1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/slot-gpio.h>
47 #include <linux/mod_devicetable.h>
48 #include <linux/mutex.h>
49 #include <linux/pagemap.h>
50 #include <linux/platform_data/sh_mmcif.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/sh_dma.h>
55 #include <linux/spinlock.h>
56 #include <linux/module.h>
58 #define DRIVER_NAME "sh_mmcif"
61 #define CMD_MASK 0x3f000000
62 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
63 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
65 #define CMD_SET_RBSY (1 << 21) /* R1b */
66 #define CMD_SET_CCSEN (1 << 20)
67 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
68 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
69 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
70 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
71 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
72 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
73 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
74 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
75 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
76 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
78 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
79 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
80 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
81 #define CMD_SET_CCSH (1 << 5)
82 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
83 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
84 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
85 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
88 #define CMD_CTRL_BREAK (1 << 0)
91 #define BLOCK_SIZE_MASK 0x0000ffff
94 #define INT_CCSDE (1 << 29)
95 #define INT_CMD12DRE (1 << 26)
96 #define INT_CMD12RBE (1 << 25)
97 #define INT_CMD12CRE (1 << 24)
98 #define INT_DTRANE (1 << 23)
99 #define INT_BUFRE (1 << 22)
100 #define INT_BUFWEN (1 << 21)
101 #define INT_BUFREN (1 << 20)
102 #define INT_CCSRCV (1 << 19)
103 #define INT_RBSYE (1 << 17)
104 #define INT_CRSPE (1 << 16)
105 #define INT_CMDVIO (1 << 15)
106 #define INT_BUFVIO (1 << 14)
107 #define INT_WDATERR (1 << 11)
108 #define INT_RDATERR (1 << 10)
109 #define INT_RIDXERR (1 << 9)
110 #define INT_RSPERR (1 << 8)
111 #define INT_CCSTO (1 << 5)
112 #define INT_CRCSTO (1 << 4)
113 #define INT_WDATTO (1 << 3)
114 #define INT_RDATTO (1 << 2)
115 #define INT_RBSYTO (1 << 1)
116 #define INT_RSPTO (1 << 0)
117 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
118 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
120 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
123 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
129 #define MASK_ALL 0x00000000
130 #define MASK_MCCSDE (1 << 29)
131 #define MASK_MCMD12DRE (1 << 26)
132 #define MASK_MCMD12RBE (1 << 25)
133 #define MASK_MCMD12CRE (1 << 24)
134 #define MASK_MDTRANE (1 << 23)
135 #define MASK_MBUFRE (1 << 22)
136 #define MASK_MBUFWEN (1 << 21)
137 #define MASK_MBUFREN (1 << 20)
138 #define MASK_MCCSRCV (1 << 19)
139 #define MASK_MRBSYE (1 << 17)
140 #define MASK_MCRSPE (1 << 16)
141 #define MASK_MCMDVIO (1 << 15)
142 #define MASK_MBUFVIO (1 << 14)
143 #define MASK_MWDATERR (1 << 11)
144 #define MASK_MRDATERR (1 << 10)
145 #define MASK_MRIDXERR (1 << 9)
146 #define MASK_MRSPERR (1 << 8)
147 #define MASK_MCCSTO (1 << 5)
148 #define MASK_MCRCSTO (1 << 4)
149 #define MASK_MWDATTO (1 << 3)
150 #define MASK_MRDATTO (1 << 2)
151 #define MASK_MRBSYTO (1 << 1)
152 #define MASK_MRSPTO (1 << 0)
154 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156 MASK_MCRCSTO | MASK_MWDATTO | \
157 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
160 MASK_MBUFREN | MASK_MBUFWEN | \
161 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
162 MASK_MCMD12RBE | MASK_MCMD12CRE)
165 #define STS1_CMDSEQ (1 << 31)
168 #define STS2_CRCSTE (1 << 31)
169 #define STS2_CRC16E (1 << 30)
170 #define STS2_AC12CRCE (1 << 29)
171 #define STS2_RSPCRC7E (1 << 28)
172 #define STS2_CRCSTEBE (1 << 27)
173 #define STS2_RDATEBE (1 << 26)
174 #define STS2_AC12REBE (1 << 25)
175 #define STS2_RSPEBE (1 << 24)
176 #define STS2_AC12IDXE (1 << 23)
177 #define STS2_RSPIDXE (1 << 22)
178 #define STS2_CCSTO (1 << 15)
179 #define STS2_RDATTO (1 << 14)
180 #define STS2_DATBSYTO (1 << 13)
181 #define STS2_CRCSTTO (1 << 12)
182 #define STS2_AC12BSYTO (1 << 11)
183 #define STS2_RSPBSYTO (1 << 10)
184 #define STS2_AC12RSPTO (1 << 9)
185 #define STS2_RSPTO (1 << 8)
186 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
187 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
189 STS2_DATBSYTO | STS2_CRCSTTO | \
190 STS2_AC12BSYTO | STS2_RSPBSYTO | \
191 STS2_AC12RSPTO | STS2_RSPTO)
193 #define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */
194 #define CLKDEV_MMC_DATA 20000000 /* 20 MHz */
195 #define CLKDEV_INIT 400000 /* 400 kHz */
197 enum sh_mmcif_state
{
204 enum sh_mmcif_wait_for
{
205 MMCIF_WAIT_FOR_REQUEST
,
207 MMCIF_WAIT_FOR_MREAD
,
208 MMCIF_WAIT_FOR_MWRITE
,
210 MMCIF_WAIT_FOR_WRITE
,
211 MMCIF_WAIT_FOR_READ_END
,
212 MMCIF_WAIT_FOR_WRITE_END
,
217 * difference for each SoC
219 struct sh_mmcif_host
{
220 struct mmc_host
*mmc
;
221 struct mmc_request
*mrq
;
222 struct platform_device
*pd
;
225 unsigned char timing
;
230 spinlock_t lock
; /* protect sh_mmcif_host::state */
231 enum sh_mmcif_state state
;
232 enum sh_mmcif_wait_for wait_for
;
233 struct delayed_work timeout_work
;
235 struct sg_mapping_iter sg_miter
;
237 bool ccs_enable
; /* Command Completion Signal support */
238 bool clk_ctrl2_enable
;
239 struct mutex thread_lock
;
240 u32 clkdiv_map
; /* see CE_CLK_CTRL::CLKDIV */
243 struct dma_chan
*chan_rx
;
244 struct dma_chan
*chan_tx
;
245 struct completion dma_complete
;
249 static const struct of_device_id sh_mmcif_of_match
[] = {
250 { .compatible
= "renesas,sh-mmcif" },
253 MODULE_DEVICE_TABLE(of
, sh_mmcif_of_match
);
255 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
257 static inline void sh_mmcif_bitset(struct sh_mmcif_host
*host
,
258 unsigned int reg
, u32 val
)
260 writel(val
| readl(host
->addr
+ reg
), host
->addr
+ reg
);
263 static inline void sh_mmcif_bitclr(struct sh_mmcif_host
*host
,
264 unsigned int reg
, u32 val
)
266 writel(~val
& readl(host
->addr
+ reg
), host
->addr
+ reg
);
269 static void sh_mmcif_dma_complete(void *arg
)
271 struct sh_mmcif_host
*host
= arg
;
272 struct mmc_request
*mrq
= host
->mrq
;
273 struct device
*dev
= sh_mmcif_host_to_dev(host
);
275 dev_dbg(dev
, "Command completed\n");
277 if (WARN(!mrq
|| !mrq
->data
, "%s: NULL data in DMA completion!\n",
281 complete(&host
->dma_complete
);
284 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host
*host
)
286 struct mmc_data
*data
= host
->mrq
->data
;
287 struct scatterlist
*sg
= data
->sg
;
288 struct dma_async_tx_descriptor
*desc
= NULL
;
289 struct dma_chan
*chan
= host
->chan_rx
;
290 struct device
*dev
= sh_mmcif_host_to_dev(host
);
291 dma_cookie_t cookie
= -EINVAL
;
294 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
297 host
->dma_active
= true;
298 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
299 DMA_DEV_TO_MEM
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
303 desc
->callback
= sh_mmcif_dma_complete
;
304 desc
->callback_param
= host
;
305 cookie
= dmaengine_submit(desc
);
306 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
);
307 dma_async_issue_pending(chan
);
309 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
310 __func__
, data
->sg_len
, ret
, cookie
);
313 /* DMA failed, fall back to PIO */
316 host
->chan_rx
= NULL
;
317 host
->dma_active
= false;
318 dma_release_channel(chan
);
319 /* Free the Tx channel too */
320 chan
= host
->chan_tx
;
322 host
->chan_tx
= NULL
;
323 dma_release_channel(chan
);
326 "DMA failed: %d, falling back to PIO\n", ret
);
327 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
330 dev_dbg(dev
, "%s(): desc %p, cookie %d, sg[%d]\n", __func__
,
331 desc
, cookie
, data
->sg_len
);
334 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host
*host
)
336 struct mmc_data
*data
= host
->mrq
->data
;
337 struct scatterlist
*sg
= data
->sg
;
338 struct dma_async_tx_descriptor
*desc
= NULL
;
339 struct dma_chan
*chan
= host
->chan_tx
;
340 struct device
*dev
= sh_mmcif_host_to_dev(host
);
341 dma_cookie_t cookie
= -EINVAL
;
344 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
347 host
->dma_active
= true;
348 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
349 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
353 desc
->callback
= sh_mmcif_dma_complete
;
354 desc
->callback_param
= host
;
355 cookie
= dmaengine_submit(desc
);
356 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAWEN
);
357 dma_async_issue_pending(chan
);
359 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
360 __func__
, data
->sg_len
, ret
, cookie
);
363 /* DMA failed, fall back to PIO */
366 host
->chan_tx
= NULL
;
367 host
->dma_active
= false;
368 dma_release_channel(chan
);
369 /* Free the Rx channel too */
370 chan
= host
->chan_rx
;
372 host
->chan_rx
= NULL
;
373 dma_release_channel(chan
);
376 "DMA failed: %d, falling back to PIO\n", ret
);
377 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
380 dev_dbg(dev
, "%s(): desc %p, cookie %d\n", __func__
,
384 static struct dma_chan
*
385 sh_mmcif_request_dma_pdata(struct sh_mmcif_host
*host
, uintptr_t slave_id
)
390 dma_cap_set(DMA_SLAVE
, mask
);
394 return dma_request_channel(mask
, shdma_chan_filter
, (void *)slave_id
);
397 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host
*host
,
398 struct dma_chan
*chan
,
399 enum dma_transfer_direction direction
)
401 struct resource
*res
;
402 struct dma_slave_config cfg
= { 0, };
404 res
= platform_get_resource(host
->pd
, IORESOURCE_MEM
, 0);
408 cfg
.direction
= direction
;
410 if (direction
== DMA_DEV_TO_MEM
) {
411 cfg
.src_addr
= res
->start
+ MMCIF_CE_DATA
;
412 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
414 cfg
.dst_addr
= res
->start
+ MMCIF_CE_DATA
;
415 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
418 return dmaengine_slave_config(chan
, &cfg
);
421 static void sh_mmcif_request_dma(struct sh_mmcif_host
*host
)
423 struct device
*dev
= sh_mmcif_host_to_dev(host
);
424 host
->dma_active
= false;
426 /* We can only either use DMA for both Tx and Rx or not use it at all */
427 if (IS_ENABLED(CONFIG_SUPERH
) && dev
->platform_data
) {
428 struct sh_mmcif_plat_data
*pdata
= dev
->platform_data
;
430 host
->chan_tx
= sh_mmcif_request_dma_pdata(host
,
432 host
->chan_rx
= sh_mmcif_request_dma_pdata(host
,
435 host
->chan_tx
= dma_request_chan(dev
, "tx");
436 if (IS_ERR(host
->chan_tx
))
437 host
->chan_tx
= NULL
;
438 host
->chan_rx
= dma_request_chan(dev
, "rx");
439 if (IS_ERR(host
->chan_rx
))
440 host
->chan_rx
= NULL
;
443 if (!host
->chan_tx
|| !host
->chan_rx
||
444 sh_mmcif_dma_slave_config(host
, host
->chan_tx
, DMA_MEM_TO_DEV
) ||
445 sh_mmcif_dma_slave_config(host
, host
->chan_rx
, DMA_DEV_TO_MEM
))
448 dev_dbg(dev
, "%s: got channel TX %p RX %p\n", __func__
, host
->chan_tx
,
455 dma_release_channel(host
->chan_tx
);
457 dma_release_channel(host
->chan_rx
);
458 host
->chan_tx
= host
->chan_rx
= NULL
;
461 static void sh_mmcif_release_dma(struct sh_mmcif_host
*host
)
463 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
464 /* Descriptors are freed automatically */
466 struct dma_chan
*chan
= host
->chan_tx
;
467 host
->chan_tx
= NULL
;
468 dma_release_channel(chan
);
471 struct dma_chan
*chan
= host
->chan_rx
;
472 host
->chan_rx
= NULL
;
473 dma_release_channel(chan
);
476 host
->dma_active
= false;
479 static void sh_mmcif_clock_control(struct sh_mmcif_host
*host
, unsigned int clk
)
481 struct device
*dev
= sh_mmcif_host_to_dev(host
);
482 struct sh_mmcif_plat_data
*p
= dev
->platform_data
;
483 bool sup_pclk
= p
? p
->sup_pclk
: false;
484 unsigned int current_clk
= clk_get_rate(host
->clk
);
487 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
488 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
);
493 if (host
->clkdiv_map
) {
494 unsigned int freq
, best_freq
, myclk
, div
, diff_min
, diff
;
500 for (i
= 31; i
>= 0; i
--) {
501 if (!((1 << i
) & host
->clkdiv_map
))
505 * clk = parent_freq / div
506 * -> parent_freq = clk x div
510 freq
= clk_round_rate(host
->clk
, clk
* div
);
512 diff
= (myclk
> clk
) ? myclk
- clk
: clk
- myclk
;
514 if (diff
<= diff_min
) {
521 dev_dbg(dev
, "clk %u/%u (%u, 0x%x)\n",
522 (best_freq
>> (clkdiv
+ 1)), clk
, best_freq
, clkdiv
);
524 clk_set_rate(host
->clk
, best_freq
);
525 clkdiv
= clkdiv
<< 16;
526 } else if (sup_pclk
&& clk
== current_clk
) {
527 clkdiv
= CLK_SUP_PCLK
;
529 clkdiv
= (fls(DIV_ROUND_UP(current_clk
, clk
) - 1) - 1) << 16;
532 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
& clkdiv
);
533 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
536 static void sh_mmcif_sync_reset(struct sh_mmcif_host
*host
)
540 tmp
= 0x010f0000 & sh_mmcif_readl(host
->addr
, MMCIF_CE_CLK_CTRL
);
542 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_ON
);
543 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_OFF
);
544 if (host
->ccs_enable
)
546 if (host
->clk_ctrl2_enable
)
547 sh_mmcif_writel(host
->addr
, MMCIF_CE_CLK_CTRL2
, 0x0F0F0000);
548 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, tmp
|
549 SRSPTO_256
| SRBSYTO_29
| SRWDTO_29
);
551 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_ATYP
);
554 static int sh_mmcif_error_manage(struct sh_mmcif_host
*host
)
556 struct device
*dev
= sh_mmcif_host_to_dev(host
);
560 host
->sd_error
= false;
562 state1
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
);
563 state2
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS2
);
564 dev_dbg(dev
, "ERR HOST_STS1 = %08x\n", state1
);
565 dev_dbg(dev
, "ERR HOST_STS2 = %08x\n", state2
);
567 if (state1
& STS1_CMDSEQ
) {
568 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, CMD_CTRL_BREAK
);
569 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, ~CMD_CTRL_BREAK
);
570 for (timeout
= 10000; timeout
; timeout
--) {
571 if (!(sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
)
578 "Forced end of command sequence timeout err\n");
581 sh_mmcif_sync_reset(host
);
582 dev_dbg(dev
, "Forced end of command sequence\n");
586 if (state2
& STS2_CRC_ERR
) {
587 dev_err(dev
, " CRC error: state %u, wait %u\n",
588 host
->state
, host
->wait_for
);
590 } else if (state2
& STS2_TIMEOUT_ERR
) {
591 dev_err(dev
, " Timeout: state %u, wait %u\n",
592 host
->state
, host
->wait_for
);
595 dev_dbg(dev
, " End/Index error: state %u, wait %u\n",
596 host
->state
, host
->wait_for
);
602 static void sh_mmcif_single_read(struct sh_mmcif_host
*host
,
603 struct mmc_request
*mrq
)
605 struct mmc_data
*data
= mrq
->data
;
607 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
608 BLOCK_SIZE_MASK
) + 3;
610 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
,
613 host
->wait_for
= MMCIF_WAIT_FOR_READ
;
615 /* buf read enable */
616 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
619 static bool sh_mmcif_read_block(struct sh_mmcif_host
*host
)
621 struct sg_mapping_iter
*sgm
= &host
->sg_miter
;
622 struct device
*dev
= sh_mmcif_host_to_dev(host
);
623 struct mmc_data
*data
= host
->mrq
->data
;
627 if (host
->sd_error
) {
629 data
->error
= sh_mmcif_error_manage(host
);
630 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
634 if (!sg_miter_next(sgm
)) {
635 /* This should not happen on single blocks */
642 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
643 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
645 sg_miter_stop(&host
->sg_miter
);
647 /* buffer read end */
648 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFRE
);
649 host
->wait_for
= MMCIF_WAIT_FOR_READ_END
;
654 static void sh_mmcif_multi_read(struct sh_mmcif_host
*host
,
655 struct mmc_request
*mrq
)
657 struct sg_mapping_iter
*sgm
= &host
->sg_miter
;
658 struct mmc_data
*data
= mrq
->data
;
660 if (!data
->sg_len
|| !data
->sg
->length
)
663 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
666 sg_miter_start(sgm
, data
->sg
, data
->sg_len
,
669 /* Advance to the first sglist entry */
670 if (!sg_miter_next(sgm
)) {
675 host
->wait_for
= MMCIF_WAIT_FOR_MREAD
;
677 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
680 static bool sh_mmcif_mread_block(struct sh_mmcif_host
*host
)
682 struct sg_mapping_iter
*sgm
= &host
->sg_miter
;
683 struct device
*dev
= sh_mmcif_host_to_dev(host
);
684 struct mmc_data
*data
= host
->mrq
->data
;
688 if (host
->sd_error
) {
690 data
->error
= sh_mmcif_error_manage(host
);
691 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
697 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
698 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
700 sgm
->consumed
= host
->blocksize
;
702 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
704 if (!sg_miter_next(sgm
)) {
712 static void sh_mmcif_single_write(struct sh_mmcif_host
*host
,
713 struct mmc_request
*mrq
)
715 struct mmc_data
*data
= mrq
->data
;
717 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
718 BLOCK_SIZE_MASK
) + 3;
720 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
,
723 host
->wait_for
= MMCIF_WAIT_FOR_WRITE
;
725 /* buf write enable */
726 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
729 static bool sh_mmcif_write_block(struct sh_mmcif_host
*host
)
731 struct sg_mapping_iter
*sgm
= &host
->sg_miter
;
732 struct device
*dev
= sh_mmcif_host_to_dev(host
);
733 struct mmc_data
*data
= host
->mrq
->data
;
737 if (host
->sd_error
) {
739 data
->error
= sh_mmcif_error_manage(host
);
740 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
744 if (!sg_miter_next(sgm
)) {
745 /* This should not happen on single blocks */
752 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
753 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
755 sg_miter_stop(&host
->sg_miter
);
757 /* buffer write end */
758 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MDTRANE
);
759 host
->wait_for
= MMCIF_WAIT_FOR_WRITE_END
;
764 static void sh_mmcif_multi_write(struct sh_mmcif_host
*host
,
765 struct mmc_request
*mrq
)
767 struct sg_mapping_iter
*sgm
= &host
->sg_miter
;
768 struct mmc_data
*data
= mrq
->data
;
770 if (!data
->sg_len
|| !data
->sg
->length
)
773 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
776 sg_miter_start(sgm
, data
->sg
, data
->sg_len
,
779 /* Advance to the first sglist entry */
780 if (!sg_miter_next(sgm
)) {
785 host
->wait_for
= MMCIF_WAIT_FOR_MWRITE
;
787 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
790 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host
*host
)
792 struct sg_mapping_iter
*sgm
= &host
->sg_miter
;
793 struct device
*dev
= sh_mmcif_host_to_dev(host
);
794 struct mmc_data
*data
= host
->mrq
->data
;
798 if (host
->sd_error
) {
800 data
->error
= sh_mmcif_error_manage(host
);
801 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
807 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
808 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
810 sgm
->consumed
= host
->blocksize
;
812 if (!sg_miter_next(sgm
)) {
817 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
822 static void sh_mmcif_get_response(struct sh_mmcif_host
*host
,
823 struct mmc_command
*cmd
)
825 if (cmd
->flags
& MMC_RSP_136
) {
826 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP3
);
827 cmd
->resp
[1] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP2
);
828 cmd
->resp
[2] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP1
);
829 cmd
->resp
[3] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
831 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
834 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host
*host
,
835 struct mmc_command
*cmd
)
837 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP_CMD12
);
840 static u32
sh_mmcif_set_cmd(struct sh_mmcif_host
*host
,
841 struct mmc_request
*mrq
)
843 struct device
*dev
= sh_mmcif_host_to_dev(host
);
844 struct mmc_data
*data
= mrq
->data
;
845 struct mmc_command
*cmd
= mrq
->cmd
;
846 u32 opc
= cmd
->opcode
;
849 /* Response Type check */
850 switch (mmc_resp_type(cmd
)) {
852 tmp
|= CMD_SET_RTYP_NO
;
856 tmp
|= CMD_SET_RTYP_6B
;
859 tmp
|= CMD_SET_RBSY
| CMD_SET_RTYP_6B
;
862 tmp
|= CMD_SET_RTYP_17B
;
865 dev_err(dev
, "Unsupported response type.\n");
872 switch (host
->bus_width
) {
873 case MMC_BUS_WIDTH_1
:
874 tmp
|= CMD_SET_DATW_1
;
876 case MMC_BUS_WIDTH_4
:
877 tmp
|= CMD_SET_DATW_4
;
879 case MMC_BUS_WIDTH_8
:
880 tmp
|= CMD_SET_DATW_8
;
883 dev_err(dev
, "Unsupported bus width.\n");
886 switch (host
->timing
) {
887 case MMC_TIMING_MMC_DDR52
:
889 * MMC core will only set this timing, if the host
890 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
891 * capability. MMCIF implementations with this
892 * capability, e.g. sh73a0, will have to set it
893 * in their platform data.
900 if (opc
== MMC_WRITE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
)
903 if (opc
== MMC_READ_MULTIPLE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
) {
904 tmp
|= CMD_SET_CMLTE
| CMD_SET_CMD12EN
;
905 sh_mmcif_bitset(host
, MMCIF_CE_BLOCK_SET
,
908 /* RIDXC[1:0] check bits */
909 if (opc
== MMC_SEND_OP_COND
|| opc
== MMC_ALL_SEND_CID
||
910 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
911 tmp
|= CMD_SET_RIDXC_BITS
;
912 /* RCRC7C[1:0] check bits */
913 if (opc
== MMC_SEND_OP_COND
)
914 tmp
|= CMD_SET_CRC7C_BITS
;
915 /* RCRC7C[1:0] internal CRC7 */
916 if (opc
== MMC_ALL_SEND_CID
||
917 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
918 tmp
|= CMD_SET_CRC7C_INTERNAL
;
920 return (opc
<< 24) | tmp
;
923 static int sh_mmcif_data_trans(struct sh_mmcif_host
*host
,
924 struct mmc_request
*mrq
, u32 opc
)
926 struct device
*dev
= sh_mmcif_host_to_dev(host
);
929 case MMC_READ_MULTIPLE_BLOCK
:
930 sh_mmcif_multi_read(host
, mrq
);
932 case MMC_WRITE_MULTIPLE_BLOCK
:
933 sh_mmcif_multi_write(host
, mrq
);
935 case MMC_WRITE_BLOCK
:
936 sh_mmcif_single_write(host
, mrq
);
938 case MMC_READ_SINGLE_BLOCK
:
939 case MMC_SEND_EXT_CSD
:
940 sh_mmcif_single_read(host
, mrq
);
943 dev_err(dev
, "Unsupported CMD%d\n", opc
);
948 static void sh_mmcif_start_cmd(struct sh_mmcif_host
*host
,
949 struct mmc_request
*mrq
)
951 struct mmc_command
*cmd
= mrq
->cmd
;
956 if (cmd
->flags
& MMC_RSP_BUSY
)
957 mask
= MASK_START_CMD
| MASK_MRBSYE
;
959 mask
= MASK_START_CMD
| MASK_MCRSPE
;
961 if (host
->ccs_enable
)
965 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
, 0);
966 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
,
969 opc
= sh_mmcif_set_cmd(host
, mrq
);
971 if (host
->ccs_enable
)
972 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0);
974 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0 | INT_CCS
);
975 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, mask
);
977 sh_mmcif_writel(host
->addr
, MMCIF_CE_ARG
, cmd
->arg
);
979 spin_lock_irqsave(&host
->lock
, flags
);
980 sh_mmcif_writel(host
->addr
, MMCIF_CE_CMD_SET
, opc
);
982 host
->wait_for
= MMCIF_WAIT_FOR_CMD
;
983 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
984 spin_unlock_irqrestore(&host
->lock
, flags
);
987 static void sh_mmcif_stop_cmd(struct sh_mmcif_host
*host
,
988 struct mmc_request
*mrq
)
990 struct device
*dev
= sh_mmcif_host_to_dev(host
);
992 switch (mrq
->cmd
->opcode
) {
993 case MMC_READ_MULTIPLE_BLOCK
:
994 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12DRE
);
996 case MMC_WRITE_MULTIPLE_BLOCK
:
997 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12RBE
);
1000 dev_err(dev
, "unsupported stop cmd\n");
1001 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1005 host
->wait_for
= MMCIF_WAIT_FOR_STOP
;
1008 static void sh_mmcif_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1010 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1011 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1012 unsigned long flags
;
1014 spin_lock_irqsave(&host
->lock
, flags
);
1015 if (host
->state
!= STATE_IDLE
) {
1016 dev_dbg(dev
, "%s() rejected, state %u\n",
1017 __func__
, host
->state
);
1018 spin_unlock_irqrestore(&host
->lock
, flags
);
1019 mrq
->cmd
->error
= -EAGAIN
;
1020 mmc_request_done(mmc
, mrq
);
1024 host
->state
= STATE_REQUEST
;
1025 spin_unlock_irqrestore(&host
->lock
, flags
);
1029 sh_mmcif_start_cmd(host
, mrq
);
1032 static void sh_mmcif_clk_setup(struct sh_mmcif_host
*host
)
1034 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1036 if (host
->mmc
->f_max
) {
1037 unsigned int f_max
, f_min
= 0, f_min_old
;
1039 f_max
= host
->mmc
->f_max
;
1040 for (f_min_old
= f_max
; f_min_old
> 2;) {
1041 f_min
= clk_round_rate(host
->clk
, f_min_old
/ 2);
1042 if (f_min
== f_min_old
)
1048 * This driver assumes this SoC is R-Car Gen2 or later
1050 host
->clkdiv_map
= 0x3ff;
1052 host
->mmc
->f_max
= f_max
>> ffs(host
->clkdiv_map
);
1053 host
->mmc
->f_min
= f_min
>> fls(host
->clkdiv_map
);
1055 unsigned int clk
= clk_get_rate(host
->clk
);
1057 host
->mmc
->f_max
= clk
/ 2;
1058 host
->mmc
->f_min
= clk
/ 512;
1061 dev_dbg(dev
, "clk max/min = %d/%d\n",
1062 host
->mmc
->f_max
, host
->mmc
->f_min
);
1065 static void sh_mmcif_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1067 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1068 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1069 unsigned long flags
;
1071 spin_lock_irqsave(&host
->lock
, flags
);
1072 if (host
->state
!= STATE_IDLE
) {
1073 dev_dbg(dev
, "%s() rejected, state %u\n",
1074 __func__
, host
->state
);
1075 spin_unlock_irqrestore(&host
->lock
, flags
);
1079 host
->state
= STATE_IOS
;
1080 spin_unlock_irqrestore(&host
->lock
, flags
);
1082 switch (ios
->power_mode
) {
1084 if (!IS_ERR(mmc
->supply
.vmmc
))
1085 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1087 clk_prepare_enable(host
->clk
);
1088 pm_runtime_get_sync(dev
);
1089 sh_mmcif_sync_reset(host
);
1090 sh_mmcif_request_dma(host
);
1095 if (!IS_ERR(mmc
->supply
.vmmc
))
1096 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1098 sh_mmcif_clock_control(host
, 0);
1099 sh_mmcif_release_dma(host
);
1100 pm_runtime_put(dev
);
1101 clk_disable_unprepare(host
->clk
);
1102 host
->power
= false;
1106 sh_mmcif_clock_control(host
, ios
->clock
);
1110 host
->timing
= ios
->timing
;
1111 host
->bus_width
= ios
->bus_width
;
1112 host
->state
= STATE_IDLE
;
1115 static const struct mmc_host_ops sh_mmcif_ops
= {
1116 .request
= sh_mmcif_request
,
1117 .set_ios
= sh_mmcif_set_ios
,
1118 .get_cd
= mmc_gpio_get_cd
,
1121 static bool sh_mmcif_end_cmd(struct sh_mmcif_host
*host
)
1123 struct mmc_command
*cmd
= host
->mrq
->cmd
;
1124 struct mmc_data
*data
= host
->mrq
->data
;
1125 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1128 if (host
->sd_error
) {
1129 switch (cmd
->opcode
) {
1130 case MMC_ALL_SEND_CID
:
1131 case MMC_SELECT_CARD
:
1133 cmd
->error
= -ETIMEDOUT
;
1136 cmd
->error
= sh_mmcif_error_manage(host
);
1139 dev_dbg(dev
, "CMD%d error %d\n",
1140 cmd
->opcode
, cmd
->error
);
1141 host
->sd_error
= false;
1144 if (!(cmd
->flags
& MMC_RSP_PRESENT
)) {
1149 sh_mmcif_get_response(host
, cmd
);
1155 * Completion can be signalled from DMA callback and error, so, have to
1156 * reset here, before setting .dma_active
1158 init_completion(&host
->dma_complete
);
1160 if (data
->flags
& MMC_DATA_READ
) {
1162 sh_mmcif_start_dma_rx(host
);
1165 sh_mmcif_start_dma_tx(host
);
1168 if (!host
->dma_active
) {
1169 data
->error
= sh_mmcif_data_trans(host
, host
->mrq
, cmd
->opcode
);
1170 return !data
->error
;
1173 /* Running in the IRQ thread, can sleep */
1174 time
= wait_for_completion_interruptible_timeout(&host
->dma_complete
,
1177 if (data
->flags
& MMC_DATA_READ
)
1178 dma_unmap_sg(host
->chan_rx
->device
->dev
,
1179 data
->sg
, data
->sg_len
,
1182 dma_unmap_sg(host
->chan_tx
->device
->dev
,
1183 data
->sg
, data
->sg_len
,
1186 if (host
->sd_error
) {
1187 dev_err(host
->mmc
->parent
,
1188 "Error IRQ while waiting for DMA completion!\n");
1189 /* Woken up by an error IRQ: abort DMA */
1190 data
->error
= sh_mmcif_error_manage(host
);
1192 dev_err(host
->mmc
->parent
, "DMA timeout!\n");
1193 data
->error
= -ETIMEDOUT
;
1194 } else if (time
< 0) {
1195 dev_err(host
->mmc
->parent
,
1196 "wait_for_completion_...() error %ld!\n", time
);
1199 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
,
1200 BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
1201 host
->dma_active
= false;
1204 data
->bytes_xfered
= 0;
1206 if (data
->flags
& MMC_DATA_READ
)
1207 dmaengine_terminate_sync(host
->chan_rx
);
1209 dmaengine_terminate_sync(host
->chan_tx
);
1215 static irqreturn_t
sh_mmcif_irqt(int irq
, void *dev_id
)
1217 struct sh_mmcif_host
*host
= dev_id
;
1218 struct mmc_request
*mrq
;
1219 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1221 unsigned long flags
;
1224 spin_lock_irqsave(&host
->lock
, flags
);
1225 wait_work
= host
->wait_for
;
1226 spin_unlock_irqrestore(&host
->lock
, flags
);
1228 cancel_delayed_work_sync(&host
->timeout_work
);
1230 mutex_lock(&host
->thread_lock
);
1234 dev_dbg(dev
, "IRQ thread state %u, wait %u: NULL mrq!\n",
1235 host
->state
, host
->wait_for
);
1236 mutex_unlock(&host
->thread_lock
);
1241 * All handlers return true, if processing continues, and false, if the
1242 * request has to be completed - successfully or not
1244 switch (wait_work
) {
1245 case MMCIF_WAIT_FOR_REQUEST
:
1246 /* We're too late, the timeout has already kicked in */
1247 mutex_unlock(&host
->thread_lock
);
1249 case MMCIF_WAIT_FOR_CMD
:
1250 /* Wait for data? */
1251 wait
= sh_mmcif_end_cmd(host
);
1253 case MMCIF_WAIT_FOR_MREAD
:
1254 /* Wait for more data? */
1255 wait
= sh_mmcif_mread_block(host
);
1257 case MMCIF_WAIT_FOR_READ
:
1258 /* Wait for data end? */
1259 wait
= sh_mmcif_read_block(host
);
1261 case MMCIF_WAIT_FOR_MWRITE
:
1262 /* Wait data to write? */
1263 wait
= sh_mmcif_mwrite_block(host
);
1265 case MMCIF_WAIT_FOR_WRITE
:
1266 /* Wait for data end? */
1267 wait
= sh_mmcif_write_block(host
);
1269 case MMCIF_WAIT_FOR_STOP
:
1270 if (host
->sd_error
) {
1271 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1272 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->stop
->error
);
1275 sh_mmcif_get_cmd12response(host
, mrq
->stop
);
1276 mrq
->stop
->error
= 0;
1278 case MMCIF_WAIT_FOR_READ_END
:
1279 case MMCIF_WAIT_FOR_WRITE_END
:
1280 if (host
->sd_error
) {
1281 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1282 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->data
->error
);
1290 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1291 /* Wait for more data */
1292 mutex_unlock(&host
->thread_lock
);
1296 if (host
->wait_for
!= MMCIF_WAIT_FOR_STOP
) {
1297 struct mmc_data
*data
= mrq
->data
;
1298 if (!mrq
->cmd
->error
&& data
&& !data
->error
)
1299 data
->bytes_xfered
=
1300 data
->blocks
* data
->blksz
;
1302 if (mrq
->stop
&& !mrq
->cmd
->error
&& (!data
|| !data
->error
)) {
1303 sh_mmcif_stop_cmd(host
, mrq
);
1304 if (!mrq
->stop
->error
) {
1305 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1306 mutex_unlock(&host
->thread_lock
);
1312 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1313 host
->state
= STATE_IDLE
;
1315 mmc_request_done(host
->mmc
, mrq
);
1317 mutex_unlock(&host
->thread_lock
);
1322 static irqreturn_t
sh_mmcif_intr(int irq
, void *dev_id
)
1324 struct sh_mmcif_host
*host
= dev_id
;
1325 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1328 state
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT
);
1329 mask
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT_MASK
);
1330 if (host
->ccs_enable
)
1331 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, ~(state
& mask
));
1333 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, INT_CCS
| ~(state
& mask
));
1334 sh_mmcif_bitclr(host
, MMCIF_CE_INT_MASK
, state
& MASK_CLEAN
);
1336 if (state
& ~MASK_CLEAN
)
1337 dev_dbg(dev
, "IRQ state = 0x%08x incompletely cleared\n",
1340 if (state
& INT_ERR_STS
|| state
& ~INT_ALL
) {
1341 host
->sd_error
= true;
1342 dev_dbg(dev
, "int err state = 0x%08x\n", state
);
1344 if (state
& ~(INT_CMD12RBE
| INT_CMD12CRE
)) {
1346 dev_dbg(dev
, "NULL IRQ state = 0x%08x\n", state
);
1347 if (!host
->dma_active
)
1348 return IRQ_WAKE_THREAD
;
1349 else if (host
->sd_error
)
1350 sh_mmcif_dma_complete(host
);
1352 dev_dbg(dev
, "Unexpected IRQ 0x%x\n", state
);
1358 static void sh_mmcif_timeout_work(struct work_struct
*work
)
1360 struct delayed_work
*d
= to_delayed_work(work
);
1361 struct sh_mmcif_host
*host
= container_of(d
, struct sh_mmcif_host
, timeout_work
);
1362 struct mmc_request
*mrq
= host
->mrq
;
1363 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1364 unsigned long flags
;
1367 /* Don't run after mmc_remove_host() */
1370 spin_lock_irqsave(&host
->lock
, flags
);
1371 if (host
->state
== STATE_IDLE
) {
1372 spin_unlock_irqrestore(&host
->lock
, flags
);
1376 dev_err(dev
, "Timeout waiting for %u on CMD%u\n",
1377 host
->wait_for
, mrq
->cmd
->opcode
);
1379 host
->state
= STATE_TIMEOUT
;
1380 spin_unlock_irqrestore(&host
->lock
, flags
);
1383 * Handle races with cancel_delayed_work(), unless
1384 * cancel_delayed_work_sync() is used
1386 switch (host
->wait_for
) {
1387 case MMCIF_WAIT_FOR_CMD
:
1388 mrq
->cmd
->error
= sh_mmcif_error_manage(host
);
1390 case MMCIF_WAIT_FOR_STOP
:
1391 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1393 case MMCIF_WAIT_FOR_MREAD
:
1394 case MMCIF_WAIT_FOR_MWRITE
:
1395 case MMCIF_WAIT_FOR_READ
:
1396 case MMCIF_WAIT_FOR_WRITE
:
1397 case MMCIF_WAIT_FOR_READ_END
:
1398 case MMCIF_WAIT_FOR_WRITE_END
:
1399 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1405 host
->state
= STATE_IDLE
;
1406 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1408 mmc_request_done(host
->mmc
, mrq
);
1411 static void sh_mmcif_init_ocr(struct sh_mmcif_host
*host
)
1413 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1414 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1415 struct mmc_host
*mmc
= host
->mmc
;
1417 mmc_regulator_get_supply(mmc
);
1422 if (!mmc
->ocr_avail
)
1423 mmc
->ocr_avail
= pd
->ocr
;
1425 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1428 static int sh_mmcif_probe(struct platform_device
*pdev
)
1430 int ret
= 0, irq
[2];
1431 struct mmc_host
*mmc
;
1432 struct sh_mmcif_host
*host
;
1433 struct device
*dev
= &pdev
->dev
;
1434 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1438 irq
[0] = platform_get_irq(pdev
, 0);
1439 irq
[1] = platform_get_irq_optional(pdev
, 1);
1443 reg
= devm_platform_ioremap_resource(pdev
, 0);
1445 return PTR_ERR(reg
);
1447 mmc
= mmc_alloc_host(sizeof(struct sh_mmcif_host
), dev
);
1451 ret
= mmc_of_parse(mmc
);
1455 host
= mmc_priv(mmc
);
1458 host
->timeout
= msecs_to_jiffies(10000);
1459 host
->ccs_enable
= true;
1460 host
->clk_ctrl2_enable
= false;
1464 spin_lock_init(&host
->lock
);
1466 mmc
->ops
= &sh_mmcif_ops
;
1467 sh_mmcif_init_ocr(host
);
1469 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
| MMC_CAP_WAIT_WHILE_BUSY
;
1470 mmc
->caps2
|= MMC_CAP2_NO_SD
| MMC_CAP2_NO_SDIO
;
1471 mmc
->max_busy_timeout
= 10000;
1474 mmc
->caps
|= pd
->caps
;
1476 mmc
->max_blk_size
= 512;
1477 mmc
->max_req_size
= PAGE_SIZE
* mmc
->max_segs
;
1478 mmc
->max_blk_count
= mmc
->max_req_size
/ mmc
->max_blk_size
;
1479 mmc
->max_seg_size
= mmc
->max_req_size
;
1481 platform_set_drvdata(pdev
, host
);
1483 host
->clk
= devm_clk_get(dev
, NULL
);
1484 if (IS_ERR(host
->clk
)) {
1485 ret
= PTR_ERR(host
->clk
);
1486 dev_err(dev
, "cannot get clock: %d\n", ret
);
1490 ret
= clk_prepare_enable(host
->clk
);
1494 sh_mmcif_clk_setup(host
);
1496 pm_runtime_enable(dev
);
1497 host
->power
= false;
1499 ret
= pm_runtime_get_sync(dev
);
1503 INIT_DELAYED_WORK(&host
->timeout_work
, sh_mmcif_timeout_work
);
1505 sh_mmcif_sync_reset(host
);
1506 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1508 name
= irq
[1] < 0 ? dev_name(dev
) : "sh_mmc:error";
1509 ret
= devm_request_threaded_irq(dev
, irq
[0], sh_mmcif_intr
,
1510 sh_mmcif_irqt
, 0, name
, host
);
1512 dev_err(dev
, "request_irq error (%s)\n", name
);
1516 ret
= devm_request_threaded_irq(dev
, irq
[1],
1517 sh_mmcif_intr
, sh_mmcif_irqt
,
1518 0, "sh_mmc:int", host
);
1520 dev_err(dev
, "request_irq error (sh_mmc:int)\n");
1525 mutex_init(&host
->thread_lock
);
1527 ret
= mmc_add_host(mmc
);
1531 dev_pm_qos_expose_latency_limit(dev
, 100);
1533 dev_info(dev
, "Chip version 0x%04x, clock rate %luMHz\n",
1534 sh_mmcif_readl(host
->addr
, MMCIF_CE_VERSION
) & 0xffff,
1535 clk_get_rate(host
->clk
) / 1000000UL);
1537 pm_runtime_put(dev
);
1538 clk_disable_unprepare(host
->clk
);
1542 clk_disable_unprepare(host
->clk
);
1543 pm_runtime_put_sync(dev
);
1544 pm_runtime_disable(dev
);
1550 static void sh_mmcif_remove(struct platform_device
*pdev
)
1552 struct sh_mmcif_host
*host
= platform_get_drvdata(pdev
);
1555 clk_prepare_enable(host
->clk
);
1556 pm_runtime_get_sync(&pdev
->dev
);
1558 dev_pm_qos_hide_latency_limit(&pdev
->dev
);
1560 mmc_remove_host(host
->mmc
);
1561 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1564 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1565 * mmc_remove_host() call above. But swapping order doesn't help either
1566 * (a query on the linux-mmc mailing list didn't bring any replies).
1568 cancel_delayed_work_sync(&host
->timeout_work
);
1570 clk_disable_unprepare(host
->clk
);
1571 mmc_free_host(host
->mmc
);
1572 pm_runtime_put_sync(&pdev
->dev
);
1573 pm_runtime_disable(&pdev
->dev
);
1576 #ifdef CONFIG_PM_SLEEP
1577 static int sh_mmcif_suspend(struct device
*dev
)
1579 struct sh_mmcif_host
*host
= dev_get_drvdata(dev
);
1581 pm_runtime_get_sync(dev
);
1582 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1583 pm_runtime_put(dev
);
1588 static int sh_mmcif_resume(struct device
*dev
)
1594 static const struct dev_pm_ops sh_mmcif_dev_pm_ops
= {
1595 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend
, sh_mmcif_resume
)
1598 static struct platform_driver sh_mmcif_driver
= {
1599 .probe
= sh_mmcif_probe
,
1600 .remove
= sh_mmcif_remove
,
1602 .name
= DRIVER_NAME
,
1603 .probe_type
= PROBE_PREFER_ASYNCHRONOUS
,
1604 .pm
= &sh_mmcif_dev_pm_ops
,
1605 .of_match_table
= sh_mmcif_of_match
,
1609 module_platform_driver(sh_mmcif_driver
);
1611 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1612 MODULE_LICENSE("GPL v2");
1613 MODULE_ALIAS("platform:" DRIVER_NAME
);
1614 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");