1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 #include <linux/mtd/spi-nor.h>
11 /* flash_info mfr_flag. Used to read proprietary FSR register. */
12 #define USE_FSR BIT(0)
14 #define SPINOR_OP_MT_DIE_ERASE 0xc4 /* Chip (die) erase opcode */
15 #define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
16 #define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */
17 #define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */
18 #define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */
19 #define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */
20 #define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */
21 #define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */
22 #define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */
23 #define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */
24 #define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */
26 /* Flag Status Register bits */
27 #define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */
28 #define FSR_E_ERR BIT(5) /* Erase operation status */
29 #define FSR_P_ERR BIT(4) /* Program operation status */
30 #define FSR_PT_ERR BIT(1) /* Protection error bit */
32 /* Micron ST SPI NOR flash operations. */
33 #define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
34 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0), \
35 SPI_MEM_OP_ADDR(naddr, addr, 0), \
36 SPI_MEM_OP_NO_DUMMY, \
37 SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
39 #define MICRON_ST_RDFSR_OP(buf) \
40 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), \
42 SPI_MEM_OP_NO_DUMMY, \
43 SPI_MEM_OP_DATA_IN(1, buf, 0))
45 #define MICRON_ST_CLFSR_OP \
46 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0), \
48 SPI_MEM_OP_NO_DUMMY, \
51 static int micron_st_nor_octal_dtr_en(struct spi_nor
*nor
)
54 u8
*buf
= nor
->bouncebuf
;
56 u8 addr_mode_nbytes
= nor
->params
->addr_mode_nbytes
;
58 /* Use 20 dummy cycles for memory array reads. */
60 op
= (struct spi_mem_op
)
61 MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes
,
62 SPINOR_REG_MT_CFR1V
, 1, buf
);
63 ret
= spi_nor_write_any_volatile_reg(nor
, &op
, nor
->reg_proto
);
67 buf
[0] = SPINOR_MT_OCT_DTR
;
68 op
= (struct spi_mem_op
)
69 MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes
,
70 SPINOR_REG_MT_CFR0V
, 1, buf
);
71 ret
= spi_nor_write_any_volatile_reg(nor
, &op
, nor
->reg_proto
);
75 /* Read flash ID to make sure the switch was successful. */
76 ret
= spi_nor_read_id(nor
, 0, 8, buf
, SNOR_PROTO_8_8_8_DTR
);
78 dev_dbg(nor
->dev
, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret
);
82 if (memcmp(buf
, nor
->info
->id
->bytes
, nor
->info
->id
->len
))
88 static int micron_st_nor_octal_dtr_dis(struct spi_nor
*nor
)
91 u8
*buf
= nor
->bouncebuf
;
95 * The register is 1-byte wide, but 1-byte transactions are not allowed
96 * in 8D-8D-8D mode. The next register is the dummy cycle configuration
97 * register. Since the transaction needs to be at least 2 bytes wide,
98 * set the next register to its default value. This also makes sense
99 * because the value was changed when enabling 8D-8D-8D mode, it should
100 * be reset when disabling.
102 buf
[0] = SPINOR_MT_EXSPI
;
103 buf
[1] = SPINOR_REG_MT_CFR1V_DEF
;
104 op
= (struct spi_mem_op
)
105 MICRON_ST_NOR_WR_ANY_REG_OP(nor
->addr_nbytes
,
106 SPINOR_REG_MT_CFR0V
, 2, buf
);
107 ret
= spi_nor_write_any_volatile_reg(nor
, &op
, SNOR_PROTO_8_8_8_DTR
);
111 /* Read flash ID to make sure the switch was successful. */
112 ret
= spi_nor_read_id(nor
, 0, 0, buf
, SNOR_PROTO_1_1_1
);
114 dev_dbg(nor
->dev
, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret
);
118 if (memcmp(buf
, nor
->info
->id
->bytes
, nor
->info
->id
->len
))
124 static int micron_st_nor_set_octal_dtr(struct spi_nor
*nor
, bool enable
)
126 return enable
? micron_st_nor_octal_dtr_en(nor
) :
127 micron_st_nor_octal_dtr_dis(nor
);
130 static void mt35xu512aba_default_init(struct spi_nor
*nor
)
132 nor
->params
->set_octal_dtr
= micron_st_nor_set_octal_dtr
;
135 static int mt35xu512aba_post_sfdp_fixup(struct spi_nor
*nor
)
137 /* Set the Fast Read settings. */
138 nor
->params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_8_8_8_DTR
;
139 spi_nor_set_read_settings(&nor
->params
->reads
[SNOR_CMD_READ_8_8_8_DTR
],
140 0, 20, SPINOR_OP_MT_DTR_RD
,
141 SNOR_PROTO_8_8_8_DTR
);
143 nor
->cmd_ext_type
= SPI_NOR_EXT_REPEAT
;
144 nor
->params
->rdsr_dummy
= 8;
145 nor
->params
->rdsr_addr_nbytes
= 0;
148 * The BFPT quad enable field is set to a reserved value so the quad
149 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
152 nor
->params
->quad_enable
= NULL
;
157 static const struct spi_nor_fixups mt35xu512aba_fixups
= {
158 .default_init
= mt35xu512aba_default_init
,
159 .post_sfdp
= mt35xu512aba_post_sfdp_fixup
,
162 static const struct flash_info micron_nor_parts
[] = {
164 .id
= SNOR_ID(0x2c, 0x5b, 0x1a),
165 .name
= "mt35xu512aba",
166 .sector_size
= SZ_128K
,
168 .no_sfdp_flags
= SECT_4K
| SPI_NOR_OCTAL_READ
|
169 SPI_NOR_OCTAL_DTR_READ
| SPI_NOR_OCTAL_DTR_PP
,
170 .mfr_flags
= USE_FSR
,
171 .fixup_flags
= SPI_NOR_4B_OPCODES
| SPI_NOR_IO_MODE_EN_VOLATILE
,
172 .fixups
= &mt35xu512aba_fixups
,
174 .id
= SNOR_ID(0x2c, 0x5b, 0x1c),
176 .sector_size
= SZ_128K
,
178 .no_sfdp_flags
= SECT_4K
| SPI_NOR_OCTAL_READ
,
179 .mfr_flags
= USE_FSR
,
180 .fixup_flags
= SPI_NOR_4B_OPCODES
,
184 static int mt25qu512a_post_bfpt_fixup(struct spi_nor
*nor
,
185 const struct sfdp_parameter_header
*bfpt_header
,
186 const struct sfdp_bfpt
*bfpt
)
188 nor
->flags
&= ~SNOR_F_HAS_16BIT_SR
;
192 static struct spi_nor_fixups mt25qu512a_fixups
= {
193 .post_bfpt
= mt25qu512a_post_bfpt_fixup
,
196 static int st_nor_four_die_late_init(struct spi_nor
*nor
)
198 struct spi_nor_flash_parameter
*params
= nor
->params
;
200 params
->die_erase_opcode
= SPINOR_OP_MT_DIE_ERASE
;
204 * Unfortunately the die erase opcode does not have a 4-byte opcode
205 * correspondent for these flashes. The SFDP 4BAIT table fails to
206 * consider the die erase too. We're forced to enter in the 4 byte
207 * address mode in order to benefit of the die erase.
209 return spi_nor_set_4byte_addr_mode(nor
, true);
212 static int st_nor_two_die_late_init(struct spi_nor
*nor
)
214 struct spi_nor_flash_parameter
*params
= nor
->params
;
216 params
->die_erase_opcode
= SPINOR_OP_MT_DIE_ERASE
;
220 * Unfortunately the die erase opcode does not have a 4-byte opcode
221 * correspondent for these flashes. The SFDP 4BAIT table fails to
222 * consider the die erase too. We're forced to enter in the 4 byte
223 * address mode in order to benefit of the die erase.
225 return spi_nor_set_4byte_addr_mode(nor
, true);
228 static struct spi_nor_fixups n25q00_fixups
= {
229 .late_init
= st_nor_four_die_late_init
,
232 static struct spi_nor_fixups mt25q01_fixups
= {
233 .late_init
= st_nor_two_die_late_init
,
236 static struct spi_nor_fixups mt25q02_fixups
= {
237 .late_init
= st_nor_four_die_late_init
,
240 static const struct flash_info st_nor_parts
[] = {
242 .name
= "m25p05-nonjedec",
243 .sector_size
= SZ_32K
,
246 .name
= "m25p10-nonjedec",
247 .sector_size
= SZ_32K
,
250 .name
= "m25p20-nonjedec",
253 .name
= "m25p40-nonjedec",
256 .name
= "m25p80-nonjedec",
259 .name
= "m25p16-nonjedec",
262 .name
= "m25p32-nonjedec",
265 .name
= "m25p64-nonjedec",
268 .name
= "m25p128-nonjedec",
269 .sector_size
= SZ_256K
,
272 .id
= SNOR_ID(0x20, 0x20, 0x10),
274 .sector_size
= SZ_32K
,
277 .id
= SNOR_ID(0x20, 0x20, 0x11),
279 .sector_size
= SZ_32K
,
282 .id
= SNOR_ID(0x20, 0x20, 0x12),
286 .id
= SNOR_ID(0x20, 0x20, 0x13),
290 .id
= SNOR_ID(0x20, 0x20, 0x14),
294 .id
= SNOR_ID(0x20, 0x20, 0x15),
298 .id
= SNOR_ID(0x20, 0x20, 0x16),
302 .id
= SNOR_ID(0x20, 0x20, 0x17),
306 .id
= SNOR_ID(0x20, 0x20, 0x18),
308 .sector_size
= SZ_256K
,
311 .id
= SNOR_ID(0x20, 0x40, 0x11),
315 .id
= SNOR_ID(0x20, 0x40, 0x14),
319 .id
= SNOR_ID(0x20, 0x40, 0x15),
323 .id
= SNOR_ID(0x20, 0x63, 0x16),
324 .name
= "m25px32-s1",
326 .no_sfdp_flags
= SECT_4K
,
328 .id
= SNOR_ID(0x20, 0x71, 0x14),
332 .id
= SNOR_ID(0x20, 0x71, 0x15),
335 .no_sfdp_flags
= SECT_4K
,
337 .id
= SNOR_ID(0x20, 0x71, 0x16),
340 .no_sfdp_flags
= SECT_4K
,
342 .id
= SNOR_ID(0x20, 0x71, 0x17),
346 .id
= SNOR_ID(0x20, 0x73, 0x16),
347 .name
= "m25px32-s0",
349 .no_sfdp_flags
= SECT_4K
,
351 .id
= SNOR_ID(0x20, 0x80, 0x12),
355 .id
= SNOR_ID(0x20, 0x80, 0x14),
359 .id
= SNOR_ID(0x20, 0x80, 0x15),
362 .no_sfdp_flags
= SECT_4K
,
364 .id
= SNOR_ID(0x20, 0xba, 0x16),
367 .no_sfdp_flags
= SPI_NOR_QUAD_READ
,
369 .id
= SNOR_ID(0x20, 0xba, 0x17),
372 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
374 .id
= SNOR_ID(0x20, 0xba, 0x18),
375 .name
= "n25q128a13",
377 .flags
= SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
| SPI_NOR_4BIT_BP
|
379 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
380 .mfr_flags
= USE_FSR
,
382 .id
= SNOR_ID(0x20, 0xba, 0x19, 0x10, 0x44, 0x00),
383 .name
= "mt25ql256a",
385 .no_sfdp_flags
= SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
,
386 .fixup_flags
= SPI_NOR_4B_OPCODES
,
387 .mfr_flags
= USE_FSR
,
389 .id
= SNOR_ID(0x20, 0xba, 0x19),
392 .no_sfdp_flags
= SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
,
393 .mfr_flags
= USE_FSR
,
395 .id
= SNOR_ID(0x20, 0xba, 0x20, 0x10, 0x44, 0x00),
396 .name
= "mt25ql512a",
398 .no_sfdp_flags
= SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
,
399 .fixup_flags
= SPI_NOR_4B_OPCODES
,
400 .mfr_flags
= USE_FSR
,
402 .id
= SNOR_ID(0x20, 0xba, 0x20),
403 .name
= "n25q512ax3",
405 .flags
= SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
| SPI_NOR_4BIT_BP
|
407 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
408 .mfr_flags
= USE_FSR
,
410 .id
= SNOR_ID(0x20, 0xba, 0x21),
413 .flags
= SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
| SPI_NOR_4BIT_BP
|
415 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
416 .mfr_flags
= USE_FSR
,
417 .fixups
= &n25q00_fixups
,
419 .id
= SNOR_ID(0x20, 0xba, 0x22),
422 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
423 .mfr_flags
= USE_FSR
,
424 .fixups
= &mt25q02_fixups
,
426 .id
= SNOR_ID(0x20, 0xbb, 0x15),
429 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
431 .id
= SNOR_ID(0x20, 0xbb, 0x16),
434 .no_sfdp_flags
= SPI_NOR_QUAD_READ
,
436 .id
= SNOR_ID(0x20, 0xbb, 0x17),
439 .flags
= SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
| SPI_NOR_4BIT_BP
|
441 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
443 .id
= SNOR_ID(0x20, 0xbb, 0x18),
444 .name
= "n25q128a11",
446 .flags
= SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
| SPI_NOR_4BIT_BP
|
448 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
449 .mfr_flags
= USE_FSR
,
451 .id
= SNOR_ID(0x20, 0xbb, 0x19, 0x10, 0x44, 0x00),
452 .name
= "mt25qu256a",
454 .flags
= SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
| SPI_NOR_4BIT_BP
|
456 .no_sfdp_flags
= SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
,
457 .fixup_flags
= SPI_NOR_4B_OPCODES
,
458 .mfr_flags
= USE_FSR
,
460 .id
= SNOR_ID(0x20, 0xbb, 0x19),
461 .name
= "n25q256ax1",
463 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
464 .mfr_flags
= USE_FSR
,
466 .id
= SNOR_ID(0x20, 0xbb, 0x20, 0x10, 0x44, 0x00),
467 .name
= "mt25qu512a",
468 .flags
= SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
| SPI_NOR_4BIT_BP
|
470 .mfr_flags
= USE_FSR
,
471 .fixups
= &mt25qu512a_fixups
,
473 .id
= SNOR_ID(0x20, 0xbb, 0x20),
476 .flags
= SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
| SPI_NOR_4BIT_BP
|
478 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
479 .mfr_flags
= USE_FSR
,
481 .id
= SNOR_ID(0x20, 0xbb, 0x21, 0x10, 0x44, 0x00),
483 .mfr_flags
= USE_FSR
,
484 .fixups
= &mt25q01_fixups
,
486 .id
= SNOR_ID(0x20, 0xbb, 0x21),
489 .no_sfdp_flags
= SECT_4K
| SPI_NOR_QUAD_READ
,
490 .mfr_flags
= USE_FSR
,
491 .fixups
= &n25q00_fixups
,
493 .id
= SNOR_ID(0x20, 0xbb, 0x22),
496 .no_sfdp_flags
= SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
,
497 .mfr_flags
= USE_FSR
,
498 .fixups
= &mt25q02_fixups
,
503 * micron_st_nor_read_fsr() - Read the Flag Status Register.
504 * @nor: pointer to 'struct spi_nor'
505 * @fsr: pointer to a DMA-able buffer where the value of the
506 * Flag Status Register will be written. Should be at least 2
509 * Return: 0 on success, -errno otherwise.
511 static int micron_st_nor_read_fsr(struct spi_nor
*nor
, u8
*fsr
)
516 struct spi_mem_op op
= MICRON_ST_RDFSR_OP(fsr
);
518 if (nor
->reg_proto
== SNOR_PROTO_8_8_8_DTR
) {
519 op
.addr
.nbytes
= nor
->params
->rdsr_addr_nbytes
;
520 op
.dummy
.nbytes
= nor
->params
->rdsr_dummy
;
522 * We don't want to read only one byte in DTR mode. So,
523 * read 2 and then discard the second byte.
528 spi_nor_spimem_setup_op(nor
, &op
, nor
->reg_proto
);
530 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
532 ret
= spi_nor_controller_ops_read_reg(nor
, SPINOR_OP_RDFSR
, fsr
,
537 dev_dbg(nor
->dev
, "error %d reading FSR\n", ret
);
543 * micron_st_nor_clear_fsr() - Clear the Flag Status Register.
544 * @nor: pointer to 'struct spi_nor'.
546 static void micron_st_nor_clear_fsr(struct spi_nor
*nor
)
551 struct spi_mem_op op
= MICRON_ST_CLFSR_OP
;
553 spi_nor_spimem_setup_op(nor
, &op
, nor
->reg_proto
);
555 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
557 ret
= spi_nor_controller_ops_write_reg(nor
, SPINOR_OP_CLFSR
,
562 dev_dbg(nor
->dev
, "error %d clearing FSR\n", ret
);
566 * micron_st_nor_ready() - Query the Status Register as well as the Flag Status
567 * Register to see if the flash is ready for new commands. If there are any
568 * errors in the FSR clear them.
569 * @nor: pointer to 'struct spi_nor'.
571 * Return: 1 if ready, 0 if not ready, -errno on errors.
573 static int micron_st_nor_ready(struct spi_nor
*nor
)
577 sr_ready
= spi_nor_sr_ready(nor
);
581 ret
= micron_st_nor_read_fsr(nor
, nor
->bouncebuf
);
584 * Some controllers, such as Intel SPI, do not support low
585 * level operations such as reading the flag status
586 * register. They only expose small amount of high level
587 * operations to the software. If this is the case we use
588 * only the status register value.
590 return ret
== -EOPNOTSUPP
? sr_ready
: ret
;
593 if (nor
->bouncebuf
[0] & (FSR_E_ERR
| FSR_P_ERR
)) {
594 if (nor
->bouncebuf
[0] & FSR_E_ERR
)
595 dev_err(nor
->dev
, "Erase operation failed.\n");
597 dev_err(nor
->dev
, "Program operation failed.\n");
599 if (nor
->bouncebuf
[0] & FSR_PT_ERR
)
601 "Attempted to modify a protected sector.\n");
603 micron_st_nor_clear_fsr(nor
);
606 * WEL bit remains set to one when an erase or page program
607 * error occurs. Issue a Write Disable command to protect
608 * against inadvertent writes that can possibly corrupt the
609 * contents of the memory.
611 ret
= spi_nor_write_disable(nor
);
618 return sr_ready
&& !!(nor
->bouncebuf
[0] & FSR_READY
);
621 static void micron_st_nor_default_init(struct spi_nor
*nor
)
623 nor
->flags
|= SNOR_F_HAS_LOCK
;
624 nor
->flags
&= ~SNOR_F_HAS_16BIT_SR
;
625 nor
->params
->quad_enable
= NULL
;
628 static int micron_st_nor_late_init(struct spi_nor
*nor
)
630 struct spi_nor_flash_parameter
*params
= nor
->params
;
632 if (nor
->info
->mfr_flags
& USE_FSR
)
633 params
->ready
= micron_st_nor_ready
;
635 if (!params
->set_4byte_addr_mode
)
636 params
->set_4byte_addr_mode
= spi_nor_set_4byte_addr_mode_wren_en4b_ex4b
;
641 static const struct spi_nor_fixups micron_st_nor_fixups
= {
642 .default_init
= micron_st_nor_default_init
,
643 .late_init
= micron_st_nor_late_init
,
646 const struct spi_nor_manufacturer spi_nor_micron
= {
648 .parts
= micron_nor_parts
,
649 .nparts
= ARRAY_SIZE(micron_nor_parts
),
650 .fixups
= µn_st_nor_fixups
,
653 const struct spi_nor_manufacturer spi_nor_st
= {
655 .parts
= st_nor_parts
,
656 .nparts
= ARRAY_SIZE(st_nor_parts
),
657 .fixups
= µn_st_nor_fixups
,