1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
5 * Author: Artem Bityutskiy (Битюцкий Артём)
9 * UBI attaching sub-system.
11 * This sub-system is responsible for attaching MTD devices and it also
12 * implements flash media scanning.
14 * The attaching information is represented by a &struct ubi_attach_info'
15 * object. Information about volumes is represented by &struct ubi_ainf_volume
16 * objects which are kept in volume RB-tree with root at the @volumes field.
17 * The RB-tree is indexed by the volume ID.
19 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
20 * objects are kept in per-volume RB-trees with the root at the corresponding
21 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
22 * per-volume objects and each of these objects is the root of RB-tree of
25 * Corrupted physical eraseblocks are put to the @corr list, free physical
26 * eraseblocks are put to the @free list and the physical eraseblock to be
27 * erased are put to the @erase list.
32 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
33 * whether the headers are corrupted or not. Sometimes UBI also protects the
34 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
35 * when it moves the contents of a PEB for wear-leveling purposes.
37 * UBI tries to distinguish between 2 types of corruptions.
39 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
40 * tries to handle them gracefully, without printing too many warnings and
41 * error messages. The idea is that we do not lose important data in these
42 * cases - we may lose only the data which were being written to the media just
43 * before the power cut happened, and the upper layers (e.g., UBIFS) are
44 * supposed to handle such data losses (e.g., by using the FS journal).
46 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
47 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
48 * PEBs in the @erase list are scheduled for erasure later.
50 * 2. Unexpected corruptions which are not caused by power cuts. During
51 * attaching, such PEBs are put to the @corr list and UBI preserves them.
52 * Obviously, this lessens the amount of available PEBs, and if at some point
53 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
54 * about such PEBs every time the MTD device is attached.
56 * However, it is difficult to reliably distinguish between these types of
57 * corruptions and UBI's strategy is as follows (in case of attaching by
58 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
59 * the data area does not contain all 0xFFs, and there were no bit-flips or
60 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
61 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
63 * o If the data area contains only 0xFFs, there are no data, and it is safe
64 * to just erase this PEB - this is corruption type 1.
65 * o If the data area has bit-flips or data integrity errors (ECC errors on
66 * NAND), it is probably a PEB which was being erased when power cut
67 * happened, so this is corruption type 1. However, this is just a guess,
68 * which might be wrong.
69 * o Otherwise this is corruption type 2.
72 #include <linux/err.h>
73 #include <linux/slab.h>
74 #include <linux/crc32.h>
75 #include <linux/math64.h>
76 #include <linux/random.h>
79 static int self_check_ai(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
);
81 #define AV_FIND BIT(0)
83 #define AV_FIND_OR_ADD (AV_FIND | AV_ADD)
86 * find_or_add_av - internal function to find a volume, add a volume or do
87 * both (find and add if missing).
88 * @ai: attaching information
89 * @vol_id: the requested volume ID
90 * @flags: a combination of the %AV_FIND and %AV_ADD flags describing the
91 * expected operation. If only %AV_ADD is set, -EEXIST is returned
92 * if the volume already exists. If only %AV_FIND is set, NULL is
93 * returned if the volume does not exist. And if both flags are
94 * set, the helper first tries to find an existing volume, and if
95 * it does not exist it creates a new one.
96 * @created: in value used to inform the caller whether it"s a newly created
99 * This function returns a pointer to a volume description or an ERR_PTR if
100 * the operation failed. It can also return NULL if only %AV_FIND is set and
101 * the volume does not exist.
103 static struct ubi_ainf_volume
*find_or_add_av(struct ubi_attach_info
*ai
,
104 int vol_id
, unsigned int flags
,
107 struct ubi_ainf_volume
*av
;
108 struct rb_node
**p
= &ai
->volumes
.rb_node
, *parent
= NULL
;
110 /* Walk the volume RB-tree to look if this volume is already present */
113 av
= rb_entry(parent
, struct ubi_ainf_volume
, rb
);
115 if (vol_id
== av
->vol_id
) {
118 if (!(flags
& AV_FIND
))
119 return ERR_PTR(-EEXIST
);
124 if (vol_id
> av
->vol_id
)
130 if (!(flags
& AV_ADD
))
133 /* The volume is absent - add it */
134 av
= kzalloc(sizeof(*av
), GFP_KERNEL
);
136 return ERR_PTR(-ENOMEM
);
140 if (vol_id
> ai
->highest_vol_id
)
141 ai
->highest_vol_id
= vol_id
;
143 rb_link_node(&av
->rb
, parent
, p
);
144 rb_insert_color(&av
->rb
, &ai
->volumes
);
147 dbg_bld("added volume %d", vol_id
);
152 * ubi_find_or_add_av - search for a volume in the attaching information and
153 * add one if it does not exist.
154 * @ai: attaching information
155 * @vol_id: the requested volume ID
156 * @created: whether the volume has been created or not
158 * This function returns a pointer to the new volume description or an
159 * ERR_PTR if the operation failed.
161 static struct ubi_ainf_volume
*ubi_find_or_add_av(struct ubi_attach_info
*ai
,
162 int vol_id
, bool *created
)
164 return find_or_add_av(ai
, vol_id
, AV_FIND_OR_ADD
, created
);
168 * ubi_alloc_aeb - allocate an aeb element
169 * @ai: attaching information
170 * @pnum: physical eraseblock number
171 * @ec: erase counter of the physical eraseblock
173 * Allocate an aeb object and initialize the pnum and ec information.
174 * vol_id and lnum are set to UBI_UNKNOWN, and the other fields are
175 * initialized to zero.
176 * Note that the element is not added in any list or RB tree.
178 struct ubi_ainf_peb
*ubi_alloc_aeb(struct ubi_attach_info
*ai
, int pnum
,
181 struct ubi_ainf_peb
*aeb
;
183 aeb
= kmem_cache_zalloc(ai
->aeb_slab_cache
, GFP_KERNEL
);
189 aeb
->vol_id
= UBI_UNKNOWN
;
190 aeb
->lnum
= UBI_UNKNOWN
;
196 * ubi_free_aeb - free an aeb element
197 * @ai: attaching information
198 * @aeb: the element to free
200 * Free an aeb object. The caller must have removed the element from any list
203 void ubi_free_aeb(struct ubi_attach_info
*ai
, struct ubi_ainf_peb
*aeb
)
205 kmem_cache_free(ai
->aeb_slab_cache
, aeb
);
209 * add_to_list - add physical eraseblock to a list.
210 * @ai: attaching information
211 * @pnum: physical eraseblock number to add
212 * @vol_id: the last used volume id for the PEB
213 * @lnum: the last used LEB number for the PEB
214 * @ec: erase counter of the physical eraseblock
215 * @to_head: if not zero, add to the head of the list
216 * @list: the list to add to
218 * This function allocates a 'struct ubi_ainf_peb' object for physical
219 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
220 * It stores the @lnum and @vol_id alongside, which can both be
221 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
222 * If @to_head is not zero, PEB will be added to the head of the list, which
223 * basically means it will be processed first later. E.g., we add corrupted
224 * PEBs (corrupted due to power cuts) to the head of the erase list to make
225 * sure we erase them first and get rid of corruptions ASAP. This function
226 * returns zero in case of success and a negative error code in case of
229 static int add_to_list(struct ubi_attach_info
*ai
, int pnum
, int vol_id
,
230 int lnum
, int ec
, int to_head
, struct list_head
*list
)
232 struct ubi_ainf_peb
*aeb
;
234 if (list
== &ai
->free
) {
235 dbg_bld("add to free: PEB %d, EC %d", pnum
, ec
);
236 } else if (list
== &ai
->erase
) {
237 dbg_bld("add to erase: PEB %d, EC %d", pnum
, ec
);
238 } else if (list
== &ai
->alien
) {
239 dbg_bld("add to alien: PEB %d, EC %d", pnum
, ec
);
240 ai
->alien_peb_count
+= 1;
244 aeb
= ubi_alloc_aeb(ai
, pnum
, ec
);
248 aeb
->vol_id
= vol_id
;
251 list_add(&aeb
->u
.list
, list
);
253 list_add_tail(&aeb
->u
.list
, list
);
258 * add_corrupted - add a corrupted physical eraseblock.
259 * @ai: attaching information
260 * @pnum: physical eraseblock number to add
261 * @ec: erase counter of the physical eraseblock
263 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
264 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
265 * was presumably not caused by a power cut. Returns zero in case of success
266 * and a negative error code in case of failure.
268 static int add_corrupted(struct ubi_attach_info
*ai
, int pnum
, int ec
)
270 struct ubi_ainf_peb
*aeb
;
272 dbg_bld("add to corrupted: PEB %d, EC %d", pnum
, ec
);
274 aeb
= ubi_alloc_aeb(ai
, pnum
, ec
);
278 ai
->corr_peb_count
+= 1;
279 list_add(&aeb
->u
.list
, &ai
->corr
);
284 * add_fastmap - add a Fastmap related physical eraseblock.
285 * @ai: attaching information
286 * @pnum: physical eraseblock number the VID header came from
287 * @vid_hdr: the volume identifier header
288 * @ec: erase counter of the physical eraseblock
290 * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp
291 * physical eraseblock @pnum and adds it to the 'fastmap' list.
292 * Such blocks can be Fastmap super and data blocks from both the most
293 * recent Fastmap we're attaching from or from old Fastmaps which will
296 static int add_fastmap(struct ubi_attach_info
*ai
, int pnum
,
297 struct ubi_vid_hdr
*vid_hdr
, int ec
)
299 struct ubi_ainf_peb
*aeb
;
301 aeb
= ubi_alloc_aeb(ai
, pnum
, ec
);
305 aeb
->vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
306 aeb
->sqnum
= be64_to_cpu(vid_hdr
->sqnum
);
307 list_add(&aeb
->u
.list
, &ai
->fastmap
);
309 dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum
,
310 aeb
->vol_id
, aeb
->sqnum
);
316 * validate_vid_hdr - check volume identifier header.
317 * @ubi: UBI device description object
318 * @vid_hdr: the volume identifier header to check
319 * @av: information about the volume this logical eraseblock belongs to
320 * @pnum: physical eraseblock number the VID header came from
322 * This function checks that data stored in @vid_hdr is consistent. Returns
323 * non-zero if an inconsistency was found and zero if not.
325 * Note, UBI does sanity check of everything it reads from the flash media.
326 * Most of the checks are done in the I/O sub-system. Here we check that the
327 * information in the VID header is consistent to the information in other VID
328 * headers of the same volume.
330 static int validate_vid_hdr(const struct ubi_device
*ubi
,
331 const struct ubi_vid_hdr
*vid_hdr
,
332 const struct ubi_ainf_volume
*av
, int pnum
)
334 int vol_type
= vid_hdr
->vol_type
;
335 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
336 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
337 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
339 if (av
->leb_count
!= 0) {
343 * This is not the first logical eraseblock belonging to this
344 * volume. Ensure that the data in its VID header is consistent
345 * to the data in previous logical eraseblock headers.
348 if (vol_id
!= av
->vol_id
) {
349 ubi_err(ubi
, "inconsistent vol_id");
353 if (av
->vol_type
== UBI_STATIC_VOLUME
)
354 av_vol_type
= UBI_VID_STATIC
;
356 av_vol_type
= UBI_VID_DYNAMIC
;
358 if (vol_type
!= av_vol_type
) {
359 ubi_err(ubi
, "inconsistent vol_type");
363 if (used_ebs
!= av
->used_ebs
) {
364 ubi_err(ubi
, "inconsistent used_ebs");
368 if (data_pad
!= av
->data_pad
) {
369 ubi_err(ubi
, "inconsistent data_pad");
377 ubi_err(ubi
, "inconsistent VID header at PEB %d", pnum
);
378 ubi_dump_vid_hdr(vid_hdr
);
384 * add_volume - add volume to the attaching information.
385 * @ai: attaching information
386 * @vol_id: ID of the volume to add
387 * @pnum: physical eraseblock number
388 * @vid_hdr: volume identifier header
390 * If the volume corresponding to the @vid_hdr logical eraseblock is already
391 * present in the attaching information, this function does nothing. Otherwise
392 * it adds corresponding volume to the attaching information. Returns a pointer
393 * to the allocated "av" object in case of success and a negative error code in
396 static struct ubi_ainf_volume
*add_volume(struct ubi_attach_info
*ai
,
397 int vol_id
, int pnum
,
398 const struct ubi_vid_hdr
*vid_hdr
)
400 struct ubi_ainf_volume
*av
;
403 ubi_assert(vol_id
== be32_to_cpu(vid_hdr
->vol_id
));
405 av
= ubi_find_or_add_av(ai
, vol_id
, &created
);
406 if (IS_ERR(av
) || !created
)
409 av
->used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
410 av
->data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
411 av
->compat
= vid_hdr
->compat
;
412 av
->vol_type
= vid_hdr
->vol_type
== UBI_VID_DYNAMIC
? UBI_DYNAMIC_VOLUME
419 * ubi_compare_lebs - find out which logical eraseblock is newer.
420 * @ubi: UBI device description object
421 * @aeb: first logical eraseblock to compare
422 * @pnum: physical eraseblock number of the second logical eraseblock to
424 * @vid_hdr: volume identifier header of the second logical eraseblock
426 * This function compares 2 copies of a LEB and informs which one is newer. In
427 * case of success this function returns a positive value, in case of failure, a
428 * negative error code is returned. The success return codes use the following
430 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
431 * second PEB (described by @pnum and @vid_hdr);
432 * o bit 0 is set: the second PEB is newer;
433 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
434 * o bit 1 is set: bit-flips were detected in the newer LEB;
435 * o bit 2 is cleared: the older LEB is not corrupted;
436 * o bit 2 is set: the older LEB is corrupted.
438 int ubi_compare_lebs(struct ubi_device
*ubi
, const struct ubi_ainf_peb
*aeb
,
439 int pnum
, const struct ubi_vid_hdr
*vid_hdr
)
441 int len
, err
, second_is_newer
, bitflips
= 0, corrupted
= 0;
442 uint32_t data_crc
, crc
;
443 struct ubi_vid_io_buf
*vidb
= NULL
;
444 unsigned long long sqnum2
= be64_to_cpu(vid_hdr
->sqnum
);
446 if (sqnum2
== aeb
->sqnum
) {
448 * This must be a really ancient UBI image which has been
449 * created before sequence numbers support has been added. At
450 * that times we used 32-bit LEB versions stored in logical
451 * eraseblocks. That was before UBI got into mainline. We do not
452 * support these images anymore. Well, those images still work,
453 * but only if no unclean reboots happened.
455 ubi_err(ubi
, "unsupported on-flash UBI format");
459 /* Obviously the LEB with lower sequence counter is older */
460 second_is_newer
= (sqnum2
> aeb
->sqnum
);
463 * Now we know which copy is newer. If the copy flag of the PEB with
464 * newer version is not set, then we just return, otherwise we have to
465 * check data CRC. For the second PEB we already have the VID header,
466 * for the first one - we'll need to re-read it from flash.
468 * Note: this may be optimized so that we wouldn't read twice.
471 if (second_is_newer
) {
472 if (!vid_hdr
->copy_flag
) {
473 /* It is not a copy, so it is newer */
474 dbg_bld("second PEB %d is newer, copy_flag is unset",
479 if (!aeb
->copy_flag
) {
480 /* It is not a copy, so it is newer */
481 dbg_bld("first PEB %d is newer, copy_flag is unset",
483 return bitflips
<< 1;
486 vidb
= ubi_alloc_vid_buf(ubi
, GFP_KERNEL
);
491 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 0);
493 if (err
== UBI_IO_BITFLIPS
)
496 ubi_err(ubi
, "VID of PEB %d header is bad, but it was OK earlier, err %d",
505 vid_hdr
= ubi_get_vid_hdr(vidb
);
508 /* Read the data of the copy and check the CRC */
510 len
= be32_to_cpu(vid_hdr
->data_size
);
512 mutex_lock(&ubi
->buf_mutex
);
513 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, pnum
, 0, len
);
514 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
517 data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
518 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, len
);
519 if (crc
!= data_crc
) {
520 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
521 pnum
, crc
, data_crc
);
524 second_is_newer
= !second_is_newer
;
526 dbg_bld("PEB %d CRC is OK", pnum
);
529 mutex_unlock(&ubi
->buf_mutex
);
531 ubi_free_vid_buf(vidb
);
534 dbg_bld("second PEB %d is newer, copy_flag is set", pnum
);
536 dbg_bld("first PEB %d is newer, copy_flag is set", pnum
);
538 return second_is_newer
| (bitflips
<< 1) | (corrupted
<< 2);
541 mutex_unlock(&ubi
->buf_mutex
);
543 ubi_free_vid_buf(vidb
);
548 * ubi_add_to_av - add used physical eraseblock to the attaching information.
549 * @ubi: UBI device description object
550 * @ai: attaching information
551 * @pnum: the physical eraseblock number
553 * @vid_hdr: the volume identifier header
554 * @bitflips: if bit-flips were detected when this physical eraseblock was read
556 * This function adds information about a used physical eraseblock to the
557 * 'used' tree of the corresponding volume. The function is rather complex
558 * because it has to handle cases when this is not the first physical
559 * eraseblock belonging to the same logical eraseblock, and the newer one has
560 * to be picked, while the older one has to be dropped. This function returns
561 * zero in case of success and a negative error code in case of failure.
563 int ubi_add_to_av(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
, int pnum
,
564 int ec
, const struct ubi_vid_hdr
*vid_hdr
, int bitflips
)
566 int err
, vol_id
, lnum
;
567 unsigned long long sqnum
;
568 struct ubi_ainf_volume
*av
;
569 struct ubi_ainf_peb
*aeb
;
570 struct rb_node
**p
, *parent
= NULL
;
572 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
573 lnum
= be32_to_cpu(vid_hdr
->lnum
);
574 sqnum
= be64_to_cpu(vid_hdr
->sqnum
);
576 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
577 pnum
, vol_id
, lnum
, ec
, sqnum
, bitflips
);
579 av
= add_volume(ai
, vol_id
, pnum
, vid_hdr
);
583 if (ai
->max_sqnum
< sqnum
)
584 ai
->max_sqnum
= sqnum
;
587 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
588 * if this is the first instance of this logical eraseblock or not.
590 p
= &av
->root
.rb_node
;
595 aeb
= rb_entry(parent
, struct ubi_ainf_peb
, u
.rb
);
596 if (lnum
!= aeb
->lnum
) {
597 if (lnum
< aeb
->lnum
)
605 * There is already a physical eraseblock describing the same
606 * logical eraseblock present.
609 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
610 aeb
->pnum
, aeb
->sqnum
, aeb
->ec
);
613 * Make sure that the logical eraseblocks have different
614 * sequence numbers. Otherwise the image is bad.
616 * However, if the sequence number is zero, we assume it must
617 * be an ancient UBI image from the era when UBI did not have
618 * sequence numbers. We still can attach these images, unless
619 * there is a need to distinguish between old and new
620 * eraseblocks, in which case we'll refuse the image in
621 * 'ubi_compare_lebs()'. In other words, we attach old clean
622 * images, but refuse attaching old images with duplicated
623 * logical eraseblocks because there was an unclean reboot.
625 if (aeb
->sqnum
== sqnum
&& sqnum
!= 0) {
626 ubi_err(ubi
, "two LEBs with same sequence number %llu",
628 ubi_dump_aeb(aeb
, 0);
629 ubi_dump_vid_hdr(vid_hdr
);
634 * Now we have to drop the older one and preserve the newer
637 cmp_res
= ubi_compare_lebs(ubi
, aeb
, pnum
, vid_hdr
);
643 * This logical eraseblock is newer than the one
646 err
= validate_vid_hdr(ubi
, vid_hdr
, av
, pnum
);
650 err
= add_to_list(ai
, aeb
->pnum
, aeb
->vol_id
,
651 aeb
->lnum
, aeb
->ec
, cmp_res
& 4,
658 aeb
->vol_id
= vol_id
;
660 aeb
->scrub
= ((cmp_res
& 2) || bitflips
);
661 aeb
->copy_flag
= vid_hdr
->copy_flag
;
664 if (av
->highest_lnum
== lnum
)
666 be32_to_cpu(vid_hdr
->data_size
);
671 * This logical eraseblock is older than the one found
674 return add_to_list(ai
, pnum
, vol_id
, lnum
, ec
,
675 cmp_res
& 4, &ai
->erase
);
680 * We've met this logical eraseblock for the first time, add it to the
681 * attaching information.
684 err
= validate_vid_hdr(ubi
, vid_hdr
, av
, pnum
);
688 aeb
= ubi_alloc_aeb(ai
, pnum
, ec
);
692 aeb
->vol_id
= vol_id
;
694 aeb
->scrub
= bitflips
;
695 aeb
->copy_flag
= vid_hdr
->copy_flag
;
698 if (av
->highest_lnum
<= lnum
) {
699 av
->highest_lnum
= lnum
;
700 av
->last_data_size
= be32_to_cpu(vid_hdr
->data_size
);
704 rb_link_node(&aeb
->u
.rb
, parent
, p
);
705 rb_insert_color(&aeb
->u
.rb
, &av
->root
);
710 * ubi_add_av - add volume to the attaching information.
711 * @ai: attaching information
712 * @vol_id: the requested volume ID
714 * This function returns a pointer to the new volume description or an
715 * ERR_PTR if the operation failed.
717 struct ubi_ainf_volume
*ubi_add_av(struct ubi_attach_info
*ai
, int vol_id
)
721 return find_or_add_av(ai
, vol_id
, AV_ADD
, &created
);
725 * ubi_find_av - find volume in the attaching information.
726 * @ai: attaching information
727 * @vol_id: the requested volume ID
729 * This function returns a pointer to the volume description or %NULL if there
730 * are no data about this volume in the attaching information.
732 struct ubi_ainf_volume
*ubi_find_av(const struct ubi_attach_info
*ai
,
737 return find_or_add_av((struct ubi_attach_info
*)ai
, vol_id
, AV_FIND
,
741 static void destroy_av(struct ubi_attach_info
*ai
, struct ubi_ainf_volume
*av
,
742 struct list_head
*list
);
745 * ubi_remove_av - delete attaching information about a volume.
746 * @ai: attaching information
747 * @av: the volume attaching information to delete
749 void ubi_remove_av(struct ubi_attach_info
*ai
, struct ubi_ainf_volume
*av
)
751 dbg_bld("remove attaching information about volume %d", av
->vol_id
);
753 rb_erase(&av
->rb
, &ai
->volumes
);
754 destroy_av(ai
, av
, &ai
->erase
);
759 * early_erase_peb - erase a physical eraseblock.
760 * @ubi: UBI device description object
761 * @ai: attaching information
762 * @pnum: physical eraseblock number to erase;
763 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
765 * This function erases physical eraseblock 'pnum', and writes the erase
766 * counter header to it. This function should only be used on UBI device
767 * initialization stages, when the EBA sub-system had not been yet initialized.
768 * This function returns zero in case of success and a negative error code in
771 static int early_erase_peb(struct ubi_device
*ubi
,
772 const struct ubi_attach_info
*ai
, int pnum
, int ec
)
775 struct ubi_ec_hdr
*ec_hdr
;
777 if ((long long)ec
>= UBI_MAX_ERASECOUNTER
) {
779 * Erase counter overflow. Upgrade UBI and use 64-bit
780 * erase counters internally.
782 ubi_err(ubi
, "erase counter overflow at PEB %d, EC %d",
787 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
791 ec_hdr
->ec
= cpu_to_be64(ec
);
793 err
= ubi_io_sync_erase(ubi
, pnum
, 0);
797 err
= ubi_io_write_ec_hdr(ubi
, pnum
, ec_hdr
);
805 * ubi_early_get_peb - get a free physical eraseblock.
806 * @ubi: UBI device description object
807 * @ai: attaching information
809 * This function returns a free physical eraseblock. It is supposed to be
810 * called on the UBI initialization stages when the wear-leveling sub-system is
811 * not initialized yet. This function picks a physical eraseblocks from one of
812 * the lists, writes the EC header if it is needed, and removes it from the
815 * This function returns a pointer to the "aeb" of the found free PEB in case
816 * of success and an error code in case of failure.
818 struct ubi_ainf_peb
*ubi_early_get_peb(struct ubi_device
*ubi
,
819 struct ubi_attach_info
*ai
)
822 struct ubi_ainf_peb
*aeb
, *tmp_aeb
;
824 if (!list_empty(&ai
->free
)) {
825 aeb
= list_entry(ai
->free
.next
, struct ubi_ainf_peb
, u
.list
);
826 list_del(&aeb
->u
.list
);
827 dbg_bld("return free PEB %d, EC %d", aeb
->pnum
, aeb
->ec
);
832 * We try to erase the first physical eraseblock from the erase list
833 * and pick it if we succeed, or try to erase the next one if not. And
834 * so forth. We don't want to take care about bad eraseblocks here -
835 * they'll be handled later.
837 list_for_each_entry_safe(aeb
, tmp_aeb
, &ai
->erase
, u
.list
) {
838 if (aeb
->ec
== UBI_UNKNOWN
)
839 aeb
->ec
= ai
->mean_ec
;
841 err
= early_erase_peb(ubi
, ai
, aeb
->pnum
, aeb
->ec
+1);
846 list_del(&aeb
->u
.list
);
847 dbg_bld("return PEB %d, EC %d", aeb
->pnum
, aeb
->ec
);
851 ubi_err(ubi
, "no free eraseblocks");
852 return ERR_PTR(-ENOSPC
);
856 * check_corruption - check the data area of PEB.
857 * @ubi: UBI device description object
858 * @vid_hdr: the (corrupted) VID header of this PEB
859 * @pnum: the physical eraseblock number to check
861 * This is a helper function which is used to distinguish between VID header
862 * corruptions caused by power cuts and other reasons. If the PEB contains only
863 * 0xFF bytes in the data area, the VID header is most probably corrupted
864 * because of a power cut (%0 is returned in this case). Otherwise, it was
865 * probably corrupted for some other reasons (%1 is returned in this case). A
866 * negative error code is returned if a read error occurred.
868 * If the corruption reason was a power cut, UBI can safely erase this PEB.
869 * Otherwise, it should preserve it to avoid possibly destroying important
872 static int check_corruption(struct ubi_device
*ubi
, struct ubi_vid_hdr
*vid_hdr
,
877 mutex_lock(&ubi
->buf_mutex
);
878 memset(ubi
->peb_buf
, 0x00, ubi
->leb_size
);
880 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, ubi
->leb_start
,
882 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
)) {
884 * Bit-flips or integrity errors while reading the data area.
885 * It is difficult to say for sure what type of corruption is
886 * this, but presumably a power cut happened while this PEB was
887 * erased, so it became unstable and corrupted, and should be
897 if (ubi_check_pattern(ubi
->peb_buf
, 0xFF, ubi
->leb_size
))
900 ubi_err(ubi
, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
902 ubi_err(ubi
, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
903 ubi_dump_vid_hdr(vid_hdr
);
904 pr_err("hexdump of PEB %d offset %d, length %d",
905 pnum
, ubi
->leb_start
, ubi
->leb_size
);
906 ubi_dbg_print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
907 ubi
->peb_buf
, ubi
->leb_size
, 1);
911 mutex_unlock(&ubi
->buf_mutex
);
915 static bool vol_ignored(int vol_id
)
918 case UBI_LAYOUT_VOLUME_ID
:
922 #ifdef CONFIG_MTD_UBI_FASTMAP
923 return ubi_is_fm_vol(vol_id
);
930 * scan_peb - scan and process UBI headers of a PEB.
931 * @ubi: UBI device description object
932 * @ai: attaching information
933 * @pnum: the physical eraseblock number
934 * @fast: true if we're scanning for a Fastmap
936 * This function reads UBI headers of PEB @pnum, checks them, and adds
937 * information about this PEB to the corresponding list or RB-tree in the
938 * "attaching info" structure. Returns zero if the physical eraseblock was
939 * successfully handled and a negative error code in case of failure.
941 static int scan_peb(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
,
944 struct ubi_ec_hdr
*ech
= ai
->ech
;
945 struct ubi_vid_io_buf
*vidb
= ai
->vidb
;
946 struct ubi_vid_hdr
*vidh
= ubi_get_vid_hdr(vidb
);
948 int err
, bitflips
= 0, vol_id
= -1, ec_err
= 0;
950 dbg_bld("scan PEB %d", pnum
);
952 /* Skip bad physical eraseblocks */
953 err
= ubi_io_is_bad(ubi
, pnum
);
957 ai
->bad_peb_count
+= 1;
961 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ech
, 0);
967 case UBI_IO_BITFLIPS
:
971 ai
->empty_peb_count
+= 1;
972 return add_to_list(ai
, pnum
, UBI_UNKNOWN
, UBI_UNKNOWN
,
973 UBI_UNKNOWN
, 0, &ai
->erase
);
974 case UBI_IO_FF_BITFLIPS
:
975 ai
->empty_peb_count
+= 1;
976 return add_to_list(ai
, pnum
, UBI_UNKNOWN
, UBI_UNKNOWN
,
977 UBI_UNKNOWN
, 1, &ai
->erase
);
978 case UBI_IO_BAD_HDR_EBADMSG
:
981 * We have to also look at the VID header, possibly it is not
982 * corrupted. Set %bitflips flag in order to make this PEB be
983 * moved and EC be re-created.
990 ubi_err(ubi
, "'ubi_io_read_ec_hdr()' returned unknown code %d",
998 /* Make sure UBI version is OK */
999 if (ech
->version
!= UBI_VERSION
) {
1000 ubi_err(ubi
, "this UBI version is %d, image version is %d",
1001 UBI_VERSION
, (int)ech
->version
);
1005 ec
= be64_to_cpu(ech
->ec
);
1006 if (ec
> UBI_MAX_ERASECOUNTER
) {
1008 * Erase counter overflow. The EC headers have 64 bits
1009 * reserved, but we anyway make use of only 31 bit
1010 * values, as this seems to be enough for any existing
1011 * flash. Upgrade UBI and use 64-bit erase counters
1014 ubi_err(ubi
, "erase counter overflow, max is %d",
1015 UBI_MAX_ERASECOUNTER
);
1016 ubi_dump_ec_hdr(ech
);
1021 * Make sure that all PEBs have the same image sequence number.
1022 * This allows us to detect situations when users flash UBI
1023 * images incorrectly, so that the flash has the new UBI image
1024 * and leftovers from the old one. This feature was added
1025 * relatively recently, and the sequence number was always
1026 * zero, because old UBI implementations always set it to zero.
1027 * For this reasons, we do not panic if some PEBs have zero
1028 * sequence number, while other PEBs have non-zero sequence
1031 image_seq
= be32_to_cpu(ech
->image_seq
);
1032 if (!ubi
->image_seq
)
1033 ubi
->image_seq
= image_seq
;
1034 if (image_seq
&& ubi
->image_seq
!= image_seq
) {
1035 ubi_err(ubi
, "bad image sequence number %d in PEB %d, expected %d",
1036 image_seq
, pnum
, ubi
->image_seq
);
1037 ubi_dump_ec_hdr(ech
);
1042 /* OK, we've done with the EC header, let's look at the VID header */
1044 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 0);
1050 case UBI_IO_BITFLIPS
:
1053 case UBI_IO_BAD_HDR_EBADMSG
:
1054 if (ec_err
== UBI_IO_BAD_HDR_EBADMSG
)
1056 * Both EC and VID headers are corrupted and were read
1057 * with data integrity error, probably this is a bad
1058 * PEB, bit it is not marked as bad yet. This may also
1059 * be a result of power cut during erasure.
1061 ai
->maybe_bad_peb_count
+= 1;
1063 case UBI_IO_BAD_HDR
:
1065 * If we're facing a bad VID header we have to drop *all*
1066 * Fastmap data structures we find. The most recent Fastmap
1067 * could be bad and therefore there is a chance that we attach
1068 * from an old one. On a fine MTD stack a PEB must not render
1069 * bad all of a sudden, but the reality is different.
1070 * So, let's be paranoid and help finding the root cause by
1071 * falling back to scanning mode instead of attaching with a
1072 * bad EBA table and cause data corruption which is hard to
1076 ai
->force_full_scan
= 1;
1080 * Both headers are corrupted. There is a possibility
1081 * that this a valid UBI PEB which has corresponding
1082 * LEB, but the headers are corrupted. However, it is
1083 * impossible to distinguish it from a PEB which just
1084 * contains garbage because of a power cut during erase
1085 * operation. So we just schedule this PEB for erasure.
1087 * Besides, in case of NOR flash, we deliberately
1088 * corrupt both headers because NOR flash erasure is
1089 * slow and can start from the end.
1094 * The EC was OK, but the VID header is corrupted. We
1095 * have to check what is in the data area.
1097 err
= check_corruption(ubi
, vidh
, pnum
);
1102 /* This corruption is caused by a power cut */
1103 err
= add_to_list(ai
, pnum
, UBI_UNKNOWN
,
1104 UBI_UNKNOWN
, ec
, 1, &ai
->erase
);
1106 /* This is an unexpected corruption */
1107 err
= add_corrupted(ai
, pnum
, ec
);
1110 goto adjust_mean_ec
;
1111 case UBI_IO_FF_BITFLIPS
:
1112 err
= add_to_list(ai
, pnum
, UBI_UNKNOWN
, UBI_UNKNOWN
,
1116 goto adjust_mean_ec
;
1118 if (ec_err
|| bitflips
)
1119 err
= add_to_list(ai
, pnum
, UBI_UNKNOWN
,
1120 UBI_UNKNOWN
, ec
, 1, &ai
->erase
);
1122 err
= add_to_list(ai
, pnum
, UBI_UNKNOWN
,
1123 UBI_UNKNOWN
, ec
, 0, &ai
->free
);
1126 goto adjust_mean_ec
;
1128 ubi_err(ubi
, "'ubi_io_read_vid_hdr()' returned unknown code %d",
1133 vol_id
= be32_to_cpu(vidh
->vol_id
);
1134 if (vol_id
> UBI_MAX_VOLUMES
&& !vol_ignored(vol_id
)) {
1135 int lnum
= be32_to_cpu(vidh
->lnum
);
1137 /* Unsupported internal volume */
1138 switch (vidh
->compat
) {
1139 case UBI_COMPAT_DELETE
:
1140 ubi_msg(ubi
, "\"delete\" compatible internal volume %d:%d found, will remove it",
1143 err
= add_to_list(ai
, pnum
, vol_id
, lnum
,
1150 ubi_msg(ubi
, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1155 case UBI_COMPAT_PRESERVE
:
1156 ubi_msg(ubi
, "\"preserve\" compatible internal volume %d:%d found",
1158 err
= add_to_list(ai
, pnum
, vol_id
, lnum
,
1164 case UBI_COMPAT_REJECT
:
1165 ubi_err(ubi
, "incompatible internal volume %d:%d found",
1172 ubi_warn(ubi
, "valid VID header but corrupted EC header at PEB %d",
1175 if (ubi_is_fm_vol(vol_id
))
1176 err
= add_fastmap(ai
, pnum
, vidh
, ec
);
1178 err
= ubi_add_to_av(ubi
, ai
, pnum
, ec
, vidh
, bitflips
);
1187 if (ec
> ai
->max_ec
)
1189 if (ec
< ai
->min_ec
)
1197 * late_analysis - analyze the overall situation with PEB.
1198 * @ubi: UBI device description object
1199 * @ai: attaching information
1201 * This is a helper function which takes a look what PEBs we have after we
1202 * gather information about all of them ("ai" is compete). It decides whether
1203 * the flash is empty and should be formatted of whether there are too many
1204 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1205 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1207 static int late_analysis(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1209 struct ubi_ainf_peb
*aeb
;
1210 int max_corr
, peb_count
;
1212 peb_count
= ubi
->peb_count
- ai
->bad_peb_count
- ai
->alien_peb_count
;
1213 max_corr
= peb_count
/ 20 ?: 8;
1216 * Few corrupted PEBs is not a problem and may be just a result of
1217 * unclean reboots. However, many of them may indicate some problems
1218 * with the flash HW or driver.
1220 if (ai
->corr_peb_count
) {
1221 ubi_err(ubi
, "%d PEBs are corrupted and preserved",
1222 ai
->corr_peb_count
);
1223 pr_err("Corrupted PEBs are:");
1224 list_for_each_entry(aeb
, &ai
->corr
, u
.list
)
1225 pr_cont(" %d", aeb
->pnum
);
1229 * If too many PEBs are corrupted, we refuse attaching,
1230 * otherwise, only print a warning.
1232 if (ai
->corr_peb_count
>= max_corr
) {
1233 ubi_err(ubi
, "too many corrupted PEBs, refusing");
1238 if (ai
->empty_peb_count
+ ai
->maybe_bad_peb_count
== peb_count
) {
1240 * All PEBs are empty, or almost all - a couple PEBs look like
1241 * they may be bad PEBs which were not marked as bad yet.
1243 * This piece of code basically tries to distinguish between
1244 * the following situations:
1246 * 1. Flash is empty, but there are few bad PEBs, which are not
1247 * marked as bad so far, and which were read with error. We
1248 * want to go ahead and format this flash. While formatting,
1249 * the faulty PEBs will probably be marked as bad.
1251 * 2. Flash contains non-UBI data and we do not want to format
1252 * it and destroy possibly important information.
1254 if (ai
->maybe_bad_peb_count
<= 2) {
1256 ubi_msg(ubi
, "empty MTD device detected");
1257 get_random_bytes(&ubi
->image_seq
,
1258 sizeof(ubi
->image_seq
));
1260 ubi_err(ubi
, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1270 * destroy_av - free volume attaching information.
1271 * @av: volume attaching information
1272 * @ai: attaching information
1273 * @list: put the aeb elements in there if !NULL, otherwise free them
1275 * This function destroys the volume attaching information.
1277 static void destroy_av(struct ubi_attach_info
*ai
, struct ubi_ainf_volume
*av
,
1278 struct list_head
*list
)
1280 struct ubi_ainf_peb
*aeb
;
1281 struct rb_node
*this = av
->root
.rb_node
;
1285 this = this->rb_left
;
1286 else if (this->rb_right
)
1287 this = this->rb_right
;
1289 aeb
= rb_entry(this, struct ubi_ainf_peb
, u
.rb
);
1290 this = rb_parent(this);
1292 if (this->rb_left
== &aeb
->u
.rb
)
1293 this->rb_left
= NULL
;
1295 this->rb_right
= NULL
;
1299 list_add_tail(&aeb
->u
.list
, list
);
1301 ubi_free_aeb(ai
, aeb
);
1308 * destroy_ai - destroy attaching information.
1309 * @ai: attaching information
1311 static void destroy_ai(struct ubi_attach_info
*ai
)
1313 struct ubi_ainf_peb
*aeb
, *aeb_tmp
;
1314 struct ubi_ainf_volume
*av
;
1317 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->alien
, u
.list
) {
1318 list_del(&aeb
->u
.list
);
1319 ubi_free_aeb(ai
, aeb
);
1321 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->erase
, u
.list
) {
1322 list_del(&aeb
->u
.list
);
1323 ubi_free_aeb(ai
, aeb
);
1325 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->corr
, u
.list
) {
1326 list_del(&aeb
->u
.list
);
1327 ubi_free_aeb(ai
, aeb
);
1329 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->free
, u
.list
) {
1330 list_del(&aeb
->u
.list
);
1331 ubi_free_aeb(ai
, aeb
);
1333 list_for_each_entry_safe(aeb
, aeb_tmp
, &ai
->fastmap
, u
.list
) {
1334 list_del(&aeb
->u
.list
);
1335 ubi_free_aeb(ai
, aeb
);
1338 /* Destroy the volume RB-tree */
1339 rb
= ai
->volumes
.rb_node
;
1343 else if (rb
->rb_right
)
1346 av
= rb_entry(rb
, struct ubi_ainf_volume
, rb
);
1350 if (rb
->rb_left
== &av
->rb
)
1353 rb
->rb_right
= NULL
;
1356 destroy_av(ai
, av
, NULL
);
1360 kmem_cache_destroy(ai
->aeb_slab_cache
);
1365 * scan_all - scan entire MTD device.
1366 * @ubi: UBI device description object
1367 * @ai: attach info object
1368 * @start: start scanning at this PEB
1370 * This function does full scanning of an MTD device and returns complete
1371 * information about it in form of a "struct ubi_attach_info" object. In case
1372 * of failure, an error code is returned.
1374 static int scan_all(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
,
1378 struct rb_node
*rb1
, *rb2
;
1379 struct ubi_ainf_volume
*av
;
1380 struct ubi_ainf_peb
*aeb
;
1384 ai
->ech
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
1388 ai
->vidb
= ubi_alloc_vid_buf(ubi
, GFP_KERNEL
);
1392 for (pnum
= start
; pnum
< ubi
->peb_count
; pnum
++) {
1395 dbg_gen("process PEB %d", pnum
);
1396 err
= scan_peb(ubi
, ai
, pnum
, false);
1401 ubi_msg(ubi
, "scanning is finished");
1403 /* Calculate mean erase counter */
1405 ai
->mean_ec
= div_u64(ai
->ec_sum
, ai
->ec_count
);
1407 err
= late_analysis(ubi
, ai
);
1412 * In case of unknown erase counter we use the mean erase counter
1415 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1416 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
)
1417 if (aeb
->ec
== UBI_UNKNOWN
)
1418 aeb
->ec
= ai
->mean_ec
;
1421 list_for_each_entry(aeb
, &ai
->free
, u
.list
) {
1422 if (aeb
->ec
== UBI_UNKNOWN
)
1423 aeb
->ec
= ai
->mean_ec
;
1426 list_for_each_entry(aeb
, &ai
->corr
, u
.list
)
1427 if (aeb
->ec
== UBI_UNKNOWN
)
1428 aeb
->ec
= ai
->mean_ec
;
1430 list_for_each_entry(aeb
, &ai
->erase
, u
.list
)
1431 if (aeb
->ec
== UBI_UNKNOWN
)
1432 aeb
->ec
= ai
->mean_ec
;
1434 err
= self_check_ai(ubi
, ai
);
1438 ubi_free_vid_buf(ai
->vidb
);
1444 ubi_free_vid_buf(ai
->vidb
);
1450 static struct ubi_attach_info
*alloc_ai(const char *slab_name
)
1452 struct ubi_attach_info
*ai
;
1454 ai
= kzalloc(sizeof(struct ubi_attach_info
), GFP_KERNEL
);
1458 INIT_LIST_HEAD(&ai
->corr
);
1459 INIT_LIST_HEAD(&ai
->free
);
1460 INIT_LIST_HEAD(&ai
->erase
);
1461 INIT_LIST_HEAD(&ai
->alien
);
1462 INIT_LIST_HEAD(&ai
->fastmap
);
1463 ai
->volumes
= RB_ROOT
;
1464 ai
->aeb_slab_cache
= kmem_cache_create(slab_name
,
1465 sizeof(struct ubi_ainf_peb
),
1467 if (!ai
->aeb_slab_cache
) {
1475 #ifdef CONFIG_MTD_UBI_FASTMAP
1478 * scan_fast - try to find a fastmap and attach from it.
1479 * @ubi: UBI device description object
1480 * @ai: attach info object
1482 * Returns 0 on success, negative return values indicate an internal
1484 * UBI_NO_FASTMAP denotes that no fastmap was found.
1485 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1487 static int scan_fast(struct ubi_device
*ubi
, struct ubi_attach_info
**ai
)
1490 struct ubi_attach_info
*scan_ai
;
1494 scan_ai
= alloc_ai("ubi_aeb_slab_cache_fastmap");
1498 scan_ai
->ech
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
1502 scan_ai
->vidb
= ubi_alloc_vid_buf(ubi
, GFP_KERNEL
);
1506 for (pnum
= 0; pnum
< UBI_FM_MAX_START
; pnum
++) {
1509 dbg_gen("process PEB %d", pnum
);
1510 err
= scan_peb(ubi
, scan_ai
, pnum
, true);
1515 ubi_free_vid_buf(scan_ai
->vidb
);
1516 kfree(scan_ai
->ech
);
1518 if (scan_ai
->force_full_scan
)
1519 err
= UBI_NO_FASTMAP
;
1521 err
= ubi_scan_fastmap(ubi
, *ai
, scan_ai
);
1525 * Didn't attach via fastmap, do a full scan but reuse what
1526 * we've aready scanned.
1531 destroy_ai(scan_ai
);
1536 ubi_free_vid_buf(scan_ai
->vidb
);
1538 kfree(scan_ai
->ech
);
1540 destroy_ai(scan_ai
);
1548 * ubi_attach - attach an MTD device.
1549 * @ubi: UBI device descriptor
1550 * @force_scan: if set to non-zero attach by scanning
1552 * This function returns zero in case of success and a negative error code in
1555 int ubi_attach(struct ubi_device
*ubi
, int force_scan
)
1558 struct ubi_attach_info
*ai
;
1560 ai
= alloc_ai("ubi_aeb_slab_cache");
1564 #ifdef CONFIG_MTD_UBI_FASTMAP
1565 /* On small flash devices we disable fastmap in any case. */
1566 if ((int)mtd_div_by_eb(ubi
->mtd
->size
, ubi
->mtd
) <= UBI_FM_MAX_START
) {
1567 ubi
->fm_disabled
= 1;
1572 err
= scan_all(ubi
, ai
, 0);
1574 err
= scan_fast(ubi
, &ai
);
1575 if (err
> 0 || mtd_is_eccerr(err
)) {
1576 if (err
!= UBI_NO_FASTMAP
) {
1578 ai
= alloc_ai("ubi_aeb_slab_cache");
1582 err
= scan_all(ubi
, ai
, 0);
1584 err
= scan_all(ubi
, ai
, UBI_FM_MAX_START
);
1589 err
= scan_all(ubi
, ai
, 0);
1594 ubi
->bad_peb_count
= ai
->bad_peb_count
;
1595 ubi
->good_peb_count
= ubi
->peb_count
- ubi
->bad_peb_count
;
1596 ubi
->corr_peb_count
= ai
->corr_peb_count
;
1597 ubi
->max_ec
= ai
->max_ec
;
1598 ubi
->mean_ec
= ai
->mean_ec
;
1599 dbg_gen("max. sequence number: %llu", ai
->max_sqnum
);
1601 err
= ubi_read_volume_table(ubi
, ai
);
1605 err
= ubi_wl_init(ubi
, ai
);
1609 err
= ubi_eba_init(ubi
, ai
);
1613 #ifdef CONFIG_MTD_UBI_FASTMAP
1614 if (ubi
->fm
&& ubi_dbg_chk_fastmap(ubi
)) {
1615 struct ubi_attach_info
*scan_ai
;
1617 scan_ai
= alloc_ai("ubi_aeb_slab_cache_dbg_chk_fastmap");
1623 err
= scan_all(ubi
, scan_ai
, 0);
1625 destroy_ai(scan_ai
);
1629 err
= self_check_eba(ubi
, ai
, scan_ai
);
1630 destroy_ai(scan_ai
);
1643 ubi_free_all_volumes(ubi
);
1651 * self_check_ai - check the attaching information.
1652 * @ubi: UBI device description object
1653 * @ai: attaching information
1655 * This function returns zero if the attaching information is all right, and a
1656 * negative error code if not or if an error occurred.
1658 static int self_check_ai(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1660 struct ubi_vid_io_buf
*vidb
= ai
->vidb
;
1661 struct ubi_vid_hdr
*vidh
= ubi_get_vid_hdr(vidb
);
1662 int pnum
, err
, vols_found
= 0;
1663 struct rb_node
*rb1
, *rb2
;
1664 struct ubi_ainf_volume
*av
;
1665 struct ubi_ainf_peb
*aeb
, *last_aeb
;
1668 if (!ubi_dbg_chk_gen(ubi
))
1672 * At first, check that attaching information is OK.
1674 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1682 ubi_err(ubi
, "bad is_empty flag");
1686 if (av
->vol_id
< 0 || av
->highest_lnum
< 0 ||
1687 av
->leb_count
< 0 || av
->vol_type
< 0 || av
->used_ebs
< 0 ||
1688 av
->data_pad
< 0 || av
->last_data_size
< 0) {
1689 ubi_err(ubi
, "negative values");
1693 if (av
->vol_id
>= UBI_MAX_VOLUMES
&&
1694 av
->vol_id
< UBI_INTERNAL_VOL_START
) {
1695 ubi_err(ubi
, "bad vol_id");
1699 if (av
->vol_id
> ai
->highest_vol_id
) {
1700 ubi_err(ubi
, "highest_vol_id is %d, but vol_id %d is there",
1701 ai
->highest_vol_id
, av
->vol_id
);
1705 if (av
->vol_type
!= UBI_DYNAMIC_VOLUME
&&
1706 av
->vol_type
!= UBI_STATIC_VOLUME
) {
1707 ubi_err(ubi
, "bad vol_type");
1711 if (av
->data_pad
> ubi
->leb_size
/ 2) {
1712 ubi_err(ubi
, "bad data_pad");
1717 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1723 if (aeb
->pnum
< 0 || aeb
->ec
< 0) {
1724 ubi_err(ubi
, "negative values");
1728 if (aeb
->ec
< ai
->min_ec
) {
1729 ubi_err(ubi
, "bad ai->min_ec (%d), %d found",
1730 ai
->min_ec
, aeb
->ec
);
1734 if (aeb
->ec
> ai
->max_ec
) {
1735 ubi_err(ubi
, "bad ai->max_ec (%d), %d found",
1736 ai
->max_ec
, aeb
->ec
);
1740 if (aeb
->pnum
>= ubi
->peb_count
) {
1741 ubi_err(ubi
, "too high PEB number %d, total PEBs %d",
1742 aeb
->pnum
, ubi
->peb_count
);
1746 if (av
->vol_type
== UBI_STATIC_VOLUME
) {
1747 if (aeb
->lnum
>= av
->used_ebs
) {
1748 ubi_err(ubi
, "bad lnum or used_ebs");
1752 if (av
->used_ebs
!= 0) {
1753 ubi_err(ubi
, "non-zero used_ebs");
1758 if (aeb
->lnum
> av
->highest_lnum
) {
1759 ubi_err(ubi
, "incorrect highest_lnum or lnum");
1764 if (av
->leb_count
!= leb_count
) {
1765 ubi_err(ubi
, "bad leb_count, %d objects in the tree",
1775 if (aeb
->lnum
!= av
->highest_lnum
) {
1776 ubi_err(ubi
, "bad highest_lnum");
1781 if (vols_found
!= ai
->vols_found
) {
1782 ubi_err(ubi
, "bad ai->vols_found %d, should be %d",
1783 ai
->vols_found
, vols_found
);
1787 /* Check that attaching information is correct */
1788 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1790 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1797 err
= ubi_io_read_vid_hdr(ubi
, aeb
->pnum
, vidb
, 1);
1798 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1799 ubi_err(ubi
, "VID header is not OK (%d)",
1806 vol_type
= vidh
->vol_type
== UBI_VID_DYNAMIC
?
1807 UBI_DYNAMIC_VOLUME
: UBI_STATIC_VOLUME
;
1808 if (av
->vol_type
!= vol_type
) {
1809 ubi_err(ubi
, "bad vol_type");
1813 if (aeb
->sqnum
!= be64_to_cpu(vidh
->sqnum
)) {
1814 ubi_err(ubi
, "bad sqnum %llu", aeb
->sqnum
);
1818 if (av
->vol_id
!= be32_to_cpu(vidh
->vol_id
)) {
1819 ubi_err(ubi
, "bad vol_id %d", av
->vol_id
);
1823 if (av
->compat
!= vidh
->compat
) {
1824 ubi_err(ubi
, "bad compat %d", vidh
->compat
);
1828 if (aeb
->lnum
!= be32_to_cpu(vidh
->lnum
)) {
1829 ubi_err(ubi
, "bad lnum %d", aeb
->lnum
);
1833 if (av
->used_ebs
!= be32_to_cpu(vidh
->used_ebs
)) {
1834 ubi_err(ubi
, "bad used_ebs %d", av
->used_ebs
);
1838 if (av
->data_pad
!= be32_to_cpu(vidh
->data_pad
)) {
1839 ubi_err(ubi
, "bad data_pad %d", av
->data_pad
);
1847 if (av
->highest_lnum
!= be32_to_cpu(vidh
->lnum
)) {
1848 ubi_err(ubi
, "bad highest_lnum %d", av
->highest_lnum
);
1852 if (av
->last_data_size
!= be32_to_cpu(vidh
->data_size
)) {
1853 ubi_err(ubi
, "bad last_data_size %d",
1854 av
->last_data_size
);
1860 * Make sure that all the physical eraseblocks are in one of the lists
1863 buf
= kzalloc(ubi
->peb_count
, GFP_KERNEL
);
1867 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++) {
1868 err
= ubi_io_is_bad(ubi
, pnum
);
1876 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
)
1877 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
)
1880 list_for_each_entry(aeb
, &ai
->free
, u
.list
)
1883 list_for_each_entry(aeb
, &ai
->corr
, u
.list
)
1886 list_for_each_entry(aeb
, &ai
->erase
, u
.list
)
1889 list_for_each_entry(aeb
, &ai
->alien
, u
.list
)
1893 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++)
1895 ubi_err(ubi
, "PEB %d is not referred", pnum
);
1905 ubi_err(ubi
, "bad attaching information about LEB %d", aeb
->lnum
);
1906 ubi_dump_aeb(aeb
, 0);
1911 ubi_err(ubi
, "bad attaching information about volume %d", av
->vol_id
);
1916 ubi_err(ubi
, "bad attaching information about volume %d", av
->vol_id
);
1918 ubi_dump_vid_hdr(vidh
);