drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / media / pci / tw68 / tw68-video.c
blob77773dec48b83ac997fcbbb4dc83e55861a899eb
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * tw68 functions to handle video data
5 * Much of this code is derived from the cx88 and sa7134 drivers, which
6 * were in turn derived from the bt87x driver. The original work was by
7 * Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab,
8 * Hans Verkuil, Andy Walls and many others. Their work is gratefully
9 * acknowledged. Full credit goes to them - any problems within this code
10 * are mine.
12 * Copyright (C) 2009 William M. Brack
14 * Refactored and updated to the latest v4l core frameworks:
16 * Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl>
19 #include <linux/module.h>
20 #include <media/v4l2-common.h>
21 #include <media/v4l2-event.h>
22 #include <media/videobuf2-dma-sg.h>
24 #include "tw68.h"
25 #include "tw68-reg.h"
27 /* ------------------------------------------------------------------ */
28 /* data structs for video */
30 * FIXME -
31 * Note that the saa7134 has formats, e.g. YUV420, which are classified
32 * as "planar". These affect overlay mode, and are flagged with a field
33 * ".planar" in the format. Do we need to implement this in this driver?
35 static const struct tw68_format formats[] = {
37 .fourcc = V4L2_PIX_FMT_RGB555,
38 .depth = 16,
39 .twformat = ColorFormatRGB15,
40 }, {
41 .fourcc = V4L2_PIX_FMT_RGB555X,
42 .depth = 16,
43 .twformat = ColorFormatRGB15 | ColorFormatBSWAP,
44 }, {
45 .fourcc = V4L2_PIX_FMT_RGB565,
46 .depth = 16,
47 .twformat = ColorFormatRGB16,
48 }, {
49 .fourcc = V4L2_PIX_FMT_RGB565X,
50 .depth = 16,
51 .twformat = ColorFormatRGB16 | ColorFormatBSWAP,
52 }, {
53 .fourcc = V4L2_PIX_FMT_BGR24,
54 .depth = 24,
55 .twformat = ColorFormatRGB24,
56 }, {
57 .fourcc = V4L2_PIX_FMT_RGB24,
58 .depth = 24,
59 .twformat = ColorFormatRGB24 | ColorFormatBSWAP,
60 }, {
61 .fourcc = V4L2_PIX_FMT_BGR32,
62 .depth = 32,
63 .twformat = ColorFormatRGB32,
64 }, {
65 .fourcc = V4L2_PIX_FMT_RGB32,
66 .depth = 32,
67 .twformat = ColorFormatRGB32 | ColorFormatBSWAP |
68 ColorFormatWSWAP,
69 }, {
70 .fourcc = V4L2_PIX_FMT_YUYV,
71 .depth = 16,
72 .twformat = ColorFormatYUY2,
73 }, {
74 .fourcc = V4L2_PIX_FMT_UYVY,
75 .depth = 16,
76 .twformat = ColorFormatYUY2 | ColorFormatBSWAP,
79 #define FORMATS ARRAY_SIZE(formats)
81 #define NORM_625_50 \
82 .h_delay = 3, \
83 .h_delay0 = 133, \
84 .h_start = 0, \
85 .h_stop = 719, \
86 .v_delay = 24, \
87 .vbi_v_start_0 = 7, \
88 .vbi_v_stop_0 = 22, \
89 .video_v_start = 24, \
90 .video_v_stop = 311, \
91 .vbi_v_start_1 = 319
93 #define NORM_525_60 \
94 .h_delay = 8, \
95 .h_delay0 = 138, \
96 .h_start = 0, \
97 .h_stop = 719, \
98 .v_delay = 22, \
99 .vbi_v_start_0 = 10, \
100 .vbi_v_stop_0 = 21, \
101 .video_v_start = 22, \
102 .video_v_stop = 262, \
103 .vbi_v_start_1 = 273
106 * The following table is searched by tw68_s_std, first for a specific
107 * match, then for an entry which contains the desired id. The table
108 * entries should therefore be ordered in ascending order of specificity.
110 static const struct tw68_tvnorm tvnorms[] = {
112 .name = "PAL", /* autodetect */
113 .id = V4L2_STD_PAL,
114 NORM_625_50,
116 .sync_control = 0x18,
117 .luma_control = 0x40,
118 .chroma_ctrl1 = 0x81,
119 .chroma_gain = 0x2a,
120 .chroma_ctrl2 = 0x06,
121 .vgate_misc = 0x1c,
122 .format = VideoFormatPALBDGHI,
123 }, {
124 .name = "NTSC",
125 .id = V4L2_STD_NTSC,
126 NORM_525_60,
128 .sync_control = 0x59,
129 .luma_control = 0x40,
130 .chroma_ctrl1 = 0x89,
131 .chroma_gain = 0x2a,
132 .chroma_ctrl2 = 0x0e,
133 .vgate_misc = 0x18,
134 .format = VideoFormatNTSC,
135 }, {
136 .name = "SECAM",
137 .id = V4L2_STD_SECAM,
138 NORM_625_50,
140 .sync_control = 0x18,
141 .luma_control = 0x1b,
142 .chroma_ctrl1 = 0xd1,
143 .chroma_gain = 0x80,
144 .chroma_ctrl2 = 0x00,
145 .vgate_misc = 0x1c,
146 .format = VideoFormatSECAM,
147 }, {
148 .name = "PAL-M",
149 .id = V4L2_STD_PAL_M,
150 NORM_525_60,
152 .sync_control = 0x59,
153 .luma_control = 0x40,
154 .chroma_ctrl1 = 0xb9,
155 .chroma_gain = 0x2a,
156 .chroma_ctrl2 = 0x0e,
157 .vgate_misc = 0x18,
158 .format = VideoFormatPALM,
159 }, {
160 .name = "PAL-Nc",
161 .id = V4L2_STD_PAL_Nc,
162 NORM_625_50,
164 .sync_control = 0x18,
165 .luma_control = 0x40,
166 .chroma_ctrl1 = 0xa1,
167 .chroma_gain = 0x2a,
168 .chroma_ctrl2 = 0x06,
169 .vgate_misc = 0x1c,
170 .format = VideoFormatPALNC,
171 }, {
172 .name = "PAL-60",
173 .id = V4L2_STD_PAL_60,
174 .h_delay = 186,
175 .h_start = 0,
176 .h_stop = 719,
177 .v_delay = 26,
178 .video_v_start = 23,
179 .video_v_stop = 262,
180 .vbi_v_start_0 = 10,
181 .vbi_v_stop_0 = 21,
182 .vbi_v_start_1 = 273,
184 .sync_control = 0x18,
185 .luma_control = 0x40,
186 .chroma_ctrl1 = 0x81,
187 .chroma_gain = 0x2a,
188 .chroma_ctrl2 = 0x06,
189 .vgate_misc = 0x1c,
190 .format = VideoFormatPAL60,
193 #define TVNORMS ARRAY_SIZE(tvnorms)
195 static const struct tw68_format *format_by_fourcc(unsigned int fourcc)
197 unsigned int i;
199 for (i = 0; i < FORMATS; i++)
200 if (formats[i].fourcc == fourcc)
201 return formats+i;
202 return NULL;
206 /* ------------------------------------------------------------------ */
208 * Note that the cropping rectangles are described in terms of a single
209 * frame, i.e. line positions are only 1/2 the interlaced equivalent
211 static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm)
213 if (norm != dev->tvnorm) {
214 dev->width = 720;
215 dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576;
216 dev->tvnorm = norm;
217 tw68_set_tvnorm_hw(dev);
222 * tw68_set_scale
224 * Scaling and Cropping for video decoding
226 * We are working with 3 values for horizontal and vertical - scale,
227 * delay and active.
229 * HACTIVE represent the actual number of pixels in the "usable" image,
230 * before scaling. HDELAY represents the number of pixels skipped
231 * between the start of the horizontal sync and the start of the image.
232 * HSCALE is calculated using the formula
233 * HSCALE = (HACTIVE / (#pixels desired)) * 256
235 * The vertical registers are similar, except based upon the total number
236 * of lines in the image, and the first line of the image (i.e. ignoring
237 * vertical sync and VBI).
239 * Note that the number of bytes reaching the FIFO (and hence needing
240 * to be processed by the DMAP program) is completely dependent upon
241 * these values, especially HSCALE.
243 * Parameters:
244 * @dev pointer to the device structure, needed for
245 * getting current norm (as well as debug print)
246 * @width actual image width (from user buffer)
247 * @height actual image height
248 * @field indicates Top, Bottom or Interlaced
250 static int tw68_set_scale(struct tw68_dev *dev, unsigned int width,
251 unsigned int height, enum v4l2_field field)
253 const struct tw68_tvnorm *norm = dev->tvnorm;
254 /* set individually for debugging clarity */
255 int hactive, hdelay, hscale;
256 int vactive, vdelay, vscale;
257 int comb;
259 if (V4L2_FIELD_HAS_BOTH(field)) /* if field is interlaced */
260 height /= 2; /* we must set for 1-frame */
262 pr_debug("%s: width=%d, height=%d, both=%d\n"
263 " tvnorm h_delay=%d, h_start=%d, h_stop=%d, v_delay=%d, v_start=%d, v_stop=%d\n",
264 __func__, width, height, V4L2_FIELD_HAS_BOTH(field),
265 norm->h_delay, norm->h_start, norm->h_stop,
266 norm->v_delay, norm->video_v_start,
267 norm->video_v_stop);
269 switch (dev->vdecoder) {
270 case TW6800:
271 hdelay = norm->h_delay0;
272 break;
273 default:
274 hdelay = norm->h_delay;
275 break;
278 hdelay += norm->h_start;
279 hactive = norm->h_stop - norm->h_start + 1;
281 hscale = (hactive * 256) / (width);
283 vdelay = norm->v_delay;
284 vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start;
285 vscale = (vactive * 256) / height;
287 pr_debug("%s: %dx%d [%s%s,%s]\n", __func__,
288 width, height,
289 V4L2_FIELD_HAS_TOP(field) ? "T" : "",
290 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
291 v4l2_norm_to_name(dev->tvnorm->id));
292 pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; vactive=%d, vdelay=%d, vscale=%d\n",
293 __func__,
294 hactive, hdelay, hscale, vactive, vdelay, vscale);
296 comb = ((vdelay & 0x300) >> 2) |
297 ((vactive & 0x300) >> 4) |
298 ((hdelay & 0x300) >> 6) |
299 ((hactive & 0x300) >> 8);
300 pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n",
301 __func__, comb, vdelay, vactive, hdelay, hactive);
302 tw_writeb(TW68_CROP_HI, comb);
303 tw_writeb(TW68_VDELAY_LO, vdelay & 0xff);
304 tw_writeb(TW68_VACTIVE_LO, vactive & 0xff);
305 tw_writeb(TW68_HDELAY_LO, hdelay & 0xff);
306 tw_writeb(TW68_HACTIVE_LO, hactive & 0xff);
308 comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8);
309 pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, HSCALE_LO=%02x\n",
310 __func__, comb, vscale, hscale);
311 tw_writeb(TW68_SCALE_HI, comb);
312 tw_writeb(TW68_VSCALE_LO, vscale);
313 tw_writeb(TW68_HSCALE_LO, hscale);
315 return 0;
318 /* ------------------------------------------------------------------ */
320 int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf)
322 /* Set cropping and scaling */
323 tw68_set_scale(dev, dev->width, dev->height, dev->field);
325 * Set start address for RISC program. Note that if the DMAP
326 * processor is currently running, it must be stopped before
327 * a new address can be set.
329 tw_clearl(TW68_DMAC, TW68_DMAP_EN);
330 tw_writel(TW68_DMAP_SA, buf->dma);
331 /* Clear any pending interrupts */
332 tw_writel(TW68_INTSTAT, dev->board_virqmask);
333 /* Enable the risc engine and the fifo */
334 tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat |
335 ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN);
336 dev->pci_irqmask |= dev->board_virqmask;
337 tw_setl(TW68_INTMASK, dev->pci_irqmask);
338 return 0;
341 /* ------------------------------------------------------------------ */
343 /* calc max # of buffers from size (must not exceed the 4MB virtual
344 * address space per DMA channel) */
345 static int tw68_buffer_count(unsigned int size, unsigned int count)
347 unsigned int maxcount;
349 maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE);
350 if (count > maxcount)
351 count = maxcount;
352 return count;
355 /* ------------------------------------------------------------- */
356 /* vb2 queue operations */
358 static int tw68_queue_setup(struct vb2_queue *q,
359 unsigned int *num_buffers, unsigned int *num_planes,
360 unsigned int sizes[], struct device *alloc_devs[])
362 struct tw68_dev *dev = vb2_get_drv_priv(q);
363 unsigned int q_num_bufs = vb2_get_num_buffers(q);
364 unsigned int tot_bufs = q_num_bufs + *num_buffers;
365 unsigned size = (dev->fmt->depth * dev->width * dev->height) >> 3;
367 if (tot_bufs < 2)
368 tot_bufs = 2;
369 tot_bufs = tw68_buffer_count(size, tot_bufs);
370 *num_buffers = tot_bufs - q_num_bufs;
372 * We allow create_bufs, but only if the sizeimage is >= as the
373 * current sizeimage. The tw68_buffer_count calculation becomes quite
374 * difficult otherwise.
376 if (*num_planes)
377 return sizes[0] < size ? -EINVAL : 0;
378 *num_planes = 1;
379 sizes[0] = size;
381 return 0;
385 * The risc program for each buffers works as follows: it starts with a simple
386 * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the
387 * buffer follows and at the end we have a JUMP back to the start + 8 (skipping
388 * the initial JUMP).
390 * This is the program of the first buffer to be queued if the active list is
391 * empty and it just keeps DMAing this buffer without generating any interrupts.
393 * If a new buffer is added then the initial JUMP in the program generates an
394 * interrupt as well which signals that the previous buffer has been DMAed
395 * successfully and that it can be returned to userspace.
397 * It also sets the final jump of the previous buffer to the start of the new
398 * buffer, thus chaining the new buffer into the DMA chain. This is a single
399 * atomic u32 write, so there is no race condition.
401 * The end-result of all this that you only get an interrupt when a buffer
402 * is ready, so the control flow is very easy.
404 static void tw68_buf_queue(struct vb2_buffer *vb)
406 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
407 struct vb2_queue *vq = vb->vb2_queue;
408 struct tw68_dev *dev = vb2_get_drv_priv(vq);
409 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
410 struct tw68_buf *prev;
411 unsigned long flags;
413 spin_lock_irqsave(&dev->slock, flags);
415 /* append a 'JUMP to start of buffer' to the buffer risc program */
416 buf->jmp[0] = cpu_to_le32(RISC_JUMP);
417 buf->jmp[1] = cpu_to_le32(buf->dma + 8);
419 if (!list_empty(&dev->active)) {
420 prev = list_entry(dev->active.prev, struct tw68_buf, list);
421 buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT);
422 prev->jmp[1] = cpu_to_le32(buf->dma);
424 list_add_tail(&buf->list, &dev->active);
425 spin_unlock_irqrestore(&dev->slock, flags);
429 * buffer_prepare
431 * Set the ancillary information into the buffer structure. This
432 * includes generating the necessary risc program if it hasn't already
433 * been done for the current buffer format.
434 * The structure fh contains the details of the format requested by the
435 * user - type, width, height and #fields. This is compared with the
436 * last format set for the current buffer. If they differ, the risc
437 * code (which controls the filling of the buffer) is (re-)generated.
439 static int tw68_buf_prepare(struct vb2_buffer *vb)
441 int ret;
442 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
443 struct vb2_queue *vq = vb->vb2_queue;
444 struct tw68_dev *dev = vb2_get_drv_priv(vq);
445 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
446 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0);
447 unsigned size, bpl;
449 size = (dev->width * dev->height * dev->fmt->depth) >> 3;
450 if (vb2_plane_size(vb, 0) < size)
451 return -EINVAL;
452 vb2_set_plane_payload(vb, 0, size);
454 bpl = (dev->width * dev->fmt->depth) >> 3;
455 switch (dev->field) {
456 case V4L2_FIELD_TOP:
457 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl,
458 0, UNSET, bpl, 0, dev->height);
459 break;
460 case V4L2_FIELD_BOTTOM:
461 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl,
462 UNSET, 0, bpl, 0, dev->height);
463 break;
464 case V4L2_FIELD_SEQ_TB:
465 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl,
466 0, bpl * (dev->height >> 1),
467 bpl, 0, dev->height >> 1);
468 break;
469 case V4L2_FIELD_SEQ_BT:
470 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl,
471 bpl * (dev->height >> 1), 0,
472 bpl, 0, dev->height >> 1);
473 break;
474 case V4L2_FIELD_INTERLACED:
475 default:
476 ret = tw68_risc_buffer(dev->pci, buf, dma->sgl,
477 0, bpl, bpl, bpl, dev->height >> 1);
478 break;
480 return ret;
483 static void tw68_buf_finish(struct vb2_buffer *vb)
485 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
486 struct vb2_queue *vq = vb->vb2_queue;
487 struct tw68_dev *dev = vb2_get_drv_priv(vq);
488 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
490 if (buf->cpu)
491 dma_free_coherent(&dev->pci->dev, buf->size, buf->cpu, buf->dma);
494 static int tw68_start_streaming(struct vb2_queue *q, unsigned int count)
496 struct tw68_dev *dev = vb2_get_drv_priv(q);
497 struct tw68_buf *buf =
498 container_of(dev->active.next, struct tw68_buf, list);
500 dev->seqnr = 0;
501 tw68_video_start_dma(dev, buf);
502 return 0;
505 static void tw68_stop_streaming(struct vb2_queue *q)
507 struct tw68_dev *dev = vb2_get_drv_priv(q);
509 /* Stop risc & fifo */
510 tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN);
511 while (!list_empty(&dev->active)) {
512 struct tw68_buf *buf =
513 container_of(dev->active.next, struct tw68_buf, list);
515 list_del(&buf->list);
516 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
520 static const struct vb2_ops tw68_video_qops = {
521 .queue_setup = tw68_queue_setup,
522 .buf_queue = tw68_buf_queue,
523 .buf_prepare = tw68_buf_prepare,
524 .buf_finish = tw68_buf_finish,
525 .start_streaming = tw68_start_streaming,
526 .stop_streaming = tw68_stop_streaming,
529 /* ------------------------------------------------------------------ */
531 static int tw68_s_ctrl(struct v4l2_ctrl *ctrl)
533 struct tw68_dev *dev =
534 container_of(ctrl->handler, struct tw68_dev, hdl);
536 switch (ctrl->id) {
537 case V4L2_CID_BRIGHTNESS:
538 tw_writeb(TW68_BRIGHT, ctrl->val);
539 break;
540 case V4L2_CID_HUE:
541 tw_writeb(TW68_HUE, ctrl->val);
542 break;
543 case V4L2_CID_CONTRAST:
544 tw_writeb(TW68_CONTRAST, ctrl->val);
545 break;
546 case V4L2_CID_SATURATION:
547 tw_writeb(TW68_SAT_U, ctrl->val);
548 tw_writeb(TW68_SAT_V, ctrl->val);
549 break;
550 case V4L2_CID_COLOR_KILLER:
551 if (ctrl->val)
552 tw_andorb(TW68_MISC2, 0xe0, 0xe0);
553 else
554 tw_andorb(TW68_MISC2, 0xe0, 0x00);
555 break;
556 case V4L2_CID_CHROMA_AGC:
557 if (ctrl->val)
558 tw_andorb(TW68_LOOP, 0x30, 0x20);
559 else
560 tw_andorb(TW68_LOOP, 0x30, 0x00);
561 break;
563 return 0;
566 /* ------------------------------------------------------------------ */
569 * Note that this routine returns what is stored in the fh structure, and
570 * does not interrogate any of the device registers.
572 static int tw68_g_fmt_vid_cap(struct file *file, void *priv,
573 struct v4l2_format *f)
575 struct tw68_dev *dev = video_drvdata(file);
577 f->fmt.pix.width = dev->width;
578 f->fmt.pix.height = dev->height;
579 f->fmt.pix.field = dev->field;
580 f->fmt.pix.pixelformat = dev->fmt->fourcc;
581 f->fmt.pix.bytesperline =
582 (f->fmt.pix.width * (dev->fmt->depth)) >> 3;
583 f->fmt.pix.sizeimage =
584 f->fmt.pix.height * f->fmt.pix.bytesperline;
585 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
586 return 0;
589 static int tw68_try_fmt_vid_cap(struct file *file, void *priv,
590 struct v4l2_format *f)
592 struct tw68_dev *dev = video_drvdata(file);
593 const struct tw68_format *fmt;
594 enum v4l2_field field;
595 unsigned int maxh;
597 fmt = format_by_fourcc(f->fmt.pix.pixelformat);
598 if (NULL == fmt)
599 return -EINVAL;
601 field = f->fmt.pix.field;
602 maxh = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576;
604 switch (field) {
605 case V4L2_FIELD_TOP:
606 case V4L2_FIELD_BOTTOM:
607 break;
608 case V4L2_FIELD_INTERLACED:
609 case V4L2_FIELD_SEQ_BT:
610 case V4L2_FIELD_SEQ_TB:
611 maxh = maxh * 2;
612 break;
613 default:
614 field = (f->fmt.pix.height > maxh / 2)
615 ? V4L2_FIELD_INTERLACED
616 : V4L2_FIELD_BOTTOM;
617 break;
620 f->fmt.pix.field = field;
621 if (f->fmt.pix.width < 48)
622 f->fmt.pix.width = 48;
623 if (f->fmt.pix.height < 32)
624 f->fmt.pix.height = 32;
625 if (f->fmt.pix.width > 720)
626 f->fmt.pix.width = 720;
627 if (f->fmt.pix.height > maxh)
628 f->fmt.pix.height = maxh;
629 f->fmt.pix.width &= ~0x03;
630 f->fmt.pix.bytesperline =
631 (f->fmt.pix.width * (fmt->depth)) >> 3;
632 f->fmt.pix.sizeimage =
633 f->fmt.pix.height * f->fmt.pix.bytesperline;
634 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
635 return 0;
639 * Note that tw68_s_fmt_vid_cap sets the information into the fh structure,
640 * and it will be used for all future new buffers. However, there could be
641 * some number of buffers on the "active" chain which will be filled before
642 * the change takes place.
644 static int tw68_s_fmt_vid_cap(struct file *file, void *priv,
645 struct v4l2_format *f)
647 struct tw68_dev *dev = video_drvdata(file);
648 int err;
650 err = tw68_try_fmt_vid_cap(file, priv, f);
651 if (0 != err)
652 return err;
654 dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat);
655 dev->width = f->fmt.pix.width;
656 dev->height = f->fmt.pix.height;
657 dev->field = f->fmt.pix.field;
658 return 0;
661 static int tw68_enum_input(struct file *file, void *priv,
662 struct v4l2_input *i)
664 struct tw68_dev *dev = video_drvdata(file);
665 unsigned int n;
667 n = i->index;
668 if (n >= TW68_INPUT_MAX)
669 return -EINVAL;
670 i->index = n;
671 i->type = V4L2_INPUT_TYPE_CAMERA;
672 snprintf(i->name, sizeof(i->name), "Composite %d", n);
674 /* If the query is for the current input, get live data */
675 if (n == dev->input) {
676 int v1 = tw_readb(TW68_STATUS1);
677 int v2 = tw_readb(TW68_MVSN);
679 if (0 != (v1 & (1 << 7)))
680 i->status |= V4L2_IN_ST_NO_SYNC;
681 if (0 != (v1 & (1 << 6)))
682 i->status |= V4L2_IN_ST_NO_H_LOCK;
683 if (0 != (v1 & (1 << 2)))
684 i->status |= V4L2_IN_ST_NO_SIGNAL;
685 if (0 != (v1 & 1 << 1))
686 i->status |= V4L2_IN_ST_NO_COLOR;
687 if (0 != (v2 & (1 << 2)))
688 i->status |= V4L2_IN_ST_MACROVISION;
690 i->std = video_devdata(file)->tvnorms;
691 return 0;
694 static int tw68_g_input(struct file *file, void *priv, unsigned int *i)
696 struct tw68_dev *dev = video_drvdata(file);
698 *i = dev->input;
699 return 0;
702 static int tw68_s_input(struct file *file, void *priv, unsigned int i)
704 struct tw68_dev *dev = video_drvdata(file);
706 if (i >= TW68_INPUT_MAX)
707 return -EINVAL;
708 dev->input = i;
709 tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2);
710 return 0;
713 static int tw68_querycap(struct file *file, void *priv,
714 struct v4l2_capability *cap)
716 strscpy(cap->driver, "tw68", sizeof(cap->driver));
717 strscpy(cap->card, "Techwell Capture Card",
718 sizeof(cap->card));
719 return 0;
722 static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id)
724 struct tw68_dev *dev = video_drvdata(file);
725 unsigned int i;
727 if (vb2_is_busy(&dev->vidq))
728 return -EBUSY;
730 /* Look for match on complete norm id (may have mult bits) */
731 for (i = 0; i < TVNORMS; i++) {
732 if (id == tvnorms[i].id)
733 break;
736 /* If no exact match, look for norm which contains this one */
737 if (i == TVNORMS) {
738 for (i = 0; i < TVNORMS; i++)
739 if (id & tvnorms[i].id)
740 break;
742 /* If still not matched, give up */
743 if (i == TVNORMS)
744 return -EINVAL;
746 set_tvnorm(dev, &tvnorms[i]); /* do the actual setting */
747 return 0;
750 static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id)
752 struct tw68_dev *dev = video_drvdata(file);
754 *id = dev->tvnorm->id;
755 return 0;
758 static int tw68_enum_fmt_vid_cap(struct file *file, void *priv,
759 struct v4l2_fmtdesc *f)
761 if (f->index >= FORMATS)
762 return -EINVAL;
764 f->pixelformat = formats[f->index].fourcc;
766 return 0;
770 * Used strictly for internal development and debugging, this routine
771 * prints out the current register contents for the tw68xx device.
773 static void tw68_dump_regs(struct tw68_dev *dev)
775 unsigned char line[80];
776 int i, j, k;
777 unsigned char *cptr;
779 pr_info("Full dump of TW68 registers:\n");
780 /* First we do the PCI regs, 8 4-byte regs per line */
781 for (i = 0; i < 0x100; i += 32) {
782 cptr = line;
783 cptr += sprintf(cptr, "%03x ", i);
784 /* j steps through the next 4 words */
785 for (j = i; j < i + 16; j += 4)
786 cptr += sprintf(cptr, "%08x ", tw_readl(j));
787 *cptr++ = ' ';
788 for (; j < i + 32; j += 4)
789 cptr += sprintf(cptr, "%08x ", tw_readl(j));
790 *cptr++ = '\n';
791 *cptr = 0;
792 pr_info("%s", line);
794 /* Next the control regs, which are single-byte, address mod 4 */
795 while (i < 0x400) {
796 cptr = line;
797 cptr += sprintf(cptr, "%03x ", i);
798 /* Print out 4 groups of 4 bytes */
799 for (j = 0; j < 4; j++) {
800 for (k = 0; k < 4; k++) {
801 cptr += sprintf(cptr, "%02x ",
802 tw_readb(i));
803 i += 4;
805 *cptr++ = ' ';
807 *cptr++ = '\n';
808 *cptr = 0;
809 pr_info("%s", line);
813 static int vidioc_log_status(struct file *file, void *priv)
815 struct tw68_dev *dev = video_drvdata(file);
817 tw68_dump_regs(dev);
818 return v4l2_ctrl_log_status(file, priv);
821 #ifdef CONFIG_VIDEO_ADV_DEBUG
822 static int vidioc_g_register(struct file *file, void *priv,
823 struct v4l2_dbg_register *reg)
825 struct tw68_dev *dev = video_drvdata(file);
827 if (reg->size == 1)
828 reg->val = tw_readb(reg->reg);
829 else
830 reg->val = tw_readl(reg->reg);
831 return 0;
834 static int vidioc_s_register(struct file *file, void *priv,
835 const struct v4l2_dbg_register *reg)
837 struct tw68_dev *dev = video_drvdata(file);
839 if (reg->size == 1)
840 tw_writeb(reg->reg, reg->val);
841 else
842 tw_writel(reg->reg & 0xffff, reg->val);
843 return 0;
845 #endif
847 static const struct v4l2_ctrl_ops tw68_ctrl_ops = {
848 .s_ctrl = tw68_s_ctrl,
851 static const struct v4l2_file_operations video_fops = {
852 .owner = THIS_MODULE,
853 .open = v4l2_fh_open,
854 .release = vb2_fop_release,
855 .read = vb2_fop_read,
856 .poll = vb2_fop_poll,
857 .mmap = vb2_fop_mmap,
858 .unlocked_ioctl = video_ioctl2,
861 static const struct v4l2_ioctl_ops video_ioctl_ops = {
862 .vidioc_querycap = tw68_querycap,
863 .vidioc_enum_fmt_vid_cap = tw68_enum_fmt_vid_cap,
864 .vidioc_reqbufs = vb2_ioctl_reqbufs,
865 .vidioc_create_bufs = vb2_ioctl_create_bufs,
866 .vidioc_querybuf = vb2_ioctl_querybuf,
867 .vidioc_qbuf = vb2_ioctl_qbuf,
868 .vidioc_dqbuf = vb2_ioctl_dqbuf,
869 .vidioc_s_std = tw68_s_std,
870 .vidioc_g_std = tw68_g_std,
871 .vidioc_enum_input = tw68_enum_input,
872 .vidioc_g_input = tw68_g_input,
873 .vidioc_s_input = tw68_s_input,
874 .vidioc_streamon = vb2_ioctl_streamon,
875 .vidioc_streamoff = vb2_ioctl_streamoff,
876 .vidioc_g_fmt_vid_cap = tw68_g_fmt_vid_cap,
877 .vidioc_try_fmt_vid_cap = tw68_try_fmt_vid_cap,
878 .vidioc_s_fmt_vid_cap = tw68_s_fmt_vid_cap,
879 .vidioc_log_status = vidioc_log_status,
880 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
881 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
882 #ifdef CONFIG_VIDEO_ADV_DEBUG
883 .vidioc_g_register = vidioc_g_register,
884 .vidioc_s_register = vidioc_s_register,
885 #endif
888 static const struct video_device tw68_video_template = {
889 .name = "tw68_video",
890 .fops = &video_fops,
891 .ioctl_ops = &video_ioctl_ops,
892 .release = video_device_release_empty,
893 .tvnorms = TW68_NORMS,
894 .device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_READWRITE |
895 V4L2_CAP_STREAMING,
898 /* ------------------------------------------------------------------ */
899 /* exported stuff */
900 void tw68_set_tvnorm_hw(struct tw68_dev *dev)
902 tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format);
905 int tw68_video_init1(struct tw68_dev *dev)
907 struct v4l2_ctrl_handler *hdl = &dev->hdl;
909 v4l2_ctrl_handler_init(hdl, 6);
910 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
911 V4L2_CID_BRIGHTNESS, -128, 127, 1, 20);
912 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
913 V4L2_CID_CONTRAST, 0, 255, 1, 100);
914 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
915 V4L2_CID_SATURATION, 0, 255, 1, 128);
916 /* NTSC only */
917 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
918 V4L2_CID_HUE, -128, 127, 1, 0);
919 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
920 V4L2_CID_COLOR_KILLER, 0, 1, 1, 0);
921 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
922 V4L2_CID_CHROMA_AGC, 0, 1, 1, 1);
923 if (hdl->error) {
924 v4l2_ctrl_handler_free(hdl);
925 return hdl->error;
927 dev->v4l2_dev.ctrl_handler = hdl;
928 v4l2_ctrl_handler_setup(hdl);
929 return 0;
932 int tw68_video_init2(struct tw68_dev *dev, int video_nr)
934 int ret;
936 set_tvnorm(dev, &tvnorms[0]);
938 dev->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24);
939 dev->width = 720;
940 dev->height = 576;
941 dev->field = V4L2_FIELD_INTERLACED;
943 INIT_LIST_HEAD(&dev->active);
944 dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
945 dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
946 dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF;
947 dev->vidq.ops = &tw68_video_qops;
948 dev->vidq.mem_ops = &vb2_dma_sg_memops;
949 dev->vidq.drv_priv = dev;
950 dev->vidq.gfp_flags = __GFP_DMA32 | __GFP_KSWAPD_RECLAIM;
951 dev->vidq.buf_struct_size = sizeof(struct tw68_buf);
952 dev->vidq.lock = &dev->lock;
953 dev->vidq.min_queued_buffers = 2;
954 dev->vidq.dev = &dev->pci->dev;
955 ret = vb2_queue_init(&dev->vidq);
956 if (ret)
957 return ret;
958 dev->vdev = tw68_video_template;
959 dev->vdev.v4l2_dev = &dev->v4l2_dev;
960 dev->vdev.lock = &dev->lock;
961 dev->vdev.queue = &dev->vidq;
962 video_set_drvdata(&dev->vdev, dev);
963 return video_register_device(&dev->vdev, VFL_TYPE_VIDEO, video_nr);
967 * tw68_irq_video_done
969 void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status)
971 __u32 reg;
973 /* reset interrupts handled by this routine */
974 tw_writel(TW68_INTSTAT, status);
976 * Check most likely first
978 * DMAPI shows we have reached the end of the risc code
979 * for the current buffer.
981 if (status & TW68_DMAPI) {
982 struct tw68_buf *buf;
984 spin_lock(&dev->slock);
985 buf = list_entry(dev->active.next, struct tw68_buf, list);
986 list_del(&buf->list);
987 spin_unlock(&dev->slock);
988 buf->vb.vb2_buf.timestamp = ktime_get_ns();
989 buf->vb.field = dev->field;
990 buf->vb.sequence = dev->seqnr++;
991 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
992 status &= ~(TW68_DMAPI);
993 if (0 == status)
994 return;
996 if (status & (TW68_VLOCK | TW68_HLOCK))
997 dev_dbg(&dev->pci->dev, "Lost sync\n");
998 if (status & TW68_PABORT)
999 dev_err(&dev->pci->dev, "PABORT interrupt\n");
1000 if (status & TW68_DMAPERR)
1001 dev_err(&dev->pci->dev, "DMAPERR interrupt\n");
1003 * On TW6800, FDMIS is apparently generated if video input is switched
1004 * during operation. Therefore, it is not enabled for that chip.
1006 if (status & TW68_FDMIS)
1007 dev_dbg(&dev->pci->dev, "FDMIS interrupt\n");
1008 if (status & TW68_FFOF) {
1009 /* probably a logic error */
1010 reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN;
1011 tw_clearl(TW68_DMAC, TW68_FIFO_EN);
1012 dev_dbg(&dev->pci->dev, "FFOF interrupt\n");
1013 tw_setl(TW68_DMAC, reg);
1015 if (status & TW68_FFERR)
1016 dev_dbg(&dev->pci->dev, "FFERR interrupt\n");