drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / media / rc / nuvoton-cir.c
blob2214d41ef57942ccd1c4bc3b7a45539dc402cccf
1 /*
2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10 * modeled after.
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/pnp.h>
28 #include <linux/io.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <media/rc-core.h>
33 #include <linux/pci_ids.h>
35 #include "nuvoton-cir.h"
37 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
39 static const struct nvt_chip nvt_chips[] = {
40 { "w83667hg", NVT_W83667HG },
41 { "NCT6775F", NVT_6775F },
42 { "NCT6776F", NVT_6776F },
43 { "NCT6779D", NVT_6779D },
46 static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
48 return nvt->rdev->dev.parent;
51 static inline bool is_w83667hg(struct nvt_dev *nvt)
53 return nvt->chip_ver == NVT_W83667HG;
56 /* write val to config reg */
57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
59 outb(reg, nvt->cr_efir);
60 outb(val, nvt->cr_efdr);
63 /* read val from config reg */
64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
66 outb(reg, nvt->cr_efir);
67 return inb(nvt->cr_efdr);
70 /* update config register bit without changing other bits */
71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
73 u8 tmp = nvt_cr_read(nvt, reg) | val;
74 nvt_cr_write(nvt, tmp, reg);
77 /* enter extended function mode */
78 static inline int nvt_efm_enable(struct nvt_dev *nvt)
80 if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
81 return -EBUSY;
83 /* Enabling Extended Function Mode explicitly requires writing 2x */
84 outb(EFER_EFM_ENABLE, nvt->cr_efir);
85 outb(EFER_EFM_ENABLE, nvt->cr_efir);
87 return 0;
90 /* exit extended function mode */
91 static inline void nvt_efm_disable(struct nvt_dev *nvt)
93 outb(EFER_EFM_DISABLE, nvt->cr_efir);
95 release_region(nvt->cr_efir, 2);
99 * When you want to address a specific logical device, write its logical
100 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
101 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
103 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
105 nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
108 /* select and enable logical device with setting EFM mode*/
109 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
111 nvt_efm_enable(nvt);
112 nvt_select_logical_dev(nvt, ldev);
113 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
114 nvt_efm_disable(nvt);
117 /* select and disable logical device with setting EFM mode*/
118 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
120 nvt_efm_enable(nvt);
121 nvt_select_logical_dev(nvt, ldev);
122 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
123 nvt_efm_disable(nvt);
126 /* write val to cir config register */
127 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
129 outb(val, nvt->cir_addr + offset);
132 /* read val from cir config register */
133 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
135 return inb(nvt->cir_addr + offset);
138 /* write val to cir wake register */
139 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
140 u8 val, u8 offset)
142 outb(val, nvt->cir_wake_addr + offset);
145 /* read val from cir wake config register */
146 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
148 return inb(nvt->cir_wake_addr + offset);
151 /* don't override io address if one is set already */
152 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
154 unsigned long old_addr;
156 old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
157 old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
159 if (old_addr)
160 *ioaddr = old_addr;
161 else {
162 nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
163 nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
167 static void nvt_write_wakeup_codes(struct rc_dev *dev,
168 const u8 *wbuf, int count)
170 u8 tolerance, config;
171 struct nvt_dev *nvt = dev->priv;
172 unsigned long flags;
173 int i;
175 /* hardcode the tolerance to 10% */
176 tolerance = DIV_ROUND_UP(count, 10);
178 spin_lock_irqsave(&nvt->lock, flags);
180 nvt_clear_cir_wake_fifo(nvt);
181 nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
182 nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
184 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
186 /* enable writes to wake fifo */
187 nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
188 CIR_WAKE_IRCON);
190 if (count)
191 pr_info("Wake samples (%d) =", count);
192 else
193 pr_info("Wake sample fifo cleared");
195 for (i = 0; i < count; i++)
196 nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
198 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
200 spin_unlock_irqrestore(&nvt->lock, flags);
203 static ssize_t wakeup_data_show(struct device *dev,
204 struct device_attribute *attr,
205 char *buf)
207 struct rc_dev *rc_dev = to_rc_dev(dev);
208 struct nvt_dev *nvt = rc_dev->priv;
209 int fifo_len, duration;
210 unsigned long flags;
211 ssize_t buf_len = 0;
212 int i;
214 spin_lock_irqsave(&nvt->lock, flags);
216 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
217 fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
219 /* go to first element to be read */
220 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
221 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
223 for (i = 0; i < fifo_len; i++) {
224 duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
225 duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
226 buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len,
227 "%d ", duration);
229 buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
231 spin_unlock_irqrestore(&nvt->lock, flags);
233 return buf_len;
236 static ssize_t wakeup_data_store(struct device *dev,
237 struct device_attribute *attr,
238 const char *buf, size_t len)
240 struct rc_dev *rc_dev = to_rc_dev(dev);
241 u8 wake_buf[WAKEUP_MAX_SIZE];
242 char **argv;
243 int i, count;
244 unsigned int val;
245 ssize_t ret;
247 argv = argv_split(GFP_KERNEL, buf, &count);
248 if (!argv)
249 return -ENOMEM;
250 if (!count || count > WAKEUP_MAX_SIZE) {
251 ret = -EINVAL;
252 goto out;
255 for (i = 0; i < count; i++) {
256 ret = kstrtouint(argv[i], 10, &val);
257 if (ret)
258 goto out;
259 val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
260 if (!val || val > 0x7f) {
261 ret = -EINVAL;
262 goto out;
264 wake_buf[i] = val;
265 /* sequence must start with a pulse */
266 if (i % 2 == 0)
267 wake_buf[i] |= BUF_PULSE_BIT;
270 nvt_write_wakeup_codes(rc_dev, wake_buf, count);
272 ret = len;
273 out:
274 argv_free(argv);
275 return ret;
277 static DEVICE_ATTR_RW(wakeup_data);
279 /* dump current cir register contents */
280 static void cir_dump_regs(struct nvt_dev *nvt)
282 nvt_efm_enable(nvt);
283 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
285 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
286 pr_info(" * CR CIR ACTIVE : 0x%x\n",
287 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
288 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
289 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
290 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
291 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
292 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
294 nvt_efm_disable(nvt);
296 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
297 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
298 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
299 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
300 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
301 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
302 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
303 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
304 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
305 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
306 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
307 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
308 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
309 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
310 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
311 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
312 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
315 /* dump current cir wake register contents */
316 static void cir_wake_dump_regs(struct nvt_dev *nvt)
318 u8 i, fifo_len;
320 nvt_efm_enable(nvt);
321 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
323 pr_info("%s: Dump CIR WAKE logical device registers:\n",
324 NVT_DRIVER_NAME);
325 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
326 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
327 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
328 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
329 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
330 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
331 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
333 nvt_efm_disable(nvt);
335 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
336 pr_info(" * IRCON: 0x%x\n",
337 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
338 pr_info(" * IRSTS: 0x%x\n",
339 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
340 pr_info(" * IREN: 0x%x\n",
341 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
342 pr_info(" * FIFO CMP DEEP: 0x%x\n",
343 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
344 pr_info(" * FIFO CMP TOL: 0x%x\n",
345 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
346 pr_info(" * FIFO COUNT: 0x%x\n",
347 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
348 pr_info(" * SLCH: 0x%x\n",
349 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
350 pr_info(" * SLCL: 0x%x\n",
351 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
352 pr_info(" * FIFOCON: 0x%x\n",
353 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
354 pr_info(" * SRXFSTS: 0x%x\n",
355 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
356 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
357 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
358 pr_info(" * WR FIFO DATA: 0x%x\n",
359 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
360 pr_info(" * RD FIFO ONLY: 0x%x\n",
361 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
362 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
363 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
364 pr_info(" * FIFO IGNORE: 0x%x\n",
365 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
366 pr_info(" * IRFSM: 0x%x\n",
367 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
369 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
370 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
371 pr_info("* Contents =");
372 for (i = 0; i < fifo_len; i++)
373 pr_cont(" %02x",
374 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
375 pr_cont("\n");
378 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
380 int i;
382 for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
383 if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
384 nvt->chip_ver = nvt_chips[i].chip_ver;
385 return nvt_chips[i].name;
388 return NULL;
392 /* detect hardware features */
393 static int nvt_hw_detect(struct nvt_dev *nvt)
395 struct device *dev = nvt_get_dev(nvt);
396 const char *chip_name;
397 int chip_id;
399 nvt_efm_enable(nvt);
401 /* Check if we're wired for the alternate EFER setup */
402 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
403 if (nvt->chip_major == 0xff) {
404 nvt_efm_disable(nvt);
405 nvt->cr_efir = CR_EFIR2;
406 nvt->cr_efdr = CR_EFDR2;
407 nvt_efm_enable(nvt);
408 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
410 nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
412 nvt_efm_disable(nvt);
414 chip_id = nvt->chip_major << 8 | nvt->chip_minor;
415 if (chip_id == NVT_INVALID) {
416 dev_err(dev, "No device found on either EFM port\n");
417 return -ENODEV;
420 chip_name = nvt_find_chip(nvt, chip_id);
422 /* warn, but still let the driver load, if we don't know this chip */
423 if (!chip_name)
424 dev_warn(dev,
425 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
426 nvt->chip_major, nvt->chip_minor);
427 else
428 dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
429 chip_name, nvt->chip_major, nvt->chip_minor);
431 return 0;
434 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
436 u8 val, psreg, psmask, psval;
438 if (is_w83667hg(nvt)) {
439 psreg = CR_MULTIFUNC_PIN_SEL;
440 psmask = MULTIFUNC_PIN_SEL_MASK;
441 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
442 } else {
443 psreg = CR_OUTPUT_PIN_SEL;
444 psmask = OUTPUT_PIN_SEL_MASK;
445 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
448 /* output pin selection: enable CIR, with WB sensor enabled */
449 val = nvt_cr_read(nvt, psreg);
450 val &= psmask;
451 val |= psval;
452 nvt_cr_write(nvt, val, psreg);
454 /* Select CIR logical device */
455 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
457 nvt_set_ioaddr(nvt, &nvt->cir_addr);
459 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
461 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
462 nvt->cir_addr, nvt->cir_irq);
465 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
467 /* Select ACPI logical device and anable it */
468 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
469 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
471 /* Enable CIR Wake via PSOUT# (Pin60) */
472 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
474 /* enable pme interrupt of cir wakeup event */
475 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
477 /* Select CIR Wake logical device */
478 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
480 nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
482 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
483 nvt->cir_wake_addr);
486 /* clear out the hardware's cir rx fifo */
487 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
489 u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
490 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
493 /* clear out the hardware's cir wake rx fifo */
494 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
496 u8 val, config;
498 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
500 /* clearing wake fifo works in learning mode only */
501 nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
502 CIR_WAKE_IRCON);
504 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
505 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
506 CIR_WAKE_FIFOCON);
508 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
511 /* clear out the hardware's cir tx fifo */
512 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
514 u8 val;
516 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
517 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
520 /* enable RX Trigger Level Reach and Packet End interrupts */
521 static void nvt_set_cir_iren(struct nvt_dev *nvt)
523 u8 iren;
525 iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
526 nvt_cir_reg_write(nvt, iren, CIR_IREN);
529 static void nvt_cir_regs_init(struct nvt_dev *nvt)
531 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
533 /* set sample limit count (PE interrupt raised when reached) */
534 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
535 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
537 /* set fifo irq trigger levels */
538 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
539 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
541 /* clear hardware rx and tx fifos */
542 nvt_clear_cir_fifo(nvt);
543 nvt_clear_tx_fifo(nvt);
545 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
548 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
550 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
553 * Disable RX, set specific carrier on = low, off = high,
554 * and sample period (currently 50us)
556 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
557 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
558 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
559 CIR_WAKE_IRCON);
561 /* clear any and all stray interrupts */
562 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
565 static void nvt_enable_wake(struct nvt_dev *nvt)
567 unsigned long flags;
569 nvt_efm_enable(nvt);
571 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
572 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
573 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
575 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
576 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
578 nvt_efm_disable(nvt);
580 spin_lock_irqsave(&nvt->lock, flags);
582 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
583 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
584 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
585 CIR_WAKE_IRCON);
586 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
587 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
589 spin_unlock_irqrestore(&nvt->lock, flags);
592 #if 0 /* Currently unused */
593 /* rx carrier detect only works in learning mode, must be called w/lock */
594 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
596 u32 count, carrier, duration = 0;
597 int i;
599 count = nvt_cir_reg_read(nvt, CIR_FCCL) |
600 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
602 for (i = 0; i < nvt->pkts; i++) {
603 if (nvt->buf[i] & BUF_PULSE_BIT)
604 duration += nvt->buf[i] & BUF_LEN_MASK;
607 duration *= SAMPLE_PERIOD;
609 if (!count || !duration) {
610 dev_notice(nvt_get_dev(nvt),
611 "Unable to determine carrier! (c:%u, d:%u)",
612 count, duration);
613 return 0;
616 carrier = MS_TO_NS(count) / duration;
618 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
619 nvt_dbg("WTF? Carrier frequency out of range!");
621 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
622 carrier, count, duration);
624 return carrier;
626 #endif
628 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
629 struct rc_scancode_filter *sc_filter)
631 u8 buf_val;
632 int i, ret, count;
633 unsigned int val;
634 struct ir_raw_event *raw;
635 u8 wake_buf[WAKEUP_MAX_SIZE];
636 bool complete;
638 /* Require mask to be set */
639 if (!sc_filter->mask)
640 return 0;
642 raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
643 if (!raw)
644 return -ENOMEM;
646 ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
647 raw, WAKEUP_MAX_SIZE);
648 complete = (ret != -ENOBUFS);
649 if (!complete)
650 ret = WAKEUP_MAX_SIZE;
651 else if (ret < 0)
652 goto out_raw;
654 /* Inspect the ir samples */
655 for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
656 val = raw[i].duration / SAMPLE_PERIOD;
658 /* Split too large values into several smaller ones */
659 while (val > 0 && count < WAKEUP_MAX_SIZE) {
660 /* Skip last value for better comparison tolerance */
661 if (complete && i == ret - 1 && val < BUF_LEN_MASK)
662 break;
664 /* Clamp values to BUF_LEN_MASK at most */
665 buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
667 wake_buf[count] = buf_val;
668 val -= buf_val;
669 if ((raw[i]).pulse)
670 wake_buf[count] |= BUF_PULSE_BIT;
671 count++;
675 nvt_write_wakeup_codes(dev, wake_buf, count);
676 ret = 0;
677 out_raw:
678 kfree(raw);
680 return ret;
683 /* dump contents of the last rx buffer we got from the hw rx fifo */
684 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
686 int i;
688 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
689 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
690 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
691 printk(KERN_CONT "\n");
695 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
696 * trigger decode when appropriate.
698 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
699 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
700 * (default 50us) intervals for that pulse/space. A discrete signal is
701 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
702 * to signal more IR coming (repeats) or end of IR, respectively. We store
703 * sample data in the raw event kfifo until we see 0x7<something> (except f)
704 * or 0x80, at which time, we trigger a decode operation.
706 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
708 struct ir_raw_event rawir = {};
709 u8 sample;
710 int i;
712 nvt_dbg_verbose("%s firing", __func__);
714 if (debug)
715 nvt_dump_rx_buf(nvt);
717 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
719 for (i = 0; i < nvt->pkts; i++) {
720 sample = nvt->buf[i];
722 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
723 rawir.duration = (sample & BUF_LEN_MASK) * SAMPLE_PERIOD;
725 nvt_dbg("Storing %s with duration %d",
726 rawir.pulse ? "pulse" : "space", rawir.duration);
728 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
731 nvt->pkts = 0;
733 nvt_dbg("Calling ir_raw_event_handle\n");
734 ir_raw_event_handle(nvt->rdev);
736 nvt_dbg_verbose("%s done", __func__);
739 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
741 dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
743 nvt->pkts = 0;
744 nvt_clear_cir_fifo(nvt);
745 ir_raw_event_overflow(nvt->rdev);
748 /* copy data from hardware rx fifo into driver buffer */
749 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
751 u8 fifocount;
752 int i;
754 /* Get count of how many bytes to read from RX FIFO */
755 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
757 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
759 /* Read fifocount bytes from CIR Sample RX FIFO register */
760 for (i = 0; i < fifocount; i++)
761 nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
763 nvt->pkts = fifocount;
764 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
766 nvt_process_rx_ir_data(nvt);
769 static void nvt_cir_log_irqs(u8 status, u8 iren)
771 nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
772 status, iren,
773 status & CIR_IRSTS_RDR ? " RDR" : "",
774 status & CIR_IRSTS_RTR ? " RTR" : "",
775 status & CIR_IRSTS_PE ? " PE" : "",
776 status & CIR_IRSTS_RFO ? " RFO" : "",
777 status & CIR_IRSTS_TE ? " TE" : "",
778 status & CIR_IRSTS_TTR ? " TTR" : "",
779 status & CIR_IRSTS_TFU ? " TFU" : "",
780 status & CIR_IRSTS_GH ? " GH" : "",
781 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
782 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
783 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
786 /* interrupt service routine for incoming and outgoing CIR data */
787 static irqreturn_t nvt_cir_isr(int irq, void *data)
789 struct nvt_dev *nvt = data;
790 u8 status, iren;
792 nvt_dbg_verbose("%s firing", __func__);
794 spin_lock(&nvt->lock);
797 * Get IR Status register contents. Write 1 to ack/clear
799 * bit: reg name - description
800 * 7: CIR_IRSTS_RDR - RX Data Ready
801 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
802 * 5: CIR_IRSTS_PE - Packet End
803 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
804 * 3: CIR_IRSTS_TE - TX FIFO Empty
805 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
806 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
807 * 0: CIR_IRSTS_GH - Min Length Detected
809 status = nvt_cir_reg_read(nvt, CIR_IRSTS);
810 iren = nvt_cir_reg_read(nvt, CIR_IREN);
812 /* At least NCT6779D creates a spurious interrupt when the
813 * logical device is being disabled.
815 if (status == 0xff && iren == 0xff) {
816 spin_unlock(&nvt->lock);
817 nvt_dbg_verbose("Spurious interrupt detected");
818 return IRQ_HANDLED;
821 /* IRQ may be shared with CIR WAKE, therefore check for each
822 * status bit whether the related interrupt source is enabled
824 if (!(status & iren)) {
825 spin_unlock(&nvt->lock);
826 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
827 return IRQ_NONE;
830 /* ack/clear all irq flags we've got */
831 nvt_cir_reg_write(nvt, status, CIR_IRSTS);
832 nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
834 nvt_cir_log_irqs(status, iren);
836 if (status & CIR_IRSTS_RFO)
837 nvt_handle_rx_fifo_overrun(nvt);
838 else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE))
839 nvt_get_rx_ir_data(nvt);
841 spin_unlock(&nvt->lock);
843 nvt_dbg_verbose("%s done", __func__);
844 return IRQ_HANDLED;
847 static void nvt_enable_cir(struct nvt_dev *nvt)
849 unsigned long flags;
851 /* enable the CIR logical device */
852 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
854 spin_lock_irqsave(&nvt->lock, flags);
857 * Enable TX and RX, specify carrier on = low, off = high, and set
858 * sample period (currently 50us)
860 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
861 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
862 CIR_IRCON);
864 /* clear all pending interrupts */
865 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
867 /* enable interrupts */
868 nvt_set_cir_iren(nvt);
870 spin_unlock_irqrestore(&nvt->lock, flags);
873 static void nvt_disable_cir(struct nvt_dev *nvt)
875 unsigned long flags;
877 spin_lock_irqsave(&nvt->lock, flags);
879 /* disable CIR interrupts */
880 nvt_cir_reg_write(nvt, 0, CIR_IREN);
882 /* clear any and all pending interrupts */
883 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
885 /* clear all function enable flags */
886 nvt_cir_reg_write(nvt, 0, CIR_IRCON);
888 /* clear hardware rx and tx fifos */
889 nvt_clear_cir_fifo(nvt);
890 nvt_clear_tx_fifo(nvt);
892 spin_unlock_irqrestore(&nvt->lock, flags);
894 /* disable the CIR logical device */
895 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
898 static int nvt_open(struct rc_dev *dev)
900 struct nvt_dev *nvt = dev->priv;
902 nvt_enable_cir(nvt);
904 return 0;
907 static void nvt_close(struct rc_dev *dev)
909 struct nvt_dev *nvt = dev->priv;
911 nvt_disable_cir(nvt);
914 /* Allocate memory, probe hardware, and initialize everything */
915 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
917 struct nvt_dev *nvt;
918 struct rc_dev *rdev;
919 int ret;
921 nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
922 if (!nvt)
923 return -ENOMEM;
925 /* input device for IR remote */
926 nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
927 if (!nvt->rdev)
928 return -ENOMEM;
929 rdev = nvt->rdev;
931 /* activate pnp device */
932 ret = pnp_activate_dev(pdev);
933 if (ret) {
934 dev_err(&pdev->dev, "Could not activate PNP device!\n");
935 return ret;
938 /* validate pnp resources */
939 if (!pnp_port_valid(pdev, 0) ||
940 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
941 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
942 return -EINVAL;
945 if (!pnp_irq_valid(pdev, 0)) {
946 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
947 return -EINVAL;
950 if (!pnp_port_valid(pdev, 1) ||
951 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
952 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
953 return -EINVAL;
956 nvt->cir_addr = pnp_port_start(pdev, 0);
957 nvt->cir_irq = pnp_irq(pdev, 0);
959 nvt->cir_wake_addr = pnp_port_start(pdev, 1);
961 nvt->cr_efir = CR_EFIR;
962 nvt->cr_efdr = CR_EFDR;
964 spin_lock_init(&nvt->lock);
966 pnp_set_drvdata(pdev, nvt);
968 ret = nvt_hw_detect(nvt);
969 if (ret)
970 return ret;
972 /* Initialize CIR & CIR Wake Logical Devices */
973 nvt_efm_enable(nvt);
974 nvt_cir_ldev_init(nvt);
975 nvt_cir_wake_ldev_init(nvt);
976 nvt_efm_disable(nvt);
979 * Initialize CIR & CIR Wake Config Registers
980 * and enable logical devices
982 nvt_cir_regs_init(nvt);
983 nvt_cir_wake_regs_init(nvt);
985 /* Set up the rc device */
986 rdev->priv = nvt;
987 rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
988 rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER;
989 rdev->encode_wakeup = true;
990 rdev->open = nvt_open;
991 rdev->close = nvt_close;
992 rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
993 rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
994 rdev->input_phys = "nuvoton/cir0";
995 rdev->input_id.bustype = BUS_HOST;
996 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
997 rdev->input_id.product = nvt->chip_major;
998 rdev->input_id.version = nvt->chip_minor;
999 rdev->driver_name = NVT_DRIVER_NAME;
1000 rdev->map_name = RC_MAP_RC6_MCE;
1001 rdev->timeout = MS_TO_US(100);
1002 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1003 rdev->rx_resolution = CIR_SAMPLE_PERIOD;
1004 #if 0
1005 rdev->min_timeout = XYZ;
1006 rdev->max_timeout = XYZ;
1007 #endif
1008 ret = devm_rc_register_device(&pdev->dev, rdev);
1009 if (ret)
1010 return ret;
1012 /* now claim resources */
1013 if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1014 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1015 return -EBUSY;
1017 ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1018 IRQF_SHARED, NVT_DRIVER_NAME, nvt);
1019 if (ret)
1020 return ret;
1022 if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1023 CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1024 return -EBUSY;
1026 ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1027 if (ret)
1028 return ret;
1030 device_init_wakeup(&pdev->dev, true);
1032 dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1033 if (debug) {
1034 cir_dump_regs(nvt);
1035 cir_wake_dump_regs(nvt);
1038 return 0;
1041 static void nvt_remove(struct pnp_dev *pdev)
1043 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1045 device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1047 nvt_disable_cir(nvt);
1049 /* enable CIR Wake (for IR power-on) */
1050 nvt_enable_wake(nvt);
1053 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1055 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1057 nvt_dbg("%s called", __func__);
1059 mutex_lock(&nvt->rdev->lock);
1060 if (nvt->rdev->users)
1061 nvt_disable_cir(nvt);
1062 mutex_unlock(&nvt->rdev->lock);
1064 /* make sure wake is enabled */
1065 nvt_enable_wake(nvt);
1067 return 0;
1070 static int nvt_resume(struct pnp_dev *pdev)
1072 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1074 nvt_dbg("%s called", __func__);
1076 nvt_cir_regs_init(nvt);
1077 nvt_cir_wake_regs_init(nvt);
1079 mutex_lock(&nvt->rdev->lock);
1080 if (nvt->rdev->users)
1081 nvt_enable_cir(nvt);
1082 mutex_unlock(&nvt->rdev->lock);
1084 return 0;
1087 static void nvt_shutdown(struct pnp_dev *pdev)
1089 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1091 nvt_enable_wake(nvt);
1094 static const struct pnp_device_id nvt_ids[] = {
1095 { "WEC0530", 0 }, /* CIR */
1096 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1097 { "", 0 },
1100 static struct pnp_driver nvt_driver = {
1101 .name = NVT_DRIVER_NAME,
1102 .id_table = nvt_ids,
1103 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1104 .probe = nvt_probe,
1105 .remove = nvt_remove,
1106 .suspend = nvt_suspend,
1107 .resume = nvt_resume,
1108 .shutdown = nvt_shutdown,
1111 module_param(debug, int, S_IRUGO | S_IWUSR);
1112 MODULE_PARM_DESC(debug, "Enable debugging output");
1114 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1115 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1117 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1118 MODULE_LICENSE("GPL");
1120 module_pnp_driver(nvt_driver);