674 pr_info(" map_dmabuf: %u unmap_dmabuf: %u\n",
675 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
676 pr_info(" get_dmabuf: %u num_users: %u\n",
677 vb->cnt_mem_get_dmabuf,
678 vb->cnt_mem_num_users);
681 #endif
683 /* Free vb2 buffers */
684 for (i = start; i < start + count; i++) {
685 struct vb2_buffer *vb = vb2_get_buffer(q, i);
687 if (!vb)
688 continue;
690 vb2_queue_remove_buffer(vb);
691 kfree(vb);
694 if (!vb2_get_num_buffers(q)) {
695 q->memory = VB2_MEMORY_UNKNOWN;
696 INIT_LIST_HEAD(&q->queued_list);
700 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
702 unsigned int plane;
703 for (plane = 0; plane < vb->num_planes; ++plane) {
704 void *mem_priv = vb->planes[plane].mem_priv;
706 * If num_users() has not been provided, call_memop
707 * will return 0, apparently nobody cares about this
708 * case anyway. If num_users() returns more than 1,
709 * we are not the only user of the plane's memory.
711 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
712 return true;
714 return false;
716 EXPORT_SYMBOL(vb2_buffer_in_use);
719 * __buffers_in_use() - return true if any buffers on the queue are in use and
720 * the queue cannot be freed (by the means of REQBUFS(0)) call
722 static bool __buffers_in_use(struct vb2_queue *q)
724 unsigned int buffer;
725 for (buffer = 0; buffer < q->max_num_buffers; ++buffer) {
726 struct vb2_buffer *vb = vb2_get_buffer(q, buffer);
728 if (!vb)
729 continue;
731 if (vb2_buffer_in_use(q, vb))
732 return true;
734 return false;
737 void vb2_core_querybuf(struct vb2_queue *q, struct vb2_buffer *vb, void *pb)
739 call_void_bufop(q, fill_user_buffer, vb, pb);
741 EXPORT_SYMBOL_GPL(vb2_core_querybuf);
744 * __verify_userptr_ops() - verify that all memory operations required for
745 * USERPTR queue type have been provided
747 static int __verify_userptr_ops(struct vb2_queue *q)
749 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
750 !q->mem_ops->put_userptr)
751 return -EINVAL;
753 return 0;
757 * __verify_mmap_ops() - verify that all memory operations required for
758 * MMAP queue type have been provided
760 static int __verify_mmap_ops(struct vb2_queue *q)
762 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
763 !q->mem_ops->put || !q->mem_ops->mmap)
764 return -EINVAL;
766 return 0;
770 * __verify_dmabuf_ops() - verify that all memory operations required for
771 * DMABUF queue type have been provided
773 static int __verify_dmabuf_ops(struct vb2_queue *q)
775 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
776 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf ||
777 !q->mem_ops->unmap_dmabuf)
778 return -EINVAL;
780 return 0;
783 int vb2_verify_memory_type(struct vb2_queue *q,
784 enum vb2_memory memory, unsigned int type)
786 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR &&
787 memory != VB2_MEMORY_DMABUF) {
788 dprintk(q, 1, "unsupported memory type\n");
789 return -EINVAL;
792 if (type != q->type) {
793 dprintk(q, 1, "requested type is incorrect\n");
794 return -EINVAL;
798 * Make sure all the required memory ops for given memory type
799 * are available.
801 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) {
802 dprintk(q, 1, "MMAP for current setup unsupported\n");
803 return -EINVAL;
806 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
807 dprintk(q, 1, "USERPTR for current setup unsupported\n");
808 return -EINVAL;
811 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
812 dprintk(q, 1, "DMABUF for current setup unsupported\n");
813 return -EINVAL;
817 * Place the busy tests at the end: -EBUSY can be ignored when
818 * create_bufs is called with count == 0, but count == 0 should still
819 * do the memory and type validation.
821 if (vb2_fileio_is_active(q)) {
822 dprintk(q, 1, "file io in progress\n");
823 return -EBUSY;
825 return 0;
827 EXPORT_SYMBOL(vb2_verify_memory_type);
829 static void set_queue_coherency(struct vb2_queue *q, bool non_coherent_mem)
831 q->non_coherent_mem = 0;
833 if (!vb2_queue_allows_cache_hints(q))
834 return;
835 q->non_coherent_mem = non_coherent_mem;
838 static bool verify_coherency_flags(struct vb2_queue *q, bool non_coherent_mem)
840 if (non_coherent_mem != q->non_coherent_mem) {
841 dprintk(q, 1, "memory coherency model mismatch\n");
842 return false;
844 return true;
847 static int vb2_core_allocated_buffers_storage(struct vb2_queue *q)
849 if (!q->bufs)
850 q->bufs = kcalloc(q->max_num_buffers, sizeof(*q->bufs), GFP_KERNEL);
851 if (!q->bufs)
852 return -ENOMEM;
854 if (!q->bufs_bitmap)
855 q->bufs_bitmap = bitmap_zalloc(q->max_num_buffers, GFP_KERNEL);
856 if (!q->bufs_bitmap) {
857 kfree(q->bufs);
858 q->bufs = NULL;
859 return -ENOMEM;
862 return 0;
865 static void vb2_core_free_buffers_storage(struct vb2_queue *q)
867 kfree(q->bufs);
868 q->bufs = NULL;
869 bitmap_free(q->bufs_bitmap);
870 q->bufs_bitmap = NULL;
873 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory,
874 unsigned int flags, unsigned int *count)
876 unsigned int num_buffers, allocated_buffers, num_planes = 0;
877 unsigned int q_num_bufs = vb2_get_num_buffers(q);
878 unsigned plane_sizes[VB2_MAX_PLANES] = { };
879 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT;
880 unsigned int i, first_index;
881 int ret = 0;
883 if (q->streaming) {
884 dprintk(q, 1, "streaming active\n");
885 return -EBUSY;
888 if (q->waiting_in_dqbuf && *count) {
889 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
890 return -EBUSY;
893 if (*count == 0 || q_num_bufs != 0 ||
894 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory) ||
895 !verify_coherency_flags(q, non_coherent_mem)) {
897 * We already have buffers allocated, so first check if they
898 * are not in use and can be freed.
900 mutex_lock(&q->mmap_lock);
901 if (debug && q->memory == VB2_MEMORY_MMAP &&
902 __buffers_in_use(q))
903 dprintk(q, 1, "memory in use, orphaning buffers\n");
906 * Call queue_cancel to clean up any buffers in the
907 * QUEUED state which is possible if buffers were prepared or
908 * queued without ever calling STREAMON.
910 __vb2_queue_cancel(q);
911 __vb2_queue_free(q, 0, q->max_num_buffers);
912 mutex_unlock(&q->mmap_lock);
914 q->is_busy = 0;
916 * In case of REQBUFS(0) return immediately without calling
917 * driver's queue_setup() callback and allocating resources.
919 if (*count == 0)
920 return 0;
924 * Make sure the requested values and current defaults are sane.
926 num_buffers = max_t(unsigned int, *count, q->min_reqbufs_allocation);
927 num_buffers = min_t(unsigned int, num_buffers, q->max_num_buffers);
928 memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
930 * Set this now to ensure that drivers see the correct q->memory value
931 * in the queue_setup op.
933 mutex_lock(&q->mmap_lock);
934 ret = vb2_core_allocated_buffers_storage(q);
935 q->memory = memory;
936 mutex_unlock(&q->mmap_lock);
937 if (ret)
938 return ret;
939 set_queue_coherency(q, non_coherent_mem);
942 * Ask the driver how many buffers and planes per buffer it requires.
943 * Driver also sets the size and allocator context for each plane.
945 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes,
946 plane_sizes, q->alloc_devs);
947 if (ret)
948 goto error;
950 /* Check that driver has set sane values */
951 if (WARN_ON(!num_planes)) {
952 ret = -EINVAL;
953 goto error;
956 for (i = 0; i < num_planes; i++)
957 if (WARN_ON(!plane_sizes[i])) {
958 ret = -EINVAL;
959 goto error;
962 /* Finally, allocate buffers and video memory */
963 allocated_buffers =
964 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes, &first_index);
965 if (allocated_buffers == 0) {
966 /* There shouldn't be any buffers allocated, so first_index == 0 */
967 WARN_ON(first_index);
968 dprintk(q, 1, "memory allocation failed\n");
969 ret = -ENOMEM;
970 goto error;
974 * There is no point in continuing if we can't allocate the minimum
975 * number of buffers needed by this vb2_queue.
977 if (allocated_buffers < q->min_reqbufs_allocation)
978 ret = -ENOMEM;
981 * Check if driver can handle the allocated number of buffers.
983 if (!ret && allocated_buffers < num_buffers) {
984 num_buffers = allocated_buffers;
986 * num_planes is set by the previous queue_setup(), but since it
987 * signals to queue_setup() whether it is called from create_bufs()
988 * vs reqbufs() we zero it here to signal that queue_setup() is
989 * called for the reqbufs() case.
991 num_planes = 0;
993 ret = call_qop(q, queue_setup, q, &num_buffers,
994 &num_planes, plane_sizes, q->alloc_devs);
996 if (!ret && allocated_buffers < num_buffers)
997 ret = -ENOMEM;
1000 * Either the driver has accepted a smaller number of buffers,
1001 * or .queue_setup() returned an error
1005 mutex_lock(&q->mmap_lock);
1007 if (ret < 0) {
1009 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
1010 * from already queued buffers and it will reset q->memory to
1011 * VB2_MEMORY_UNKNOWN.
1013 __vb2_queue_free(q, first_index, allocated_buffers);
1014 mutex_unlock(&q->mmap_lock);
1015 return ret;
1017 mutex_unlock(&q->mmap_lock);
1020 * Return the number of successfully allocated buffers
1021 * to the userspace.
1023 *count = allocated_buffers;
1024 q->waiting_for_buffers = !q->is_output;
1025 q->is_busy = 1;
1027 return 0;
1029 error:
1030 mutex_lock(&q->mmap_lock);
1031 q->memory = VB2_MEMORY_UNKNOWN;
1032 mutex_unlock(&q->mmap_lock);
1033 vb2_core_free_buffers_storage(q);
1034 return ret;
1036 EXPORT_SYMBOL_GPL(vb2_core_reqbufs);
1038 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory,
1039 unsigned int flags, unsigned int *count,
1040 unsigned int requested_planes,
1041 const unsigned int requested_sizes[],
1042 unsigned int *first_index)
1044 unsigned int num_planes = 0, num_buffers, allocated_buffers;
1045 unsigned plane_sizes[VB2_MAX_PLANES] = { };
1046 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT;
1047 unsigned int q_num_bufs = vb2_get_num_buffers(q);
1048 bool no_previous_buffers = !q_num_bufs;
1049 int ret = 0;
1051 if (q_num_bufs == q->max_num_buffers) {
1052 dprintk(q, 1, "maximum number of buffers already allocated\n");
1053 return -ENOBUFS;
1056 if (no_previous_buffers) {
1057 if (q->waiting_in_dqbuf && *count) {
1058 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
1059 return -EBUSY;
1061 memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
1063 * Set this now to ensure that drivers see the correct q->memory
1064 * value in the queue_setup op.
1066 mutex_lock(&q->mmap_lock);
1067 ret = vb2_core_allocated_buffers_storage(q);
1068 q->memory = memory;
1069 mutex_unlock(&q->mmap_lock);
1070 if (ret)
1071 return ret;
1072 q->waiting_for_buffers = !q->is_output;
1073 set_queue_coherency(q, non_coherent_mem);
1074 } else {
1075 if (q->memory != memory) {
1076 dprintk(q, 1, "memory model mismatch\n");
1077 return -EINVAL;
1079 if (!verify_coherency_flags(q, non_coherent_mem))
1080 return -EINVAL;
1083 num_buffers = min(*count, q->max_num_buffers - q_num_bufs);
1085 if (requested_planes && requested_sizes) {
1086 num_planes = requested_planes;
1087 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes));
1091 * Ask the driver, whether the requested number of buffers, planes per
1092 * buffer and their sizes are acceptable
1094 ret = call_qop(q, queue_setup, q, &num_buffers,
1095 &num_planes, plane_sizes, q->alloc_devs);
1096 if (ret)
1097 goto error;
1099 /* Finally, allocate buffers and video memory */
1100 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers,
1101 num_planes, plane_sizes, first_index);
1102 if (allocated_buffers == 0) {
1103 dprintk(q, 1, "memory allocation failed\n");
1104 ret = -ENOMEM;
1105 goto error;
1109 * Check if driver can handle the so far allocated number of buffers.
1111 if (allocated_buffers < num_buffers) {
1112 num_buffers = allocated_buffers;
1115 * num_buffers contains the total number of buffers, that the
1116 * queue driver has set up
1118 ret = call_qop(q, queue_setup, q, &num_buffers,
1119 &num_planes, plane_sizes, q->alloc_devs);
1121 if (!ret && allocated_buffers < num_buffers)
1122 ret = -ENOMEM;
1125 * Either the driver has accepted a smaller number of buffers,
1126 * or .queue_setup() returned an error
1130 mutex_lock(&q->mmap_lock);
1132 if (ret < 0) {
1134 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
1135 * from already queued buffers and it will reset q->memory to
1136 * VB2_MEMORY_UNKNOWN.
1138 __vb2_queue_free(q, *first_index, allocated_buffers);
1139 mutex_unlock(&q->mmap_lock);
1140 return -ENOMEM;
1142 mutex_unlock(&q->mmap_lock);
1145 * Return the number of successfully allocated buffers
1146 * to the userspace.
1148 *count = allocated_buffers;
1149 q->is_busy = 1;
1151 return 0;
1153 error:
1154 if (no_previous_buffers) {
1155 mutex_lock(&q->mmap_lock);
1156 q->memory = VB2_MEMORY_UNKNOWN;
1157 mutex_unlock(&q->mmap_lock);
1159 return ret;
1161 EXPORT_SYMBOL_GPL(vb2_core_create_bufs);
1163 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
1165 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1166 return NULL;
1168 return call_ptr_memop(vaddr, vb, vb->planes[plane_no].mem_priv);
1171 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
1173 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
1175 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1176 return NULL;
1178 return call_ptr_memop(cookie, vb, vb->planes[plane_no].mem_priv);
1180 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
1182 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
1184 struct vb2_queue *q = vb->vb2_queue;
1185 unsigned long flags;
1187 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
1188 return;
1190 if (WARN_ON(state != VB2_BUF_STATE_DONE &&
1191 state != VB2_BUF_STATE_ERROR &&
1192 state != VB2_BUF_STATE_QUEUED))
1193 state = VB2_BUF_STATE_ERROR;
1195 #ifdef CONFIG_VIDEO_ADV_DEBUG
1197 * Although this is not a callback, it still does have to balance
1198 * with the buf_queue op. So update this counter manually.
1200 vb->cnt_buf_done++;
1201 #endif
1202 dprintk(q, 4, "done processing on buffer %d, state: %s\n",
1203 vb->index, vb2_state_name(state));
1205 if (state != VB2_BUF_STATE_QUEUED)
1206 __vb2_buf_mem_finish(vb);
1208 spin_lock_irqsave(&q->done_lock, flags);
1209 if (state == VB2_BUF_STATE_QUEUED) {
1210 vb->state = VB2_BUF_STATE_QUEUED;
1211 } else {
1212 /* Add the buffer to the done buffers list */
1213 list_add_tail(&vb->done_entry, &q->done_list);
1214 vb->state = state;
1216 atomic_dec(&q->owned_by_drv_count);
1218 if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) {
1219 media_request_object_unbind(&vb->req_obj);
1220 media_request_object_put(&vb->req_obj);
1223 spin_unlock_irqrestore(&q->done_lock, flags);
1225 trace_vb2_buf_done(q, vb);
1227 switch (state) {
1228 case VB2_BUF_STATE_QUEUED:
1229 return;
1230 default:
1231 /* Inform any processes that may be waiting for buffers */
1232 wake_up(&q->done_wq);
1233 break;
1236 EXPORT_SYMBOL_GPL(vb2_buffer_done);
1238 void vb2_discard_done(struct vb2_queue *q)
1240 struct vb2_buffer *vb;
1241 unsigned long flags;
1243 spin_lock_irqsave(&q->done_lock, flags);
1244 list_for_each_entry(vb, &q->done_list, done_entry)
1245 vb->state = VB2_BUF_STATE_ERROR;
1246 spin_unlock_irqrestore(&q->done_lock, flags);
1248 EXPORT_SYMBOL_GPL(vb2_discard_done);
1251 * __prepare_mmap() - prepare an MMAP buffer
1253 static int __prepare_mmap(struct vb2_buffer *vb)
1255 int ret = 0;
1257 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1258 vb, vb->planes);
1259 return ret ? ret : call_vb_qop(vb, buf_prepare, vb);
1263 * __prepare_userptr() - prepare a USERPTR buffer
1265 static int __prepare_userptr(struct vb2_buffer *vb)
1267 struct vb2_plane planes[VB2_MAX_PLANES];
1268 struct vb2_queue *q = vb->vb2_queue;
1269 void *mem_priv;
1270 unsigned int plane;
1271 int ret = 0;
1272 bool reacquired = vb->planes[0].mem_priv == NULL;
1274 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1275 /* Copy relevant information provided by the userspace */
1276 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1277 vb, planes);
1278 if (ret)
1279 return ret;
1281 for (plane = 0; plane < vb->num_planes; ++plane) {
1282 /* Skip the plane if already verified */
1283 if (vb->planes[plane].m.userptr &&
1284 vb->planes[plane].m.userptr == planes[plane].m.userptr
1285 && vb->planes[plane].length == planes[plane].length)
1286 continue;
1288 dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n",
1289 plane);
1291 /* Check if the provided plane buffer is large enough */
1292 if (planes[plane].length < vb->planes[plane].min_length) {
1293 dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n",
1294 planes[plane].length,
1295 vb->planes[plane].min_length,
1296 plane);
1297 ret = -EINVAL;
1298 goto err;
1301 /* Release previously acquired memory if present */
1302 if (vb->planes[plane].mem_priv) {
1303 if (!reacquired) {
1304 reacquired = true;
1305 vb->copied_timestamp = 0;
1306 call_void_vb_qop(vb, buf_cleanup, vb);
1308 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1311 vb->planes[plane].mem_priv = NULL;
1312 vb->planes[plane].bytesused = 0;
1313 vb->planes[plane].length = 0;
1314 vb->planes[plane].m.userptr = 0;
1315 vb->planes[plane].data_offset = 0;
1317 /* Acquire each plane's memory */
1318 mem_priv = call_ptr_memop(get_userptr,
1320 q->alloc_devs[plane] ? : q->dev,
1321 planes[plane].m.userptr,
1322 planes[plane].length);
1323 if (IS_ERR(mem_priv)) {
1324 dprintk(q, 1, "failed acquiring userspace memory for plane %d\n",
1325 plane);
1326 ret = PTR_ERR(mem_priv);
1327 goto err;
1329 vb->planes[plane].mem_priv = mem_priv;
1333 * Now that everything is in order, copy relevant information
1334 * provided by userspace.
1336 for (plane = 0; plane < vb->num_planes; ++plane) {
1337 vb->planes[plane].bytesused = planes[plane].bytesused;
1338 vb->planes[plane].length = planes[plane].length;
1339 vb->planes[plane].m.userptr = planes[plane].m.userptr;
1340 vb->planes[plane].data_offset = planes[plane].data_offset;
1343 if (reacquired) {
1345 * One or more planes changed, so we must call buf_init to do
1346 * the driver-specific initialization on the newly acquired
1347 * buffer, if provided.
1349 ret = call_vb_qop(vb, buf_init, vb);
1350 if (ret) {
1351 dprintk(q, 1, "buffer initialization failed\n");
1352 goto err;
1356 ret = call_vb_qop(vb, buf_prepare, vb);
1357 if (ret) {
1358 dprintk(q, 1, "buffer preparation failed\n");
1359 call_void_vb_qop(vb, buf_cleanup, vb);
1360 goto err;
1363 return 0;
1364 err:
1365 /* In case of errors, release planes that were already acquired */
1366 for (plane = 0; plane < vb->num_planes; ++plane) {
1367 if (vb->planes[plane].mem_priv)
1368 call_void_memop(vb, put_userptr,
1369 vb->planes[plane].mem_priv);
1370 vb->planes[plane].mem_priv = NULL;
1371 vb->planes[plane].m.userptr = 0;
1372 vb->planes[plane].length = 0;
1375 return ret;
1379 * __prepare_dmabuf() - prepare a DMABUF buffer
1381 static int __prepare_dmabuf(struct vb2_buffer *vb)
1383 struct vb2_plane planes[VB2_MAX_PLANES];
1384 struct vb2_queue *q = vb->vb2_queue;
1385 void *mem_priv;
1386 unsigned int plane, i;
1387 int ret = 0;
1388 bool reacquired = vb->planes[0].mem_priv == NULL;
1390 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1391 /* Copy relevant information provided by the userspace */
1392 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1393 vb, planes);
1394 if (ret)
1395 return ret;
1397 for (plane = 0; plane < vb->num_planes; ++plane) {
1398 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1400 planes[plane].dbuf = dbuf;
1402 if (IS_ERR_OR_NULL(dbuf)) {
1403 dprintk(q, 1, "invalid dmabuf fd for plane %d\n",
1404 plane);
1405 ret = -EINVAL;
1406 goto err_put_planes;
1409 /* use DMABUF size if length is not provided */
1410 if (planes[plane].length == 0)
1411 planes[plane].length = dbuf->size;
1413 if (planes[plane].length < vb->planes[plane].min_length) {
1414 dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n",
1415 planes[plane].length, plane,
1416 vb->planes[plane].min_length);
1417 ret = -EINVAL;
1418 goto err_put_planes;
1421 /* Skip the plane if already verified */
1422 if (dbuf == vb->planes[plane].dbuf &&
1423 vb->planes[plane].length == planes[plane].length)
1424 continue;
1426 dprintk(q, 3, "buffer for plane %d changed\n", plane);
1428 reacquired = true;
1431 if (reacquired) {
1432 if (vb->planes[0].mem_priv) {
1433 vb->copied_timestamp = 0;
1434 call_void_vb_qop(vb, buf_cleanup, vb);
1435 __vb2_buf_dmabuf_put(vb);
1438 for (plane = 0; plane < vb->num_planes; ++plane) {
1440 * This is an optimization to reduce dma_buf attachment/mapping.
1441 * When the same dma_buf is used for multiple planes, there is no need
1442 * to create duplicated attachments.
1444 for (i = 0; i < plane; ++i) {
1445 if (planes[plane].dbuf == vb->planes[i].dbuf &&
1446 q->alloc_devs[plane] == q->alloc_devs[i]) {
1447 vb->planes[plane].dbuf_duplicated = true;
1448 vb->planes[plane].dbuf = vb->planes[i].dbuf;
1449 vb->planes[plane].mem_priv = vb->planes[i].mem_priv;
1450 break;
1454 if (vb->planes[plane].dbuf_duplicated)
1455 continue;
1457 /* Acquire each plane's memory */
1458 mem_priv = call_ptr_memop(attach_dmabuf,
1460 q->alloc_devs[plane] ? : q->dev,
1461 planes[plane].dbuf,
1462 planes[plane].length);
1463 if (IS_ERR(mem_priv)) {
1464 dprintk(q, 1, "failed to attach dmabuf\n");
1465 ret = PTR_ERR(mem_priv);
1466 goto err_put_vb2_buf;
1469 vb->planes[plane].dbuf = planes[plane].dbuf;
1470 vb->planes[plane].mem_priv = mem_priv;
1473 * This pins the buffer(s) with dma_buf_map_attachment()). It's done
1474 * here instead just before the DMA, while queueing the buffer(s) so
1475 * userspace knows sooner rather than later if the dma-buf map fails.
1477 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1478 if (ret) {
1479 dprintk(q, 1, "failed to map dmabuf for plane %d\n",
1480 plane);
1481 goto err_put_vb2_buf;
1483 vb->planes[plane].dbuf_mapped = 1;
1485 } else {
1486 for (plane = 0; plane < vb->num_planes; ++plane)
1487 dma_buf_put(planes[plane].dbuf);
1491 * Now that everything is in order, copy relevant information
1492 * provided by userspace.
1494 for (plane = 0; plane < vb->num_planes; ++plane) {
1495 vb->planes[plane].bytesused = planes[plane].bytesused;
1496 vb->planes[plane].length = planes[plane].length;
1497 vb->planes[plane].m.fd = planes[plane].m.fd;
1498 vb->planes[plane].data_offset = planes[plane].data_offset;
1501 if (reacquired) {
1503 * Call driver-specific initialization on the newly acquired buffer,
1504 * if provided.
1506 ret = call_vb_qop(vb, buf_init, vb);
1507 if (ret) {
1508 dprintk(q, 1, "buffer initialization failed\n");
1509 goto err_put_vb2_buf;
1513 ret = call_vb_qop(vb, buf_prepare, vb);
1514 if (ret) {
1515 dprintk(q, 1, "buffer preparation failed\n");
1516 call_void_vb_qop(vb, buf_cleanup, vb);
1517 goto err_put_vb2_buf;
1520 return 0;
1522 err_put_planes:
1523 for (plane = 0; plane < vb->num_planes; ++plane) {
1524 if (!IS_ERR_OR_NULL(planes[plane].dbuf))
1525 dma_buf_put(planes[plane].dbuf);
1527 err_put_vb2_buf:
1528 /* In case of errors, release planes that were already acquired */
1529 __vb2_buf_dmabuf_put(vb);
1531 return ret;
1535 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1537 static void __enqueue_in_driver(struct vb2_buffer *vb)
1539 struct vb2_queue *q = vb->vb2_queue;
1541 vb->state = VB2_BUF_STATE_ACTIVE;
1542 atomic_inc(&q->owned_by_drv_count);
1544 trace_vb2_buf_queue(q, vb);
1546 call_void_vb_qop(vb, buf_queue, vb);
1549 static int __buf_prepare(struct vb2_buffer *vb)
1551 struct vb2_queue *q = vb->vb2_queue;
1552 enum vb2_buffer_state orig_state = vb->state;
1553 int ret;
1555 if (q->error) {
1556 dprintk(q, 1, "fatal error occurred on queue\n");
1557 return -EIO;
1560 if (vb->prepared)
1561 return 0;
1562 WARN_ON(vb->synced);
1564 if (q->is_output) {
1565 ret = call_vb_qop(vb, buf_out_validate, vb);
1566 if (ret) {
1567 dprintk(q, 1, "buffer validation failed\n");
1568 return ret;
1572 vb->state = VB2_BUF_STATE_PREPARING;
1574 switch (q->memory) {
1575 case VB2_MEMORY_MMAP:
1576 ret = __prepare_mmap(vb);
1577 break;
1578 case VB2_MEMORY_USERPTR:
1579 ret = __prepare_userptr(vb);
1580 break;
1581 case VB2_MEMORY_DMABUF:
1582 ret = __prepare_dmabuf(vb);
1583 break;
1584 default:
1585 WARN(1, "Invalid queue type\n");
1586 ret = -EINVAL;
1587 break;
1590 if (ret) {
1591 dprintk(q, 1, "buffer preparation failed: %d\n", ret);
1592 vb->state = orig_state;
1593 return ret;
1596 __vb2_buf_mem_prepare(vb);
1597 vb->prepared = 1;
1598 vb->state = orig_state;
1600 return 0;
1603 static int vb2_req_prepare(struct media_request_object *obj)
1605 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1606 int ret;
1608 if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST))
1609 return -EINVAL;
1611 mutex_lock(vb->vb2_queue->lock);
1612 ret = __buf_prepare(vb);
1613 mutex_unlock(vb->vb2_queue->lock);
1614 return ret;
1617 static void __vb2_dqbuf(struct vb2_buffer *vb);
1619 static void vb2_req_unprepare(struct media_request_object *obj)
1621 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1623 mutex_lock(vb->vb2_queue->lock);
1624 __vb2_dqbuf(vb);
1625 vb->state = VB2_BUF_STATE_IN_REQUEST;
1626 mutex_unlock(vb->vb2_queue->lock);
1627 WARN_ON(!vb->req_obj.req);
1630 static void vb2_req_queue(struct media_request_object *obj)
1632 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1633 int err;
1635 mutex_lock(vb->vb2_queue->lock);
1637 * There is no method to propagate an error from vb2_core_qbuf(),
1638 * so if this returns a non-0 value, then WARN.
1640 * The only exception is -EIO which is returned if q->error is
1641 * set. We just ignore that, and expect this will be caught the
1642 * next time vb2_req_prepare() is called.
1644 err = vb2_core_qbuf(vb->vb2_queue, vb, NULL, NULL);
1645 WARN_ON_ONCE(err && err != -EIO);
1646 mutex_unlock(vb->vb2_queue->lock);
1649 static void vb2_req_unbind(struct media_request_object *obj)
1651 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1653 if (vb->state == VB2_BUF_STATE_IN_REQUEST)
1654 call_void_bufop(vb->vb2_queue, init_buffer, vb);
1657 static void vb2_req_release(struct media_request_object *obj)
1659 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1661 if (vb->state == VB2_BUF_STATE_IN_REQUEST) {
1662 vb->state = VB2_BUF_STATE_DEQUEUED;
1663 if (vb->request)
1664 media_request_put(vb->request);
1665 vb->request = NULL;
1669 static const struct media_request_object_ops vb2_core_req_ops = {
1670 .prepare = vb2_req_prepare,
1671 .unprepare = vb2_req_unprepare,
1672 .queue = vb2_req_queue,
1673 .unbind = vb2_req_unbind,
1674 .release = vb2_req_release,
1677 bool vb2_request_object_is_buffer(struct media_request_object *obj)
1679 return obj->ops == &vb2_core_req_ops;
1681 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer);
1683 unsigned int vb2_request_buffer_cnt(struct media_request *req)
1685 struct media_request_object *obj;
1686 unsigned long flags;
1687 unsigned int buffer_cnt = 0;
1689 spin_lock_irqsave(&req->lock, flags);
1690 list_for_each_entry(obj, &req->objects, list)
1691 if (vb2_request_object_is_buffer(obj))
1692 buffer_cnt++;
1693 spin_unlock_irqrestore(&req->lock, flags);
1695 return buffer_cnt;
1697 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt);
1699 int vb2_core_prepare_buf(struct vb2_queue *q, struct vb2_buffer *vb, void *pb)
1701 int ret;
1703 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1704 dprintk(q, 1, "invalid buffer state %s\n",
1705 vb2_state_name(vb->state));
1706 return -EINVAL;
1708 if (vb->prepared) {
1709 dprintk(q, 1, "buffer already prepared\n");
1710 return -EINVAL;
1713 ret = __buf_prepare(vb);
1714 if (ret)
1715 return ret;
1717 /* Fill buffer information for the userspace */
1718 call_void_bufop(q, fill_user_buffer, vb, pb);
1720 dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index);
1722 return 0;
1724 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf);
1726 int vb2_core_remove_bufs(struct vb2_queue *q, unsigned int start, unsigned int count)
1728 unsigned int i, ret = 0;
1729 unsigned int q_num_bufs = vb2_get_num_buffers(q);
1731 if (count == 0)
1732 return 0;
1734 if (count > q_num_bufs)
1735 return -EINVAL;
1737 if (start > q->max_num_buffers - count)
1738 return -EINVAL;
1740 mutex_lock(&q->mmap_lock);
1742 /* Check that all buffers in the range exist */
1743 for (i = start; i < start + count; i++) {
1744 struct vb2_buffer *vb = vb2_get_buffer(q, i);
1746 if (!vb) {
1747 ret = -EINVAL;
1748 goto unlock;
1750 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1751 ret = -EBUSY;
1752 goto unlock;
1755 __vb2_queue_free(q, start, count);
1756 dprintk(q, 2, "%u buffers removed\n", count);
1758 unlock:
1759 mutex_unlock(&q->mmap_lock);
1760 return ret;
1762 EXPORT_SYMBOL_GPL(vb2_core_remove_bufs);
1765 * vb2_start_streaming() - Attempt to start streaming.
1766 * @q: videobuf2 queue
1768 * Attempt to start streaming. When this function is called there must be
1769 * at least q->min_queued_buffers queued up (i.e. the minimum
1770 * number of buffers required for the DMA engine to function). If the
1771 * @start_streaming op fails it is supposed to return all the driver-owned
1772 * buffers back to vb2 in state QUEUED. Check if that happened and if
1773 * not warn and reclaim them forcefully.
1775 static int vb2_start_streaming(struct vb2_queue *q)
1777 struct vb2_buffer *vb;
1778 int ret;
1781 * If any buffers were queued before streamon,
1782 * we can now pass them to driver for processing.
1784 list_for_each_entry(vb, &q->queued_list, queued_entry)
1785 __enqueue_in_driver(vb);
1787 /* Tell the driver to start streaming */
1788 q->start_streaming_called = 1;
1789 ret = call_qop(q, start_streaming, q,
1790 atomic_read(&q->owned_by_drv_count));
1791 if (!ret)
1792 return 0;
1794 q->start_streaming_called = 0;
1796 dprintk(q, 1, "driver refused to start streaming\n");
1798 * If you see this warning, then the driver isn't cleaning up properly
1799 * after a failed start_streaming(). See the start_streaming()
1800 * documentation in videobuf2-core.h for more information how buffers
1801 * should be returned to vb2 in start_streaming().
1803 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1804 unsigned i;
1807 * Forcefully reclaim buffers if the driver did not
1808 * correctly return them to vb2.
1810 for (i = 0; i < q->max_num_buffers; ++i) {
1811 vb = vb2_get_buffer(q, i);
1813 if (!vb)
1814 continue;
1816 if (vb->state == VB2_BUF_STATE_ACTIVE)
1817 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1819 /* Must be zero now */
1820 WARN_ON(atomic_read(&q->owned_by_drv_count));
1823 * If done_list is not empty, then start_streaming() didn't call
1824 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1825 * STATE_DONE.
1827 WARN_ON(!list_empty(&q->done_list));
1828 return ret;
1831 int vb2_core_qbuf(struct vb2_queue *q, struct vb2_buffer *vb, void *pb,
1832 struct media_request *req)
1834 enum vb2_buffer_state orig_state;
1835 int ret;
1837 if (q->error) {
1838 dprintk(q, 1, "fatal error occurred on queue\n");
1839 return -EIO;
1842 if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1843 q->requires_requests) {
1844 dprintk(q, 1, "qbuf requires a request\n");
1845 return -EBADR;
1848 if ((req && q->uses_qbuf) ||
1849 (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1850 q->uses_requests)) {
1851 dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n");
1852 return -EBUSY;
1855 if (req) {
1856 int ret;
1858 q->uses_requests = 1;
1859 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1860 dprintk(q, 1, "buffer %d not in dequeued state\n",
1861 vb->index);
1862 return -EINVAL;
1865 if (q->is_output && !vb->prepared) {
1866 ret = call_vb_qop(vb, buf_out_validate, vb);
1867 if (ret) {
1868 dprintk(q, 1, "buffer validation failed\n");
1869 return ret;
1873 media_request_object_init(&vb->req_obj);
1875 /* Make sure the request is in a safe state for updating. */
1876 ret = media_request_lock_for_update(req);
1877 if (ret)
1878 return ret;
1879 ret = media_request_object_bind(req, &vb2_core_req_ops,
1880 q, true, &vb->req_obj);
1881 media_request_unlock_for_update(req);
1882 if (ret)
1883 return ret;
1885 vb->state = VB2_BUF_STATE_IN_REQUEST;
1888 * Increment the refcount and store the request.
1889 * The request refcount is decremented again when the
1890 * buffer is dequeued. This is to prevent vb2_buffer_done()
1891 * from freeing the request from interrupt context, which can
1892 * happen if the application closed the request fd after
1893 * queueing the request.
1895 media_request_get(req);
1896 vb->request = req;
1898 /* Fill buffer information for the userspace */
1899 if (pb) {
1900 call_void_bufop(q, copy_timestamp, vb, pb);
1901 call_void_bufop(q, fill_user_buffer, vb, pb);
1904 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1905 return 0;
1908 if (vb->state != VB2_BUF_STATE_IN_REQUEST)
1909 q->uses_qbuf = 1;
1911 switch (vb->state) {
1912 case VB2_BUF_STATE_DEQUEUED:
1913 case VB2_BUF_STATE_IN_REQUEST:
1914 if (!vb->prepared) {
1915 ret = __buf_prepare(vb);
1916 if (ret)
1917 return ret;
1919 break;
1920 case VB2_BUF_STATE_PREPARING:
1921 dprintk(q, 1, "buffer still being prepared\n");
1922 return -EINVAL;
1923 default:
1924 dprintk(q, 1, "invalid buffer state %s\n",
1925 vb2_state_name(vb->state));
1926 return -EINVAL;
1930 * Add to the queued buffers list, a buffer will stay on it until
1931 * dequeued in dqbuf.
1933 orig_state = vb->state;
1934 list_add_tail(&vb->queued_entry, &q->queued_list);
1935 q->queued_count++;
1936 q->waiting_for_buffers = false;
1937 vb->state = VB2_BUF_STATE_QUEUED;
1939 if (pb)
1940 call_void_bufop(q, copy_timestamp, vb, pb);
1942 trace_vb2_qbuf(q, vb);
1945 * If already streaming, give the buffer to driver for processing.
1946 * If not, the buffer will be given to driver on next streamon.
1948 if (q->start_streaming_called)
1949 __enqueue_in_driver(vb);
1951 /* Fill buffer information for the userspace */
1952 if (pb)
1953 call_void_bufop(q, fill_user_buffer, vb, pb);
1956 * If streamon has been called, and we haven't yet called
1957 * start_streaming() since not enough buffers were queued, and
1958 * we now have reached the minimum number of queued buffers,
1959 * then we can finally call start_streaming().
1961 if (q->streaming && !q->start_streaming_called &&
1962 q->queued_count >= q->min_queued_buffers) {
1963 ret = vb2_start_streaming(q);
1964 if (ret) {
1966 * Since vb2_core_qbuf will return with an error,
1967 * we should return it to state DEQUEUED since
1968 * the error indicates that the buffer wasn't queued.
1970 list_del(&vb->queued_entry);
1971 q->queued_count--;
1972 vb->state = orig_state;
1973 return ret;
1977 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1978 return 0;
1980 EXPORT_SYMBOL_GPL(vb2_core_qbuf);
1983 * __vb2_wait_for_done_vb() - wait for a buffer to become available
1984 * for dequeuing
1986 * Will sleep if required for nonblocking == false.
1988 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1991 * All operations on vb_done_list are performed under done_lock
1992 * spinlock protection. However, buffers may be removed from
1993 * it and returned to userspace only while holding both driver's
1994 * lock and the done_lock spinlock. Thus we can be sure that as
1995 * long as we hold the driver's lock, the list will remain not
1996 * empty if list_empty() check succeeds.
1999 for (;;) {
2000 int ret;
2002 if (q->waiting_in_dqbuf) {
2003 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
2004 return -EBUSY;
2007 if (!q->streaming) {
2008 dprintk(q, 1, "streaming off, will not wait for buffers\n");
2009 return -EINVAL;
2012 if (q->error) {
2013 dprintk(q, 1, "Queue in error state, will not wait for buffers\n");
2014 return -EIO;
2017 if (q->last_buffer_dequeued) {
2018 dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n");
2019 return -EPIPE;
2022 if (!list_empty(&q->done_list)) {
2024 * Found a buffer that we were waiting for.
2026 break;
2029 if (nonblocking) {
2030 dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n");
2031 return -EAGAIN;
2034 q->waiting_in_dqbuf = 1;
2036 * We are streaming and blocking, wait for another buffer to
2037 * become ready or for streamoff. Driver's lock is released to
2038 * allow streamoff or qbuf to be called while waiting.
2040 if (q->ops->wait_prepare)
2041 call_void_qop(q, wait_prepare, q);
2042 else if (q->lock)
2043 mutex_unlock(q->lock);
2046 * All locks have been released, it is safe to sleep now.
2048 dprintk(q, 3, "will sleep waiting for buffers\n");
2049 ret = wait_event_interruptible(q->done_wq,
2050 !list_empty(&q->done_list) || !q->streaming ||
2051 q->error);
2053 if (q->ops->wait_finish)
2054 call_void_qop(q, wait_finish, q);
2055 else if (q->lock)
2056 mutex_lock(q->lock);
2058 q->waiting_in_dqbuf = 0;
2060 * We need to reevaluate both conditions again after reacquiring
2061 * the locks or return an error if one occurred.
2063 if (ret) {
2064 dprintk(q, 1, "sleep was interrupted\n");
2065 return ret;
2068 return 0;
2072 * __vb2_get_done_vb() - get a buffer ready for dequeuing
2074 * Will sleep if required for nonblocking == false.
2076 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
2077 void *pb, int nonblocking)
2079 unsigned long flags;
2080 int ret = 0;
2083 * Wait for at least one buffer to become available on the done_list.
2085 ret = __vb2_wait_for_done_vb(q, nonblocking);
2086 if (ret)
2087 return ret;
2090 * Driver's lock has been held since we last verified that done_list
2091 * is not empty, so no need for another list_empty(done_list) check.
2093 spin_lock_irqsave(&q->done_lock, flags);
2094 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
2096 * Only remove the buffer from done_list if all planes can be
2097 * handled. Some cases such as V4L2 file I/O and DVB have pb
2098 * == NULL; skip the check then as there's nothing to verify.
2100 if (pb)
2101 ret = call_bufop(q, verify_planes_array, *vb, pb);
2102 if (!ret)
2103 list_del(&(*vb)->done_entry);
2104 spin_unlock_irqrestore(&q->done_lock, flags);
2106 return ret;
2109 int vb2_wait_for_all_buffers(struct vb2_queue *q)
2111 if (!q->streaming) {
2112 dprintk(q, 1, "streaming off, will not wait for buffers\n");
2113 return -EINVAL;
2116 if (q->start_streaming_called)
2117 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
2118 return 0;
2120 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
2123 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
2125 static void __vb2_dqbuf(struct vb2_buffer *vb)
2127 struct vb2_queue *q = vb->vb2_queue;
2129 /* nothing to do if the buffer is already dequeued */
2130 if (vb->state == VB2_BUF_STATE_DEQUEUED)
2131 return;
2133 vb->state = VB2_BUF_STATE_DEQUEUED;
2135 call_void_bufop(q, init_buffer, vb);
2138 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
2139 bool nonblocking)
2141 struct vb2_buffer *vb = NULL;
2142 int ret;
2144 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking);
2145 if (ret < 0)
2146 return ret;
2148 switch (vb->state) {
2149 case VB2_BUF_STATE_DONE:
2150 dprintk(q, 3, "returning done buffer\n");
2151 break;
2152 case VB2_BUF_STATE_ERROR:
2153 dprintk(q, 3, "returning done buffer with errors\n");
2154 break;
2155 default:
2156 dprintk(q, 1, "invalid buffer state %s\n",
2157 vb2_state_name(vb->state));
2158 return -EINVAL;
2161 call_void_vb_qop(vb, buf_finish, vb);
2162 vb->prepared = 0;
2164 if (pindex)
2165 *pindex = vb->index;
2167 /* Fill buffer information for the userspace */
2168 if (pb)
2169 call_void_bufop(q, fill_user_buffer, vb, pb);
2171 /* Remove from vb2 queue */
2172 list_del(&vb->queued_entry);
2173 q->queued_count--;
2175 trace_vb2_dqbuf(q, vb);
2177 /* go back to dequeued state */
2178 __vb2_dqbuf(vb);
2180 if (WARN_ON(vb->req_obj.req)) {
2181 media_request_object_unbind(&vb->req_obj);
2182 media_request_object_put(&vb->req_obj);
2184 if (vb->request)
2185 media_request_put(vb->request);
2186 vb->request = NULL;
2188 dprintk(q, 2, "dqbuf of buffer %d, state: %s\n",
2189 vb->index, vb2_state_name(vb->state));
2191 return 0;
2194 EXPORT_SYMBOL_GPL(vb2_core_dqbuf);
2197 * __vb2_queue_cancel() - cancel and stop (pause) streaming
2199 * Removes all queued buffers from driver's queue and all buffers queued by
2200 * userspace from vb2's queue. Returns to state after reqbufs.
2202 static void __vb2_queue_cancel(struct vb2_queue *q)
2204 unsigned int i;
2207 * Tell driver to stop all transactions and release all queued
2208 * buffers.
2210 if (q->start_streaming_called)
2211 call_void_qop(q, stop_streaming, q);
2213 if (q->streaming)
2214 call_void_qop(q, unprepare_streaming, q);
2217 * If you see this warning, then the driver isn't cleaning up properly
2218 * in stop_streaming(). See the stop_streaming() documentation in
2219 * videobuf2-core.h for more information how buffers should be returned
2220 * to vb2 in stop_streaming().
2222 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
2223 for (i = 0; i < q->max_num_buffers; i++) {
2224 struct vb2_buffer *vb = vb2_get_buffer(q, i);
2226 if (!vb)
2227 continue;
2229 if (vb->state == VB2_BUF_STATE_ACTIVE) {
2230 pr_warn("driver bug: stop_streaming operation is leaving buffer %u in active state\n",
2231 vb->index);
2232 vb2_buffer_done(vb, VB2_BUF_STATE_ERROR);
2235 /* Must be zero now */
2236 WARN_ON(atomic_read(&q->owned_by_drv_count));
2239 q->streaming = 0;
2240 q->start_streaming_called = 0;
2241 q->queued_count = 0;
2242 q->error = 0;
2243 q->uses_requests = 0;
2244 q->uses_qbuf = 0;
2247 * Remove all buffers from vb2's list...
2249 INIT_LIST_HEAD(&q->queued_list);
2251 * ...and done list; userspace will not receive any buffers it
2252 * has not already dequeued before initiating cancel.
2254 INIT_LIST_HEAD(&q->done_list);
2255 atomic_set(&q->owned_by_drv_count, 0);
2256 wake_up_all(&q->done_wq);
2259 * Reinitialize all buffers for next use.
2260 * Make sure to call buf_finish for any queued buffers. Normally
2261 * that's done in dqbuf, but that's not going to happen when we
2262 * cancel the whole queue. Note: this code belongs here, not in
2263 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical
2264 * call to __fill_user_buffer() after buf_finish(). That order can't
2265 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
2267 for (i = 0; i < q->max_num_buffers; i++) {
2268 struct vb2_buffer *vb;
2269 struct media_request *req;
2271 vb = vb2_get_buffer(q, i);
2272 if (!vb)
2273 continue;
2275 req = vb->req_obj.req;
2277 * If a request is associated with this buffer, then
2278 * call buf_request_cancel() to give the driver to complete()
2279 * related request objects. Otherwise those objects would
2280 * never complete.
2282 if (req) {
2283 enum media_request_state state;
2284 unsigned long flags;
2286 spin_lock_irqsave(&req->lock, flags);
2287 state = req->state;
2288 spin_unlock_irqrestore(&req->lock, flags);
2290 if (state == MEDIA_REQUEST_STATE_QUEUED)
2291 call_void_vb_qop(vb, buf_request_complete, vb);
2294 __vb2_buf_mem_finish(vb);
2296 if (vb->prepared) {
2297 call_void_vb_qop(vb, buf_finish, vb);
2298 vb->prepared = 0;
2300 __vb2_dqbuf(vb);
2302 if (vb->req_obj.req) {
2303 media_request_object_unbind(&vb->req_obj);
2304 media_request_object_put(&vb->req_obj);
2306 if (vb->request)
2307 media_request_put(vb->request);
2308 vb->request = NULL;
2309 vb->copied_timestamp = 0;
2313 int vb2_core_streamon(struct vb2_queue *q, unsigned int type)
2315 unsigned int q_num_bufs = vb2_get_num_buffers(q);
2316 int ret;
2318 if (type != q->type) {
2319 dprintk(q, 1, "invalid stream type\n");
2320 return -EINVAL;
2323 if (q->streaming) {
2324 dprintk(q, 3, "already streaming\n");
2325 return 0;
2328 if (!q_num_bufs) {
2329 dprintk(q, 1, "no buffers have been allocated\n");
2330 return -EINVAL;
2333 if (q_num_bufs < q->min_queued_buffers) {
2334 dprintk(q, 1, "need at least %u allocated buffers\n",
2335 q->min_queued_buffers);
2336 return -EINVAL;
2339 ret = call_qop(q, prepare_streaming, q);
2340 if (ret)
2341 return ret;
2344 * Tell driver to start streaming provided sufficient buffers
2345 * are available.
2347 if (q->queued_count >= q->min_queued_buffers) {
2348 ret = vb2_start_streaming(q);
2349 if (ret)
2350 goto unprepare;
2353 q->streaming = 1;
2355 dprintk(q, 3, "successful\n");
2356 return 0;
2358 unprepare:
2359 call_void_qop(q, unprepare_streaming, q);
2360 return ret;
2362 EXPORT_SYMBOL_GPL(vb2_core_streamon);
2364 void vb2_queue_error(struct vb2_queue *q)
2366 q->error = 1;
2368 wake_up_all(&q->done_wq);
2370 EXPORT_SYMBOL_GPL(vb2_queue_error);
2372 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type)
2374 if (type != q->type) {
2375 dprintk(q, 1, "invalid stream type\n");
2376 return -EINVAL;
2380 * Cancel will pause streaming and remove all buffers from the driver
2381 * and vb2, effectively returning control over them to userspace.
2383 * Note that we do this even if q->streaming == 0: if you prepare or
2384 * queue buffers, and then call streamoff without ever having called
2385 * streamon, you would still expect those buffers to be returned to
2386 * their normal dequeued state.
2388 __vb2_queue_cancel(q);
2389 q->waiting_for_buffers = !q->is_output;
2390 q->last_buffer_dequeued = false;
2392 dprintk(q, 3, "successful\n");
2393 return 0;
2395 EXPORT_SYMBOL_GPL(vb2_core_streamoff);
2398 * __find_plane_by_offset() - find plane associated with the given offset
2400 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long offset,
2401 struct vb2_buffer **vb, unsigned int *plane)
2403 unsigned int buffer;
2406 * Sanity checks to ensure the lock is held, MEMORY_MMAP is
2407 * used and fileio isn't active.
2409 lockdep_assert_held(&q->mmap_lock);
2411 if (q->memory != VB2_MEMORY_MMAP) {
2412 dprintk(q, 1, "queue is not currently set up for mmap\n");
2413 return -EINVAL;
2416 if (vb2_fileio_is_active(q)) {
2417 dprintk(q, 1, "file io in progress\n");
2418 return -EBUSY;
2421 /* Get buffer and plane from the offset */
2422 buffer = (offset >> PLANE_INDEX_SHIFT) & BUFFER_INDEX_MASK;
2423 *plane = (offset >> PAGE_SHIFT) & PLANE_INDEX_MASK;
2425 *vb = vb2_get_buffer(q, buffer);
2426 if (!*vb)
2427 return -EINVAL;
2428 if (*plane >= (*vb)->num_planes)
2429 return -EINVAL;
2431 return 0;
2434 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type,
2435 struct vb2_buffer *vb, unsigned int plane, unsigned int flags)
2437 struct vb2_plane *vb_plane;
2438 int ret;
2439 struct dma_buf *dbuf;
2441 if (q->memory != VB2_MEMORY_MMAP) {
2442 dprintk(q, 1, "queue is not currently set up for mmap\n");
2443 return -EINVAL;
2446 if (!q->mem_ops->get_dmabuf) {
2447 dprintk(q, 1, "queue does not support DMA buffer exporting\n");
2448 return -EINVAL;
2451 if (flags & ~(O_CLOEXEC | O_ACCMODE)) {
2452 dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n");
2453 return -EINVAL;
2456 if (type != q->type) {
2457 dprintk(q, 1, "invalid buffer type\n");
2458 return -EINVAL;
2461 if (plane >= vb->num_planes) {
2462 dprintk(q, 1, "buffer plane out of range\n");
2463 return -EINVAL;
2466 if (vb2_fileio_is_active(q)) {
2467 dprintk(q, 1, "expbuf: file io in progress\n");
2468 return -EBUSY;
2471 vb_plane = &vb->planes[plane];
2473 dbuf = call_ptr_memop(get_dmabuf,
2475 vb_plane->mem_priv,
2476 flags & O_ACCMODE);
2477 if (IS_ERR_OR_NULL(dbuf)) {
2478 dprintk(q, 1, "failed to export buffer %d, plane %d\n",
2479 vb->index, plane);
2480 return -EINVAL;
2483 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE);
2484 if (ret < 0) {
2485 dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n",
2486 vb->index, plane, ret);
2487 dma_buf_put(dbuf);
2488 return ret;
2491 dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n",
2492 vb->index, plane, ret);
2493 *fd = ret;
2495 return 0;
2497 EXPORT_SYMBOL_GPL(vb2_core_expbuf);
2499 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
2501 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
2502 struct vb2_buffer *vb;
2503 unsigned int plane = 0;
2504 int ret;
2505 unsigned long length;
2508 * Check memory area access mode.
2510 if (!(vma->vm_flags & VM_SHARED)) {
2511 dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n");
2512 return -EINVAL;
2514 if (q->is_output) {
2515 if (!(vma->vm_flags & VM_WRITE)) {
2516 dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n");
2517 return -EINVAL;
2519 } else {
2520 if (!(vma->vm_flags & VM_READ)) {
2521 dprintk(q, 1, "invalid vma flags, VM_READ needed\n");
2522 return -EINVAL;
2526 mutex_lock(&q->mmap_lock);
2529 * Find the plane corresponding to the offset passed by userspace. This
2530 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2532 ret = __find_plane_by_offset(q, offset, &vb, &plane);
2533 if (ret)
2534 goto unlock;
2537 * MMAP requires page_aligned buffers.
2538 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
2539 * so, we need to do the same here.
2541 length = PAGE_ALIGN(vb->planes[plane].length);
2542 if (length < (vma->vm_end - vma->vm_start)) {
2543 dprintk(q, 1,
2544 "MMAP invalid, as it would overflow buffer length\n");
2545 ret = -EINVAL;
2546 goto unlock;
2550 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer,
2551 * not as a in-buffer offset. We always want to mmap a whole buffer
2552 * from its beginning.
2554 vma->vm_pgoff = 0;
2556 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
2558 unlock:
2559 mutex_unlock(&q->mmap_lock);
2560 if (ret)
2561 return ret;
2563 dprintk(q, 3, "buffer %u, plane %d successfully mapped\n", vb->index, plane);
2564 return 0;
2566 EXPORT_SYMBOL_GPL(vb2_mmap);
2568 #ifndef CONFIG_MMU
2569 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
2570 unsigned long addr,
2571 unsigned long len,
2572 unsigned long pgoff,
2573 unsigned long flags)
2575 unsigned long offset = pgoff << PAGE_SHIFT;
2576 struct vb2_buffer *vb;
2577 unsigned int plane;
2578 void *vaddr;
2579 int ret;
2581 mutex_lock(&q->mmap_lock);
2584 * Find the plane corresponding to the offset passed by userspace. This
2585 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2587 ret = __find_plane_by_offset(q, offset, &vb, &plane);
2588 if (ret)
2589 goto unlock;
2591 vaddr = vb2_plane_vaddr(vb, plane);
2592 mutex_unlock(&q->mmap_lock);
2593 return vaddr ? (unsigned long)vaddr : -EINVAL;
2595 unlock:
2596 mutex_unlock(&q->mmap_lock);
2597 return ret;
2599 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
2600 #endif
2602 int vb2_core_queue_init(struct vb2_queue *q)
2605 * Sanity check
2608 * For drivers who don't support max_num_buffers ensure
2609 * a backward compatibility.
2611 if (!q->max_num_buffers)
2612 q->max_num_buffers = VB2_MAX_FRAME;
2614 /* The maximum is limited by offset cookie encoding pattern */
2615 q->max_num_buffers = min_t(unsigned int, q->max_num_buffers, MAX_BUFFER_INDEX);
2617 if (WARN_ON(!q) ||
2618 WARN_ON(!q->ops) ||
2619 WARN_ON(!q->mem_ops) ||
2620 WARN_ON(!q->type) ||
2621 WARN_ON(!q->io_modes) ||
2622 WARN_ON(!q->ops->queue_setup) ||
2623 WARN_ON(!q->ops->buf_queue))
2624 return -EINVAL;
2626 if (WARN_ON(q->max_num_buffers < VB2_MAX_FRAME) ||
2627 WARN_ON(q->min_queued_buffers > q->max_num_buffers))
2628 return -EINVAL;
2630 if (WARN_ON(q->requires_requests && !q->supports_requests))
2631 return -EINVAL;
2634 * This combination is not allowed since a non-zero value of
2635 * q->min_queued_buffers can cause vb2_core_qbuf() to fail if
2636 * it has to call start_streaming(), and the Request API expects
2637 * that queueing a request (and thus queueing a buffer contained
2638 * in that request) will always succeed. There is no method of
2639 * propagating an error back to userspace.
2641 if (WARN_ON(q->supports_requests && q->min_queued_buffers))
2642 return -EINVAL;
2645 * If the driver needs 'min_queued_buffers' in the queue before
2646 * calling start_streaming() then the minimum requirement is
2647 * 'min_queued_buffers + 1' to keep at least one buffer available
2648 * for userspace.
2650 if (q->min_reqbufs_allocation < q->min_queued_buffers + 1)
2651 q->min_reqbufs_allocation = q->min_queued_buffers + 1;
2653 if (WARN_ON(q->min_reqbufs_allocation > q->max_num_buffers))
2654 return -EINVAL;
2656 /* Either both or none are set */
2657 if (WARN_ON(!q->ops->wait_prepare ^ !q->ops->wait_finish))
2658 return -EINVAL;
2660 /* Warn if q->lock is NULL and no custom wait_prepare is provided */
2661 if (WARN_ON(!q->lock && !q->ops->wait_prepare))
2662 return -EINVAL;
2664 INIT_LIST_HEAD(&q->queued_list);
2665 INIT_LIST_HEAD(&q->done_list);
2666 spin_lock_init(&q->done_lock);
2667 mutex_init(&q->mmap_lock);
2668 init_waitqueue_head(&q->done_wq);
2670 q->memory = VB2_MEMORY_UNKNOWN;
2672 if (q->buf_struct_size == 0)
2673 q->buf_struct_size = sizeof(struct vb2_buffer);
2675 if (q->bidirectional)
2676 q->dma_dir = DMA_BIDIRECTIONAL;
2677 else
2678 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2680 if (q->name[0] == '\0')
2681 snprintf(q->name, sizeof(q->name), "%s-%p",
2682 q->is_output ? "out" : "cap", q);
2684 return 0;
2686 EXPORT_SYMBOL_GPL(vb2_core_queue_init);
2688 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2689 static int __vb2_cleanup_fileio(struct vb2_queue *q);
2690 void vb2_core_queue_release(struct vb2_queue *q)
2692 __vb2_cleanup_fileio(q);
2693 __vb2_queue_cancel(q);
2694 mutex_lock(&q->mmap_lock);
2695 __vb2_queue_free(q, 0, q->max_num_buffers);
2696 vb2_core_free_buffers_storage(q);
2697 q->is_busy = 0;
2698 mutex_unlock(&q->mmap_lock);
2700 EXPORT_SYMBOL_GPL(vb2_core_queue_release);
2702 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file,
2703 poll_table *wait)
2705 __poll_t req_events = poll_requested_events(wait);
2706 struct vb2_buffer *vb = NULL;
2707 unsigned long flags;
2710 * poll_wait() MUST be called on the first invocation on all the
2711 * potential queues of interest, even if we are not interested in their
2712 * events during this first call. Failure to do so will result in
2713 * queue's events to be ignored because the poll_table won't be capable
2714 * of adding new wait queues thereafter.
2716 poll_wait(file, &q->done_wq, wait);
2718 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM)))
2719 return 0;
2720 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM)))
2721 return 0;
2724 * Start file I/O emulator only if streaming API has not been used yet.
2726 if (vb2_get_num_buffers(q) == 0 && !vb2_fileio_is_active(q)) {
2727 if (!q->is_output && (q->io_modes & VB2_READ) &&
2728 (req_events & (EPOLLIN | EPOLLRDNORM))) {
2729 if (__vb2_init_fileio(q, 1))
2730 return EPOLLERR;
2732 if (q->is_output && (q->io_modes & VB2_WRITE) &&
2733 (req_events & (EPOLLOUT | EPOLLWRNORM))) {
2734 if (__vb2_init_fileio(q, 0))
2735 return EPOLLERR;
2737 * Write to OUTPUT queue can be done immediately.
2739 return EPOLLOUT | EPOLLWRNORM;
2744 * There is nothing to wait for if the queue isn't streaming, or if the
2745 * error flag is set.
2747 if (!vb2_is_streaming(q) || q->error)
2748 return EPOLLERR;
2751 * If this quirk is set and QBUF hasn't been called yet then
2752 * return EPOLLERR as well. This only affects capture queues, output
2753 * queues will always initialize waiting_for_buffers to false.
2754 * This quirk is set by V4L2 for backwards compatibility reasons.
2756 if (q->quirk_poll_must_check_waiting_for_buffers &&
2757 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM)))
2758 return EPOLLERR;
2761 * For output streams you can call write() as long as there are fewer
2762 * buffers queued than there are buffers available.
2764 if (q->is_output && q->fileio && q->queued_count < vb2_get_num_buffers(q))
2765 return EPOLLOUT | EPOLLWRNORM;
2767 if (list_empty(&q->done_list)) {
2769 * If the last buffer was dequeued from a capture queue,
2770 * return immediately. DQBUF will return -EPIPE.
2772 if (q->last_buffer_dequeued)
2773 return EPOLLIN | EPOLLRDNORM;
2777 * Take first buffer available for dequeuing.
2779 spin_lock_irqsave(&q->done_lock, flags);
2780 if (!list_empty(&q->done_list))
2781 vb = list_first_entry(&q->done_list, struct vb2_buffer,
2782 done_entry);
2783 spin_unlock_irqrestore(&q->done_lock, flags);
2785 if (vb && (vb->state == VB2_BUF_STATE_DONE
2786 || vb->state == VB2_BUF_STATE_ERROR)) {
2787 return (q->is_output) ?
2788 EPOLLOUT | EPOLLWRNORM :
2789 EPOLLIN | EPOLLRDNORM;
2791 return 0;
2793 EXPORT_SYMBOL_GPL(vb2_core_poll);
2796 * struct vb2_fileio_buf - buffer context used by file io emulator
2798 * vb2 provides a compatibility layer and emulator of file io (read and
2799 * write) calls on top of streaming API. This structure is used for
2800 * tracking context related to the buffers.
2802 struct vb2_fileio_buf {
2803 void *vaddr;
2804 unsigned int size;
2805 unsigned int pos;
2806 unsigned int queued:1;
2810 * struct vb2_fileio_data - queue context used by file io emulator
2812 * @cur_index: the index of the buffer currently being read from or
2813 * written to. If equal to number of buffers in the vb2_queue
2814 * then a new buffer must be dequeued.
2815 * @initial_index: in the read() case all buffers are queued up immediately
2816 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2817 * buffers. However, in the write() case no buffers are initially
2818 * queued, instead whenever a buffer is full it is queued up by
2819 * __vb2_perform_fileio(). Only once all available buffers have
2820 * been queued up will __vb2_perform_fileio() start to dequeue
2821 * buffers. This means that initially __vb2_perform_fileio()
2822 * needs to know what buffer index to use when it is queuing up
2823 * the buffers for the first time. That initial index is stored
2824 * in this field. Once it is equal to number of buffers in the
2825 * vb2_queue all available buffers have been queued and
2826 * __vb2_perform_fileio() should start the normal dequeue/queue cycle.
2828 * vb2 provides a compatibility layer and emulator of file io (read and
2829 * write) calls on top of streaming API. For proper operation it required
2830 * this structure to save the driver state between each call of the read
2831 * or write function.
2833 struct vb2_fileio_data {
2834 unsigned int count;
2835 unsigned int type;
2836 unsigned int memory;
2837 struct vb2_fileio_buf bufs[VB2_MAX_FRAME];
2838 unsigned int cur_index;
2839 unsigned int initial_index;
2840 unsigned int q_count;
2841 unsigned int dq_count;
2842 unsigned read_once:1;
2843 unsigned write_immediately:1;
2847 * __vb2_init_fileio() - initialize file io emulator
2848 * @q: videobuf2 queue
2849 * @read: mode selector (1 means read, 0 means write)
2851 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2853 struct vb2_fileio_data *fileio;
2854 struct vb2_buffer *vb;
2855 int i, ret;
2858 * Sanity check
2860 if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2861 (!read && !(q->io_modes & VB2_WRITE))))
2862 return -EINVAL;
2865 * Check if device supports mapping buffers to kernel virtual space.
2867 if (!q->mem_ops->vaddr)
2868 return -EBUSY;
2871 * Check if streaming api has not been already activated.
2873 if (q->streaming || vb2_get_num_buffers(q) > 0)
2874 return -EBUSY;
2876 dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2877 (read) ? "read" : "write", q->min_reqbufs_allocation, q->fileio_read_once,
2878 q->fileio_write_immediately);
2880 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL);
2881 if (fileio == NULL)
2882 return -ENOMEM;
2884 fileio->read_once = q->fileio_read_once;
2885 fileio->write_immediately = q->fileio_write_immediately;
2888 * Request buffers and use MMAP type to force driver
2889 * to allocate buffers by itself.
2891 fileio->count = q->min_reqbufs_allocation;
2892 fileio->memory = VB2_MEMORY_MMAP;
2893 fileio->type = q->type;
2894 q->fileio = fileio;
2895 ret = vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2896 if (ret)
2897 goto err_kfree;
2898 /* vb2_fileio_data supports max VB2_MAX_FRAME buffers */
2899 if (fileio->count > VB2_MAX_FRAME) {
2900 dprintk(q, 1, "fileio: more than VB2_MAX_FRAME buffers requested\n");
2901 ret = -ENOSPC;
2902 goto err_reqbufs;
2906 * Userspace can never add or delete buffers later, so there
2907 * will never be holes. It is safe to assume that vb2_get_buffer(q, 0)
2908 * will always return a valid vb pointer
2910 vb = vb2_get_buffer(q, 0);
2913 * Check if plane_count is correct
2914 * (multiplane buffers are not supported).
2916 if (vb->num_planes != 1) {
2917 ret = -EBUSY;
2918 goto err_reqbufs;
2922 * Get kernel address of each buffer.
2924 for (i = 0; i < vb2_get_num_buffers(q); i++) {
2925 /* vb can never be NULL when using fileio. */
2926 vb = vb2_get_buffer(q, i);
2928 fileio->bufs[i].vaddr = vb2_plane_vaddr(vb, 0);
2929 if (fileio->bufs[i].vaddr == NULL) {
2930 ret = -EINVAL;
2931 goto err_reqbufs;
2933 fileio->bufs[i].size = vb2_plane_size(vb, 0);
2937 * Read mode requires pre queuing of all buffers.
2939 if (read) {
2941 * Queue all buffers.
2943 for (i = 0; i < vb2_get_num_buffers(q); i++) {
2944 struct vb2_buffer *vb2 = vb2_get_buffer(q, i);
2946 if (!vb2)
2947 continue;
2949 ret = vb2_core_qbuf(q, vb2, NULL, NULL);
2950 if (ret)
2951 goto err_reqbufs;
2952 fileio->bufs[i].queued = 1;
2955 * All buffers have been queued, so mark that by setting
2956 * initial_index to the number of buffers in the vb2_queue
2958 fileio->initial_index = vb2_get_num_buffers(q);
2959 fileio->cur_index = fileio->initial_index;
2963 * Start streaming.
2965 ret = vb2_core_streamon(q, q->type);
2966 if (ret)
2967 goto err_reqbufs;
2969 return ret;
2971 err_reqbufs:
2972 fileio->count = 0;
2973 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2975 err_kfree:
2976 q->fileio = NULL;
2977 kfree(fileio);
2978 return ret;
2982 * __vb2_cleanup_fileio() - free resourced used by file io emulator
2983 * @q: videobuf2 queue
2985 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2987 struct vb2_fileio_data *fileio = q->fileio;
2989 if (fileio) {
2990 vb2_core_streamoff(q, q->type);
2991 q->fileio = NULL;
2992 fileio->count = 0;
2993 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2994 kfree(fileio);
2995 dprintk(q, 3, "file io emulator closed\n");
2997 return 0;
3001 * __vb2_perform_fileio() - perform a single file io (read or write) operation
3002 * @q: videobuf2 queue
3003 * @data: pointed to target userspace buffer
3004 * @count: number of bytes to read or write
3005 * @ppos: file handle position tracking pointer
3006 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking)
3007 * @read: access mode selector (1 means read, 0 means write)
3009 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
3010 loff_t *ppos, int nonblock, int read)
3012 struct vb2_fileio_data *fileio;
3013 struct vb2_fileio_buf *buf;
3014 bool is_multiplanar = q->is_multiplanar;
3016 * When using write() to write data to an output video node the vb2 core
3017 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
3018 * else is able to provide this information with the write() operation.
3020 bool copy_timestamp = !read && q->copy_timestamp;
3021 unsigned index;
3022 int ret;
3024 dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n",
3025 read ? "read" : "write", (long)*ppos, count,
3026 nonblock ? "non" : "");
3028 if (!data)
3029 return -EINVAL;
3031 if (q->waiting_in_dqbuf) {
3032 dprintk(q, 3, "another dup()ped fd is %s\n",
3033 read ? "reading" : "writing");
3034 return -EBUSY;
3038 * Initialize emulator on first call.
3040 if (!vb2_fileio_is_active(q)) {
3041 ret = __vb2_init_fileio(q, read);
3042 dprintk(q, 3, "vb2_init_fileio result: %d\n", ret);
3043 if (ret)
3044 return ret;
3046 fileio = q->fileio;
3049 * Check if we need to dequeue the buffer.
3051 index = fileio->cur_index;
3052 if (index >= vb2_get_num_buffers(q)) {
3053 struct vb2_buffer *b;
3056 * Call vb2_dqbuf to get buffer back.
3058 ret = vb2_core_dqbuf(q, &index, NULL, nonblock);
3059 dprintk(q, 5, "vb2_dqbuf result: %d\n", ret);
3060 if (ret)
3061 return ret;
3062 fileio->dq_count += 1;
3064 fileio->cur_index = index;
3065 buf = &fileio->bufs[index];
3067 /* b can never be NULL when using fileio. */
3068 b = vb2_get_buffer(q, index);
3071 * Get number of bytes filled by the driver
3073 buf->pos = 0;
3074 buf->queued = 0;
3075 buf->size = read ? vb2_get_plane_payload(b, 0)
3076 : vb2_plane_size(b, 0);
3077 /* Compensate for data_offset on read in the multiplanar case. */
3078 if (is_multiplanar && read &&
3079 b->planes[0].data_offset < buf->size) {
3080 buf->pos = b->planes[0].data_offset;
3081 buf->size -= buf->pos;
3083 } else {
3084 buf = &fileio->bufs[index];
3088 * Limit count on last few bytes of the buffer.
3090 if (buf->pos + count > buf->size) {
3091 count = buf->size - buf->pos;
3092 dprintk(q, 5, "reducing read count: %zd\n", count);
3096 * Transfer data to userspace.
3098 dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n",
3099 count, index, buf->pos);
3100 if (read)
3101 ret = copy_to_user(data, buf->vaddr + buf->pos, count);
3102 else
3103 ret = copy_from_user(buf->vaddr + buf->pos, data, count);
3104 if (ret) {
3105 dprintk(q, 3, "error copying data\n");
3106 return -EFAULT;
3110 * Update counters.
3112 buf->pos += count;
3113 *ppos += count;
3116 * Queue next buffer if required.
3118 if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
3119 /* b can never be NULL when using fileio. */
3120 struct vb2_buffer *b = vb2_get_buffer(q, index);
3123 * Check if this is the last buffer to read.
3125 if (read && fileio->read_once && fileio->dq_count == 1) {
3126 dprintk(q, 3, "read limit reached\n");
3127 return __vb2_cleanup_fileio(q);
3131 * Call vb2_qbuf and give buffer to the driver.
3133 b->planes[0].bytesused = buf->pos;
3135 if (copy_timestamp)
3136 b->timestamp = ktime_get_ns();
3137 ret = vb2_core_qbuf(q, b, NULL, NULL);
3138 dprintk(q, 5, "vb2_qbuf result: %d\n", ret);
3139 if (ret)
3140 return ret;
3143 * Buffer has been queued, update the status
3145 buf->pos = 0;
3146 buf->queued = 1;
3147 buf->size = vb2_plane_size(b, 0);
3148 fileio->q_count += 1;
3150 * If we are queuing up buffers for the first time, then
3151 * increase initial_index by one.
3153 if (fileio->initial_index < vb2_get_num_buffers(q))
3154 fileio->initial_index++;
3156 * The next buffer to use is either a buffer that's going to be
3157 * queued for the first time (initial_index < number of buffers in the vb2_queue)
3158 * or it is equal to the number of buffers in the vb2_queue,
3159 * meaning that the next time we need to dequeue a buffer since
3160 * we've now queued up all the 'first time' buffers.
3162 fileio->cur_index = fileio->initial_index;
3166 * Return proper number of bytes processed.
3168 if (ret == 0)
3169 ret = count;
3170 return ret;
3173 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
3174 loff_t *ppos, int nonblocking)
3176 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
3178 EXPORT_SYMBOL_GPL(vb2_read);
3180 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
3181 loff_t *ppos, int nonblocking)
3183 return __vb2_perform_fileio(q, (char __user *) data, count,
3184 ppos, nonblocking, 0);
3186 EXPORT_SYMBOL_GPL(vb2_write);
3188 struct vb2_threadio_data {
3189 struct task_struct *thread;
3190 vb2_thread_fnc fnc;
3191 void *priv;
3192 bool stop;
3195 static int vb2_thread(void *data)
3197 struct vb2_queue *q = data;
3198 struct vb2_threadio_data *threadio = q->threadio;
3199 bool copy_timestamp = false;
3200 unsigned prequeue = 0;
3201 unsigned index = 0;
3202 int ret = 0;
3204 if (q->is_output) {
3205 prequeue = vb2_get_num_buffers(q);
3206 copy_timestamp = q->copy_timestamp;
3209 set_freezable();
3211 for (;;) {
3212 struct vb2_buffer *vb;
3215 * Call vb2_dqbuf to get buffer back.
3217 if (prequeue) {
3218 vb = vb2_get_buffer(q, index++);
3219 if (!vb)
3220 continue;
3221 prequeue--;
3222 } else {
3223 if (!threadio->stop) {
3224 if (q->ops->wait_finish)
3225 call_void_qop(q, wait_finish, q);
3226 else if (q->lock)
3227 mutex_lock(q->lock);
3228 ret = vb2_core_dqbuf(q, &index, NULL, 0);
3229 if (q->ops->wait_prepare)
3230 call_void_qop(q, wait_prepare, q);
3231 else if (q->lock)
3232 mutex_unlock(q->lock);
3234 dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret);
3235 if (!ret)
3236 vb = vb2_get_buffer(q, index);
3238 if (ret || threadio->stop)
3239 break;
3240 try_to_freeze();
3242 if (vb->state != VB2_BUF_STATE_ERROR)
3243 if (threadio->fnc(vb, threadio->priv))
3244 break;
3245 if (copy_timestamp)
3246 vb->timestamp = ktime_get_ns();
3247 if (!threadio->stop) {
3248 if (q->ops->wait_finish)
3249 call_void_qop(q, wait_finish, q);
3250 else if (q->lock)
3251 mutex_lock(q->lock);
3252 ret = vb2_core_qbuf(q, vb, NULL, NULL);
3253 if (q->ops->wait_prepare)
3254 call_void_qop(q, wait_prepare, q);
3255 else if (q->lock)
3256 mutex_unlock(q->lock);
3258 if (ret || threadio->stop)
3259 break;
3262 /* Hmm, linux becomes *very* unhappy without this ... */
3263 while (!kthread_should_stop()) {
3264 set_current_state(TASK_INTERRUPTIBLE);
3265 schedule();
3267 return 0;
3271 * This function should not be used for anything else but the videobuf2-dvb
3272 * support. If you think you have another good use-case for this, then please
3273 * contact the linux-media mailinglist first.
3275 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
3276 const char *thread_name)
3278 struct vb2_threadio_data *threadio;
3279 int ret = 0;
3281 if (q->threadio)
3282 return -EBUSY;
3283 if (vb2_is_busy(q))
3284 return -EBUSY;
3285 if (WARN_ON(q->fileio))
3286 return -EBUSY;
3288 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
3289 if (threadio == NULL)
3290 return -ENOMEM;
3291 threadio->fnc = fnc;
3292 threadio->priv = priv;
3294 ret = __vb2_init_fileio(q, !q->is_output);
3295 dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret);
3296 if (ret)
3297 goto nomem;
3298 q->threadio = threadio;
3299 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
3300 if (IS_ERR(threadio->thread)) {
3301 ret = PTR_ERR(threadio->thread);
3302 threadio->thread = NULL;
3303 goto nothread;
3305 return 0;
3307 nothread:
3308 __vb2_cleanup_fileio(q);
3309 nomem:
3310 kfree(threadio);
3311 return ret;
3313 EXPORT_SYMBOL_GPL(vb2_thread_start);
3315 int vb2_thread_stop(struct vb2_queue *q)
3317 struct vb2_threadio_data *threadio = q->threadio;
3318 int err;
3320 if (threadio == NULL)
3321 return 0;
3322 threadio->stop = true;
3323 /* Wake up all pending sleeps in the thread */
3324 vb2_queue_error(q);
3325 err = kthread_stop(threadio->thread);
3326 __vb2_cleanup_fileio(q);
3327 threadio->thread = NULL;
3328 kfree(threadio);
3329 q->threadio = NULL;
3330 return err;
3332 EXPORT_SYMBOL_GPL(vb2_thread_stop);
3334 MODULE_DESCRIPTION("Media buffer core framework");
3335 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
3336 MODULE_LICENSE("GPL");
3337 MODULE_IMPORT_NS("DMA_BUF");