drm/dp_mst: Add helper to get port number at specific LCT from RAD
[drm/drm-misc.git] / drivers / misc / sgi-gru / grukservices.h
blob510e45e9737ea8da31762c9580fcd2a991d3f788
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 /*
4 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
5 */
6 #ifndef __GRU_KSERVICES_H_
7 #define __GRU_KSERVICES_H_
11 * Message queues using the GRU to send/receive messages.
13 * These function allow the user to create a message queue for
14 * sending/receiving 1 or 2 cacheline messages using the GRU.
16 * Processes SENDING messages will use a kernel CBR/DSR to send
17 * the message. This is transparent to the caller.
19 * The receiver does not use any GRU resources.
21 * The functions support:
22 * - single receiver
23 * - multiple senders
24 * - cross partition message
26 * Missing features ZZZ:
27 * - user options for dealing with timeouts, queue full, etc.
28 * - gru_create_message_queue() needs interrupt vector info
31 struct gru_message_queue_desc {
32 void *mq; /* message queue vaddress */
33 unsigned long mq_gpa; /* global address of mq */
34 int qlines; /* queue size in CL */
35 int interrupt_vector; /* interrupt vector */
36 int interrupt_pnode; /* pnode for interrupt */
37 int interrupt_apicid; /* lapicid for interrupt */
41 * Initialize a user allocated chunk of memory to be used as
42 * a message queue. The caller must ensure that the queue is
43 * in contiguous physical memory and is cacheline aligned.
45 * Message queue size is the total number of bytes allocated
46 * to the queue including a 2 cacheline header that is used
47 * to manage the queue.
49 * Input:
50 * mqd pointer to message queue descriptor
51 * p pointer to user allocated mesq memory.
52 * bytes size of message queue in bytes
53 * vector interrupt vector (zero if no interrupts)
54 * nasid nasid of blade where interrupt is delivered
55 * apicid apicid of cpu for interrupt
57 * Errors:
58 * 0 OK
59 * >0 error
61 extern int gru_create_message_queue(struct gru_message_queue_desc *mqd,
62 void *p, unsigned int bytes, int nasid, int vector, int apicid);
65 * Send a message to a message queue.
67 * Note: The message queue transport mechanism uses the first 32
68 * bits of the message. Users should avoid using these bits.
71 * Input:
72 * mqd pointer to message queue descriptor
73 * mesg pointer to message. Must be 64-bit aligned
74 * bytes size of message in bytes
76 * Output:
77 * 0 message sent
78 * >0 Send failure - see error codes below
81 extern int gru_send_message_gpa(struct gru_message_queue_desc *mqd,
82 void *mesg, unsigned int bytes);
84 /* Status values for gru_send_message() */
85 #define MQE_OK 0 /* message sent successfully */
86 #define MQE_CONGESTION 1 /* temporary congestion, try again */
87 #define MQE_QUEUE_FULL 2 /* queue is full */
88 #define MQE_UNEXPECTED_CB_ERR 3 /* unexpected CB error */
89 #define MQE_PAGE_OVERFLOW 10 /* BUG - queue overflowed a page */
90 #define MQE_BUG_NO_RESOURCES 11 /* BUG - could not alloc GRU cb/dsr */
93 * Advance the receive pointer for the message queue to the next message.
94 * Note: current API requires messages to be gotten & freed in order. Future
95 * API extensions may allow for out-of-order freeing.
97 * Input
98 * mqd pointer to message queue descriptor
99 * mesq message being freed
101 extern void gru_free_message(struct gru_message_queue_desc *mqd,
102 void *mesq);
105 * Get next message from message queue. Returns pointer to
106 * message OR NULL if no message present.
107 * User must call gru_free_message() after message is processed
108 * in order to move the queue pointers to next message.
110 * Input
111 * mqd pointer to message queue descriptor
113 * Output:
114 * p pointer to message
115 * NULL no message available
117 extern void *gru_get_next_message(struct gru_message_queue_desc *mqd);
121 * Read a GRU global GPA. Source can be located in a remote partition.
123 * Input:
124 * value memory address where MMR value is returned
125 * gpa source numalink physical address of GPA
127 * Output:
128 * 0 OK
129 * >0 error
131 int gru_read_gpa(unsigned long *value, unsigned long gpa);
135 * Copy data using the GRU. Source or destination can be located in a remote
136 * partition.
138 * Input:
139 * dest_gpa destination global physical address
140 * src_gpa source global physical address
141 * bytes number of bytes to copy
143 * Output:
144 * 0 OK
145 * >0 error
147 extern int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
148 unsigned int bytes);
151 * Reserve GRU resources to be used asynchronously.
153 * input:
154 * blade_id - blade on which resources should be reserved
155 * cbrs - number of CBRs
156 * dsr_bytes - number of DSR bytes needed
157 * cmp - completion structure for waiting for
158 * async completions
159 * output:
160 * handle to identify resource
161 * (0 = no resources)
163 extern unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
164 struct completion *cmp);
167 * Release async resources previously reserved.
169 * input:
170 * han - handle to identify resources
172 extern void gru_release_async_resources(unsigned long han);
175 * Wait for async GRU instructions to complete.
177 * input:
178 * han - handle to identify resources
180 extern void gru_wait_async_cbr(unsigned long han);
183 * Lock previous reserved async GRU resources
185 * input:
186 * han - handle to identify resources
187 * output:
188 * cb - pointer to first CBR
189 * dsr - pointer to first DSR
191 extern void gru_lock_async_resource(unsigned long han, void **cb, void **dsr);
194 * Unlock previous reserved async GRU resources
196 * input:
197 * han - handle to identify resources
199 extern void gru_unlock_async_resource(unsigned long han);
201 #endif /* __GRU_KSERVICES_H_ */