1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
5 * Author: Artem Bityutskiy (Битюцкий Артём)
9 * The UBI Eraseblock Association (EBA) sub-system.
11 * This sub-system is responsible for I/O to/from logical eraseblock.
13 * Although in this implementation the EBA table is fully kept and managed in
14 * RAM, which assumes poor scalability, it might be (partially) maintained on
15 * flash in future implementations.
17 * The EBA sub-system implements per-logical eraseblock locking. Before
18 * accessing a logical eraseblock it is locked for reading or writing. The
19 * per-logical eraseblock locking is implemented by means of the lock tree. The
20 * lock tree is an RB-tree which refers all the currently locked logical
21 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22 * They are indexed by (@vol_id, @lnum) pairs.
24 * EBA also maintains the global sequence counter which is incremented each
25 * time a logical eraseblock is mapped to a physical eraseblock and it is
26 * stored in the volume identifier header. This means that each VID header has
27 * a unique sequence number. The sequence number is only increased an we assume
28 * 64 bits is enough to never overflow.
31 #include <linux/slab.h>
32 #include <linux/crc32.h>
33 #include <linux/err.h>
37 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
38 * @pnum: the physical eraseblock number attached to the LEB
40 * This structure is encoding a LEB -> PEB association. Note that the LEB
41 * number is not stored here, because it is the index used to access the
44 struct ubi_eba_entry
{
49 * struct ubi_eba_table - LEB -> PEB association information
50 * @entries: the LEB to PEB mapping (one entry per LEB).
52 * This structure is private to the EBA logic and should be kept here.
53 * It is encoding the LEB to PEB association table, and is subject to
56 struct ubi_eba_table
{
57 struct ubi_eba_entry
*entries
;
61 * ubi_next_sqnum - get next sequence number.
62 * @ubi: UBI device description object
64 * This function returns next sequence number to use, which is just the current
65 * global sequence counter value. It also increases the global sequence
68 unsigned long long ubi_next_sqnum(struct ubi_device
*ubi
)
70 unsigned long long sqnum
;
72 spin_lock(&ubi
->ltree_lock
);
73 sqnum
= ubi
->global_sqnum
++;
74 spin_unlock(&ubi
->ltree_lock
);
80 * ubi_get_compat - get compatibility flags of a volume.
81 * @ubi: UBI device description object
84 * This function returns compatibility flags for an internal volume. User
85 * volumes have no compatibility flags, so %0 is returned.
87 static int ubi_get_compat(const struct ubi_device
*ubi
, int vol_id
)
89 if (vol_id
== UBI_LAYOUT_VOLUME_ID
)
90 return UBI_LAYOUT_VOLUME_COMPAT
;
95 * ubi_eba_get_ldesc - get information about a LEB
96 * @vol: volume description object
97 * @lnum: logical eraseblock number
98 * @ldesc: the LEB descriptor to fill
100 * Used to query information about a specific LEB.
101 * It is currently only returning the physical position of the LEB, but will be
102 * extended to provide more information.
104 void ubi_eba_get_ldesc(struct ubi_volume
*vol
, int lnum
,
105 struct ubi_eba_leb_desc
*ldesc
)
108 ldesc
->pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
112 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
114 * @vol: volume containing the EBA table to copy
115 * @nentries: number of entries in the table
117 * Allocate a new EBA table and initialize it with all LEBs unmapped.
118 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
120 struct ubi_eba_table
*ubi_eba_create_table(struct ubi_volume
*vol
,
123 struct ubi_eba_table
*tbl
;
127 tbl
= kzalloc(sizeof(*tbl
), GFP_KERNEL
);
129 return ERR_PTR(-ENOMEM
);
131 tbl
->entries
= kmalloc_array(nentries
, sizeof(*tbl
->entries
),
136 for (i
= 0; i
< nentries
; i
++)
137 tbl
->entries
[i
].pnum
= UBI_LEB_UNMAPPED
;
148 * ubi_eba_destroy_table - destroy an EBA table
149 * @tbl: the table to destroy
151 * Destroy an EBA table.
153 void ubi_eba_destroy_table(struct ubi_eba_table
*tbl
)
163 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
164 * @vol: volume containing the EBA table to copy
166 * @nentries: number of entries to copy
168 * Copy the EBA table stored in vol into the one pointed by dst.
170 void ubi_eba_copy_table(struct ubi_volume
*vol
, struct ubi_eba_table
*dst
,
173 struct ubi_eba_table
*src
;
176 ubi_assert(dst
&& vol
&& vol
->eba_tbl
);
180 for (i
= 0; i
< nentries
; i
++)
181 dst
->entries
[i
].pnum
= src
->entries
[i
].pnum
;
185 * ubi_eba_replace_table - assign a new EBA table to a volume
186 * @vol: volume containing the EBA table to copy
187 * @tbl: new EBA table
189 * Assign a new EBA table to the volume and release the old one.
191 void ubi_eba_replace_table(struct ubi_volume
*vol
, struct ubi_eba_table
*tbl
)
193 ubi_eba_destroy_table(vol
->eba_tbl
);
198 * ltree_lookup - look up the lock tree.
199 * @ubi: UBI device description object
201 * @lnum: logical eraseblock number
203 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
204 * object if the logical eraseblock is locked and %NULL if it is not.
205 * @ubi->ltree_lock has to be locked.
207 static struct ubi_ltree_entry
*ltree_lookup(struct ubi_device
*ubi
, int vol_id
,
212 p
= ubi
->ltree
.rb_node
;
214 struct ubi_ltree_entry
*le
;
216 le
= rb_entry(p
, struct ubi_ltree_entry
, rb
);
218 if (vol_id
< le
->vol_id
)
220 else if (vol_id
> le
->vol_id
)
225 else if (lnum
> le
->lnum
)
236 * ltree_add_entry - add new entry to the lock tree.
237 * @ubi: UBI device description object
239 * @lnum: logical eraseblock number
241 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
242 * lock tree. If such entry is already there, its usage counter is increased.
243 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
246 static struct ubi_ltree_entry
*ltree_add_entry(struct ubi_device
*ubi
,
247 int vol_id
, int lnum
)
249 struct ubi_ltree_entry
*le
, *le1
, *le_free
;
251 le
= kmalloc(sizeof(struct ubi_ltree_entry
), GFP_NOFS
);
253 return ERR_PTR(-ENOMEM
);
256 init_rwsem(&le
->mutex
);
260 spin_lock(&ubi
->ltree_lock
);
261 le1
= ltree_lookup(ubi
, vol_id
, lnum
);
265 * This logical eraseblock is already locked. The newly
266 * allocated lock entry is not needed.
271 struct rb_node
**p
, *parent
= NULL
;
274 * No lock entry, add the newly allocated one to the
275 * @ubi->ltree RB-tree.
279 p
= &ubi
->ltree
.rb_node
;
282 le1
= rb_entry(parent
, struct ubi_ltree_entry
, rb
);
284 if (vol_id
< le1
->vol_id
)
286 else if (vol_id
> le1
->vol_id
)
289 ubi_assert(lnum
!= le1
->lnum
);
290 if (lnum
< le1
->lnum
)
297 rb_link_node(&le
->rb
, parent
, p
);
298 rb_insert_color(&le
->rb
, &ubi
->ltree
);
301 spin_unlock(&ubi
->ltree_lock
);
308 * leb_read_lock - lock logical eraseblock for reading.
309 * @ubi: UBI device description object
311 * @lnum: logical eraseblock number
313 * This function locks a logical eraseblock for reading. Returns zero in case
314 * of success and a negative error code in case of failure.
316 static int leb_read_lock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
318 struct ubi_ltree_entry
*le
;
320 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
323 down_read(&le
->mutex
);
328 * leb_read_unlock - unlock logical eraseblock.
329 * @ubi: UBI device description object
331 * @lnum: logical eraseblock number
333 static void leb_read_unlock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
335 struct ubi_ltree_entry
*le
;
337 spin_lock(&ubi
->ltree_lock
);
338 le
= ltree_lookup(ubi
, vol_id
, lnum
);
340 ubi_assert(le
->users
>= 0);
342 if (le
->users
== 0) {
343 rb_erase(&le
->rb
, &ubi
->ltree
);
346 spin_unlock(&ubi
->ltree_lock
);
350 * leb_write_lock - lock logical eraseblock for writing.
351 * @ubi: UBI device description object
353 * @lnum: logical eraseblock number
355 * This function locks a logical eraseblock for writing. Returns zero in case
356 * of success and a negative error code in case of failure.
358 static int leb_write_lock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
360 struct ubi_ltree_entry
*le
;
362 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
365 down_write(&le
->mutex
);
370 * leb_write_trylock - try to lock logical eraseblock for writing.
371 * @ubi: UBI device description object
373 * @lnum: logical eraseblock number
375 * This function locks a logical eraseblock for writing if there is no
376 * contention and does nothing if there is contention. Returns %0 in case of
377 * success, %1 in case of contention, and a negative error code in case of
380 static int leb_write_trylock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
382 struct ubi_ltree_entry
*le
;
384 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
387 if (down_write_trylock(&le
->mutex
))
390 /* Contention, cancel */
391 spin_lock(&ubi
->ltree_lock
);
393 ubi_assert(le
->users
>= 0);
394 if (le
->users
== 0) {
395 rb_erase(&le
->rb
, &ubi
->ltree
);
398 spin_unlock(&ubi
->ltree_lock
);
404 * leb_write_unlock - unlock logical eraseblock.
405 * @ubi: UBI device description object
407 * @lnum: logical eraseblock number
409 static void leb_write_unlock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
411 struct ubi_ltree_entry
*le
;
413 spin_lock(&ubi
->ltree_lock
);
414 le
= ltree_lookup(ubi
, vol_id
, lnum
);
416 ubi_assert(le
->users
>= 0);
417 up_write(&le
->mutex
);
418 if (le
->users
== 0) {
419 rb_erase(&le
->rb
, &ubi
->ltree
);
422 spin_unlock(&ubi
->ltree_lock
);
426 * ubi_eba_is_mapped - check if a LEB is mapped.
427 * @vol: volume description object
428 * @lnum: logical eraseblock number
430 * This function returns true if the LEB is mapped, false otherwise.
432 bool ubi_eba_is_mapped(struct ubi_volume
*vol
, int lnum
)
434 return vol
->eba_tbl
->entries
[lnum
].pnum
>= 0;
438 * ubi_eba_unmap_leb - un-map logical eraseblock.
439 * @ubi: UBI device description object
440 * @vol: volume description object
441 * @lnum: logical eraseblock number
443 * This function un-maps logical eraseblock @lnum and schedules corresponding
444 * physical eraseblock for erasure. Returns zero in case of success and a
445 * negative error code in case of failure.
447 int ubi_eba_unmap_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
450 int err
, pnum
, vol_id
= vol
->vol_id
;
455 err
= leb_write_lock(ubi
, vol_id
, lnum
);
459 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
461 /* This logical eraseblock is already unmapped */
464 dbg_eba("erase LEB %d:%d, PEB %d", vol_id
, lnum
, pnum
);
466 down_read(&ubi
->fm_eba_sem
);
467 vol
->eba_tbl
->entries
[lnum
].pnum
= UBI_LEB_UNMAPPED
;
468 up_read(&ubi
->fm_eba_sem
);
469 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 0);
472 leb_write_unlock(ubi
, vol_id
, lnum
);
476 #ifdef CONFIG_MTD_UBI_FASTMAP
478 * check_mapping - check and fixup a mapping
479 * @ubi: UBI device description object
480 * @vol: volume description object
481 * @lnum: logical eraseblock number
482 * @pnum: physical eraseblock number
484 * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
485 * operations, if such an operation is interrupted the mapping still looks
486 * good, but upon first read an ECC is reported to the upper layer.
487 * Normaly during the full-scan at attach time this is fixed, for Fastmap
488 * we have to deal with it while reading.
489 * If the PEB behind a LEB shows this symthom we change the mapping to
490 * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
492 * Returns 0 on success, negative error code in case of failure.
494 static int check_mapping(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
498 struct ubi_vid_io_buf
*vidb
;
499 struct ubi_vid_hdr
*vid_hdr
;
501 if (!ubi
->fast_attach
)
504 if (!vol
->checkmap
|| test_bit(lnum
, vol
->checkmap
))
507 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
511 err
= ubi_io_read_vid_hdr(ubi
, *pnum
, vidb
, 0);
512 if (err
> 0 && err
!= UBI_IO_BITFLIPS
) {
517 case UBI_IO_FF_BITFLIPS
:
519 case UBI_IO_BAD_HDR_EBADMSG
:
525 if (err
== UBI_IO_BAD_HDR_EBADMSG
|| err
== UBI_IO_FF_BITFLIPS
)
528 down_read(&ubi
->fm_eba_sem
);
529 vol
->eba_tbl
->entries
[lnum
].pnum
= UBI_LEB_UNMAPPED
;
530 up_read(&ubi
->fm_eba_sem
);
531 ubi_wl_put_peb(ubi
, vol
->vol_id
, lnum
, *pnum
, torture
);
533 *pnum
= UBI_LEB_UNMAPPED
;
534 } else if (err
< 0) {
535 ubi_err(ubi
, "unable to read VID header back from PEB %i: %i",
540 int found_vol_id
, found_lnum
;
542 ubi_assert(err
== 0 || err
== UBI_IO_BITFLIPS
);
544 vid_hdr
= ubi_get_vid_hdr(vidb
);
545 found_vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
546 found_lnum
= be32_to_cpu(vid_hdr
->lnum
);
548 if (found_lnum
!= lnum
|| found_vol_id
!= vol
->vol_id
) {
549 ubi_err(ubi
, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
550 *pnum
, found_vol_id
, found_lnum
, vol
->vol_id
, lnum
);
557 set_bit(lnum
, vol
->checkmap
);
561 ubi_free_vid_buf(vidb
);
566 static int check_mapping(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
574 * ubi_eba_read_leb - read data.
575 * @ubi: UBI device description object
576 * @vol: volume description object
577 * @lnum: logical eraseblock number
578 * @buf: buffer to store the read data
579 * @offset: offset from where to read
580 * @len: how many bytes to read
581 * @check: data CRC check flag
583 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
584 * bytes. The @check flag only makes sense for static volumes and forces
585 * eraseblock data CRC checking.
587 * In case of success this function returns zero. In case of a static volume,
588 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
589 * returned for any volume type if an ECC error was detected by the MTD device
590 * driver. Other negative error cored may be returned in case of other errors.
592 int ubi_eba_read_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
593 void *buf
, int offset
, int len
, int check
)
595 int err
, pnum
, scrub
= 0, vol_id
= vol
->vol_id
;
596 struct ubi_vid_io_buf
*vidb
;
597 struct ubi_vid_hdr
*vid_hdr
;
600 err
= leb_read_lock(ubi
, vol_id
, lnum
);
604 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
606 err
= check_mapping(ubi
, vol
, lnum
, &pnum
);
611 if (pnum
== UBI_LEB_UNMAPPED
) {
613 * The logical eraseblock is not mapped, fill the whole buffer
614 * with 0xFF bytes. The exception is static volumes for which
615 * it is an error to read unmapped logical eraseblocks.
617 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
618 len
, offset
, vol_id
, lnum
);
619 leb_read_unlock(ubi
, vol_id
, lnum
);
620 ubi_assert(vol
->vol_type
!= UBI_STATIC_VOLUME
);
621 memset(buf
, 0xFF, len
);
625 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
626 len
, offset
, vol_id
, lnum
, pnum
);
628 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
)
633 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
639 vid_hdr
= ubi_get_vid_hdr(vidb
);
641 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 1);
642 if (err
&& err
!= UBI_IO_BITFLIPS
) {
645 * The header is either absent or corrupted.
646 * The former case means there is a bug -
647 * switch to read-only mode just in case.
648 * The latter case means a real corruption - we
649 * may try to recover data. FIXME: but this is
652 if (err
== UBI_IO_BAD_HDR_EBADMSG
||
653 err
== UBI_IO_BAD_HDR
) {
654 ubi_warn(ubi
, "corrupted VID header at PEB %d, LEB %d:%d",
659 * Ending up here in the non-Fastmap case
660 * is a clear bug as the VID header had to
661 * be present at scan time to have it referenced.
662 * With fastmap the story is more complicated.
663 * Fastmap has the mapping info without the need
664 * of a full scan. So the LEB could have been
665 * unmapped, Fastmap cannot know this and keeps
666 * the LEB referenced.
667 * This is valid and works as the layer above UBI
668 * has to do bookkeeping about used/referenced
671 if (ubi
->fast_attach
) {
680 } else if (err
== UBI_IO_BITFLIPS
)
683 ubi_assert(lnum
< be32_to_cpu(vid_hdr
->used_ebs
));
684 ubi_assert(len
== be32_to_cpu(vid_hdr
->data_size
));
686 crc
= be32_to_cpu(vid_hdr
->data_crc
);
687 ubi_free_vid_buf(vidb
);
690 err
= ubi_io_read_data(ubi
, buf
, pnum
, offset
, len
);
692 if (err
== UBI_IO_BITFLIPS
)
694 else if (mtd_is_eccerr(err
)) {
695 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
)
699 ubi_msg(ubi
, "force data checking");
708 uint32_t crc1
= crc32(UBI_CRC32_INIT
, buf
, len
);
710 ubi_warn(ubi
, "CRC error: calculated %#08x, must be %#08x",
718 err
= ubi_wl_scrub_peb(ubi
, pnum
);
720 leb_read_unlock(ubi
, vol_id
, lnum
);
724 ubi_free_vid_buf(vidb
);
726 leb_read_unlock(ubi
, vol_id
, lnum
);
731 * ubi_eba_read_leb_sg - read data into a scatter gather list.
732 * @ubi: UBI device description object
733 * @vol: volume description object
734 * @lnum: logical eraseblock number
735 * @sgl: UBI scatter gather list to store the read data
736 * @offset: offset from where to read
737 * @len: how many bytes to read
738 * @check: data CRC check flag
740 * This function works exactly like ubi_eba_read_leb(). But instead of
741 * storing the read data into a buffer it writes to an UBI scatter gather
744 int ubi_eba_read_leb_sg(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
745 struct ubi_sgl
*sgl
, int lnum
, int offset
, int len
,
750 struct scatterlist
*sg
;
753 ubi_assert(sgl
->list_pos
< UBI_MAX_SG_COUNT
);
754 sg
= &sgl
->sg
[sgl
->list_pos
];
755 if (len
< sg
->length
- sgl
->page_pos
)
758 to_read
= sg
->length
- sgl
->page_pos
;
760 ret
= ubi_eba_read_leb(ubi
, vol
, lnum
,
761 sg_virt(sg
) + sgl
->page_pos
, offset
,
769 sgl
->page_pos
+= to_read
;
770 if (sgl
->page_pos
== sg
->length
) {
786 * try_recover_peb - try to recover from write failure.
787 * @vol: volume description object
788 * @pnum: the physical eraseblock to recover
789 * @lnum: logical eraseblock number
790 * @buf: data which was not written because of the write failure
791 * @offset: offset of the failed write
792 * @len: how many bytes should have been written
794 * @retry: whether the caller should retry in case of failure
796 * This function is called in case of a write failure and moves all good data
797 * from the potentially bad physical eraseblock to a good physical eraseblock.
798 * This function also writes the data which was not written due to the failure.
799 * Returns 0 in case of success, and a negative error code in case of failure.
800 * In case of failure, the %retry parameter is set to false if this is a fatal
801 * error (retrying won't help), and true otherwise.
803 static int try_recover_peb(struct ubi_volume
*vol
, int pnum
, int lnum
,
804 const void *buf
, int offset
, int len
,
805 struct ubi_vid_io_buf
*vidb
, bool *retry
)
807 struct ubi_device
*ubi
= vol
->ubi
;
808 struct ubi_vid_hdr
*vid_hdr
;
809 int new_pnum
, err
, vol_id
= vol
->vol_id
, data_size
;
814 new_pnum
= ubi_wl_get_peb(ubi
);
820 ubi_msg(ubi
, "recover PEB %d, move data to PEB %d",
823 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 1);
824 if (err
&& err
!= UBI_IO_BITFLIPS
) {
830 vid_hdr
= ubi_get_vid_hdr(vidb
);
831 ubi_assert(vid_hdr
->vol_type
== UBI_VID_DYNAMIC
);
833 mutex_lock(&ubi
->buf_mutex
);
834 memset(ubi
->peb_buf
+ offset
, 0xFF, len
);
836 /* Read everything before the area where the write failure happened */
838 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, pnum
, 0, offset
);
839 if (err
&& err
!= UBI_IO_BITFLIPS
)
845 memcpy(ubi
->peb_buf
+ offset
, buf
, len
);
847 data_size
= offset
+ len
;
848 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, data_size
);
849 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
850 vid_hdr
->copy_flag
= 1;
851 vid_hdr
->data_size
= cpu_to_be32(data_size
);
852 vid_hdr
->data_crc
= cpu_to_be32(crc
);
853 err
= ubi_io_write_vid_hdr(ubi
, new_pnum
, vidb
);
857 err
= ubi_io_write_data(ubi
, ubi
->peb_buf
, new_pnum
, 0, data_size
);
860 mutex_unlock(&ubi
->buf_mutex
);
863 vol
->eba_tbl
->entries
[lnum
].pnum
= new_pnum
;
866 up_read(&ubi
->fm_eba_sem
);
869 ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 1);
870 ubi_msg(ubi
, "data was successfully recovered");
871 } else if (new_pnum
>= 0) {
873 * Bad luck? This physical eraseblock is bad too? Crud. Let's
874 * try to get another one.
876 ubi_wl_put_peb(ubi
, vol_id
, lnum
, new_pnum
, 1);
877 ubi_warn(ubi
, "failed to write to PEB %d", new_pnum
);
884 * recover_peb - recover from write failure.
885 * @ubi: UBI device description object
886 * @pnum: the physical eraseblock to recover
888 * @lnum: logical eraseblock number
889 * @buf: data which was not written because of the write failure
890 * @offset: offset of the failed write
891 * @len: how many bytes should have been written
893 * This function is called in case of a write failure and moves all good data
894 * from the potentially bad physical eraseblock to a good physical eraseblock.
895 * This function also writes the data which was not written due to the failure.
896 * Returns 0 in case of success, and a negative error code in case of failure.
897 * This function tries %UBI_IO_RETRIES before giving up.
899 static int recover_peb(struct ubi_device
*ubi
, int pnum
, int vol_id
, int lnum
,
900 const void *buf
, int offset
, int len
)
902 int err
, idx
= vol_id2idx(ubi
, vol_id
), tries
;
903 struct ubi_volume
*vol
= ubi
->volumes
[idx
];
904 struct ubi_vid_io_buf
*vidb
;
906 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
910 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
913 err
= try_recover_peb(vol
, pnum
, lnum
, buf
, offset
, len
, vidb
,
918 ubi_msg(ubi
, "try again");
921 ubi_free_vid_buf(vidb
);
927 * try_write_vid_and_data - try to write VID header and data to a new PEB.
928 * @vol: volume description object
929 * @lnum: logical eraseblock number
930 * @vidb: the VID buffer to write
931 * @buf: buffer containing the data
932 * @offset: where to start writing data
933 * @len: how many bytes should be written
935 * This function tries to write VID header and data belonging to logical
936 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
937 * in case of success and a negative error code in case of failure.
938 * In case of error, it is possible that something was still written to the
939 * flash media, but may be some garbage.
941 static int try_write_vid_and_data(struct ubi_volume
*vol
, int lnum
,
942 struct ubi_vid_io_buf
*vidb
, const void *buf
,
945 struct ubi_device
*ubi
= vol
->ubi
;
946 int pnum
, opnum
, err
, err2
, vol_id
= vol
->vol_id
;
948 pnum
= ubi_wl_get_peb(ubi
);
954 opnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
956 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
957 len
, offset
, vol_id
, lnum
, pnum
);
959 err
= ubi_io_write_vid_hdr(ubi
, pnum
, vidb
);
961 ubi_warn(ubi
, "failed to write VID header to LEB %d:%d, PEB %d",
967 err
= ubi_io_write_data(ubi
, buf
, pnum
, offset
, len
);
970 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
971 len
, offset
, vol_id
, lnum
, pnum
);
976 vol
->eba_tbl
->entries
[lnum
].pnum
= pnum
;
979 up_read(&ubi
->fm_eba_sem
);
981 if (err
&& pnum
>= 0) {
982 err2
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 1);
984 ubi_warn(ubi
, "failed to return physical eraseblock %d, error %d",
987 } else if (!err
&& opnum
>= 0) {
988 err2
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, opnum
, 0);
990 ubi_warn(ubi
, "failed to return physical eraseblock %d, error %d",
999 * ubi_eba_write_leb - write data to dynamic volume.
1000 * @ubi: UBI device description object
1001 * @vol: volume description object
1002 * @lnum: logical eraseblock number
1003 * @buf: the data to write
1004 * @offset: offset within the logical eraseblock where to write
1005 * @len: how many bytes to write
1007 * This function writes data to logical eraseblock @lnum of a dynamic volume
1008 * @vol. Returns zero in case of success and a negative error code in case
1009 * of failure. In case of error, it is possible that something was still
1010 * written to the flash media, but may be some garbage.
1011 * This function retries %UBI_IO_RETRIES times before giving up.
1013 int ubi_eba_write_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
1014 const void *buf
, int offset
, int len
)
1016 int err
, pnum
, tries
, vol_id
= vol
->vol_id
;
1017 struct ubi_vid_io_buf
*vidb
;
1018 struct ubi_vid_hdr
*vid_hdr
;
1023 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1027 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
1029 err
= check_mapping(ubi
, vol
, lnum
, &pnum
);
1035 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1036 len
, offset
, vol_id
, lnum
, pnum
);
1038 err
= ubi_io_write_data(ubi
, buf
, pnum
, offset
, len
);
1040 ubi_warn(ubi
, "failed to write data to PEB %d", pnum
);
1041 if (err
== -EIO
&& ubi
->bad_allowed
)
1042 err
= recover_peb(ubi
, pnum
, vol_id
, lnum
, buf
,
1050 * The logical eraseblock is not mapped. We have to get a free physical
1051 * eraseblock and write the volume identifier header there first.
1053 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1055 leb_write_unlock(ubi
, vol_id
, lnum
);
1059 vid_hdr
= ubi_get_vid_hdr(vidb
);
1061 vid_hdr
->vol_type
= UBI_VID_DYNAMIC
;
1062 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1063 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1064 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1065 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1066 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1068 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1069 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, offset
, len
);
1070 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1074 * Fortunately, this is the first write operation to this
1075 * physical eraseblock, so just put it and request a new one.
1076 * We assume that if this physical eraseblock went bad, the
1077 * erase code will handle that.
1079 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1080 ubi_msg(ubi
, "try another PEB");
1083 ubi_free_vid_buf(vidb
);
1089 leb_write_unlock(ubi
, vol_id
, lnum
);
1095 * ubi_eba_write_leb_st - write data to static volume.
1096 * @ubi: UBI device description object
1097 * @vol: volume description object
1098 * @lnum: logical eraseblock number
1099 * @buf: data to write
1100 * @len: how many bytes to write
1101 * @used_ebs: how many logical eraseblocks will this volume contain
1103 * This function writes data to logical eraseblock @lnum of static volume
1104 * @vol. The @used_ebs argument should contain total number of logical
1105 * eraseblock in this static volume.
1107 * When writing to the last logical eraseblock, the @len argument doesn't have
1108 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1109 * to the real data size, although the @buf buffer has to contain the
1110 * alignment. In all other cases, @len has to be aligned.
1112 * It is prohibited to write more than once to logical eraseblocks of static
1113 * volumes. This function returns zero in case of success and a negative error
1114 * code in case of failure.
1116 int ubi_eba_write_leb_st(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
1117 int lnum
, const void *buf
, int len
, int used_ebs
)
1119 int err
, tries
, data_size
= len
, vol_id
= vol
->vol_id
;
1120 struct ubi_vid_io_buf
*vidb
;
1121 struct ubi_vid_hdr
*vid_hdr
;
1127 if (lnum
== used_ebs
- 1)
1128 /* If this is the last LEB @len may be unaligned */
1129 len
= ALIGN(data_size
, ubi
->min_io_size
);
1131 ubi_assert(!(len
& (ubi
->min_io_size
- 1)));
1133 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1137 vid_hdr
= ubi_get_vid_hdr(vidb
);
1139 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1143 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1144 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1145 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1146 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1147 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1149 crc
= crc32(UBI_CRC32_INIT
, buf
, data_size
);
1150 vid_hdr
->vol_type
= UBI_VID_STATIC
;
1151 vid_hdr
->data_size
= cpu_to_be32(data_size
);
1152 vid_hdr
->used_ebs
= cpu_to_be32(used_ebs
);
1153 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1155 ubi_assert(vol
->eba_tbl
->entries
[lnum
].pnum
< 0);
1157 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1158 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, 0, len
);
1159 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1162 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1163 ubi_msg(ubi
, "try another PEB");
1169 leb_write_unlock(ubi
, vol_id
, lnum
);
1172 ubi_free_vid_buf(vidb
);
1178 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1179 * @ubi: UBI device description object
1180 * @vol: volume description object
1181 * @lnum: logical eraseblock number
1182 * @buf: data to write
1183 * @len: how many bytes to write
1185 * This function changes the contents of a logical eraseblock atomically. @buf
1186 * has to contain new logical eraseblock data, and @len - the length of the
1187 * data, which has to be aligned. This function guarantees that in case of an
1188 * unclean reboot the old contents is preserved. Returns zero in case of
1189 * success and a negative error code in case of failure.
1191 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1192 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1194 int ubi_eba_atomic_leb_change(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
1195 int lnum
, const void *buf
, int len
)
1197 int err
, tries
, vol_id
= vol
->vol_id
;
1198 struct ubi_vid_io_buf
*vidb
;
1199 struct ubi_vid_hdr
*vid_hdr
;
1207 * Special case when data length is zero. In this case the LEB
1208 * has to be unmapped and mapped somewhere else.
1210 err
= ubi_eba_unmap_leb(ubi
, vol
, lnum
);
1213 return ubi_eba_write_leb(ubi
, vol
, lnum
, NULL
, 0, 0);
1216 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1220 vid_hdr
= ubi_get_vid_hdr(vidb
);
1222 mutex_lock(&ubi
->alc_mutex
);
1223 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1227 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1228 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1229 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1230 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1231 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1233 crc
= crc32(UBI_CRC32_INIT
, buf
, len
);
1234 vid_hdr
->vol_type
= UBI_VID_DYNAMIC
;
1235 vid_hdr
->data_size
= cpu_to_be32(len
);
1236 vid_hdr
->copy_flag
= 1;
1237 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1239 dbg_eba("change LEB %d:%d", vol_id
, lnum
);
1241 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1242 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, 0, len
);
1243 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1246 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1247 ubi_msg(ubi
, "try another PEB");
1251 * This flash device does not admit of bad eraseblocks or
1252 * something nasty and unexpected happened. Switch to read-only
1253 * mode just in case.
1258 leb_write_unlock(ubi
, vol_id
, lnum
);
1261 mutex_unlock(&ubi
->alc_mutex
);
1262 ubi_free_vid_buf(vidb
);
1267 * is_error_sane - check whether a read error is sane.
1268 * @err: code of the error happened during reading
1270 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1271 * cannot read data from the target PEB (an error @err happened). If the error
1272 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1273 * fatal and UBI will be switched to R/O mode later.
1275 * The idea is that we try not to switch to R/O mode if the read error is
1276 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1277 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1278 * mode, simply because we do not know what happened at the MTD level, and we
1279 * cannot handle this. E.g., the underlying driver may have become crazy, and
1280 * it is safer to switch to R/O mode to preserve the data.
1282 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1283 * which we have just written.
1285 static int is_error_sane(int err
)
1287 if (err
== -EIO
|| err
== -ENOMEM
|| err
== UBI_IO_BAD_HDR
||
1288 err
== UBI_IO_BAD_HDR_EBADMSG
|| err
== -ETIMEDOUT
)
1294 * ubi_eba_copy_leb - copy logical eraseblock.
1295 * @ubi: UBI device description object
1296 * @from: physical eraseblock number from where to copy
1297 * @to: physical eraseblock number where to copy
1298 * @vidb: data structure from where the VID header is derived
1300 * This function copies logical eraseblock from physical eraseblock @from to
1301 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1302 * function. Returns:
1303 * o %0 in case of success;
1304 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1305 * o a negative error code in case of failure.
1307 int ubi_eba_copy_leb(struct ubi_device
*ubi
, int from
, int to
,
1308 struct ubi_vid_io_buf
*vidb
)
1310 int err
, vol_id
, lnum
, data_size
, aldata_size
, idx
;
1311 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1312 struct ubi_volume
*vol
;
1315 ubi_assert(rwsem_is_locked(&ubi
->fm_eba_sem
));
1317 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
1318 lnum
= be32_to_cpu(vid_hdr
->lnum
);
1320 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id
, lnum
, from
, to
);
1322 if (vid_hdr
->vol_type
== UBI_VID_STATIC
) {
1323 data_size
= be32_to_cpu(vid_hdr
->data_size
);
1324 aldata_size
= ALIGN(data_size
, ubi
->min_io_size
);
1326 data_size
= aldata_size
=
1327 ubi
->leb_size
- be32_to_cpu(vid_hdr
->data_pad
);
1329 idx
= vol_id2idx(ubi
, vol_id
);
1330 spin_lock(&ubi
->volumes_lock
);
1332 * Note, we may race with volume deletion, which means that the volume
1333 * this logical eraseblock belongs to might be being deleted. Since the
1334 * volume deletion un-maps all the volume's logical eraseblocks, it will
1335 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1337 vol
= ubi
->volumes
[idx
];
1338 spin_unlock(&ubi
->volumes_lock
);
1340 /* No need to do further work, cancel */
1341 dbg_wl("volume %d is being removed, cancel", vol_id
);
1342 return MOVE_CANCEL_RACE
;
1346 * We do not want anybody to write to this logical eraseblock while we
1347 * are moving it, so lock it.
1349 * Note, we are using non-waiting locking here, because we cannot sleep
1350 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1351 * unmapping the LEB which is mapped to the PEB we are going to move
1352 * (@from). This task locks the LEB and goes sleep in the
1353 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1354 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1355 * LEB is already locked, we just do not move it and return
1356 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1357 * we do not know the reasons of the contention - it may be just a
1358 * normal I/O on this LEB, so we want to re-try.
1360 err
= leb_write_trylock(ubi
, vol_id
, lnum
);
1362 dbg_wl("contention on LEB %d:%d, cancel", vol_id
, lnum
);
1367 * The LEB might have been put meanwhile, and the task which put it is
1368 * probably waiting on @ubi->move_mutex. No need to continue the work,
1371 if (vol
->eba_tbl
->entries
[lnum
].pnum
!= from
) {
1372 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1373 vol_id
, lnum
, from
, vol
->eba_tbl
->entries
[lnum
].pnum
);
1374 err
= MOVE_CANCEL_RACE
;
1375 goto out_unlock_leb
;
1379 * OK, now the LEB is locked and we can safely start moving it. Since
1380 * this function utilizes the @ubi->peb_buf buffer which is shared
1381 * with some other functions - we lock the buffer by taking the
1384 mutex_lock(&ubi
->buf_mutex
);
1385 dbg_wl("read %d bytes of data", aldata_size
);
1386 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, from
, 0, aldata_size
);
1387 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1388 ubi_warn(ubi
, "error %d while reading data from PEB %d",
1390 err
= MOVE_SOURCE_RD_ERR
;
1391 goto out_unlock_buf
;
1395 * Now we have got to calculate how much data we have to copy. In
1396 * case of a static volume it is fairly easy - the VID header contains
1397 * the data size. In case of a dynamic volume it is more difficult - we
1398 * have to read the contents, cut 0xFF bytes from the end and copy only
1399 * the first part. We must do this to avoid writing 0xFF bytes as it
1400 * may have some side-effects. And not only this. It is important not
1401 * to include those 0xFFs to CRC because later the they may be filled
1404 if (vid_hdr
->vol_type
== UBI_VID_DYNAMIC
)
1405 aldata_size
= data_size
=
1406 ubi_calc_data_len(ubi
, ubi
->peb_buf
, data_size
);
1409 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, data_size
);
1413 * It may turn out to be that the whole @from physical eraseblock
1414 * contains only 0xFF bytes. Then we have to only write the VID header
1415 * and do not write any data. This also means we should not set
1416 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1418 if (data_size
> 0) {
1419 vid_hdr
->copy_flag
= 1;
1420 vid_hdr
->data_size
= cpu_to_be32(data_size
);
1421 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1423 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1425 err
= ubi_io_write_vid_hdr(ubi
, to
, vidb
);
1428 err
= MOVE_TARGET_WR_ERR
;
1429 goto out_unlock_buf
;
1434 /* Read the VID header back and check if it was written correctly */
1435 err
= ubi_io_read_vid_hdr(ubi
, to
, vidb
, 1);
1437 if (err
!= UBI_IO_BITFLIPS
) {
1438 ubi_warn(ubi
, "error %d while reading VID header back from PEB %d",
1440 if (is_error_sane(err
))
1441 err
= MOVE_TARGET_RD_ERR
;
1443 err
= MOVE_TARGET_BITFLIPS
;
1444 goto out_unlock_buf
;
1447 if (data_size
> 0) {
1448 err
= ubi_io_write_data(ubi
, ubi
->peb_buf
, to
, 0, aldata_size
);
1451 err
= MOVE_TARGET_WR_ERR
;
1452 goto out_unlock_buf
;
1458 ubi_assert(vol
->eba_tbl
->entries
[lnum
].pnum
== from
);
1461 * The volumes_lock lock is needed here to prevent the expired old eba_tbl
1462 * being updated when the eba_tbl is copied in the ubi_resize_volume() process.
1464 spin_lock(&ubi
->volumes_lock
);
1465 vol
->eba_tbl
->entries
[lnum
].pnum
= to
;
1466 spin_unlock(&ubi
->volumes_lock
);
1469 mutex_unlock(&ubi
->buf_mutex
);
1471 leb_write_unlock(ubi
, vol_id
, lnum
);
1476 * print_rsvd_warning - warn about not having enough reserved PEBs.
1477 * @ubi: UBI device description object
1478 * @ai: UBI attach info object
1480 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1481 * cannot reserve enough PEBs for bad block handling. This function makes a
1482 * decision whether we have to print a warning or not. The algorithm is as
1484 * o if this is a new UBI image, then just print the warning
1485 * o if this is an UBI image which has already been used for some time, print
1486 * a warning only if we can reserve less than 10% of the expected amount of
1489 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1490 * of PEBs becomes smaller, which is normal and we do not want to scare users
1491 * with a warning every time they attach the MTD device. This was an issue
1492 * reported by real users.
1494 static void print_rsvd_warning(struct ubi_device
*ubi
,
1495 struct ubi_attach_info
*ai
)
1498 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1499 * large number to distinguish between newly flashed and used images.
1501 if (ai
->max_sqnum
> (1 << 18)) {
1502 int min
= ubi
->beb_rsvd_level
/ 10;
1506 if (ubi
->beb_rsvd_pebs
> min
)
1510 ubi_warn(ubi
, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1511 ubi
->beb_rsvd_pebs
, ubi
->beb_rsvd_level
);
1512 if (ubi
->corr_peb_count
)
1513 ubi_warn(ubi
, "%d PEBs are corrupted and not used",
1514 ubi
->corr_peb_count
);
1518 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1519 * @ubi: UBI device description object
1520 * @ai_fastmap: UBI attach info object created by fastmap
1521 * @ai_scan: UBI attach info object created by scanning
1523 * Returns < 0 in case of an internal error, 0 otherwise.
1524 * If a bad EBA table entry was found it will be printed out and
1525 * ubi_assert() triggers.
1527 int self_check_eba(struct ubi_device
*ubi
, struct ubi_attach_info
*ai_fastmap
,
1528 struct ubi_attach_info
*ai_scan
)
1530 int i
, j
, num_volumes
, ret
= 0;
1531 int **scan_eba
, **fm_eba
;
1532 struct ubi_ainf_volume
*av
;
1533 struct ubi_volume
*vol
;
1534 struct ubi_ainf_peb
*aeb
;
1537 num_volumes
= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
;
1539 scan_eba
= kmalloc_array(num_volumes
, sizeof(*scan_eba
), GFP_KERNEL
);
1543 fm_eba
= kmalloc_array(num_volumes
, sizeof(*fm_eba
), GFP_KERNEL
);
1549 for (i
= 0; i
< num_volumes
; i
++) {
1550 vol
= ubi
->volumes
[i
];
1554 scan_eba
[i
] = kmalloc_array(vol
->reserved_pebs
,
1562 fm_eba
[i
] = kmalloc_array(vol
->reserved_pebs
,
1571 for (j
= 0; j
< vol
->reserved_pebs
; j
++)
1572 scan_eba
[i
][j
] = fm_eba
[i
][j
] = UBI_LEB_UNMAPPED
;
1574 av
= ubi_find_av(ai_scan
, idx2vol_id(ubi
, i
));
1578 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
)
1579 scan_eba
[i
][aeb
->lnum
] = aeb
->pnum
;
1581 av
= ubi_find_av(ai_fastmap
, idx2vol_id(ubi
, i
));
1585 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
)
1586 fm_eba
[i
][aeb
->lnum
] = aeb
->pnum
;
1588 for (j
= 0; j
< vol
->reserved_pebs
; j
++) {
1589 if (scan_eba
[i
][j
] != fm_eba
[i
][j
]) {
1590 if (scan_eba
[i
][j
] == UBI_LEB_UNMAPPED
||
1591 fm_eba
[i
][j
] == UBI_LEB_UNMAPPED
)
1594 ubi_err(ubi
, "LEB:%i:%i is PEB:%i instead of %i!",
1595 vol
->vol_id
, j
, fm_eba
[i
][j
],
1604 if (!ubi
->volumes
[i
])
1617 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1618 * @ubi: UBI device description object
1619 * @ai: attaching information
1621 * This function returns zero in case of success and a negative error code in
1624 int ubi_eba_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1626 int i
, err
, num_volumes
;
1627 struct ubi_ainf_volume
*av
;
1628 struct ubi_volume
*vol
;
1629 struct ubi_ainf_peb
*aeb
;
1632 dbg_eba("initialize EBA sub-system");
1634 spin_lock_init(&ubi
->ltree_lock
);
1635 mutex_init(&ubi
->alc_mutex
);
1636 ubi
->ltree
= RB_ROOT
;
1638 ubi
->global_sqnum
= ai
->max_sqnum
+ 1;
1639 num_volumes
= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
;
1641 for (i
= 0; i
< num_volumes
; i
++) {
1642 struct ubi_eba_table
*tbl
;
1644 vol
= ubi
->volumes
[i
];
1650 tbl
= ubi_eba_create_table(vol
, vol
->reserved_pebs
);
1656 ubi_eba_replace_table(vol
, tbl
);
1658 av
= ubi_find_av(ai
, idx2vol_id(ubi
, i
));
1662 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
) {
1663 if (aeb
->lnum
>= vol
->reserved_pebs
) {
1665 * This may happen in case of an unclean reboot
1668 ubi_move_aeb_to_list(av
, aeb
, &ai
->erase
);
1670 struct ubi_eba_entry
*entry
;
1672 entry
= &vol
->eba_tbl
->entries
[aeb
->lnum
];
1673 entry
->pnum
= aeb
->pnum
;
1678 if (ubi
->avail_pebs
< EBA_RESERVED_PEBS
) {
1679 ubi_err(ubi
, "no enough physical eraseblocks (%d, need %d)",
1680 ubi
->avail_pebs
, EBA_RESERVED_PEBS
);
1681 if (ubi
->corr_peb_count
)
1682 ubi_err(ubi
, "%d PEBs are corrupted and not used",
1683 ubi
->corr_peb_count
);
1687 ubi
->avail_pebs
-= EBA_RESERVED_PEBS
;
1688 ubi
->rsvd_pebs
+= EBA_RESERVED_PEBS
;
1690 if (ubi
->bad_allowed
) {
1691 ubi_calculate_reserved(ubi
);
1693 if (ubi
->avail_pebs
< ubi
->beb_rsvd_level
) {
1694 /* No enough free physical eraseblocks */
1695 ubi
->beb_rsvd_pebs
= ubi
->avail_pebs
;
1696 print_rsvd_warning(ubi
, ai
);
1698 ubi
->beb_rsvd_pebs
= ubi
->beb_rsvd_level
;
1700 ubi
->avail_pebs
-= ubi
->beb_rsvd_pebs
;
1701 ubi
->rsvd_pebs
+= ubi
->beb_rsvd_pebs
;
1704 dbg_eba("EBA sub-system is initialized");
1708 for (i
= 0; i
< num_volumes
; i
++) {
1709 if (!ubi
->volumes
[i
])
1711 ubi_eba_replace_table(ubi
->volumes
[i
], NULL
);