1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Handles the M-Systems DiskOnChip G3 chip
5 * Copyright (C) 2011 Robert Jarzmik
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/string.h>
14 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/bitmap.h>
20 #include <linux/bitrev.h>
21 #include <linux/bch.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
26 #define CREATE_TRACE_POINTS
30 * This driver handles the DiskOnChip G3 flash memory.
32 * As no specification is available from M-Systems/Sandisk, this drivers lacks
33 * several functions available on the chip, as :
36 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
37 * the driver assumes a 16bits data bus.
39 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
40 * - a 1 byte Hamming code stored in the OOB for each page
41 * - a 7 bytes BCH code stored in the OOB for each page
43 * - BCH is in GF(2^14)
44 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
46 * - BCH can correct up to 4 bits (t = 4)
47 * - BCH syndroms are calculated in hardware, and checked in hardware as well
51 static unsigned int reliable_mode
;
52 module_param(reliable_mode
, uint
, 0);
53 MODULE_PARM_DESC(reliable_mode
, "Set the docg3 mode (0=normal MLC, 1=fast, "
54 "2=reliable) : MLC normal operations are in normal mode");
56 static int docg3_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
57 struct mtd_oob_region
*oobregion
)
62 /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
63 oobregion
->offset
= 7;
64 oobregion
->length
= 8;
69 static int docg3_ooblayout_free(struct mtd_info
*mtd
, int section
,
70 struct mtd_oob_region
*oobregion
)
75 /* free bytes: byte 0 until byte 6, byte 15 */
77 oobregion
->offset
= 0;
78 oobregion
->length
= 7;
80 oobregion
->offset
= 15;
81 oobregion
->length
= 1;
87 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops
= {
88 .ecc
= docg3_ooblayout_ecc
,
89 .free
= docg3_ooblayout_free
,
92 static inline u8
doc_readb(struct docg3
*docg3
, u16 reg
)
94 u8 val
= readb(docg3
->cascade
->base
+ reg
);
96 trace_docg3_io(0, 8, reg
, (int)val
);
100 static inline u16
doc_readw(struct docg3
*docg3
, u16 reg
)
102 u16 val
= readw(docg3
->cascade
->base
+ reg
);
104 trace_docg3_io(0, 16, reg
, (int)val
);
108 static inline void doc_writeb(struct docg3
*docg3
, u8 val
, u16 reg
)
110 writeb(val
, docg3
->cascade
->base
+ reg
);
111 trace_docg3_io(1, 8, reg
, val
);
114 static inline void doc_writew(struct docg3
*docg3
, u16 val
, u16 reg
)
116 writew(val
, docg3
->cascade
->base
+ reg
);
117 trace_docg3_io(1, 16, reg
, val
);
120 static inline void doc_flash_command(struct docg3
*docg3
, u8 cmd
)
122 doc_writeb(docg3
, cmd
, DOC_FLASHCOMMAND
);
125 static inline void doc_flash_sequence(struct docg3
*docg3
, u8 seq
)
127 doc_writeb(docg3
, seq
, DOC_FLASHSEQUENCE
);
130 static inline void doc_flash_address(struct docg3
*docg3
, u8 addr
)
132 doc_writeb(docg3
, addr
, DOC_FLASHADDRESS
);
135 static char const * const part_probes
[] = { "cmdlinepart", "saftlpart", NULL
};
137 static int doc_register_readb(struct docg3
*docg3
, int reg
)
141 doc_writew(docg3
, reg
, DOC_READADDRESS
);
142 val
= doc_readb(docg3
, reg
);
143 doc_vdbg("Read register %04x : %02x\n", reg
, val
);
147 static int doc_register_readw(struct docg3
*docg3
, int reg
)
151 doc_writew(docg3
, reg
, DOC_READADDRESS
);
152 val
= doc_readw(docg3
, reg
);
153 doc_vdbg("Read register %04x : %04x\n", reg
, val
);
158 * doc_delay - delay docg3 operations
160 * @nbNOPs: the number of NOPs to issue
162 * As no specification is available, the right timings between chip commands are
163 * unknown. The only available piece of information are the observed nops on a
164 * working docg3 chip.
165 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
166 * friendlier msleep() functions or blocking mdelay().
168 static void doc_delay(struct docg3
*docg3
, int nbNOPs
)
172 doc_vdbg("NOP x %d\n", nbNOPs
);
173 for (i
= 0; i
< nbNOPs
; i
++)
174 doc_writeb(docg3
, 0, DOC_NOP
);
177 static int is_prot_seq_error(struct docg3
*docg3
)
181 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
182 return ctrl
& (DOC_CTRL_PROTECTION_ERROR
| DOC_CTRL_SEQUENCE_ERROR
);
185 static int doc_is_ready(struct docg3
*docg3
)
189 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
190 return ctrl
& DOC_CTRL_FLASHREADY
;
193 static int doc_wait_ready(struct docg3
*docg3
)
195 int maxWaitCycles
= 100;
200 } while (!doc_is_ready(docg3
) && maxWaitCycles
--);
202 if (maxWaitCycles
> 0)
208 static int doc_reset_seq(struct docg3
*docg3
)
212 doc_writeb(docg3
, 0x10, DOC_FLASHCONTROL
);
213 doc_flash_sequence(docg3
, DOC_SEQ_RESET
);
214 doc_flash_command(docg3
, DOC_CMD_RESET
);
216 ret
= doc_wait_ready(docg3
);
218 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret
? "false" : "true");
223 * doc_read_data_area - Read data from data area
225 * @buf: the buffer to fill in (might be NULL is dummy reads)
226 * @len: the length to read
227 * @first: first time read, DOC_READADDRESS should be set
229 * Reads bytes from flash data. Handles the single byte / even bytes reads.
231 static void doc_read_data_area(struct docg3
*docg3
, void *buf
, int len
,
238 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf
, len
);
243 doc_writew(docg3
, DOC_IOSPACE_DATA
, DOC_READADDRESS
);
245 for (i
= 0; i
< len4
; i
+= 2) {
246 data16
= doc_readw(docg3
, DOC_IOSPACE_DATA
);
254 doc_writew(docg3
, DOC_IOSPACE_DATA
| DOC_READADDR_ONE_BYTE
,
258 for (i
= 0; i
< cdr
; i
++) {
259 data8
= doc_readb(docg3
, DOC_IOSPACE_DATA
);
269 * doc_write_data_area - Write data into data area
271 * @buf: the buffer to get input bytes from
272 * @len: the length to write
274 * Writes bytes into flash data. Handles the single byte / even bytes writes.
276 static void doc_write_data_area(struct docg3
*docg3
, const void *buf
, int len
)
282 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf
, len
);
286 doc_writew(docg3
, DOC_IOSPACE_DATA
, DOC_READADDRESS
);
288 for (i
= 0; i
< len4
; i
+= 2) {
289 doc_writew(docg3
, *src16
, DOC_IOSPACE_DATA
);
294 for (i
= 0; i
< cdr
; i
++) {
295 doc_writew(docg3
, DOC_IOSPACE_DATA
| DOC_READADDR_ONE_BYTE
,
297 doc_writeb(docg3
, *src8
, DOC_IOSPACE_DATA
);
303 * doc_set_reliable_mode - Sets the flash to normal or reliable data mode
306 * The reliable data mode is a bit slower than the fast mode, but less errors
307 * occur. Entering the reliable mode cannot be done without entering the fast
310 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
311 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
312 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
313 * result, which is a logical and between bytes from page 0 and page 1 (which is
314 * consistent with the fact that writing to a page is _clearing_ bits of that
317 static void doc_set_reliable_mode(struct docg3
*docg3
)
319 static char *strmode
[] = { "normal", "fast", "reliable", "invalid" };
321 doc_dbg("doc_set_reliable_mode(%s)\n", strmode
[docg3
->reliable
]);
322 switch (docg3
->reliable
) {
326 doc_flash_sequence(docg3
, DOC_SEQ_SET_FASTMODE
);
327 doc_flash_command(docg3
, DOC_CMD_FAST_MODE
);
330 doc_flash_sequence(docg3
, DOC_SEQ_SET_RELIABLEMODE
);
331 doc_flash_command(docg3
, DOC_CMD_FAST_MODE
);
332 doc_flash_command(docg3
, DOC_CMD_RELIABLE_MODE
);
335 doc_err("doc_set_reliable_mode(): invalid mode\n");
342 * doc_set_asic_mode - Set the ASIC mode
346 * The ASIC can work in 3 modes :
347 * - RESET: all registers are zeroed
348 * - NORMAL: receives and handles commands
349 * - POWERDOWN: minimal poweruse, flash parts shut off
351 static void doc_set_asic_mode(struct docg3
*docg3
, u8 mode
)
355 for (i
= 0; i
< 12; i
++)
356 doc_readb(docg3
, DOC_IOSPACE_IPL
);
358 mode
|= DOC_ASICMODE_MDWREN
;
359 doc_dbg("doc_set_asic_mode(%02x)\n", mode
);
360 doc_writeb(docg3
, mode
, DOC_ASICMODE
);
361 doc_writeb(docg3
, ~mode
, DOC_ASICMODECONFIRM
);
366 * doc_set_device_id - Sets the devices id for cascaded G3 chips
368 * @id: the chip to select (amongst 0, 1, 2, 3)
370 * There can be 4 cascaded G3 chips. This function selects the one which will
371 * should be the active one.
373 static void doc_set_device_id(struct docg3
*docg3
, int id
)
377 doc_dbg("doc_set_device_id(%d)\n", id
);
378 doc_writeb(docg3
, id
, DOC_DEVICESELECT
);
379 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
381 ctrl
&= ~DOC_CTRL_VIOLATION
;
383 doc_writeb(docg3
, ctrl
, DOC_FLASHCONTROL
);
387 * doc_set_extra_page_mode - Change flash page layout
390 * Normally, the flash page is split into the data (512 bytes) and the out of
391 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
392 * leveling counters are stored. To access this last area of 4 bytes, a special
393 * mode must be input to the flash ASIC.
395 * Returns 0 if no error occurred, -EIO else.
397 static int doc_set_extra_page_mode(struct docg3
*docg3
)
401 doc_dbg("doc_set_extra_page_mode()\n");
402 doc_flash_sequence(docg3
, DOC_SEQ_PAGE_SIZE_532
);
403 doc_flash_command(docg3
, DOC_CMD_PAGE_SIZE_532
);
406 fctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
407 if (fctrl
& (DOC_CTRL_PROTECTION_ERROR
| DOC_CTRL_SEQUENCE_ERROR
))
414 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
416 * @sector: the sector
418 static void doc_setup_addr_sector(struct docg3
*docg3
, int sector
)
421 doc_flash_address(docg3
, sector
& 0xff);
422 doc_flash_address(docg3
, (sector
>> 8) & 0xff);
423 doc_flash_address(docg3
, (sector
>> 16) & 0xff);
428 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
430 * @sector: the sector
431 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
433 static void doc_setup_writeaddr_sector(struct docg3
*docg3
, int sector
, int ofs
)
437 doc_flash_address(docg3
, ofs
& 0xff);
438 doc_flash_address(docg3
, sector
& 0xff);
439 doc_flash_address(docg3
, (sector
>> 8) & 0xff);
440 doc_flash_address(docg3
, (sector
>> 16) & 0xff);
445 * doc_read_seek - Set both flash planes to the specified block, page for reading
447 * @block0: the first plane block index
448 * @block1: the second plane block index
449 * @page: the page index within the block
450 * @wear: if true, read will occur on the 4 extra bytes of the wear area
451 * @ofs: offset in page to read
453 * Programs the flash even and odd planes to the specific block and page.
454 * Alternatively, programs the flash to the wear area of the specified page.
456 static int doc_read_seek(struct docg3
*docg3
, int block0
, int block1
, int page
,
461 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
462 block0
, block1
, page
, ofs
, wear
);
464 if (!wear
&& (ofs
< 2 * DOC_LAYOUT_PAGE_SIZE
)) {
465 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE1
);
466 doc_flash_command(docg3
, DOC_CMD_READ_PLANE1
);
469 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE2
);
470 doc_flash_command(docg3
, DOC_CMD_READ_PLANE2
);
474 doc_set_reliable_mode(docg3
);
476 ret
= doc_set_extra_page_mode(docg3
);
480 doc_flash_sequence(docg3
, DOC_SEQ_READ
);
481 sector
= (block0
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
482 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
483 doc_setup_addr_sector(docg3
, sector
);
485 sector
= (block1
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
486 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
487 doc_setup_addr_sector(docg3
, sector
);
495 * doc_write_seek - Set both flash planes to the specified block, page for writing
497 * @block0: the first plane block index
498 * @block1: the second plane block index
499 * @page: the page index within the block
500 * @ofs: offset in page to write
502 * Programs the flash even and odd planes to the specific block and page.
503 * Alternatively, programs the flash to the wear area of the specified page.
505 static int doc_write_seek(struct docg3
*docg3
, int block0
, int block1
, int page
,
510 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
511 block0
, block1
, page
, ofs
);
513 doc_set_reliable_mode(docg3
);
515 if (ofs
< 2 * DOC_LAYOUT_PAGE_SIZE
) {
516 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE1
);
517 doc_flash_command(docg3
, DOC_CMD_READ_PLANE1
);
520 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE2
);
521 doc_flash_command(docg3
, DOC_CMD_READ_PLANE2
);
525 doc_flash_sequence(docg3
, DOC_SEQ_PAGE_SETUP
);
526 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE1
);
528 sector
= (block0
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
529 doc_setup_writeaddr_sector(docg3
, sector
, ofs
);
531 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE3
);
533 ret
= doc_wait_ready(docg3
);
537 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE1
);
538 sector
= (block1
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
539 doc_setup_writeaddr_sector(docg3
, sector
, ofs
);
548 * doc_read_page_ecc_init - Initialize hardware ECC engine
550 * @len: the number of bytes covered by the ECC (BCH covered)
552 * The function does initialize the hardware ECC engine to compute the Hamming
553 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
555 * Return 0 if succeeded, -EIO on error
557 static int doc_read_page_ecc_init(struct docg3
*docg3
, int len
)
559 doc_writew(docg3
, DOC_ECCCONF0_READ_MODE
560 | DOC_ECCCONF0_BCH_ENABLE
| DOC_ECCCONF0_HAMMING_ENABLE
561 | (len
& DOC_ECCCONF0_DATA_BYTES_MASK
),
564 doc_register_readb(docg3
, DOC_FLASHCONTROL
);
565 return doc_wait_ready(docg3
);
569 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
571 * @len: the number of bytes covered by the ECC (BCH covered)
573 * The function does initialize the hardware ECC engine to compute the Hamming
574 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
576 * Return 0 if succeeded, -EIO on error
578 static int doc_write_page_ecc_init(struct docg3
*docg3
, int len
)
580 doc_writew(docg3
, DOC_ECCCONF0_WRITE_MODE
581 | DOC_ECCCONF0_BCH_ENABLE
| DOC_ECCCONF0_HAMMING_ENABLE
582 | (len
& DOC_ECCCONF0_DATA_BYTES_MASK
),
585 doc_register_readb(docg3
, DOC_FLASHCONTROL
);
586 return doc_wait_ready(docg3
);
590 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
593 * Disables the hardware ECC generator and checker, for unchecked reads (as when
594 * reading OOB only or write status byte).
596 static void doc_ecc_disable(struct docg3
*docg3
)
598 doc_writew(docg3
, DOC_ECCCONF0_READ_MODE
, DOC_ECCCONF0
);
603 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
605 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
607 * This function programs the ECC hardware to compute the hamming code on the
608 * last provided N bytes to the hardware generator.
610 static void doc_hamming_ecc_init(struct docg3
*docg3
, int nb_bytes
)
614 ecc_conf1
= doc_register_readb(docg3
, DOC_ECCCONF1
);
615 ecc_conf1
&= ~DOC_ECCCONF1_HAMMING_BITS_MASK
;
616 ecc_conf1
|= (nb_bytes
& DOC_ECCCONF1_HAMMING_BITS_MASK
);
617 doc_writeb(docg3
, ecc_conf1
, DOC_ECCCONF1
);
621 * doc_ecc_bch_fix_data - Fix if need be read data from flash
623 * @buf: the buffer of read data (512 + 7 + 1 bytes)
624 * @hwecc: the hardware calculated ECC.
625 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
626 * area data, and calc_ecc the ECC calculated by the hardware generator.
628 * Checks if the received data matches the ECC, and if an error is detected,
629 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
630 * understands the (data, ecc, syndroms) in an inverted order in comparison to
631 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
632 * bit6 and bit 1, ...) for all ECC data.
634 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
635 * algorithm is used to decode this. However the hw operates on page
636 * data in a bit order that is the reverse of that of the bch alg,
637 * requiring that the bits be reversed on the result. Thanks to Ivan
638 * Djelic for his analysis.
640 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
641 * errors were detected and cannot be fixed.
643 static int doc_ecc_bch_fix_data(struct docg3
*docg3
, void *buf
, u8
*hwecc
)
645 u8 ecc
[DOC_ECC_BCH_SIZE
];
646 int errorpos
[DOC_ECC_BCH_T
], i
, numerrs
;
648 for (i
= 0; i
< DOC_ECC_BCH_SIZE
; i
++)
649 ecc
[i
] = bitrev8(hwecc
[i
]);
650 numerrs
= bch_decode(docg3
->cascade
->bch
, NULL
,
651 DOC_ECC_BCH_COVERED_BYTES
,
652 NULL
, ecc
, NULL
, errorpos
);
653 BUG_ON(numerrs
== -EINVAL
);
657 for (i
= 0; i
< numerrs
; i
++)
658 errorpos
[i
] = (errorpos
[i
] & ~7) | (7 - (errorpos
[i
] & 7));
659 for (i
= 0; i
< numerrs
; i
++)
660 if (errorpos
[i
] < DOC_ECC_BCH_COVERED_BYTES
*8)
661 /* error is located in data, correct it */
662 change_bit(errorpos
[i
], buf
);
664 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs
);
670 * doc_read_page_prepare - Prepares reading data from a flash page
672 * @block0: the first plane block index on flash memory
673 * @block1: the second plane block index on flash memory
674 * @page: the page index in the block
675 * @offset: the offset in the page (must be a multiple of 4)
677 * Prepares the page to be read in the flash memory :
678 * - tell ASIC to map the flash pages
679 * - tell ASIC to be in read mode
681 * After a call to this method, a call to doc_read_page_finish is mandatory,
682 * to end the read cycle of the flash.
684 * Read data from a flash page. The length to be read must be between 0 and
685 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
686 * the extra bytes reading is not implemented).
688 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
690 * - one read of 512 bytes at offset 0
691 * - one read of 512 bytes at offset 512 + 16
693 * Returns 0 if successful, -EIO if a read error occurred.
695 static int doc_read_page_prepare(struct docg3
*docg3
, int block0
, int block1
,
696 int page
, int offset
)
698 int wear_area
= 0, ret
= 0;
700 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
701 block0
, block1
, page
, offset
);
702 if (offset
>= DOC_LAYOUT_WEAR_OFFSET
)
704 if (!wear_area
&& offset
> (DOC_LAYOUT_PAGE_OOB_SIZE
* 2))
707 doc_set_device_id(docg3
, docg3
->device_id
);
708 ret
= doc_reset_seq(docg3
);
712 /* Program the flash address block and page */
713 ret
= doc_read_seek(docg3
, block0
, block1
, page
, wear_area
, offset
);
717 doc_flash_command(docg3
, DOC_CMD_READ_ALL_PLANES
);
719 doc_wait_ready(docg3
);
721 doc_flash_command(docg3
, DOC_CMD_SET_ADDR_READ
);
723 if (offset
>= DOC_LAYOUT_PAGE_SIZE
* 2)
724 offset
-= 2 * DOC_LAYOUT_PAGE_SIZE
;
725 doc_flash_address(docg3
, offset
>> 2);
727 doc_wait_ready(docg3
);
729 doc_flash_command(docg3
, DOC_CMD_READ_FLASH
);
733 doc_writeb(docg3
, 0, DOC_DATAEND
);
739 * doc_read_page_getbytes - Reads bytes from a prepared page
741 * @len: the number of bytes to be read (must be a multiple of 4)
742 * @buf: the buffer to be filled in (or NULL is forget bytes)
743 * @first: 1 if first time read, DOC_READADDRESS should be set
744 * @last_odd: 1 if last read ended up on an odd byte
746 * Reads bytes from a prepared page. There is a trickery here : if the last read
747 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
748 * planes, the first byte must be read apart. If a word (16bit) read was used,
749 * the read would return the byte of plane 2 as low *and* high endian, which
750 * will mess the read.
753 static int doc_read_page_getbytes(struct docg3
*docg3
, int len
, u_char
*buf
,
754 int first
, int last_odd
)
756 if (last_odd
&& len
> 0) {
757 doc_read_data_area(docg3
, buf
, 1, first
);
758 doc_read_data_area(docg3
, buf
? buf
+ 1 : buf
, len
- 1, 0);
760 doc_read_data_area(docg3
, buf
, len
, first
);
767 * doc_write_page_putbytes - Writes bytes into a prepared page
769 * @len: the number of bytes to be written
770 * @buf: the buffer of input bytes
773 static void doc_write_page_putbytes(struct docg3
*docg3
, int len
,
776 doc_write_data_area(docg3
, buf
, len
);
781 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
783 * @hwecc: the array of 7 integers where the hardware ecc will be stored
785 static void doc_get_bch_hw_ecc(struct docg3
*docg3
, u8
*hwecc
)
789 for (i
= 0; i
< DOC_ECC_BCH_SIZE
; i
++)
790 hwecc
[i
] = doc_register_readb(docg3
, DOC_BCH_HW_ECC(i
));
794 * doc_page_finish - Ends reading/writing of a flash page
797 static void doc_page_finish(struct docg3
*docg3
)
799 doc_writeb(docg3
, 0, DOC_DATAEND
);
804 * doc_read_page_finish - Ends reading of a flash page
807 * As a side effect, resets the chip selector to 0. This ensures that after each
808 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
809 * reboot will boot on floor 0, where the IPL is.
811 static void doc_read_page_finish(struct docg3
*docg3
)
813 doc_page_finish(docg3
);
814 doc_set_device_id(docg3
, 0);
818 * calc_block_sector - Calculate blocks, pages and ofs.
820 * @from: offset in flash
821 * @block0: first plane block index calculated
822 * @block1: second plane block index calculated
823 * @page: page calculated
824 * @ofs: offset in page
825 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
828 * The calculation is based on the reliable/normal mode. In normal mode, the 64
829 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
830 * clones, only 32 pages per block are available.
832 static void calc_block_sector(loff_t from
, int *block0
, int *block1
, int *page
,
833 int *ofs
, int reliable
)
835 uint sector
, pages_biblock
;
837 pages_biblock
= DOC_LAYOUT_PAGES_PER_BLOCK
* DOC_LAYOUT_NBPLANES
;
838 if (reliable
== 1 || reliable
== 2)
841 sector
= from
/ DOC_LAYOUT_PAGE_SIZE
;
842 *block0
= sector
/ pages_biblock
* DOC_LAYOUT_NBPLANES
;
843 *block1
= *block0
+ 1;
844 *page
= sector
% pages_biblock
;
845 *page
/= DOC_LAYOUT_NBPLANES
;
846 if (reliable
== 1 || reliable
== 2)
849 *ofs
= DOC_LAYOUT_PAGE_OOB_SIZE
;
855 * doc_read_oob - Read out of band bytes from flash
857 * @from: the offset from first block and first page, in bytes, aligned on page
859 * @ops: the mtd oob structure
861 * Reads flash memory OOB area of pages.
863 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
865 static int doc_read_oob(struct mtd_info
*mtd
, loff_t from
,
866 struct mtd_oob_ops
*ops
)
868 struct docg3
*docg3
= mtd
->priv
;
869 int block0
, block1
, page
, ret
, skip
, ofs
= 0;
870 u8
*oobbuf
= ops
->oobbuf
;
871 u8
*buf
= ops
->datbuf
;
872 size_t len
, ooblen
, nbdata
, nboob
;
873 u8 hwecc
[DOC_ECC_BCH_SIZE
], eccconf1
;
874 struct mtd_ecc_stats old_stats
;
875 int max_bitflips
= 0;
882 ooblen
= ops
->ooblen
;
886 if (oobbuf
&& ops
->mode
== MTD_OPS_PLACE_OOB
)
887 oobbuf
+= ops
->ooboffs
;
889 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
890 from
, ops
->mode
, buf
, len
, oobbuf
, ooblen
);
891 if (ooblen
% DOC_LAYOUT_OOB_SIZE
)
897 skip
= from
% DOC_LAYOUT_PAGE_SIZE
;
898 mutex_lock(&docg3
->cascade
->lock
);
899 old_stats
= mtd
->ecc_stats
;
900 while (ret
>= 0 && (len
> 0 || ooblen
> 0)) {
901 calc_block_sector(from
- skip
, &block0
, &block1
, &page
, &ofs
,
903 nbdata
= min_t(size_t, len
, DOC_LAYOUT_PAGE_SIZE
- skip
);
904 nboob
= min_t(size_t, ooblen
, (size_t)DOC_LAYOUT_OOB_SIZE
);
905 ret
= doc_read_page_prepare(docg3
, block0
, block1
, page
, ofs
);
908 ret
= doc_read_page_ecc_init(docg3
, DOC_ECC_BCH_TOTAL_BYTES
);
911 ret
= doc_read_page_getbytes(docg3
, skip
, NULL
, 1, 0);
914 ret
= doc_read_page_getbytes(docg3
, nbdata
, buf
, 0, skip
% 2);
917 doc_read_page_getbytes(docg3
,
918 DOC_LAYOUT_PAGE_SIZE
- nbdata
- skip
,
919 NULL
, 0, (skip
+ nbdata
) % 2);
920 ret
= doc_read_page_getbytes(docg3
, nboob
, oobbuf
, 0, 0);
923 doc_read_page_getbytes(docg3
, DOC_LAYOUT_OOB_SIZE
- nboob
,
926 doc_get_bch_hw_ecc(docg3
, hwecc
);
927 eccconf1
= doc_register_readb(docg3
, DOC_ECCCONF1
);
929 if (nboob
>= DOC_LAYOUT_OOB_SIZE
) {
930 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf
);
931 doc_dbg("OOB - HAMMING: %02x\n", oobbuf
[7]);
932 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf
+ 8);
933 doc_dbg("OOB - UNUSED: %02x\n", oobbuf
[15]);
935 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1
);
936 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc
);
939 if (is_prot_seq_error(docg3
))
942 if ((block0
>= DOC_LAYOUT_BLOCK_FIRST_DATA
) &&
943 (eccconf1
& DOC_ECCCONF1_BCH_SYNDROM_ERR
) &&
944 (eccconf1
& DOC_ECCCONF1_PAGE_IS_WRITTEN
) &&
945 (ops
->mode
!= MTD_OPS_RAW
) &&
946 (nbdata
== DOC_LAYOUT_PAGE_SIZE
)) {
947 ret
= doc_ecc_bch_fix_data(docg3
, buf
, hwecc
);
949 mtd
->ecc_stats
.failed
++;
953 mtd
->ecc_stats
.corrected
+= ret
;
954 max_bitflips
= max(max_bitflips
, ret
);
959 doc_read_page_finish(docg3
);
960 ops
->retlen
+= nbdata
;
961 ops
->oobretlen
+= nboob
;
966 from
+= DOC_LAYOUT_PAGE_SIZE
;
972 ops
->stats
->uncorrectable_errors
+=
973 mtd
->ecc_stats
.failed
- old_stats
.failed
;
974 ops
->stats
->corrected_bitflips
+=
975 mtd
->ecc_stats
.corrected
- old_stats
.corrected
;
977 mutex_unlock(&docg3
->cascade
->lock
);
980 doc_read_page_finish(docg3
);
984 static int doc_reload_bbt(struct docg3
*docg3
)
986 int block
= DOC_LAYOUT_BLOCK_BBT
;
987 int ret
= 0, nbpages
, page
;
988 u_char
*buf
= docg3
->bbt
;
990 nbpages
= DIV_ROUND_UP(docg3
->max_block
+ 1, 8 * DOC_LAYOUT_PAGE_SIZE
);
991 for (page
= 0; !ret
&& (page
< nbpages
); page
++) {
992 ret
= doc_read_page_prepare(docg3
, block
, block
+ 1,
993 page
+ DOC_LAYOUT_PAGE_BBT
, 0);
995 ret
= doc_read_page_ecc_init(docg3
,
996 DOC_LAYOUT_PAGE_SIZE
);
998 doc_read_page_getbytes(docg3
, DOC_LAYOUT_PAGE_SIZE
,
1000 buf
+= DOC_LAYOUT_PAGE_SIZE
;
1002 doc_read_page_finish(docg3
);
1007 * doc_block_isbad - Checks whether a block is good or not
1009 * @from: the offset to find the correct block
1011 * Returns 1 if block is bad, 0 if block is good
1013 static int doc_block_isbad(struct mtd_info
*mtd
, loff_t from
)
1015 struct docg3
*docg3
= mtd
->priv
;
1016 int block0
, block1
, page
, ofs
, is_good
;
1018 calc_block_sector(from
, &block0
, &block1
, &page
, &ofs
,
1020 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1021 from
, block0
, block1
, page
, ofs
);
1023 if (block0
< DOC_LAYOUT_BLOCK_FIRST_DATA
)
1025 if (block1
> docg3
->max_block
)
1028 is_good
= docg3
->bbt
[block0
>> 3] & (1 << (block0
& 0x7));
1034 * doc_get_erase_count - Get block erase count
1035 * @docg3: the device
1036 * @from: the offset in which the block is.
1038 * Get the number of times a block was erased. The number is the maximum of
1039 * erase times between first and second plane (which should be equal normally).
1041 * Returns The number of erases, or -EINVAL or -EIO on error.
1043 static int doc_get_erase_count(struct docg3
*docg3
, loff_t from
)
1045 u8 buf
[DOC_LAYOUT_WEAR_SIZE
];
1046 int ret
, plane1_erase_count
, plane2_erase_count
;
1047 int block0
, block1
, page
, ofs
;
1049 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from
, buf
);
1050 if (from
% DOC_LAYOUT_PAGE_SIZE
)
1052 calc_block_sector(from
, &block0
, &block1
, &page
, &ofs
, docg3
->reliable
);
1053 if (block1
> docg3
->max_block
)
1056 ret
= doc_reset_seq(docg3
);
1058 ret
= doc_read_page_prepare(docg3
, block0
, block1
, page
,
1059 ofs
+ DOC_LAYOUT_WEAR_OFFSET
, 0);
1061 ret
= doc_read_page_getbytes(docg3
, DOC_LAYOUT_WEAR_SIZE
,
1063 doc_read_page_finish(docg3
);
1065 if (ret
|| (buf
[0] != DOC_ERASE_MARK
) || (buf
[2] != DOC_ERASE_MARK
))
1067 plane1_erase_count
= (u8
)(~buf
[1]) | ((u8
)(~buf
[4]) << 8)
1068 | ((u8
)(~buf
[5]) << 16);
1069 plane2_erase_count
= (u8
)(~buf
[3]) | ((u8
)(~buf
[6]) << 8)
1070 | ((u8
)(~buf
[7]) << 16);
1072 return max(plane1_erase_count
, plane2_erase_count
);
1077 * doc_get_op_status - get erase/write operation status
1078 * @docg3: the device
1080 * Queries the status from the chip, and returns it
1082 * Returns the status (bits DOC_PLANES_STATUS_*)
1084 static int doc_get_op_status(struct docg3
*docg3
)
1088 doc_flash_sequence(docg3
, DOC_SEQ_PLANES_STATUS
);
1089 doc_flash_command(docg3
, DOC_CMD_PLANES_STATUS
);
1090 doc_delay(docg3
, 5);
1092 doc_ecc_disable(docg3
);
1093 doc_read_data_area(docg3
, &status
, 1, 1);
1098 * doc_write_erase_wait_status - wait for write or erase completion
1099 * @docg3: the device
1101 * Wait for the chip to be ready again after erase or write operation, and check
1102 * erase/write status.
1104 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1107 static int doc_write_erase_wait_status(struct docg3
*docg3
)
1109 int i
, status
, ret
= 0;
1111 for (i
= 0; !doc_is_ready(docg3
) && i
< 5; i
++)
1113 if (!doc_is_ready(docg3
)) {
1114 doc_dbg("Timeout reached and the chip is still not ready\n");
1119 status
= doc_get_op_status(docg3
);
1120 if (status
& DOC_PLANES_STATUS_FAIL
) {
1121 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1127 doc_page_finish(docg3
);
1132 * doc_erase_block - Erase a couple of blocks
1133 * @docg3: the device
1134 * @block0: the first block to erase (leftmost plane)
1135 * @block1: the second block to erase (rightmost plane)
1137 * Erase both blocks, and return operation status
1139 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1140 * ready for too long
1142 static int doc_erase_block(struct docg3
*docg3
, int block0
, int block1
)
1146 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0
, block1
);
1147 ret
= doc_reset_seq(docg3
);
1151 doc_set_reliable_mode(docg3
);
1152 doc_flash_sequence(docg3
, DOC_SEQ_ERASE
);
1154 sector
= block0
<< DOC_ADDR_BLOCK_SHIFT
;
1155 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
1156 doc_setup_addr_sector(docg3
, sector
);
1157 sector
= block1
<< DOC_ADDR_BLOCK_SHIFT
;
1158 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
1159 doc_setup_addr_sector(docg3
, sector
);
1160 doc_delay(docg3
, 1);
1162 doc_flash_command(docg3
, DOC_CMD_ERASECYCLE2
);
1163 doc_delay(docg3
, 2);
1165 if (is_prot_seq_error(docg3
)) {
1166 doc_err("Erase blocks %d,%d error\n", block0
, block1
);
1170 return doc_write_erase_wait_status(docg3
);
1174 * doc_erase - Erase a portion of the chip
1176 * @info: the erase info
1178 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1179 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1181 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1184 static int doc_erase(struct mtd_info
*mtd
, struct erase_info
*info
)
1186 struct docg3
*docg3
= mtd
->priv
;
1188 int block0
, block1
, page
, ret
= 0, ofs
= 0;
1190 doc_dbg("doc_erase(from=%lld, len=%lld\n", info
->addr
, info
->len
);
1192 calc_block_sector(info
->addr
+ info
->len
, &block0
, &block1
, &page
,
1193 &ofs
, docg3
->reliable
);
1194 if (info
->addr
+ info
->len
> mtd
->size
|| page
|| ofs
)
1197 calc_block_sector(info
->addr
, &block0
, &block1
, &page
, &ofs
,
1199 mutex_lock(&docg3
->cascade
->lock
);
1200 doc_set_device_id(docg3
, docg3
->device_id
);
1201 doc_set_reliable_mode(docg3
);
1202 for (len
= info
->len
; !ret
&& len
> 0; len
-= mtd
->erasesize
) {
1203 ret
= doc_erase_block(docg3
, block0
, block1
);
1207 mutex_unlock(&docg3
->cascade
->lock
);
1213 * doc_write_page - Write a single page to the chip
1214 * @docg3: the device
1215 * @to: the offset from first block and first page, in bytes, aligned on page
1217 * @buf: buffer to get bytes from
1218 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1220 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1221 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1222 * remaining ones are filled with hardware Hamming and BCH
1223 * computations. Its value is not meaningfull is oob == NULL.
1225 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1226 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1227 * BCH generator if autoecc is not null.
1229 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1231 static int doc_write_page(struct docg3
*docg3
, loff_t to
, const u_char
*buf
,
1232 const u_char
*oob
, int autoecc
)
1234 int block0
, block1
, page
, ret
, ofs
= 0;
1235 u8 hwecc
[DOC_ECC_BCH_SIZE
], hamming
;
1237 doc_dbg("doc_write_page(to=%lld)\n", to
);
1238 calc_block_sector(to
, &block0
, &block1
, &page
, &ofs
, docg3
->reliable
);
1240 doc_set_device_id(docg3
, docg3
->device_id
);
1241 ret
= doc_reset_seq(docg3
);
1245 /* Program the flash address block and page */
1246 ret
= doc_write_seek(docg3
, block0
, block1
, page
, ofs
);
1250 doc_write_page_ecc_init(docg3
, DOC_ECC_BCH_TOTAL_BYTES
);
1251 doc_delay(docg3
, 2);
1252 doc_write_page_putbytes(docg3
, DOC_LAYOUT_PAGE_SIZE
, buf
);
1254 if (oob
&& autoecc
) {
1255 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_PAGEINFO_SZ
, oob
);
1256 doc_delay(docg3
, 2);
1257 oob
+= DOC_LAYOUT_OOB_UNUSED_OFS
;
1259 hamming
= doc_register_readb(docg3
, DOC_HAMMINGPARITY
);
1260 doc_delay(docg3
, 2);
1261 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_HAMMING_SZ
,
1263 doc_delay(docg3
, 2);
1265 doc_get_bch_hw_ecc(docg3
, hwecc
);
1266 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_BCH_SZ
, hwecc
);
1267 doc_delay(docg3
, 2);
1269 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_UNUSED_SZ
, oob
);
1271 if (oob
&& !autoecc
)
1272 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_SIZE
, oob
);
1274 doc_delay(docg3
, 2);
1275 doc_page_finish(docg3
);
1276 doc_delay(docg3
, 2);
1277 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE2
);
1278 doc_delay(docg3
, 2);
1281 * The wait status will perform another doc_page_finish() call, but that
1282 * seems to please the docg3, so leave it.
1284 ret
= doc_write_erase_wait_status(docg3
);
1287 doc_read_page_finish(docg3
);
1292 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1293 * @ops: the oob operations
1295 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1297 static int doc_guess_autoecc(struct mtd_oob_ops
*ops
)
1301 switch (ops
->mode
) {
1302 case MTD_OPS_PLACE_OOB
:
1303 case MTD_OPS_AUTO_OOB
:
1316 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1317 * @dst: the target 16 bytes OOB buffer
1318 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1321 static void doc_fill_autooob(u8
*dst
, u8
*oobsrc
)
1323 memcpy(dst
, oobsrc
, DOC_LAYOUT_OOB_PAGEINFO_SZ
);
1324 dst
[DOC_LAYOUT_OOB_UNUSED_OFS
] = oobsrc
[DOC_LAYOUT_OOB_PAGEINFO_SZ
];
1328 * doc_backup_oob - Backup OOB into docg3 structure
1329 * @docg3: the device
1330 * @to: the page offset in the chip
1331 * @ops: the OOB size and buffer
1333 * As the docg3 should write a page with its OOB in one pass, and some userland
1334 * applications do write_oob() to setup the OOB and then write(), store the OOB
1335 * into a temporary storage. This is very dangerous, as 2 concurrent
1336 * applications could store an OOB, and then write their pages (which will
1337 * result into one having its OOB corrupted).
1339 * The only reliable way would be for userland to call doc_write_oob() with both
1340 * the page data _and_ the OOB area.
1342 * Returns 0 if success, -EINVAL if ops content invalid
1344 static int doc_backup_oob(struct docg3
*docg3
, loff_t to
,
1345 struct mtd_oob_ops
*ops
)
1347 int ooblen
= ops
->ooblen
, autoecc
;
1349 if (ooblen
!= DOC_LAYOUT_OOB_SIZE
)
1351 autoecc
= doc_guess_autoecc(ops
);
1355 docg3
->oob_write_ofs
= to
;
1356 docg3
->oob_autoecc
= autoecc
;
1357 if (ops
->mode
== MTD_OPS_AUTO_OOB
) {
1358 doc_fill_autooob(docg3
->oob_write_buf
, ops
->oobbuf
);
1361 memcpy(docg3
->oob_write_buf
, ops
->oobbuf
, DOC_LAYOUT_OOB_SIZE
);
1362 ops
->oobretlen
= DOC_LAYOUT_OOB_SIZE
;
1368 * doc_write_oob - Write out of band bytes to flash
1370 * @ofs: the offset from first block and first page, in bytes, aligned on page
1372 * @ops: the mtd oob structure
1374 * Either write OOB data into a temporary buffer, for the subsequent write
1375 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1376 * as well, issue the page write.
1377 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1378 * still be filled in if asked for).
1380 * Returns 0 is successful, EINVAL if length is not 14 bytes
1382 static int doc_write_oob(struct mtd_info
*mtd
, loff_t ofs
,
1383 struct mtd_oob_ops
*ops
)
1385 struct docg3
*docg3
= mtd
->priv
;
1386 int ret
, autoecc
, oobdelta
;
1387 u8
*oobbuf
= ops
->oobbuf
;
1388 u8
*buf
= ops
->datbuf
;
1390 u8 oob
[DOC_LAYOUT_OOB_SIZE
];
1397 ooblen
= ops
->ooblen
;
1401 if (oobbuf
&& ops
->mode
== MTD_OPS_PLACE_OOB
)
1402 oobbuf
+= ops
->ooboffs
;
1404 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1405 ofs
, ops
->mode
, buf
, len
, oobbuf
, ooblen
);
1406 switch (ops
->mode
) {
1407 case MTD_OPS_PLACE_OOB
:
1409 oobdelta
= mtd
->oobsize
;
1411 case MTD_OPS_AUTO_OOB
:
1412 oobdelta
= mtd
->oobavail
;
1417 if ((len
% DOC_LAYOUT_PAGE_SIZE
) || (ooblen
% oobdelta
) ||
1418 (ofs
% DOC_LAYOUT_PAGE_SIZE
))
1420 if (len
&& ooblen
&&
1421 (len
/ DOC_LAYOUT_PAGE_SIZE
) != (ooblen
/ oobdelta
))
1427 if (len
== 0 && ooblen
== 0)
1429 if (len
== 0 && ooblen
> 0)
1430 return doc_backup_oob(docg3
, ofs
, ops
);
1432 autoecc
= doc_guess_autoecc(ops
);
1436 mutex_lock(&docg3
->cascade
->lock
);
1437 while (!ret
&& len
> 0) {
1438 memset(oob
, 0, sizeof(oob
));
1439 if (ofs
== docg3
->oob_write_ofs
)
1440 memcpy(oob
, docg3
->oob_write_buf
, DOC_LAYOUT_OOB_SIZE
);
1441 else if (ooblen
> 0 && ops
->mode
== MTD_OPS_AUTO_OOB
)
1442 doc_fill_autooob(oob
, oobbuf
);
1443 else if (ooblen
> 0)
1444 memcpy(oob
, oobbuf
, DOC_LAYOUT_OOB_SIZE
);
1445 ret
= doc_write_page(docg3
, ofs
, buf
, oob
, autoecc
);
1447 ofs
+= DOC_LAYOUT_PAGE_SIZE
;
1448 len
-= DOC_LAYOUT_PAGE_SIZE
;
1449 buf
+= DOC_LAYOUT_PAGE_SIZE
;
1453 ops
->oobretlen
+= oobdelta
;
1455 ops
->retlen
+= DOC_LAYOUT_PAGE_SIZE
;
1458 doc_set_device_id(docg3
, 0);
1459 mutex_unlock(&docg3
->cascade
->lock
);
1463 static struct docg3
*sysfs_dev2docg3(struct device
*dev
,
1464 struct device_attribute
*attr
)
1467 struct mtd_info
**docg3_floors
= dev_get_drvdata(dev
);
1469 floor
= attr
->attr
.name
[1] - '0';
1470 if (floor
< 0 || floor
>= DOC_MAX_NBFLOORS
)
1473 return docg3_floors
[floor
]->priv
;
1476 static ssize_t
dps0_is_key_locked(struct device
*dev
,
1477 struct device_attribute
*attr
, char *buf
)
1479 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1482 mutex_lock(&docg3
->cascade
->lock
);
1483 doc_set_device_id(docg3
, docg3
->device_id
);
1484 dps0
= doc_register_readb(docg3
, DOC_DPS0_STATUS
);
1485 doc_set_device_id(docg3
, 0);
1486 mutex_unlock(&docg3
->cascade
->lock
);
1488 return sprintf(buf
, "%d\n", !(dps0
& DOC_DPS_KEY_OK
));
1491 static ssize_t
dps1_is_key_locked(struct device
*dev
,
1492 struct device_attribute
*attr
, char *buf
)
1494 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1497 mutex_lock(&docg3
->cascade
->lock
);
1498 doc_set_device_id(docg3
, docg3
->device_id
);
1499 dps1
= doc_register_readb(docg3
, DOC_DPS1_STATUS
);
1500 doc_set_device_id(docg3
, 0);
1501 mutex_unlock(&docg3
->cascade
->lock
);
1503 return sprintf(buf
, "%d\n", !(dps1
& DOC_DPS_KEY_OK
));
1506 static ssize_t
dps0_insert_key(struct device
*dev
,
1507 struct device_attribute
*attr
,
1508 const char *buf
, size_t count
)
1510 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1513 if (count
!= DOC_LAYOUT_DPS_KEY_LENGTH
)
1516 mutex_lock(&docg3
->cascade
->lock
);
1517 doc_set_device_id(docg3
, docg3
->device_id
);
1518 for (i
= 0; i
< DOC_LAYOUT_DPS_KEY_LENGTH
; i
++)
1519 doc_writeb(docg3
, buf
[i
], DOC_DPS0_KEY
);
1520 doc_set_device_id(docg3
, 0);
1521 mutex_unlock(&docg3
->cascade
->lock
);
1525 static ssize_t
dps1_insert_key(struct device
*dev
,
1526 struct device_attribute
*attr
,
1527 const char *buf
, size_t count
)
1529 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1532 if (count
!= DOC_LAYOUT_DPS_KEY_LENGTH
)
1535 mutex_lock(&docg3
->cascade
->lock
);
1536 doc_set_device_id(docg3
, docg3
->device_id
);
1537 for (i
= 0; i
< DOC_LAYOUT_DPS_KEY_LENGTH
; i
++)
1538 doc_writeb(docg3
, buf
[i
], DOC_DPS1_KEY
);
1539 doc_set_device_id(docg3
, 0);
1540 mutex_unlock(&docg3
->cascade
->lock
);
1544 #define FLOOR_SYSFS(id) { \
1545 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1546 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1547 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1548 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1551 static struct device_attribute doc_sys_attrs
[DOC_MAX_NBFLOORS
][4] = {
1552 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1555 static int doc_register_sysfs(struct platform_device
*pdev
,
1556 struct docg3_cascade
*cascade
)
1558 struct device
*dev
= &pdev
->dev
;
1564 floor
< DOC_MAX_NBFLOORS
&& cascade
->floors
[floor
];
1566 for (i
= 0; i
< 4; i
++) {
1567 ret
= device_create_file(dev
, &doc_sys_attrs
[floor
][i
]);
1578 device_remove_file(dev
, &doc_sys_attrs
[floor
][i
]);
1580 } while (--floor
>= 0);
1585 static void doc_unregister_sysfs(struct platform_device
*pdev
,
1586 struct docg3_cascade
*cascade
)
1588 struct device
*dev
= &pdev
->dev
;
1591 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
&& cascade
->floors
[floor
];
1593 for (i
= 0; i
< 4; i
++)
1594 device_remove_file(dev
, &doc_sys_attrs
[floor
][i
]);
1598 * Debug sysfs entries
1600 static int flashcontrol_show(struct seq_file
*s
, void *p
)
1602 struct docg3
*docg3
= s
->private;
1606 mutex_lock(&docg3
->cascade
->lock
);
1607 fctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
1608 mutex_unlock(&docg3
->cascade
->lock
);
1610 seq_printf(s
, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1612 fctrl
& DOC_CTRL_VIOLATION
? "protocol violation" : "-",
1613 fctrl
& DOC_CTRL_CE
? "active" : "inactive",
1614 fctrl
& DOC_CTRL_PROTECTION_ERROR
? "protection error" : "-",
1615 fctrl
& DOC_CTRL_SEQUENCE_ERROR
? "sequence error" : "-",
1616 fctrl
& DOC_CTRL_FLASHREADY
? "ready" : "not ready");
1620 DEFINE_SHOW_ATTRIBUTE(flashcontrol
);
1622 static int asic_mode_show(struct seq_file
*s
, void *p
)
1624 struct docg3
*docg3
= s
->private;
1628 mutex_lock(&docg3
->cascade
->lock
);
1629 pctrl
= doc_register_readb(docg3
, DOC_ASICMODE
);
1630 mode
= pctrl
& 0x03;
1631 mutex_unlock(&docg3
->cascade
->lock
);
1634 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1636 pctrl
& DOC_ASICMODE_RAM_WE
? 1 : 0,
1637 pctrl
& DOC_ASICMODE_RSTIN_RESET
? 1 : 0,
1638 pctrl
& DOC_ASICMODE_BDETCT_RESET
? 1 : 0,
1639 pctrl
& DOC_ASICMODE_MDWREN
? 1 : 0,
1640 pctrl
& DOC_ASICMODE_POWERDOWN
? 1 : 0,
1641 mode
>> 1, mode
& 0x1);
1644 case DOC_ASICMODE_RESET
:
1645 seq_puts(s
, "reset");
1647 case DOC_ASICMODE_NORMAL
:
1648 seq_puts(s
, "normal");
1650 case DOC_ASICMODE_POWERDOWN
:
1651 seq_puts(s
, "powerdown");
1657 DEFINE_SHOW_ATTRIBUTE(asic_mode
);
1659 static int device_id_show(struct seq_file
*s
, void *p
)
1661 struct docg3
*docg3
= s
->private;
1664 mutex_lock(&docg3
->cascade
->lock
);
1665 id
= doc_register_readb(docg3
, DOC_DEVICESELECT
);
1666 mutex_unlock(&docg3
->cascade
->lock
);
1668 seq_printf(s
, "DeviceId = %d\n", id
);
1671 DEFINE_SHOW_ATTRIBUTE(device_id
);
1673 static int protection_show(struct seq_file
*s
, void *p
)
1675 struct docg3
*docg3
= s
->private;
1676 int protect
, dps0
, dps0_low
, dps0_high
, dps1
, dps1_low
, dps1_high
;
1678 mutex_lock(&docg3
->cascade
->lock
);
1679 protect
= doc_register_readb(docg3
, DOC_PROTECTION
);
1680 dps0
= doc_register_readb(docg3
, DOC_DPS0_STATUS
);
1681 dps0_low
= doc_register_readw(docg3
, DOC_DPS0_ADDRLOW
);
1682 dps0_high
= doc_register_readw(docg3
, DOC_DPS0_ADDRHIGH
);
1683 dps1
= doc_register_readb(docg3
, DOC_DPS1_STATUS
);
1684 dps1_low
= doc_register_readw(docg3
, DOC_DPS1_ADDRLOW
);
1685 dps1_high
= doc_register_readw(docg3
, DOC_DPS1_ADDRHIGH
);
1686 mutex_unlock(&docg3
->cascade
->lock
);
1688 seq_printf(s
, "Protection = 0x%02x (", protect
);
1689 if (protect
& DOC_PROTECT_FOUNDRY_OTP_LOCK
)
1690 seq_puts(s
, "FOUNDRY_OTP_LOCK,");
1691 if (protect
& DOC_PROTECT_CUSTOMER_OTP_LOCK
)
1692 seq_puts(s
, "CUSTOMER_OTP_LOCK,");
1693 if (protect
& DOC_PROTECT_LOCK_INPUT
)
1694 seq_puts(s
, "LOCK_INPUT,");
1695 if (protect
& DOC_PROTECT_STICKY_LOCK
)
1696 seq_puts(s
, "STICKY_LOCK,");
1697 if (protect
& DOC_PROTECT_PROTECTION_ENABLED
)
1698 seq_puts(s
, "PROTECTION ON,");
1699 if (protect
& DOC_PROTECT_IPL_DOWNLOAD_LOCK
)
1700 seq_puts(s
, "IPL_DOWNLOAD_LOCK,");
1701 if (protect
& DOC_PROTECT_PROTECTION_ERROR
)
1702 seq_puts(s
, "PROTECT_ERR,");
1704 seq_puts(s
, "NO_PROTECT_ERR");
1707 seq_printf(s
, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1708 dps0
, dps0_low
, dps0_high
,
1709 !!(dps0
& DOC_DPS_OTP_PROTECTED
),
1710 !!(dps0
& DOC_DPS_READ_PROTECTED
),
1711 !!(dps0
& DOC_DPS_WRITE_PROTECTED
),
1712 !!(dps0
& DOC_DPS_HW_LOCK_ENABLED
),
1713 !!(dps0
& DOC_DPS_KEY_OK
));
1714 seq_printf(s
, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1715 dps1
, dps1_low
, dps1_high
,
1716 !!(dps1
& DOC_DPS_OTP_PROTECTED
),
1717 !!(dps1
& DOC_DPS_READ_PROTECTED
),
1718 !!(dps1
& DOC_DPS_WRITE_PROTECTED
),
1719 !!(dps1
& DOC_DPS_HW_LOCK_ENABLED
),
1720 !!(dps1
& DOC_DPS_KEY_OK
));
1723 DEFINE_SHOW_ATTRIBUTE(protection
);
1725 static void __init
doc_dbg_register(struct mtd_info
*floor
)
1727 struct dentry
*root
= floor
->dbg
.dfs_dir
;
1728 struct docg3
*docg3
= floor
->priv
;
1730 if (IS_ERR_OR_NULL(root
)) {
1731 if (IS_ENABLED(CONFIG_DEBUG_FS
) &&
1732 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER
))
1733 dev_warn(floor
->dev
.parent
,
1734 "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
1738 debugfs_create_file("docg3_flashcontrol", S_IRUSR
, root
, docg3
,
1739 &flashcontrol_fops
);
1740 debugfs_create_file("docg3_asic_mode", S_IRUSR
, root
, docg3
,
1742 debugfs_create_file("docg3_device_id", S_IRUSR
, root
, docg3
,
1744 debugfs_create_file("docg3_protection", S_IRUSR
, root
, docg3
,
1749 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1750 * @chip_id: The chip ID of the supported chip
1751 * @mtd: The structure to fill
1753 static int __init
doc_set_driver_info(int chip_id
, struct mtd_info
*mtd
)
1755 struct docg3
*docg3
= mtd
->priv
;
1758 cfg
= doc_register_readb(docg3
, DOC_CONFIGURATION
);
1759 docg3
->if_cfg
= (cfg
& DOC_CONF_IF_CFG
? 1 : 0);
1760 docg3
->reliable
= reliable_mode
;
1764 mtd
->name
= devm_kasprintf(docg3
->dev
, GFP_KERNEL
, "docg3.%d",
1768 docg3
->max_block
= 2047;
1771 mtd
->type
= MTD_NANDFLASH
;
1772 mtd
->flags
= MTD_CAP_NANDFLASH
;
1773 mtd
->size
= (docg3
->max_block
+ 1) * DOC_LAYOUT_BLOCK_SIZE
;
1774 if (docg3
->reliable
== 2)
1776 mtd
->erasesize
= DOC_LAYOUT_BLOCK_SIZE
* DOC_LAYOUT_NBPLANES
;
1777 if (docg3
->reliable
== 2)
1778 mtd
->erasesize
/= 2;
1779 mtd
->writebufsize
= mtd
->writesize
= DOC_LAYOUT_PAGE_SIZE
;
1780 mtd
->oobsize
= DOC_LAYOUT_OOB_SIZE
;
1781 mtd
->_erase
= doc_erase
;
1782 mtd
->_read_oob
= doc_read_oob
;
1783 mtd
->_write_oob
= doc_write_oob
;
1784 mtd
->_block_isbad
= doc_block_isbad
;
1785 mtd_set_ooblayout(mtd
, &nand_ooblayout_docg3_ops
);
1787 mtd
->ecc_strength
= DOC_ECC_BCH_T
;
1793 * doc_probe_device - Check if a device is available
1794 * @cascade: the cascade of chips this devices will belong to
1795 * @floor: the floor of the probed device
1798 * Checks whether a device at the specified IO range, and floor is available.
1800 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1801 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1804 static struct mtd_info
* __init
1805 doc_probe_device(struct docg3_cascade
*cascade
, int floor
, struct device
*dev
)
1807 int ret
, bbt_nbpages
;
1808 u16 chip_id
, chip_id_inv
;
1809 struct docg3
*docg3
;
1810 struct mtd_info
*mtd
;
1813 docg3
= kzalloc(sizeof(struct docg3
), GFP_KERNEL
);
1816 mtd
= kzalloc(sizeof(struct mtd_info
), GFP_KERNEL
);
1820 mtd
->dev
.parent
= dev
;
1821 bbt_nbpages
= DIV_ROUND_UP(docg3
->max_block
+ 1,
1822 8 * DOC_LAYOUT_PAGE_SIZE
);
1823 docg3
->bbt
= kcalloc(DOC_LAYOUT_PAGE_SIZE
, bbt_nbpages
, GFP_KERNEL
);
1828 docg3
->device_id
= floor
;
1829 docg3
->cascade
= cascade
;
1830 doc_set_device_id(docg3
, docg3
->device_id
);
1832 doc_set_asic_mode(docg3
, DOC_ASICMODE_RESET
);
1833 doc_set_asic_mode(docg3
, DOC_ASICMODE_NORMAL
);
1835 chip_id
= doc_register_readw(docg3
, DOC_CHIPID
);
1836 chip_id_inv
= doc_register_readw(docg3
, DOC_CHIPID_INV
);
1839 if (chip_id
!= (u16
)(~chip_id_inv
)) {
1845 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1846 docg3
->cascade
->base
, floor
);
1849 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id
);
1853 ret
= doc_set_driver_info(chip_id
, mtd
);
1857 doc_hamming_ecc_init(docg3
, DOC_LAYOUT_OOB_PAGEINFO_SZ
);
1858 doc_reload_bbt(docg3
);
1868 return ret
? ERR_PTR(ret
) : NULL
;
1872 * doc_release_device - Release a docg3 floor
1875 static void doc_release_device(struct mtd_info
*mtd
)
1877 struct docg3
*docg3
= mtd
->priv
;
1879 mtd_device_unregister(mtd
);
1886 * docg3_resume - Awakens docg3 floor
1887 * @pdev: platfrom device
1889 * Returns 0 (always successful)
1891 static int docg3_resume(struct platform_device
*pdev
)
1894 struct docg3_cascade
*cascade
;
1895 struct mtd_info
**docg3_floors
, *mtd
;
1896 struct docg3
*docg3
;
1898 cascade
= platform_get_drvdata(pdev
);
1899 docg3_floors
= cascade
->floors
;
1900 mtd
= docg3_floors
[0];
1903 doc_dbg("docg3_resume()\n");
1904 for (i
= 0; i
< 12; i
++)
1905 doc_readb(docg3
, DOC_IOSPACE_IPL
);
1910 * docg3_suspend - Put in low power mode the docg3 floor
1911 * @pdev: platform device
1912 * @state: power state
1914 * Shuts off most of docg3 circuitery to lower power consumption.
1916 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1918 static int docg3_suspend(struct platform_device
*pdev
, pm_message_t state
)
1921 struct docg3_cascade
*cascade
;
1922 struct mtd_info
**docg3_floors
, *mtd
;
1923 struct docg3
*docg3
;
1926 cascade
= platform_get_drvdata(pdev
);
1927 docg3_floors
= cascade
->floors
;
1928 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++) {
1929 mtd
= docg3_floors
[floor
];
1934 doc_writeb(docg3
, floor
, DOC_DEVICESELECT
);
1935 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
1936 ctrl
&= ~DOC_CTRL_VIOLATION
& ~DOC_CTRL_CE
;
1937 doc_writeb(docg3
, ctrl
, DOC_FLASHCONTROL
);
1939 for (i
= 0; i
< 10; i
++) {
1940 usleep_range(3000, 4000);
1941 pwr_down
= doc_register_readb(docg3
, DOC_POWERMODE
);
1942 if (pwr_down
& DOC_POWERDOWN_READY
)
1945 if (pwr_down
& DOC_POWERDOWN_READY
) {
1946 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
1949 doc_err("docg3_suspend(): floor %d powerdown failed\n",
1955 mtd
= docg3_floors
[0];
1957 doc_set_asic_mode(docg3
, DOC_ASICMODE_POWERDOWN
);
1962 * docg3_probe - Probe the IO space for a DiskOnChip G3 chip
1963 * @pdev: platform device
1965 * Probes for a G3 chip at the specified IO space in the platform data
1966 * ressources. The floor 0 must be available.
1968 * Returns 0 on success, -ENOMEM, -ENXIO on error
1970 static int __init
docg3_probe(struct platform_device
*pdev
)
1972 struct device
*dev
= &pdev
->dev
;
1973 struct mtd_info
*mtd
;
1974 struct resource
*ress
;
1977 struct docg3_cascade
*cascade
;
1980 ress
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1982 dev_err(dev
, "No I/O memory resource defined\n");
1987 base
= devm_ioremap(dev
, ress
->start
, DOC_IOSPACE_SIZE
);
1989 dev_err(dev
, "devm_ioremap dev failed\n");
1993 cascade
= devm_kcalloc(dev
, DOC_MAX_NBFLOORS
, sizeof(*cascade
),
1997 cascade
->base
= base
;
1998 mutex_init(&cascade
->lock
);
1999 cascade
->bch
= bch_init(DOC_ECC_BCH_M
, DOC_ECC_BCH_T
,
2000 DOC_ECC_BCH_PRIMPOLY
, false);
2004 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++) {
2005 mtd
= doc_probe_device(cascade
, floor
, dev
);
2016 cascade
->floors
[floor
] = mtd
;
2017 ret
= mtd_device_parse_register(mtd
, part_probes
, NULL
, NULL
,
2022 doc_dbg_register(cascade
->floors
[floor
]);
2025 ret
= doc_register_sysfs(pdev
, cascade
);
2029 platform_set_drvdata(pdev
, cascade
);
2034 dev_info(dev
, "No supported DiskOnChip found\n");
2036 bch_free(cascade
->bch
);
2037 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++)
2038 if (cascade
->floors
[floor
])
2039 doc_release_device(cascade
->floors
[floor
]);
2044 * docg3_release - Release the driver
2045 * @pdev: the platform device
2049 static void docg3_release(struct platform_device
*pdev
)
2051 struct docg3_cascade
*cascade
= platform_get_drvdata(pdev
);
2052 struct docg3
*docg3
= cascade
->floors
[0]->priv
;
2055 doc_unregister_sysfs(pdev
, cascade
);
2056 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++)
2057 if (cascade
->floors
[floor
])
2058 doc_release_device(cascade
->floors
[floor
]);
2060 bch_free(docg3
->cascade
->bch
);
2064 static const struct of_device_id docg3_dt_ids
[] = {
2065 { .compatible
= "m-systems,diskonchip-g3" },
2068 MODULE_DEVICE_TABLE(of
, docg3_dt_ids
);
2071 static struct platform_driver g3_driver
= {
2074 .of_match_table
= of_match_ptr(docg3_dt_ids
),
2076 .suspend
= docg3_suspend
,
2077 .resume
= docg3_resume
,
2078 .remove
= docg3_release
,
2081 module_platform_driver_probe(g3_driver
, docg3_probe
);
2083 MODULE_LICENSE("GPL");
2084 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2085 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");