1 // SPDX-License-Identifier: GPL-2.0
3 * The Marvell camera core. This device appears in a number of settings,
4 * so it needs platform-specific support outside of the core.
6 * Copyright 2011 Jonathan Corbet corbet@lwn.net
7 * Copyright 2018 Lubomir Rintel <lkundrak@v3.sk>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/wait.h>
19 #include <linux/list.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/delay.h>
22 #include <linux/vmalloc.h>
24 #include <linux/clk.h>
25 #include <linux/clk-provider.h>
26 #include <linux/videodev2.h>
27 #include <linux/pm_runtime.h>
28 #include <media/v4l2-device.h>
29 #include <media/v4l2-ioctl.h>
30 #include <media/v4l2-ctrls.h>
31 #include <media/v4l2-event.h>
32 #include <media/videobuf2-vmalloc.h>
33 #include <media/videobuf2-dma-contig.h>
34 #include <media/videobuf2-dma-sg.h>
36 #include "mcam-core.h"
38 #ifdef MCAM_MODE_VMALLOC
40 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
41 * we must have physically contiguous buffers to bring frames into.
42 * These parameters control how many buffers we use, whether we
43 * allocate them at load time (better chance of success, but nails down
44 * memory) or when somebody tries to use the camera (riskier), and,
45 * for load-time allocation, how big they should be.
47 * The controller can cycle through three buffers. We could use
48 * more by flipping pointers around, but it probably makes little
52 static bool alloc_bufs_at_read
;
53 module_param(alloc_bufs_at_read
, bool, 0444);
54 MODULE_PARM_DESC(alloc_bufs_at_read
,
55 "Non-zero value causes DMA buffers to be allocated when the video capture device is read, rather than at module load time. This saves memory, but decreases the chances of successfully getting those buffers. This parameter is only used in the vmalloc buffer mode");
57 static int n_dma_bufs
= 3;
58 module_param(n_dma_bufs
, uint
, 0644);
59 MODULE_PARM_DESC(n_dma_bufs
,
60 "The number of DMA buffers to allocate. Can be either two (saves memory, makes timing tighter) or three.");
62 static int dma_buf_size
= VGA_WIDTH
* VGA_HEIGHT
* 2; /* Worst case */
63 module_param(dma_buf_size
, uint
, 0444);
64 MODULE_PARM_DESC(dma_buf_size
,
65 "The size of the allocated DMA buffers. If actual operating parameters require larger buffers, an attempt to reallocate will be made.");
66 #else /* MCAM_MODE_VMALLOC */
67 static const bool alloc_bufs_at_read
;
68 static const int n_dma_bufs
= 3; /* Used by S/G_PARM */
69 #endif /* MCAM_MODE_VMALLOC */
72 module_param(flip
, bool, 0444);
73 MODULE_PARM_DESC(flip
,
74 "If set, the sensor will be instructed to flip the image vertically.");
76 static int buffer_mode
= -1;
77 module_param(buffer_mode
, int, 0444);
78 MODULE_PARM_DESC(buffer_mode
,
79 "Set the buffer mode to be used; default is to go with what the platform driver asks for. Set to 0 for vmalloc, 1 for DMA contiguous.");
82 * Status flags. Always manipulated with bit operations.
84 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
85 #define CF_BUF1_VALID 1
86 #define CF_BUF2_VALID 2
87 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
88 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
89 #define CF_SINGLE_BUFFER 5 /* Running with a single buffer */
90 #define CF_SG_RESTART 6 /* SG restart needed */
91 #define CF_FRAME_SOF0 7 /* Frame 0 started */
92 #define CF_FRAME_SOF1 8
93 #define CF_FRAME_SOF2 9
95 #define sensor_call(cam, o, f, args...) \
96 v4l2_subdev_call(cam->sensor, o, f, ##args)
98 #define notifier_to_mcam(notifier) \
99 container_of(notifier, struct mcam_camera, notifier)
101 static struct mcam_format_struct
{
103 int bpp
; /* Bytes per pixel */
108 .pixelformat
= V4L2_PIX_FMT_YUYV
,
109 .mbus_code
= MEDIA_BUS_FMT_YUYV8_2X8
,
114 .pixelformat
= V4L2_PIX_FMT_YVYU
,
115 .mbus_code
= MEDIA_BUS_FMT_YUYV8_2X8
,
120 .pixelformat
= V4L2_PIX_FMT_YUV420
,
121 .mbus_code
= MEDIA_BUS_FMT_YUYV8_2X8
,
126 .pixelformat
= V4L2_PIX_FMT_YVU420
,
127 .mbus_code
= MEDIA_BUS_FMT_YUYV8_2X8
,
132 .pixelformat
= V4L2_PIX_FMT_XRGB444
,
133 .mbus_code
= MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE
,
138 .pixelformat
= V4L2_PIX_FMT_RGB565
,
139 .mbus_code
= MEDIA_BUS_FMT_RGB565_2X8_LE
,
144 .pixelformat
= V4L2_PIX_FMT_SBGGR8
,
145 .mbus_code
= MEDIA_BUS_FMT_SBGGR8_1X8
,
150 #define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)
152 static struct mcam_format_struct
*mcam_find_format(u32 pixelformat
)
156 for (i
= 0; i
< N_MCAM_FMTS
; i
++)
157 if (mcam_formats
[i
].pixelformat
== pixelformat
)
158 return mcam_formats
+ i
;
159 /* Not found? Then return the first format. */
164 * The default format we use until somebody says otherwise.
166 static const struct v4l2_pix_format mcam_def_pix_format
= {
168 .height
= VGA_HEIGHT
,
169 .pixelformat
= V4L2_PIX_FMT_YUYV
,
170 .field
= V4L2_FIELD_NONE
,
171 .bytesperline
= VGA_WIDTH
*2,
172 .sizeimage
= VGA_WIDTH
*VGA_HEIGHT
*2,
173 .colorspace
= V4L2_COLORSPACE_SRGB
,
176 static const u32 mcam_def_mbus_code
= MEDIA_BUS_FMT_YUYV8_2X8
;
180 * The two-word DMA descriptor format used by the Armada 610 and like. There
181 * Is a three-word format as well (set C1_DESC_3WORD) where the third
182 * word is a pointer to the next descriptor, but we don't use it. Two-word
183 * descriptors have to be contiguous in memory.
185 struct mcam_dma_desc
{
191 * Our buffer type for working with videobuf2. Note that the vb2
192 * developers have decreed that struct vb2_v4l2_buffer must be at the
193 * beginning of this structure.
195 struct mcam_vb_buffer
{
196 struct vb2_v4l2_buffer vb_buf
;
197 struct list_head queue
;
198 struct mcam_dma_desc
*dma_desc
; /* Descriptor virtual address */
199 dma_addr_t dma_desc_pa
; /* Descriptor physical address */
202 static inline struct mcam_vb_buffer
*vb_to_mvb(struct vb2_v4l2_buffer
*vb
)
204 return container_of(vb
, struct mcam_vb_buffer
, vb_buf
);
208 * Hand a completed buffer back to user space.
210 static void mcam_buffer_done(struct mcam_camera
*cam
, int frame
,
211 struct vb2_v4l2_buffer
*vbuf
)
213 vbuf
->vb2_buf
.planes
[0].bytesused
= cam
->pix_format
.sizeimage
;
214 vbuf
->sequence
= cam
->buf_seq
[frame
];
215 vbuf
->field
= V4L2_FIELD_NONE
;
216 vbuf
->vb2_buf
.timestamp
= ktime_get_ns();
217 vb2_set_plane_payload(&vbuf
->vb2_buf
, 0, cam
->pix_format
.sizeimage
);
218 vb2_buffer_done(&vbuf
->vb2_buf
, VB2_BUF_STATE_DONE
);
224 * Debugging and related.
226 #define cam_err(cam, fmt, arg...) \
227 dev_err((cam)->dev, fmt, ##arg);
228 #define cam_warn(cam, fmt, arg...) \
229 dev_warn((cam)->dev, fmt, ##arg);
230 #define cam_dbg(cam, fmt, arg...) \
231 dev_dbg((cam)->dev, fmt, ##arg);
235 * Flag manipulation helpers
237 static void mcam_reset_buffers(struct mcam_camera
*cam
)
242 for (i
= 0; i
< cam
->nbufs
; i
++) {
243 clear_bit(i
, &cam
->flags
);
244 clear_bit(CF_FRAME_SOF0
+ i
, &cam
->flags
);
248 static inline int mcam_needs_config(struct mcam_camera
*cam
)
250 return test_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
253 static void mcam_set_config_needed(struct mcam_camera
*cam
, int needed
)
256 set_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
258 clear_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
261 /* ------------------------------------------------------------------- */
263 * Make the controller start grabbing images. Everything must
264 * be set up before doing this.
266 static void mcam_ctlr_start(struct mcam_camera
*cam
)
268 /* set_bit performs a read, so no other barrier should be
270 mcam_reg_set_bit(cam
, REG_CTRL0
, C0_ENABLE
);
273 static void mcam_ctlr_stop(struct mcam_camera
*cam
)
275 mcam_reg_clear_bit(cam
, REG_CTRL0
, C0_ENABLE
);
278 static void mcam_enable_mipi(struct mcam_camera
*mcam
)
280 /* Using MIPI mode and enable MIPI */
282 mcam
->calc_dphy(mcam
);
283 cam_dbg(mcam
, "camera: DPHY3=0x%x, DPHY5=0x%x, DPHY6=0x%x\n",
284 mcam
->dphy
[0], mcam
->dphy
[1], mcam
->dphy
[2]);
285 mcam_reg_write(mcam
, REG_CSI2_DPHY3
, mcam
->dphy
[0]);
286 mcam_reg_write(mcam
, REG_CSI2_DPHY5
, mcam
->dphy
[1]);
287 mcam_reg_write(mcam
, REG_CSI2_DPHY6
, mcam
->dphy
[2]);
289 if (!mcam
->mipi_enabled
) {
290 if (mcam
->lane
> 4 || mcam
->lane
<= 0) {
291 cam_warn(mcam
, "lane number error\n");
292 mcam
->lane
= 1; /* set the default value */
295 * 0x41 actives 1 lane
296 * 0x43 actives 2 lanes
297 * 0x45 actives 3 lanes (never happen)
298 * 0x47 actives 4 lanes
300 mcam_reg_write(mcam
, REG_CSI2_CTRL0
,
301 CSI2_C0_MIPI_EN
| CSI2_C0_ACT_LANE(mcam
->lane
));
302 mcam
->mipi_enabled
= true;
306 static void mcam_disable_mipi(struct mcam_camera
*mcam
)
308 /* Using Parallel mode or disable MIPI */
309 mcam_reg_write(mcam
, REG_CSI2_CTRL0
, 0x0);
310 mcam_reg_write(mcam
, REG_CSI2_DPHY3
, 0x0);
311 mcam_reg_write(mcam
, REG_CSI2_DPHY5
, 0x0);
312 mcam_reg_write(mcam
, REG_CSI2_DPHY6
, 0x0);
313 mcam
->mipi_enabled
= false;
316 static bool mcam_fmt_is_planar(__u32 pfmt
)
318 struct mcam_format_struct
*f
;
320 f
= mcam_find_format(pfmt
);
324 static void mcam_write_yuv_bases(struct mcam_camera
*cam
,
325 unsigned frame
, dma_addr_t base
)
327 struct v4l2_pix_format
*fmt
= &cam
->pix_format
;
328 u32 pixel_count
= fmt
->width
* fmt
->height
;
329 dma_addr_t y
, u
= 0, v
= 0;
333 switch (fmt
->pixelformat
) {
334 case V4L2_PIX_FMT_YUV420
:
336 v
= u
+ pixel_count
/ 4;
338 case V4L2_PIX_FMT_YVU420
:
340 u
= v
+ pixel_count
/ 4;
346 mcam_reg_write(cam
, REG_Y0BAR
+ frame
* 4, y
);
347 if (mcam_fmt_is_planar(fmt
->pixelformat
)) {
348 mcam_reg_write(cam
, REG_U0BAR
+ frame
* 4, u
);
349 mcam_reg_write(cam
, REG_V0BAR
+ frame
* 4, v
);
353 /* ------------------------------------------------------------------- */
355 #ifdef MCAM_MODE_VMALLOC
357 * Code specific to the vmalloc buffer mode.
361 * Allocate in-kernel DMA buffers for vmalloc mode.
363 static int mcam_alloc_dma_bufs(struct mcam_camera
*cam
, int loadtime
)
367 mcam_set_config_needed(cam
, 1);
369 cam
->dma_buf_size
= dma_buf_size
;
371 cam
->dma_buf_size
= cam
->pix_format
.sizeimage
;
376 for (i
= 0; i
< n_dma_bufs
; i
++) {
377 cam
->dma_bufs
[i
] = dma_alloc_coherent(cam
->dev
,
378 cam
->dma_buf_size
, cam
->dma_handles
+ i
,
380 if (cam
->dma_bufs
[i
] == NULL
) {
381 cam_warn(cam
, "Failed to allocate DMA buffer\n");
387 switch (cam
->nbufs
) {
389 dma_free_coherent(cam
->dev
, cam
->dma_buf_size
,
390 cam
->dma_bufs
[0], cam
->dma_handles
[0]);
394 cam_err(cam
, "Insufficient DMA buffers, cannot operate\n");
399 cam_warn(cam
, "Will limp along with only 2 buffers\n");
405 static void mcam_free_dma_bufs(struct mcam_camera
*cam
)
409 for (i
= 0; i
< cam
->nbufs
; i
++) {
410 dma_free_coherent(cam
->dev
, cam
->dma_buf_size
,
411 cam
->dma_bufs
[i
], cam
->dma_handles
[i
]);
412 cam
->dma_bufs
[i
] = NULL
;
419 * Set up DMA buffers when operating in vmalloc mode
421 static void mcam_ctlr_dma_vmalloc(struct mcam_camera
*cam
)
424 * Store the first two YUV buffers. Then either
425 * set the third if it exists, or tell the controller
428 mcam_write_yuv_bases(cam
, 0, cam
->dma_handles
[0]);
429 mcam_write_yuv_bases(cam
, 1, cam
->dma_handles
[1]);
430 if (cam
->nbufs
> 2) {
431 mcam_write_yuv_bases(cam
, 2, cam
->dma_handles
[2]);
432 mcam_reg_clear_bit(cam
, REG_CTRL1
, C1_TWOBUFS
);
434 mcam_reg_set_bit(cam
, REG_CTRL1
, C1_TWOBUFS
);
435 if (cam
->chip_id
== MCAM_CAFE
)
436 mcam_reg_write(cam
, REG_UBAR
, 0); /* 32 bits only */
440 * Copy data out to user space in the vmalloc case
442 static void mcam_frame_work(struct work_struct
*t
)
444 struct mcam_camera
*cam
= from_work(cam
, t
, s_bh_work
);
447 struct mcam_vb_buffer
*buf
;
449 spin_lock_irqsave(&cam
->dev_lock
, flags
);
450 for (i
= 0; i
< cam
->nbufs
; i
++) {
451 int bufno
= cam
->next_buf
;
453 if (cam
->state
!= S_STREAMING
|| bufno
< 0)
454 break; /* I/O got stopped */
455 if (++(cam
->next_buf
) >= cam
->nbufs
)
457 if (!test_bit(bufno
, &cam
->flags
))
459 if (list_empty(&cam
->buffers
)) {
460 cam
->frame_state
.singles
++;
461 break; /* Leave it valid, hope for better later */
463 cam
->frame_state
.delivered
++;
464 clear_bit(bufno
, &cam
->flags
);
465 buf
= list_first_entry(&cam
->buffers
, struct mcam_vb_buffer
,
467 list_del_init(&buf
->queue
);
469 * Drop the lock during the big copy. This *should* be safe...
471 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
472 memcpy(vb2_plane_vaddr(&buf
->vb_buf
.vb2_buf
, 0),
473 cam
->dma_bufs
[bufno
],
474 cam
->pix_format
.sizeimage
);
475 mcam_buffer_done(cam
, bufno
, &buf
->vb_buf
);
476 spin_lock_irqsave(&cam
->dev_lock
, flags
);
478 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
483 * Make sure our allocated buffers are up to the task.
485 static int mcam_check_dma_buffers(struct mcam_camera
*cam
)
487 if (cam
->nbufs
> 0 && cam
->dma_buf_size
< cam
->pix_format
.sizeimage
)
488 mcam_free_dma_bufs(cam
);
490 return mcam_alloc_dma_bufs(cam
, 0);
494 static void mcam_vmalloc_done(struct mcam_camera
*cam
, int frame
)
496 queue_work(system_bh_wq
, &cam
->s_bh_work
);
499 #else /* MCAM_MODE_VMALLOC */
501 static inline int mcam_alloc_dma_bufs(struct mcam_camera
*cam
, int loadtime
)
506 static inline void mcam_free_dma_bufs(struct mcam_camera
*cam
)
511 static inline int mcam_check_dma_buffers(struct mcam_camera
*cam
)
518 #endif /* MCAM_MODE_VMALLOC */
521 #ifdef MCAM_MODE_DMA_CONTIG
522 /* ---------------------------------------------------------------------- */
524 * DMA-contiguous code.
528 * Set up a contiguous buffer for the given frame. Here also is where
529 * the underrun strategy is set: if there is no buffer available, reuse
530 * the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
531 * keep the interrupt handler from giving that buffer back to user
532 * space. In this way, we always have a buffer to DMA to and don't
533 * have to try to play games stopping and restarting the controller.
535 static void mcam_set_contig_buffer(struct mcam_camera
*cam
, int frame
)
537 struct mcam_vb_buffer
*buf
;
538 dma_addr_t dma_handle
;
539 struct vb2_v4l2_buffer
*vb
;
542 * If there are no available buffers, go into single mode
544 if (list_empty(&cam
->buffers
)) {
545 buf
= cam
->vb_bufs
[frame
^ 0x1];
546 set_bit(CF_SINGLE_BUFFER
, &cam
->flags
);
547 cam
->frame_state
.singles
++;
550 * OK, we have a buffer we can use.
552 buf
= list_first_entry(&cam
->buffers
, struct mcam_vb_buffer
,
554 list_del_init(&buf
->queue
);
555 clear_bit(CF_SINGLE_BUFFER
, &cam
->flags
);
558 cam
->vb_bufs
[frame
] = buf
;
561 dma_handle
= vb2_dma_contig_plane_dma_addr(&vb
->vb2_buf
, 0);
562 mcam_write_yuv_bases(cam
, frame
, dma_handle
);
566 * Initial B_DMA_contig setup.
568 static void mcam_ctlr_dma_contig(struct mcam_camera
*cam
)
570 mcam_reg_set_bit(cam
, REG_CTRL1
, C1_TWOBUFS
);
572 mcam_set_contig_buffer(cam
, 0);
573 mcam_set_contig_buffer(cam
, 1);
577 * Frame completion handling.
579 static void mcam_dma_contig_done(struct mcam_camera
*cam
, int frame
)
581 struct mcam_vb_buffer
*buf
= cam
->vb_bufs
[frame
];
583 if (!test_bit(CF_SINGLE_BUFFER
, &cam
->flags
)) {
584 cam
->frame_state
.delivered
++;
585 cam
->vb_bufs
[frame
] = NULL
;
586 mcam_buffer_done(cam
, frame
, &buf
->vb_buf
);
588 mcam_set_contig_buffer(cam
, frame
);
591 #endif /* MCAM_MODE_DMA_CONTIG */
593 #ifdef MCAM_MODE_DMA_SG
594 /* ---------------------------------------------------------------------- */
596 * Scatter/gather-specific code.
600 * Set up the next buffer for S/G I/O; caller should be sure that
601 * the controller is stopped and a buffer is available.
603 static void mcam_sg_next_buffer(struct mcam_camera
*cam
)
605 struct mcam_vb_buffer
*buf
;
606 struct sg_table
*sg_table
;
608 buf
= list_first_entry(&cam
->buffers
, struct mcam_vb_buffer
, queue
);
609 list_del_init(&buf
->queue
);
610 sg_table
= vb2_dma_sg_plane_desc(&buf
->vb_buf
.vb2_buf
, 0);
612 * Very Bad Not Good Things happen if you don't clear
613 * C1_DESC_ENA before making any descriptor changes.
615 mcam_reg_clear_bit(cam
, REG_CTRL1
, C1_DESC_ENA
);
616 mcam_reg_write(cam
, REG_DMA_DESC_Y
, buf
->dma_desc_pa
);
617 mcam_reg_write(cam
, REG_DESC_LEN_Y
,
618 sg_table
->nents
* sizeof(struct mcam_dma_desc
));
619 mcam_reg_write(cam
, REG_DESC_LEN_U
, 0);
620 mcam_reg_write(cam
, REG_DESC_LEN_V
, 0);
621 mcam_reg_set_bit(cam
, REG_CTRL1
, C1_DESC_ENA
);
622 cam
->vb_bufs
[0] = buf
;
626 * Initial B_DMA_sg setup
628 static void mcam_ctlr_dma_sg(struct mcam_camera
*cam
)
631 * The list-empty condition can hit us at resume time
632 * if the buffer list was empty when the system was suspended.
634 if (list_empty(&cam
->buffers
)) {
635 set_bit(CF_SG_RESTART
, &cam
->flags
);
639 mcam_reg_clear_bit(cam
, REG_CTRL1
, C1_DESC_3WORD
);
640 mcam_sg_next_buffer(cam
);
646 * Frame completion with S/G is trickier. We can't muck with
647 * a descriptor chain on the fly, since the controller buffers it
648 * internally. So we have to actually stop and restart; Marvell
649 * says this is the way to do it.
651 * Of course, stopping is easier said than done; experience shows
652 * that the controller can start a frame *after* C0_ENABLE has been
653 * cleared. So when running in S/G mode, the controller is "stopped"
654 * on receipt of the start-of-frame interrupt. That means we can
655 * safely change the DMA descriptor array here and restart things
656 * (assuming there's another buffer waiting to go).
658 static void mcam_dma_sg_done(struct mcam_camera
*cam
, int frame
)
660 struct mcam_vb_buffer
*buf
= cam
->vb_bufs
[0];
663 * If we're no longer supposed to be streaming, don't do anything.
665 if (cam
->state
!= S_STREAMING
)
668 * If we have another buffer available, put it in and
669 * restart the engine.
671 if (!list_empty(&cam
->buffers
)) {
672 mcam_sg_next_buffer(cam
);
673 mcam_ctlr_start(cam
);
675 * Otherwise set CF_SG_RESTART and the controller will
676 * be restarted once another buffer shows up.
679 set_bit(CF_SG_RESTART
, &cam
->flags
);
680 cam
->frame_state
.singles
++;
681 cam
->vb_bufs
[0] = NULL
;
684 * Now we can give the completed frame back to user space.
686 cam
->frame_state
.delivered
++;
687 mcam_buffer_done(cam
, frame
, &buf
->vb_buf
);
692 * Scatter/gather mode requires stopping the controller between
693 * frames so we can put in a new DMA descriptor array. If no new
694 * buffer exists at frame completion, the controller is left stopped;
695 * this function is charged with getting things going again.
697 static void mcam_sg_restart(struct mcam_camera
*cam
)
699 mcam_ctlr_dma_sg(cam
);
700 mcam_ctlr_start(cam
);
701 clear_bit(CF_SG_RESTART
, &cam
->flags
);
704 #else /* MCAM_MODE_DMA_SG */
706 static inline void mcam_sg_restart(struct mcam_camera
*cam
)
711 #endif /* MCAM_MODE_DMA_SG */
713 /* ---------------------------------------------------------------------- */
715 * Buffer-mode-independent controller code.
721 static void mcam_ctlr_image(struct mcam_camera
*cam
)
723 struct v4l2_pix_format
*fmt
= &cam
->pix_format
;
724 u32 widthy
= 0, widthuv
= 0, imgsz_h
, imgsz_w
;
726 cam_dbg(cam
, "camera: bytesperline = %d; height = %d\n",
727 fmt
->bytesperline
, fmt
->sizeimage
/ fmt
->bytesperline
);
728 imgsz_h
= (fmt
->height
<< IMGSZ_V_SHIFT
) & IMGSZ_V_MASK
;
729 imgsz_w
= (fmt
->width
* 2) & IMGSZ_H_MASK
;
731 switch (fmt
->pixelformat
) {
732 case V4L2_PIX_FMT_YUYV
:
733 case V4L2_PIX_FMT_YVYU
:
734 widthy
= fmt
->width
* 2;
737 case V4L2_PIX_FMT_YUV420
:
738 case V4L2_PIX_FMT_YVU420
:
740 widthuv
= fmt
->width
/ 2;
743 widthy
= fmt
->bytesperline
;
748 mcam_reg_write_mask(cam
, REG_IMGPITCH
, widthuv
<< 16 | widthy
,
749 IMGP_YP_MASK
| IMGP_UVP_MASK
);
750 mcam_reg_write(cam
, REG_IMGSIZE
, imgsz_h
| imgsz_w
);
751 mcam_reg_write(cam
, REG_IMGOFFSET
, 0x0);
754 * Tell the controller about the image format we are using.
756 switch (fmt
->pixelformat
) {
757 case V4L2_PIX_FMT_YUV420
:
758 case V4L2_PIX_FMT_YVU420
:
759 mcam_reg_write_mask(cam
, REG_CTRL0
,
760 C0_DF_YUV
| C0_YUV_420PL
| C0_YUVE_VYUY
, C0_DF_MASK
);
762 case V4L2_PIX_FMT_YUYV
:
763 mcam_reg_write_mask(cam
, REG_CTRL0
,
764 C0_DF_YUV
| C0_YUV_PACKED
| C0_YUVE_NOSWAP
, C0_DF_MASK
);
766 case V4L2_PIX_FMT_YVYU
:
767 mcam_reg_write_mask(cam
, REG_CTRL0
,
768 C0_DF_YUV
| C0_YUV_PACKED
| C0_YUVE_SWAP24
, C0_DF_MASK
);
770 case V4L2_PIX_FMT_XRGB444
:
771 mcam_reg_write_mask(cam
, REG_CTRL0
,
772 C0_DF_RGB
| C0_RGBF_444
| C0_RGB4_XBGR
, C0_DF_MASK
);
774 case V4L2_PIX_FMT_RGB565
:
775 mcam_reg_write_mask(cam
, REG_CTRL0
,
776 C0_DF_RGB
| C0_RGBF_565
| C0_RGB5_BGGR
, C0_DF_MASK
);
778 case V4L2_PIX_FMT_SBGGR8
:
779 mcam_reg_write_mask(cam
, REG_CTRL0
,
780 C0_DF_RGB
| C0_RGB5_GRBG
, C0_DF_MASK
);
783 cam_err(cam
, "camera: unknown format: %#x\n", fmt
->pixelformat
);
788 * Make sure it knows we want to use hsync/vsync.
790 mcam_reg_write_mask(cam
, REG_CTRL0
, C0_SIF_HVSYNC
, C0_SIFM_MASK
);
795 * Configure the controller for operation; caller holds the
798 static int mcam_ctlr_configure(struct mcam_camera
*cam
)
802 spin_lock_irqsave(&cam
->dev_lock
, flags
);
803 clear_bit(CF_SG_RESTART
, &cam
->flags
);
805 mcam_ctlr_image(cam
);
806 mcam_set_config_needed(cam
, 0);
807 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
811 static void mcam_ctlr_irq_enable(struct mcam_camera
*cam
)
814 * Clear any pending interrupts, since we do not
815 * expect to have I/O active prior to enabling.
817 mcam_reg_write(cam
, REG_IRQSTAT
, FRAMEIRQS
);
818 mcam_reg_set_bit(cam
, REG_IRQMASK
, FRAMEIRQS
);
821 static void mcam_ctlr_irq_disable(struct mcam_camera
*cam
)
823 mcam_reg_clear_bit(cam
, REG_IRQMASK
, FRAMEIRQS
);
827 * Stop the controller, and don't return until we're really sure that no
828 * further DMA is going on.
830 static void mcam_ctlr_stop_dma(struct mcam_camera
*cam
)
835 * Theory: stop the camera controller (whether it is operating
836 * or not). Delay briefly just in case we race with the SOF
837 * interrupt, then wait until no DMA is active.
839 spin_lock_irqsave(&cam
->dev_lock
, flags
);
840 clear_bit(CF_SG_RESTART
, &cam
->flags
);
843 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
845 * This is a brutally long sleep, but experience shows that
846 * it can take the controller a while to get the message that
847 * it needs to stop grabbing frames. In particular, we can
848 * sometimes (on mmp) get a frame at the end WITHOUT the
849 * start-of-frame indication.
852 if (test_bit(CF_DMA_ACTIVE
, &cam
->flags
))
853 cam_err(cam
, "Timeout waiting for DMA to end\n");
854 /* This would be bad news - what now? */
855 spin_lock_irqsave(&cam
->dev_lock
, flags
);
856 mcam_ctlr_irq_disable(cam
);
857 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
863 static int mcam_ctlr_power_up(struct mcam_camera
*cam
)
868 spin_lock_irqsave(&cam
->dev_lock
, flags
);
869 if (cam
->plat_power_up
) {
870 ret
= cam
->plat_power_up(cam
);
872 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
876 mcam_reg_clear_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
877 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
881 static void mcam_ctlr_power_down(struct mcam_camera
*cam
)
885 spin_lock_irqsave(&cam
->dev_lock
, flags
);
887 * School of hard knocks department: be sure we do any register
888 * twiddling on the controller *before* calling the platform
889 * power down routine.
891 mcam_reg_set_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
892 if (cam
->plat_power_down
)
893 cam
->plat_power_down(cam
);
894 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
897 /* ---------------------------------------------------------------------- */
899 * Master sensor clock.
901 static int mclk_prepare(struct clk_hw
*hw
)
903 struct mcam_camera
*cam
= container_of(hw
, struct mcam_camera
, mclk_hw
);
905 clk_prepare(cam
->clk
[0]);
909 static void mclk_unprepare(struct clk_hw
*hw
)
911 struct mcam_camera
*cam
= container_of(hw
, struct mcam_camera
, mclk_hw
);
913 clk_unprepare(cam
->clk
[0]);
916 static int mclk_enable(struct clk_hw
*hw
)
918 struct mcam_camera
*cam
= container_of(hw
, struct mcam_camera
, mclk_hw
);
924 * Clock the sensor appropriately. Controller clock should
925 * be 48MHz, sensor "typical" value is half that.
927 if (cam
->bus_type
== V4L2_MBUS_CSI2_DPHY
) {
928 mclk_src
= cam
->mclk_src
;
929 mclk_div
= cam
->mclk_div
;
935 ret
= pm_runtime_resume_and_get(cam
->dev
);
938 clk_enable(cam
->clk
[0]);
939 mcam_reg_write(cam
, REG_CLKCTRL
, (mclk_src
<< 29) | mclk_div
);
940 mcam_ctlr_power_up(cam
);
945 static void mclk_disable(struct clk_hw
*hw
)
947 struct mcam_camera
*cam
= container_of(hw
, struct mcam_camera
, mclk_hw
);
949 mcam_ctlr_power_down(cam
);
950 clk_disable(cam
->clk
[0]);
951 pm_runtime_put(cam
->dev
);
954 static unsigned long mclk_recalc_rate(struct clk_hw
*hw
,
955 unsigned long parent_rate
)
960 static const struct clk_ops mclk_ops
= {
961 .prepare
= mclk_prepare
,
962 .unprepare
= mclk_unprepare
,
963 .enable
= mclk_enable
,
964 .disable
= mclk_disable
,
965 .recalc_rate
= mclk_recalc_rate
,
968 /* -------------------------------------------------------------------- */
970 * Communications with the sensor.
973 static int __mcam_cam_reset(struct mcam_camera
*cam
)
975 return sensor_call(cam
, core
, reset
, 0);
979 * We have found the sensor on the i2c. Let's try to have a
982 static int mcam_cam_init(struct mcam_camera
*cam
)
986 if (cam
->state
!= S_NOTREADY
)
987 cam_warn(cam
, "Cam init with device in funky state %d",
989 ret
= __mcam_cam_reset(cam
);
990 /* Get/set parameters? */
996 * Configure the sensor to match the parameters we have. Caller should
999 static int mcam_cam_set_flip(struct mcam_camera
*cam
)
1001 struct v4l2_control ctrl
;
1003 memset(&ctrl
, 0, sizeof(ctrl
));
1004 ctrl
.id
= V4L2_CID_VFLIP
;
1006 return v4l2_s_ctrl(NULL
, cam
->sensor
->ctrl_handler
, &ctrl
);
1010 static int mcam_cam_configure(struct mcam_camera
*cam
)
1012 struct v4l2_subdev_format format
= {
1013 .which
= V4L2_SUBDEV_FORMAT_ACTIVE
,
1017 v4l2_fill_mbus_format(&format
.format
, &cam
->pix_format
, cam
->mbus_code
);
1018 ret
= sensor_call(cam
, core
, init
, 0);
1020 ret
= sensor_call(cam
, pad
, set_fmt
, NULL
, &format
);
1022 * OV7670 does weird things if flip is set *before* format...
1024 ret
+= mcam_cam_set_flip(cam
);
1029 * Get everything ready, and start grabbing frames.
1031 static int mcam_read_setup(struct mcam_camera
*cam
)
1034 unsigned long flags
;
1037 * Configuration. If we still don't have DMA buffers,
1038 * make one last, desperate attempt.
1040 if (cam
->buffer_mode
== B_vmalloc
&& cam
->nbufs
== 0 &&
1041 mcam_alloc_dma_bufs(cam
, 0))
1044 if (mcam_needs_config(cam
)) {
1045 mcam_cam_configure(cam
);
1046 ret
= mcam_ctlr_configure(cam
);
1054 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1055 clear_bit(CF_DMA_ACTIVE
, &cam
->flags
);
1056 mcam_reset_buffers(cam
);
1057 if (cam
->bus_type
== V4L2_MBUS_CSI2_DPHY
)
1058 mcam_enable_mipi(cam
);
1060 mcam_disable_mipi(cam
);
1061 mcam_ctlr_irq_enable(cam
);
1062 cam
->state
= S_STREAMING
;
1063 if (!test_bit(CF_SG_RESTART
, &cam
->flags
))
1064 mcam_ctlr_start(cam
);
1065 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1069 /* ----------------------------------------------------------------------- */
1071 * Videobuf2 interface code.
1074 static int mcam_vb_queue_setup(struct vb2_queue
*vq
,
1075 unsigned int *nbufs
,
1076 unsigned int *num_planes
, unsigned int sizes
[],
1077 struct device
*alloc_devs
[])
1079 struct mcam_camera
*cam
= vb2_get_drv_priv(vq
);
1080 int minbufs
= (cam
->buffer_mode
== B_DMA_contig
) ? 3 : 2;
1081 unsigned size
= cam
->pix_format
.sizeimage
;
1083 if (*nbufs
< minbufs
)
1087 return sizes
[0] < size
? -EINVAL
: 0;
1089 *num_planes
= 1; /* Someday we have to support planar formats... */
1094 static void mcam_vb_buf_queue(struct vb2_buffer
*vb
)
1096 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
1097 struct mcam_vb_buffer
*mvb
= vb_to_mvb(vbuf
);
1098 struct mcam_camera
*cam
= vb2_get_drv_priv(vb
->vb2_queue
);
1099 unsigned long flags
;
1102 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1103 start
= (cam
->state
== S_BUFWAIT
) && !list_empty(&cam
->buffers
);
1104 list_add(&mvb
->queue
, &cam
->buffers
);
1105 if (cam
->state
== S_STREAMING
&& test_bit(CF_SG_RESTART
, &cam
->flags
))
1106 mcam_sg_restart(cam
);
1107 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1109 mcam_read_setup(cam
);
1112 static void mcam_vb_requeue_bufs(struct vb2_queue
*vq
,
1113 enum vb2_buffer_state state
)
1115 struct mcam_camera
*cam
= vb2_get_drv_priv(vq
);
1116 struct mcam_vb_buffer
*buf
, *node
;
1117 unsigned long flags
;
1120 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1121 list_for_each_entry_safe(buf
, node
, &cam
->buffers
, queue
) {
1122 vb2_buffer_done(&buf
->vb_buf
.vb2_buf
, state
);
1123 list_del(&buf
->queue
);
1125 for (i
= 0; i
< MAX_DMA_BUFS
; i
++) {
1126 buf
= cam
->vb_bufs
[i
];
1129 vb2_buffer_done(&buf
->vb_buf
.vb2_buf
, state
);
1130 cam
->vb_bufs
[i
] = NULL
;
1133 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1137 * These need to be called with the mutex held from vb2
1139 static int mcam_vb_start_streaming(struct vb2_queue
*vq
, unsigned int count
)
1141 struct mcam_camera
*cam
= vb2_get_drv_priv(vq
);
1145 if (cam
->state
!= S_IDLE
) {
1146 mcam_vb_requeue_bufs(vq
, VB2_BUF_STATE_QUEUED
);
1149 cam
->frame_state
.frames
= 0;
1150 cam
->frame_state
.singles
= 0;
1151 cam
->frame_state
.delivered
= 0;
1154 * Videobuf2 sneakily hoards all the buffers and won't
1155 * give them to us until *after* streaming starts. But
1156 * we can't actually start streaming until we have a
1157 * destination. So go into a wait state and hope they
1158 * give us buffers soon.
1160 if (cam
->buffer_mode
!= B_vmalloc
&& list_empty(&cam
->buffers
)) {
1161 cam
->state
= S_BUFWAIT
;
1166 * Ensure clear the left over frame flags
1167 * before every really start streaming
1169 for (frame
= 0; frame
< cam
->nbufs
; frame
++)
1170 clear_bit(CF_FRAME_SOF0
+ frame
, &cam
->flags
);
1172 ret
= mcam_read_setup(cam
);
1174 mcam_vb_requeue_bufs(vq
, VB2_BUF_STATE_QUEUED
);
1178 static void mcam_vb_stop_streaming(struct vb2_queue
*vq
)
1180 struct mcam_camera
*cam
= vb2_get_drv_priv(vq
);
1182 cam_dbg(cam
, "stop_streaming: %d frames, %d singles, %d delivered\n",
1183 cam
->frame_state
.frames
, cam
->frame_state
.singles
,
1184 cam
->frame_state
.delivered
);
1185 if (cam
->state
== S_BUFWAIT
) {
1186 /* They never gave us buffers */
1187 cam
->state
= S_IDLE
;
1190 if (cam
->state
!= S_STREAMING
)
1192 mcam_ctlr_stop_dma(cam
);
1194 * VB2 reclaims the buffers, so we need to forget
1197 mcam_vb_requeue_bufs(vq
, VB2_BUF_STATE_ERROR
);
1201 static const struct vb2_ops mcam_vb2_ops
= {
1202 .queue_setup
= mcam_vb_queue_setup
,
1203 .buf_queue
= mcam_vb_buf_queue
,
1204 .start_streaming
= mcam_vb_start_streaming
,
1205 .stop_streaming
= mcam_vb_stop_streaming
,
1209 #ifdef MCAM_MODE_DMA_SG
1211 * Scatter/gather mode uses all of the above functions plus a
1212 * few extras to deal with DMA mapping.
1214 static int mcam_vb_sg_buf_init(struct vb2_buffer
*vb
)
1216 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
1217 struct mcam_vb_buffer
*mvb
= vb_to_mvb(vbuf
);
1218 struct mcam_camera
*cam
= vb2_get_drv_priv(vb
->vb2_queue
);
1219 int ndesc
= cam
->pix_format
.sizeimage
/PAGE_SIZE
+ 1;
1221 mvb
->dma_desc
= dma_alloc_coherent(cam
->dev
,
1222 ndesc
* sizeof(struct mcam_dma_desc
),
1223 &mvb
->dma_desc_pa
, GFP_KERNEL
);
1224 if (mvb
->dma_desc
== NULL
) {
1225 cam_err(cam
, "Unable to get DMA descriptor array\n");
1231 static int mcam_vb_sg_buf_prepare(struct vb2_buffer
*vb
)
1233 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
1234 struct mcam_vb_buffer
*mvb
= vb_to_mvb(vbuf
);
1235 struct sg_table
*sg_table
= vb2_dma_sg_plane_desc(vb
, 0);
1236 struct mcam_dma_desc
*desc
= mvb
->dma_desc
;
1237 struct scatterlist
*sg
;
1240 for_each_sg(sg_table
->sgl
, sg
, sg_table
->nents
, i
) {
1241 desc
->dma_addr
= sg_dma_address(sg
);
1242 desc
->segment_len
= sg_dma_len(sg
);
1248 static void mcam_vb_sg_buf_cleanup(struct vb2_buffer
*vb
)
1250 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
1251 struct mcam_camera
*cam
= vb2_get_drv_priv(vb
->vb2_queue
);
1252 struct mcam_vb_buffer
*mvb
= vb_to_mvb(vbuf
);
1253 int ndesc
= cam
->pix_format
.sizeimage
/PAGE_SIZE
+ 1;
1255 dma_free_coherent(cam
->dev
, ndesc
* sizeof(struct mcam_dma_desc
),
1256 mvb
->dma_desc
, mvb
->dma_desc_pa
);
1260 static const struct vb2_ops mcam_vb2_sg_ops
= {
1261 .queue_setup
= mcam_vb_queue_setup
,
1262 .buf_init
= mcam_vb_sg_buf_init
,
1263 .buf_prepare
= mcam_vb_sg_buf_prepare
,
1264 .buf_queue
= mcam_vb_buf_queue
,
1265 .buf_cleanup
= mcam_vb_sg_buf_cleanup
,
1266 .start_streaming
= mcam_vb_start_streaming
,
1267 .stop_streaming
= mcam_vb_stop_streaming
,
1270 #endif /* MCAM_MODE_DMA_SG */
1272 static int mcam_setup_vb2(struct mcam_camera
*cam
)
1274 struct vb2_queue
*vq
= &cam
->vb_queue
;
1276 memset(vq
, 0, sizeof(*vq
));
1277 vq
->type
= V4L2_BUF_TYPE_VIDEO_CAPTURE
;
1279 vq
->lock
= &cam
->s_mutex
;
1280 vq
->timestamp_flags
= V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC
;
1281 vq
->io_modes
= VB2_MMAP
| VB2_USERPTR
| VB2_DMABUF
| VB2_READ
;
1282 vq
->buf_struct_size
= sizeof(struct mcam_vb_buffer
);
1284 INIT_LIST_HEAD(&cam
->buffers
);
1285 switch (cam
->buffer_mode
) {
1287 #ifdef MCAM_MODE_DMA_CONTIG
1288 vq
->ops
= &mcam_vb2_ops
;
1289 vq
->mem_ops
= &vb2_dma_contig_memops
;
1290 cam
->dma_setup
= mcam_ctlr_dma_contig
;
1291 cam
->frame_complete
= mcam_dma_contig_done
;
1295 #ifdef MCAM_MODE_DMA_SG
1296 vq
->ops
= &mcam_vb2_sg_ops
;
1297 vq
->mem_ops
= &vb2_dma_sg_memops
;
1298 cam
->dma_setup
= mcam_ctlr_dma_sg
;
1299 cam
->frame_complete
= mcam_dma_sg_done
;
1303 #ifdef MCAM_MODE_VMALLOC
1304 INIT_WORK(&cam
->s_bh_work
, mcam_frame_work
);
1305 vq
->ops
= &mcam_vb2_ops
;
1306 vq
->mem_ops
= &vb2_vmalloc_memops
;
1307 cam
->dma_setup
= mcam_ctlr_dma_vmalloc
;
1308 cam
->frame_complete
= mcam_vmalloc_done
;
1312 return vb2_queue_init(vq
);
1316 /* ---------------------------------------------------------------------- */
1318 * The long list of V4L2 ioctl() operations.
1321 static int mcam_vidioc_querycap(struct file
*file
, void *priv
,
1322 struct v4l2_capability
*cap
)
1324 struct mcam_camera
*cam
= video_drvdata(file
);
1326 strscpy(cap
->driver
, "marvell_ccic", sizeof(cap
->driver
));
1327 strscpy(cap
->card
, "marvell_ccic", sizeof(cap
->card
));
1328 strscpy(cap
->bus_info
, cam
->bus_info
, sizeof(cap
->bus_info
));
1333 static int mcam_vidioc_enum_fmt_vid_cap(struct file
*filp
,
1334 void *priv
, struct v4l2_fmtdesc
*fmt
)
1336 if (fmt
->index
>= N_MCAM_FMTS
)
1338 fmt
->pixelformat
= mcam_formats
[fmt
->index
].pixelformat
;
1342 static int mcam_vidioc_try_fmt_vid_cap(struct file
*filp
, void *priv
,
1343 struct v4l2_format
*fmt
)
1345 struct mcam_camera
*cam
= video_drvdata(filp
);
1346 struct mcam_format_struct
*f
;
1347 struct v4l2_pix_format
*pix
= &fmt
->fmt
.pix
;
1348 struct v4l2_subdev_pad_config pad_cfg
;
1349 struct v4l2_subdev_state pad_state
= {
1352 struct v4l2_subdev_format format
= {
1353 .which
= V4L2_SUBDEV_FORMAT_TRY
,
1357 f
= mcam_find_format(pix
->pixelformat
);
1358 pix
->pixelformat
= f
->pixelformat
;
1359 v4l2_fill_mbus_format(&format
.format
, pix
, f
->mbus_code
);
1360 ret
= sensor_call(cam
, pad
, set_fmt
, &pad_state
, &format
);
1361 v4l2_fill_pix_format(pix
, &format
.format
);
1362 pix
->bytesperline
= pix
->width
* f
->bpp
;
1363 switch (f
->pixelformat
) {
1364 case V4L2_PIX_FMT_YUV420
:
1365 case V4L2_PIX_FMT_YVU420
:
1366 pix
->sizeimage
= pix
->height
* pix
->bytesperline
* 3 / 2;
1369 pix
->sizeimage
= pix
->height
* pix
->bytesperline
;
1372 pix
->colorspace
= V4L2_COLORSPACE_SRGB
;
1376 static int mcam_vidioc_s_fmt_vid_cap(struct file
*filp
, void *priv
,
1377 struct v4l2_format
*fmt
)
1379 struct mcam_camera
*cam
= video_drvdata(filp
);
1380 struct mcam_format_struct
*f
;
1384 * Can't do anything if the device is not idle
1385 * Also can't if there are streaming buffers in place.
1387 if (cam
->state
!= S_IDLE
|| vb2_is_busy(&cam
->vb_queue
))
1390 f
= mcam_find_format(fmt
->fmt
.pix
.pixelformat
);
1393 * See if the formatting works in principle.
1395 ret
= mcam_vidioc_try_fmt_vid_cap(filp
, priv
, fmt
);
1399 * Now we start to change things for real, so let's do it
1402 cam
->pix_format
= fmt
->fmt
.pix
;
1403 cam
->mbus_code
= f
->mbus_code
;
1406 * Make sure we have appropriate DMA buffers.
1408 if (cam
->buffer_mode
== B_vmalloc
) {
1409 ret
= mcam_check_dma_buffers(cam
);
1413 mcam_set_config_needed(cam
, 1);
1419 * Return our stored notion of how the camera is/should be configured.
1420 * The V4l2 spec wants us to be smarter, and actually get this from
1421 * the camera (and not mess with it at open time). Someday.
1423 static int mcam_vidioc_g_fmt_vid_cap(struct file
*filp
, void *priv
,
1424 struct v4l2_format
*f
)
1426 struct mcam_camera
*cam
= video_drvdata(filp
);
1428 f
->fmt
.pix
= cam
->pix_format
;
1433 * We only have one input - the sensor - so minimize the nonsense here.
1435 static int mcam_vidioc_enum_input(struct file
*filp
, void *priv
,
1436 struct v4l2_input
*input
)
1438 if (input
->index
!= 0)
1441 input
->type
= V4L2_INPUT_TYPE_CAMERA
;
1442 strscpy(input
->name
, "Camera", sizeof(input
->name
));
1446 static int mcam_vidioc_g_input(struct file
*filp
, void *priv
, unsigned int *i
)
1452 static int mcam_vidioc_s_input(struct file
*filp
, void *priv
, unsigned int i
)
1460 * G/S_PARM. Most of this is done by the sensor, but we are
1461 * the level which controls the number of read buffers.
1463 static int mcam_vidioc_g_parm(struct file
*filp
, void *priv
,
1464 struct v4l2_streamparm
*a
)
1466 struct mcam_camera
*cam
= video_drvdata(filp
);
1469 ret
= v4l2_g_parm_cap(video_devdata(filp
), cam
->sensor
, a
);
1470 a
->parm
.capture
.readbuffers
= n_dma_bufs
;
1474 static int mcam_vidioc_s_parm(struct file
*filp
, void *priv
,
1475 struct v4l2_streamparm
*a
)
1477 struct mcam_camera
*cam
= video_drvdata(filp
);
1480 ret
= v4l2_s_parm_cap(video_devdata(filp
), cam
->sensor
, a
);
1481 a
->parm
.capture
.readbuffers
= n_dma_bufs
;
1485 static int mcam_vidioc_enum_framesizes(struct file
*filp
, void *priv
,
1486 struct v4l2_frmsizeenum
*sizes
)
1488 struct mcam_camera
*cam
= video_drvdata(filp
);
1489 struct mcam_format_struct
*f
;
1490 struct v4l2_subdev_frame_size_enum fse
= {
1491 .index
= sizes
->index
,
1492 .which
= V4L2_SUBDEV_FORMAT_ACTIVE
,
1496 f
= mcam_find_format(sizes
->pixel_format
);
1497 if (f
->pixelformat
!= sizes
->pixel_format
)
1499 fse
.code
= f
->mbus_code
;
1500 ret
= sensor_call(cam
, pad
, enum_frame_size
, NULL
, &fse
);
1503 if (fse
.min_width
== fse
.max_width
&&
1504 fse
.min_height
== fse
.max_height
) {
1505 sizes
->type
= V4L2_FRMSIZE_TYPE_DISCRETE
;
1506 sizes
->discrete
.width
= fse
.min_width
;
1507 sizes
->discrete
.height
= fse
.min_height
;
1510 sizes
->type
= V4L2_FRMSIZE_TYPE_CONTINUOUS
;
1511 sizes
->stepwise
.min_width
= fse
.min_width
;
1512 sizes
->stepwise
.max_width
= fse
.max_width
;
1513 sizes
->stepwise
.min_height
= fse
.min_height
;
1514 sizes
->stepwise
.max_height
= fse
.max_height
;
1515 sizes
->stepwise
.step_width
= 1;
1516 sizes
->stepwise
.step_height
= 1;
1520 static int mcam_vidioc_enum_frameintervals(struct file
*filp
, void *priv
,
1521 struct v4l2_frmivalenum
*interval
)
1523 struct mcam_camera
*cam
= video_drvdata(filp
);
1524 struct mcam_format_struct
*f
;
1525 struct v4l2_subdev_frame_interval_enum fie
= {
1526 .index
= interval
->index
,
1527 .width
= interval
->width
,
1528 .height
= interval
->height
,
1529 .which
= V4L2_SUBDEV_FORMAT_ACTIVE
,
1533 f
= mcam_find_format(interval
->pixel_format
);
1534 if (f
->pixelformat
!= interval
->pixel_format
)
1536 fie
.code
= f
->mbus_code
;
1537 ret
= sensor_call(cam
, pad
, enum_frame_interval
, NULL
, &fie
);
1540 interval
->type
= V4L2_FRMIVAL_TYPE_DISCRETE
;
1541 interval
->discrete
= fie
.interval
;
1545 #ifdef CONFIG_VIDEO_ADV_DEBUG
1546 static int mcam_vidioc_g_register(struct file
*file
, void *priv
,
1547 struct v4l2_dbg_register
*reg
)
1549 struct mcam_camera
*cam
= video_drvdata(file
);
1551 if (reg
->reg
> cam
->regs_size
- 4)
1553 reg
->val
= mcam_reg_read(cam
, reg
->reg
);
1558 static int mcam_vidioc_s_register(struct file
*file
, void *priv
,
1559 const struct v4l2_dbg_register
*reg
)
1561 struct mcam_camera
*cam
= video_drvdata(file
);
1563 if (reg
->reg
> cam
->regs_size
- 4)
1565 mcam_reg_write(cam
, reg
->reg
, reg
->val
);
1570 static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops
= {
1571 .vidioc_querycap
= mcam_vidioc_querycap
,
1572 .vidioc_enum_fmt_vid_cap
= mcam_vidioc_enum_fmt_vid_cap
,
1573 .vidioc_try_fmt_vid_cap
= mcam_vidioc_try_fmt_vid_cap
,
1574 .vidioc_s_fmt_vid_cap
= mcam_vidioc_s_fmt_vid_cap
,
1575 .vidioc_g_fmt_vid_cap
= mcam_vidioc_g_fmt_vid_cap
,
1576 .vidioc_enum_input
= mcam_vidioc_enum_input
,
1577 .vidioc_g_input
= mcam_vidioc_g_input
,
1578 .vidioc_s_input
= mcam_vidioc_s_input
,
1579 .vidioc_reqbufs
= vb2_ioctl_reqbufs
,
1580 .vidioc_create_bufs
= vb2_ioctl_create_bufs
,
1581 .vidioc_querybuf
= vb2_ioctl_querybuf
,
1582 .vidioc_qbuf
= vb2_ioctl_qbuf
,
1583 .vidioc_dqbuf
= vb2_ioctl_dqbuf
,
1584 .vidioc_expbuf
= vb2_ioctl_expbuf
,
1585 .vidioc_streamon
= vb2_ioctl_streamon
,
1586 .vidioc_streamoff
= vb2_ioctl_streamoff
,
1587 .vidioc_g_parm
= mcam_vidioc_g_parm
,
1588 .vidioc_s_parm
= mcam_vidioc_s_parm
,
1589 .vidioc_enum_framesizes
= mcam_vidioc_enum_framesizes
,
1590 .vidioc_enum_frameintervals
= mcam_vidioc_enum_frameintervals
,
1591 .vidioc_subscribe_event
= v4l2_ctrl_subscribe_event
,
1592 .vidioc_unsubscribe_event
= v4l2_event_unsubscribe
,
1593 #ifdef CONFIG_VIDEO_ADV_DEBUG
1594 .vidioc_g_register
= mcam_vidioc_g_register
,
1595 .vidioc_s_register
= mcam_vidioc_s_register
,
1599 /* ---------------------------------------------------------------------- */
1601 * Our various file operations.
1603 static int mcam_v4l_open(struct file
*filp
)
1605 struct mcam_camera
*cam
= video_drvdata(filp
);
1608 mutex_lock(&cam
->s_mutex
);
1609 ret
= v4l2_fh_open(filp
);
1612 if (v4l2_fh_is_singular_file(filp
)) {
1613 ret
= sensor_call(cam
, core
, s_power
, 1);
1616 ret
= pm_runtime_resume_and_get(cam
->dev
);
1619 __mcam_cam_reset(cam
);
1620 mcam_set_config_needed(cam
, 1);
1623 mutex_unlock(&cam
->s_mutex
);
1625 v4l2_fh_release(filp
);
1630 static int mcam_v4l_release(struct file
*filp
)
1632 struct mcam_camera
*cam
= video_drvdata(filp
);
1635 mutex_lock(&cam
->s_mutex
);
1636 last_open
= v4l2_fh_is_singular_file(filp
);
1637 _vb2_fop_release(filp
, NULL
);
1639 mcam_disable_mipi(cam
);
1640 sensor_call(cam
, core
, s_power
, 0);
1641 pm_runtime_put(cam
->dev
);
1642 if (cam
->buffer_mode
== B_vmalloc
&& alloc_bufs_at_read
)
1643 mcam_free_dma_bufs(cam
);
1646 mutex_unlock(&cam
->s_mutex
);
1650 static const struct v4l2_file_operations mcam_v4l_fops
= {
1651 .owner
= THIS_MODULE
,
1652 .open
= mcam_v4l_open
,
1653 .release
= mcam_v4l_release
,
1654 .read
= vb2_fop_read
,
1655 .poll
= vb2_fop_poll
,
1656 .mmap
= vb2_fop_mmap
,
1657 .unlocked_ioctl
= video_ioctl2
,
1662 * This template device holds all of those v4l2 methods; we
1663 * clone it for specific real devices.
1665 static const struct video_device mcam_v4l_template
= {
1667 .fops
= &mcam_v4l_fops
,
1668 .ioctl_ops
= &mcam_v4l_ioctl_ops
,
1669 .release
= video_device_release_empty
,
1670 .device_caps
= V4L2_CAP_VIDEO_CAPTURE
| V4L2_CAP_READWRITE
|
1674 /* ---------------------------------------------------------------------- */
1676 * Interrupt handler stuff
1678 static void mcam_frame_complete(struct mcam_camera
*cam
, int frame
)
1681 * Basic frame housekeeping.
1683 set_bit(frame
, &cam
->flags
);
1684 clear_bit(CF_DMA_ACTIVE
, &cam
->flags
);
1685 cam
->next_buf
= frame
;
1686 cam
->buf_seq
[frame
] = cam
->sequence
++;
1687 cam
->frame_state
.frames
++;
1689 * "This should never happen"
1691 if (cam
->state
!= S_STREAMING
)
1694 * Process the frame and set up the next one.
1696 cam
->frame_complete(cam
, frame
);
1701 * The interrupt handler; this needs to be called from the
1702 * platform irq handler with the lock held.
1704 int mccic_irq(struct mcam_camera
*cam
, unsigned int irqs
)
1706 unsigned int frame
, handled
= 0;
1708 mcam_reg_write(cam
, REG_IRQSTAT
, FRAMEIRQS
); /* Clear'em all */
1710 * Handle any frame completions. There really should
1711 * not be more than one of these, or we have fallen
1714 * When running in S/G mode, the frame number lacks any
1715 * real meaning - there's only one descriptor array - but
1716 * the controller still picks a different one to signal
1719 for (frame
= 0; frame
< cam
->nbufs
; frame
++)
1720 if (irqs
& (IRQ_EOF0
<< frame
) &&
1721 test_bit(CF_FRAME_SOF0
+ frame
, &cam
->flags
)) {
1722 mcam_frame_complete(cam
, frame
);
1724 clear_bit(CF_FRAME_SOF0
+ frame
, &cam
->flags
);
1725 if (cam
->buffer_mode
== B_DMA_sg
)
1729 * If a frame starts, note that we have DMA active. This
1730 * code assumes that we won't get multiple frame interrupts
1731 * at once; may want to rethink that.
1733 for (frame
= 0; frame
< cam
->nbufs
; frame
++) {
1734 if (irqs
& (IRQ_SOF0
<< frame
)) {
1735 set_bit(CF_FRAME_SOF0
+ frame
, &cam
->flags
);
1736 handled
= IRQ_HANDLED
;
1740 if (handled
== IRQ_HANDLED
) {
1741 set_bit(CF_DMA_ACTIVE
, &cam
->flags
);
1742 if (cam
->buffer_mode
== B_DMA_sg
)
1743 mcam_ctlr_stop(cam
);
1747 EXPORT_SYMBOL_GPL(mccic_irq
);
1749 /* ---------------------------------------------------------------------- */
1751 * Registration and such.
1754 static int mccic_notify_bound(struct v4l2_async_notifier
*notifier
,
1755 struct v4l2_subdev
*subdev
, struct v4l2_async_connection
*asd
)
1757 struct mcam_camera
*cam
= notifier_to_mcam(notifier
);
1760 mutex_lock(&cam
->s_mutex
);
1762 cam_err(cam
, "sensor already bound\n");
1767 v4l2_set_subdev_hostdata(subdev
, cam
);
1768 cam
->sensor
= subdev
;
1770 ret
= mcam_cam_init(cam
);
1776 ret
= mcam_setup_vb2(cam
);
1782 cam
->vdev
= mcam_v4l_template
;
1783 cam
->vdev
.v4l2_dev
= &cam
->v4l2_dev
;
1784 cam
->vdev
.lock
= &cam
->s_mutex
;
1785 cam
->vdev
.queue
= &cam
->vb_queue
;
1786 video_set_drvdata(&cam
->vdev
, cam
);
1787 ret
= video_register_device(&cam
->vdev
, VFL_TYPE_VIDEO
, -1);
1793 cam_dbg(cam
, "sensor %s bound\n", subdev
->name
);
1795 mutex_unlock(&cam
->s_mutex
);
1799 static void mccic_notify_unbind(struct v4l2_async_notifier
*notifier
,
1800 struct v4l2_subdev
*subdev
, struct v4l2_async_connection
*asd
)
1802 struct mcam_camera
*cam
= notifier_to_mcam(notifier
);
1804 mutex_lock(&cam
->s_mutex
);
1805 if (cam
->sensor
!= subdev
) {
1806 cam_err(cam
, "sensor %s not bound\n", subdev
->name
);
1810 video_unregister_device(&cam
->vdev
);
1812 cam_dbg(cam
, "sensor %s unbound\n", subdev
->name
);
1815 mutex_unlock(&cam
->s_mutex
);
1818 static int mccic_notify_complete(struct v4l2_async_notifier
*notifier
)
1820 struct mcam_camera
*cam
= notifier_to_mcam(notifier
);
1824 * Get the v4l2 setup done.
1826 ret
= v4l2_ctrl_handler_init(&cam
->ctrl_handler
, 10);
1828 cam
->v4l2_dev
.ctrl_handler
= &cam
->ctrl_handler
;
1833 static const struct v4l2_async_notifier_operations mccic_notify_ops
= {
1834 .bound
= mccic_notify_bound
,
1835 .unbind
= mccic_notify_unbind
,
1836 .complete
= mccic_notify_complete
,
1839 int mccic_register(struct mcam_camera
*cam
)
1841 struct clk_init_data mclk_init
= { };
1845 * Validate the requested buffer mode.
1847 if (buffer_mode
>= 0)
1848 cam
->buffer_mode
= buffer_mode
;
1849 if (cam
->buffer_mode
== B_DMA_sg
&&
1850 cam
->chip_id
== MCAM_CAFE
) {
1851 printk(KERN_ERR
"marvell-cam: Cafe can't do S/G I/O, attempting vmalloc mode instead\n");
1852 cam
->buffer_mode
= B_vmalloc
;
1855 if (!mcam_buffer_mode_supported(cam
->buffer_mode
)) {
1856 printk(KERN_ERR
"marvell-cam: buffer mode %d unsupported\n",
1862 mutex_init(&cam
->s_mutex
);
1863 cam
->state
= S_NOTREADY
;
1864 mcam_set_config_needed(cam
, 1);
1865 cam
->pix_format
= mcam_def_pix_format
;
1866 cam
->mbus_code
= mcam_def_mbus_code
;
1868 cam
->notifier
.ops
= &mccic_notify_ops
;
1869 ret
= v4l2_async_nf_register(&cam
->notifier
);
1871 cam_warn(cam
, "failed to register a sensor notifier");
1876 * Register sensor master clock.
1878 mclk_init
.parent_names
= NULL
;
1879 mclk_init
.num_parents
= 0;
1880 mclk_init
.ops
= &mclk_ops
;
1881 mclk_init
.name
= "mclk";
1883 of_property_read_string(cam
->dev
->of_node
, "clock-output-names",
1886 cam
->mclk_hw
.init
= &mclk_init
;
1888 cam
->mclk
= devm_clk_register(cam
->dev
, &cam
->mclk_hw
);
1889 if (IS_ERR(cam
->mclk
)) {
1890 ret
= PTR_ERR(cam
->mclk
);
1891 dev_err(cam
->dev
, "can't register clock\n");
1896 * If so requested, try to get our DMA buffers now.
1898 if (cam
->buffer_mode
== B_vmalloc
&& !alloc_bufs_at_read
) {
1899 if (mcam_alloc_dma_bufs(cam
, 1))
1900 cam_warn(cam
, "Unable to alloc DMA buffers at load will try again later.");
1906 v4l2_async_nf_unregister(&cam
->notifier
);
1907 v4l2_async_nf_cleanup(&cam
->notifier
);
1910 EXPORT_SYMBOL_GPL(mccic_register
);
1912 void mccic_shutdown(struct mcam_camera
*cam
)
1915 * If we have no users (and we really, really should have no
1916 * users) the device will already be powered down. Trying to
1917 * take it down again will wedge the machine, which is frowned
1920 if (!list_empty(&cam
->vdev
.fh_list
)) {
1921 cam_warn(cam
, "Removing a device with users!\n");
1922 sensor_call(cam
, core
, s_power
, 0);
1924 if (cam
->buffer_mode
== B_vmalloc
)
1925 mcam_free_dma_bufs(cam
);
1926 v4l2_ctrl_handler_free(&cam
->ctrl_handler
);
1927 v4l2_async_nf_unregister(&cam
->notifier
);
1928 v4l2_async_nf_cleanup(&cam
->notifier
);
1930 EXPORT_SYMBOL_GPL(mccic_shutdown
);
1935 void mccic_suspend(struct mcam_camera
*cam
)
1937 mutex_lock(&cam
->s_mutex
);
1938 if (!list_empty(&cam
->vdev
.fh_list
)) {
1939 enum mcam_state cstate
= cam
->state
;
1941 mcam_ctlr_stop_dma(cam
);
1942 sensor_call(cam
, core
, s_power
, 0);
1943 cam
->state
= cstate
;
1945 mutex_unlock(&cam
->s_mutex
);
1947 EXPORT_SYMBOL_GPL(mccic_suspend
);
1949 int mccic_resume(struct mcam_camera
*cam
)
1953 mutex_lock(&cam
->s_mutex
);
1954 if (!list_empty(&cam
->vdev
.fh_list
)) {
1955 ret
= sensor_call(cam
, core
, s_power
, 1);
1957 mutex_unlock(&cam
->s_mutex
);
1960 __mcam_cam_reset(cam
);
1962 sensor_call(cam
, core
, s_power
, 0);
1964 mutex_unlock(&cam
->s_mutex
);
1966 set_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
1967 if (cam
->state
== S_STREAMING
) {
1969 * If there was a buffer in the DMA engine at suspend
1970 * time, put it back on the queue or we'll forget about it.
1972 if (cam
->buffer_mode
== B_DMA_sg
&& cam
->vb_bufs
[0])
1973 list_add(&cam
->vb_bufs
[0]->queue
, &cam
->buffers
);
1974 ret
= mcam_read_setup(cam
);
1978 EXPORT_SYMBOL_GPL(mccic_resume
);
1980 MODULE_DESCRIPTION("Marvell camera core driver");
1981 MODULE_LICENSE("GPL v2");
1982 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");