drm: bridge: adv7511: remove s32 format from i2s capabilities
[drm/drm-misc.git] / drivers / net / ethernet / fungible / funeth / funeth_rx.c
blob7e2584895de39ba5f6aee946a1a0c887210670fe
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
3 #include <linux/bpf_trace.h>
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/filter.h>
7 #include <linux/irq.h>
8 #include <linux/pci.h>
9 #include <linux/skbuff.h>
10 #include "funeth_txrx.h"
11 #include "funeth.h"
12 #include "fun_queue.h"
14 #define CREATE_TRACE_POINTS
15 #include "funeth_trace.h"
17 /* Given the device's max supported MTU and pages of at least 4KB a packet can
18 * be scattered into at most 4 buffers.
20 #define RX_MAX_FRAGS 4
22 /* Per packet headroom in non-XDP mode. Present only for 1-frag packets. */
23 #define FUN_RX_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
25 /* We try to reuse pages for our buffers. To avoid frequent page ref writes we
26 * take EXTRA_PAGE_REFS references at once and then hand them out one per packet
27 * occupying the buffer.
29 #define EXTRA_PAGE_REFS 1000000
30 #define MIN_PAGE_REFS 1000
32 enum {
33 FUN_XDP_FLUSH_REDIR = 1,
34 FUN_XDP_FLUSH_TX = 2,
37 /* See if a page is running low on refs we are holding and if so take more. */
38 static void refresh_refs(struct funeth_rxbuf *buf)
40 if (unlikely(buf->pg_refs < MIN_PAGE_REFS)) {
41 buf->pg_refs += EXTRA_PAGE_REFS;
42 page_ref_add(buf->page, EXTRA_PAGE_REFS);
46 /* Offer a buffer to the Rx buffer cache. The cache will hold the buffer if its
47 * page is worth retaining and there's room for it. Otherwise the page is
48 * unmapped and our references released.
50 static void cache_offer(struct funeth_rxq *q, const struct funeth_rxbuf *buf)
52 struct funeth_rx_cache *c = &q->cache;
54 if (c->prod_cnt - c->cons_cnt <= c->mask && buf->node == numa_mem_id()) {
55 c->bufs[c->prod_cnt & c->mask] = *buf;
56 c->prod_cnt++;
57 } else {
58 dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE,
59 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
60 __page_frag_cache_drain(buf->page, buf->pg_refs);
64 /* Get a page from the Rx buffer cache. We only consider the next available
65 * page and return it if we own all its references.
67 static bool cache_get(struct funeth_rxq *q, struct funeth_rxbuf *rb)
69 struct funeth_rx_cache *c = &q->cache;
70 struct funeth_rxbuf *buf;
72 if (c->prod_cnt == c->cons_cnt)
73 return false; /* empty cache */
75 buf = &c->bufs[c->cons_cnt & c->mask];
76 if (page_ref_count(buf->page) == buf->pg_refs) {
77 dma_sync_single_for_device(q->dma_dev, buf->dma_addr,
78 PAGE_SIZE, DMA_FROM_DEVICE);
79 *rb = *buf;
80 buf->page = NULL;
81 refresh_refs(rb);
82 c->cons_cnt++;
83 return true;
86 /* Page can't be reused. If the cache is full drop this page. */
87 if (c->prod_cnt - c->cons_cnt > c->mask) {
88 dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE,
89 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
90 __page_frag_cache_drain(buf->page, buf->pg_refs);
91 buf->page = NULL;
92 c->cons_cnt++;
94 return false;
97 /* Allocate and DMA-map a page for receive. */
98 static int funeth_alloc_page(struct funeth_rxq *q, struct funeth_rxbuf *rb,
99 int node, gfp_t gfp)
101 struct page *p;
103 if (cache_get(q, rb))
104 return 0;
106 p = __alloc_pages_node(node, gfp | __GFP_NOWARN, 0);
107 if (unlikely(!p))
108 return -ENOMEM;
110 rb->dma_addr = dma_map_page(q->dma_dev, p, 0, PAGE_SIZE,
111 DMA_FROM_DEVICE);
112 if (unlikely(dma_mapping_error(q->dma_dev, rb->dma_addr))) {
113 FUN_QSTAT_INC(q, rx_map_err);
114 __free_page(p);
115 return -ENOMEM;
118 FUN_QSTAT_INC(q, rx_page_alloc);
120 rb->page = p;
121 rb->pg_refs = 1;
122 refresh_refs(rb);
123 rb->node = page_is_pfmemalloc(p) ? -1 : page_to_nid(p);
124 return 0;
127 static void funeth_free_page(struct funeth_rxq *q, struct funeth_rxbuf *rb)
129 if (rb->page) {
130 dma_unmap_page(q->dma_dev, rb->dma_addr, PAGE_SIZE,
131 DMA_FROM_DEVICE);
132 __page_frag_cache_drain(rb->page, rb->pg_refs);
133 rb->page = NULL;
137 /* Run the XDP program assigned to an Rx queue.
138 * Return %NULL if the buffer is consumed, or the virtual address of the packet
139 * to turn into an skb.
141 static void *fun_run_xdp(struct funeth_rxq *q, skb_frag_t *frags, void *buf_va,
142 int ref_ok, struct funeth_txq *xdp_q)
144 struct bpf_prog *xdp_prog;
145 struct xdp_frame *xdpf;
146 struct xdp_buff xdp;
147 u32 act;
149 /* VA includes the headroom, frag size includes headroom + tailroom */
150 xdp_init_buff(&xdp, ALIGN(skb_frag_size(frags), FUN_EPRQ_PKT_ALIGN),
151 &q->xdp_rxq);
152 xdp_prepare_buff(&xdp, buf_va, FUN_XDP_HEADROOM, skb_frag_size(frags) -
153 (FUN_RX_TAILROOM + FUN_XDP_HEADROOM), false);
155 xdp_prog = READ_ONCE(q->xdp_prog);
156 act = bpf_prog_run_xdp(xdp_prog, &xdp);
158 switch (act) {
159 case XDP_PASS:
160 /* remove headroom, which may not be FUN_XDP_HEADROOM now */
161 skb_frag_size_set(frags, xdp.data_end - xdp.data);
162 skb_frag_off_add(frags, xdp.data - xdp.data_hard_start);
163 goto pass;
164 case XDP_TX:
165 if (unlikely(!ref_ok))
166 goto pass;
168 xdpf = xdp_convert_buff_to_frame(&xdp);
169 if (!xdpf || !fun_xdp_tx(xdp_q, xdpf))
170 goto xdp_error;
171 FUN_QSTAT_INC(q, xdp_tx);
172 q->xdp_flush |= FUN_XDP_FLUSH_TX;
173 break;
174 case XDP_REDIRECT:
175 if (unlikely(!ref_ok))
176 goto pass;
177 if (unlikely(xdp_do_redirect(q->netdev, &xdp, xdp_prog)))
178 goto xdp_error;
179 FUN_QSTAT_INC(q, xdp_redir);
180 q->xdp_flush |= FUN_XDP_FLUSH_REDIR;
181 break;
182 default:
183 bpf_warn_invalid_xdp_action(q->netdev, xdp_prog, act);
184 fallthrough;
185 case XDP_ABORTED:
186 trace_xdp_exception(q->netdev, xdp_prog, act);
187 xdp_error:
188 q->cur_buf->pg_refs++; /* return frags' page reference */
189 FUN_QSTAT_INC(q, xdp_err);
190 break;
191 case XDP_DROP:
192 q->cur_buf->pg_refs++;
193 FUN_QSTAT_INC(q, xdp_drops);
194 break;
196 return NULL;
198 pass:
199 return xdp.data;
202 /* A CQE contains a fixed completion structure along with optional metadata and
203 * even packet data. Given the start address of a CQE return the start of the
204 * contained fixed structure, which lies at the end.
206 static const void *cqe_to_info(const void *cqe)
208 return cqe + FUNETH_CQE_INFO_OFFSET;
211 /* The inverse of cqe_to_info(). */
212 static const void *info_to_cqe(const void *cqe_info)
214 return cqe_info - FUNETH_CQE_INFO_OFFSET;
217 /* Return the type of hash provided by the device based on the L3 and L4
218 * protocols it parsed for the packet.
220 static enum pkt_hash_types cqe_to_pkt_hash_type(u16 pkt_parse)
222 static const enum pkt_hash_types htype_map[] = {
223 PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3,
224 PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L4,
225 PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3,
226 PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3
228 u16 key;
230 /* Build the key from the TCP/UDP and IP/IPv6 bits */
231 key = ((pkt_parse >> FUN_ETH_RX_CV_OL4_PROT_S) & 6) |
232 ((pkt_parse >> (FUN_ETH_RX_CV_OL3_PROT_S + 1)) & 1);
234 return htype_map[key];
237 /* Each received packet can be scattered across several Rx buffers or can
238 * share a buffer with previously received packets depending on the buffer
239 * and packet sizes and the room available in the most recently used buffer.
241 * The rules are:
242 * - If the buffer at the head of an RQ has not been used it gets (part of) the
243 * next incoming packet.
244 * - Otherwise, if the packet fully fits in the buffer's remaining space the
245 * packet is written there.
246 * - Otherwise, the packet goes into the next Rx buffer.
248 * This function returns the Rx buffer for a packet or fragment thereof of the
249 * given length. If it isn't @buf it either recycles or frees that buffer
250 * before advancing the queue to the next buffer.
252 * If called repeatedly with the remaining length of a packet it will walk
253 * through all the buffers containing the packet.
255 static struct funeth_rxbuf *
256 get_buf(struct funeth_rxq *q, struct funeth_rxbuf *buf, unsigned int len)
258 if (q->buf_offset + len <= PAGE_SIZE || !q->buf_offset)
259 return buf; /* @buf holds (part of) the packet */
261 /* The packet occupies part of the next buffer. Move there after
262 * replenishing the current buffer slot either with the spare page or
263 * by reusing the slot's existing page. Note that if a spare page isn't
264 * available and the current packet occupies @buf it is a multi-frag
265 * packet that will be dropped leaving @buf available for reuse.
267 if ((page_ref_count(buf->page) == buf->pg_refs &&
268 buf->node == numa_mem_id()) || !q->spare_buf.page) {
269 dma_sync_single_for_device(q->dma_dev, buf->dma_addr,
270 PAGE_SIZE, DMA_FROM_DEVICE);
271 refresh_refs(buf);
272 } else {
273 cache_offer(q, buf);
274 *buf = q->spare_buf;
275 q->spare_buf.page = NULL;
276 q->rqes[q->rq_cons & q->rq_mask] =
277 FUN_EPRQ_RQBUF_INIT(buf->dma_addr);
279 q->buf_offset = 0;
280 q->rq_cons++;
281 return &q->bufs[q->rq_cons & q->rq_mask];
284 /* Gather the page fragments making up the first Rx packet on @q. Its total
285 * length @tot_len includes optional head- and tail-rooms.
287 * Return 0 if the device retains ownership of at least some of the pages.
288 * In this case the caller may only copy the packet.
290 * A non-zero return value gives the caller permission to use references to the
291 * pages, e.g., attach them to skbs. Additionally, if the value is <0 at least
292 * one of the pages is PF_MEMALLOC.
294 * Regardless of outcome the caller is granted a reference to each of the pages.
296 static int fun_gather_pkt(struct funeth_rxq *q, unsigned int tot_len,
297 skb_frag_t *frags)
299 struct funeth_rxbuf *buf = q->cur_buf;
300 unsigned int frag_len;
301 int ref_ok = 1;
303 for (;;) {
304 buf = get_buf(q, buf, tot_len);
306 /* We always keep the RQ full of buffers so before we can give
307 * one of our pages to the stack we require that we can obtain
308 * a replacement page. If we can't the packet will either be
309 * copied or dropped so we can retain ownership of the page and
310 * reuse it.
312 if (!q->spare_buf.page &&
313 funeth_alloc_page(q, &q->spare_buf, numa_mem_id(),
314 GFP_ATOMIC | __GFP_MEMALLOC))
315 ref_ok = 0;
317 frag_len = min_t(unsigned int, tot_len,
318 PAGE_SIZE - q->buf_offset);
319 dma_sync_single_for_cpu(q->dma_dev,
320 buf->dma_addr + q->buf_offset,
321 frag_len, DMA_FROM_DEVICE);
322 buf->pg_refs--;
323 if (ref_ok)
324 ref_ok |= buf->node;
326 skb_frag_fill_page_desc(frags++, buf->page, q->buf_offset,
327 frag_len);
329 tot_len -= frag_len;
330 if (!tot_len)
331 break;
333 q->buf_offset = PAGE_SIZE;
335 q->buf_offset = ALIGN(q->buf_offset + frag_len, FUN_EPRQ_PKT_ALIGN);
336 q->cur_buf = buf;
337 return ref_ok;
340 static bool rx_hwtstamp_enabled(const struct net_device *dev)
342 const struct funeth_priv *d = netdev_priv(dev);
344 return d->hwtstamp_cfg.rx_filter == HWTSTAMP_FILTER_ALL;
347 /* Advance the CQ pointers and phase tag to the next CQE. */
348 static void advance_cq(struct funeth_rxq *q)
350 if (unlikely(q->cq_head == q->cq_mask)) {
351 q->cq_head = 0;
352 q->phase ^= 1;
353 q->next_cqe_info = cqe_to_info(q->cqes);
354 } else {
355 q->cq_head++;
356 q->next_cqe_info += FUNETH_CQE_SIZE;
358 prefetch(q->next_cqe_info);
361 /* Process the packet represented by the head CQE of @q. Gather the packet's
362 * fragments, run it through the optional XDP program, and if needed construct
363 * an skb and pass it to the stack.
365 static void fun_handle_cqe_pkt(struct funeth_rxq *q, struct funeth_txq *xdp_q)
367 const struct fun_eth_cqe *rxreq = info_to_cqe(q->next_cqe_info);
368 unsigned int i, tot_len, pkt_len = be32_to_cpu(rxreq->pkt_len);
369 struct net_device *ndev = q->netdev;
370 skb_frag_t frags[RX_MAX_FRAGS];
371 struct skb_shared_info *si;
372 unsigned int headroom;
373 gro_result_t gro_res;
374 struct sk_buff *skb;
375 int ref_ok;
376 void *va;
377 u16 cv;
379 u64_stats_update_begin(&q->syncp);
380 q->stats.rx_pkts++;
381 q->stats.rx_bytes += pkt_len;
382 u64_stats_update_end(&q->syncp);
384 advance_cq(q);
386 /* account for head- and tail-room, present only for 1-buffer packets */
387 tot_len = pkt_len;
388 headroom = be16_to_cpu(rxreq->headroom);
389 if (likely(headroom))
390 tot_len += FUN_RX_TAILROOM + headroom;
392 ref_ok = fun_gather_pkt(q, tot_len, frags);
393 va = skb_frag_address(frags);
394 if (xdp_q && headroom == FUN_XDP_HEADROOM) {
395 va = fun_run_xdp(q, frags, va, ref_ok, xdp_q);
396 if (!va)
397 return;
398 headroom = 0; /* XDP_PASS trims it */
400 if (unlikely(!ref_ok))
401 goto no_mem;
403 if (likely(headroom)) {
404 /* headroom is either FUN_RX_HEADROOM or FUN_XDP_HEADROOM */
405 prefetch(va + headroom);
406 skb = napi_build_skb(va, ALIGN(tot_len, FUN_EPRQ_PKT_ALIGN));
407 if (unlikely(!skb))
408 goto no_mem;
410 skb_reserve(skb, headroom);
411 __skb_put(skb, pkt_len);
412 skb->protocol = eth_type_trans(skb, ndev);
413 } else {
414 prefetch(va);
415 skb = napi_get_frags(q->napi);
416 if (unlikely(!skb))
417 goto no_mem;
419 if (ref_ok < 0)
420 skb->pfmemalloc = 1;
422 si = skb_shinfo(skb);
423 si->nr_frags = rxreq->nsgl;
424 for (i = 0; i < si->nr_frags; i++)
425 si->frags[i] = frags[i];
427 skb->len = pkt_len;
428 skb->data_len = pkt_len;
429 skb->truesize += round_up(pkt_len, FUN_EPRQ_PKT_ALIGN);
432 skb_record_rx_queue(skb, q->qidx);
433 cv = be16_to_cpu(rxreq->pkt_cv);
434 if (likely((q->netdev->features & NETIF_F_RXHASH) && rxreq->hash))
435 skb_set_hash(skb, be32_to_cpu(rxreq->hash),
436 cqe_to_pkt_hash_type(cv));
437 if (likely((q->netdev->features & NETIF_F_RXCSUM) && rxreq->csum)) {
438 FUN_QSTAT_INC(q, rx_cso);
439 skb->ip_summed = CHECKSUM_UNNECESSARY;
440 skb->csum_level = be16_to_cpu(rxreq->csum) - 1;
442 if (unlikely(rx_hwtstamp_enabled(q->netdev)))
443 skb_hwtstamps(skb)->hwtstamp = be64_to_cpu(rxreq->timestamp);
445 trace_funeth_rx(q, rxreq->nsgl, pkt_len, skb->hash, cv);
447 gro_res = skb->data_len ? napi_gro_frags(q->napi) :
448 napi_gro_receive(q->napi, skb);
449 if (gro_res == GRO_MERGED || gro_res == GRO_MERGED_FREE)
450 FUN_QSTAT_INC(q, gro_merged);
451 else if (gro_res == GRO_HELD)
452 FUN_QSTAT_INC(q, gro_pkts);
453 return;
455 no_mem:
456 FUN_QSTAT_INC(q, rx_mem_drops);
458 /* Release the references we've been granted for the frag pages.
459 * We return the ref of the last frag and free the rest.
461 q->cur_buf->pg_refs++;
462 for (i = 0; i < rxreq->nsgl - 1; i++)
463 __free_page(skb_frag_page(frags + i));
466 /* Return 0 if the phase tag of the CQE at the CQ's head matches expectations
467 * indicating the CQE is new.
469 static u16 cqe_phase_mismatch(const struct fun_cqe_info *ci, u16 phase)
471 u16 sf_p = be16_to_cpu(ci->sf_p);
473 return (sf_p & 1) ^ phase;
476 /* Walk through a CQ identifying and processing fresh CQEs up to the given
477 * budget. Return the remaining budget.
479 static int fun_process_cqes(struct funeth_rxq *q, int budget)
481 struct funeth_priv *fp = netdev_priv(q->netdev);
482 struct funeth_txq **xdpqs, *xdp_q = NULL;
484 xdpqs = rcu_dereference_bh(fp->xdpqs);
485 if (xdpqs)
486 xdp_q = xdpqs[smp_processor_id()];
488 while (budget && !cqe_phase_mismatch(q->next_cqe_info, q->phase)) {
489 /* access other descriptor fields after the phase check */
490 dma_rmb();
492 fun_handle_cqe_pkt(q, xdp_q);
493 budget--;
496 if (unlikely(q->xdp_flush)) {
497 if (q->xdp_flush & FUN_XDP_FLUSH_TX)
498 fun_txq_wr_db(xdp_q);
499 if (q->xdp_flush & FUN_XDP_FLUSH_REDIR)
500 xdp_do_flush();
501 q->xdp_flush = 0;
504 return budget;
507 /* NAPI handler for Rx queues. Calls the CQE processing loop and writes RQ/CQ
508 * doorbells as needed.
510 int fun_rxq_napi_poll(struct napi_struct *napi, int budget)
512 struct fun_irq *irq = container_of(napi, struct fun_irq, napi);
513 struct funeth_rxq *q = irq->rxq;
514 int work_done = budget - fun_process_cqes(q, budget);
515 u32 cq_db_val = q->cq_head;
517 if (unlikely(work_done >= budget))
518 FUN_QSTAT_INC(q, rx_budget);
519 else if (napi_complete_done(napi, work_done))
520 cq_db_val |= q->irq_db_val;
522 /* check whether to post new Rx buffers */
523 if (q->rq_cons - q->rq_cons_db >= q->rq_db_thres) {
524 u64_stats_update_begin(&q->syncp);
525 q->stats.rx_bufs += q->rq_cons - q->rq_cons_db;
526 u64_stats_update_end(&q->syncp);
527 q->rq_cons_db = q->rq_cons;
528 writel((q->rq_cons - 1) & q->rq_mask, q->rq_db);
531 writel(cq_db_val, q->cq_db);
532 return work_done;
535 /* Free the Rx buffers of an Rx queue. */
536 static void fun_rxq_free_bufs(struct funeth_rxq *q)
538 struct funeth_rxbuf *b = q->bufs;
539 unsigned int i;
541 for (i = 0; i <= q->rq_mask; i++, b++)
542 funeth_free_page(q, b);
544 funeth_free_page(q, &q->spare_buf);
545 q->cur_buf = NULL;
548 /* Initially provision an Rx queue with Rx buffers. */
549 static int fun_rxq_alloc_bufs(struct funeth_rxq *q, int node)
551 struct funeth_rxbuf *b = q->bufs;
552 unsigned int i;
554 for (i = 0; i <= q->rq_mask; i++, b++) {
555 if (funeth_alloc_page(q, b, node, GFP_KERNEL)) {
556 fun_rxq_free_bufs(q);
557 return -ENOMEM;
559 q->rqes[i] = FUN_EPRQ_RQBUF_INIT(b->dma_addr);
561 q->cur_buf = q->bufs;
562 return 0;
565 /* Initialize a used-buffer cache of the given depth. */
566 static int fun_rxq_init_cache(struct funeth_rx_cache *c, unsigned int depth,
567 int node)
569 c->mask = depth - 1;
570 c->bufs = kvzalloc_node(depth * sizeof(*c->bufs), GFP_KERNEL, node);
571 return c->bufs ? 0 : -ENOMEM;
574 /* Deallocate an Rx queue's used-buffer cache and its contents. */
575 static void fun_rxq_free_cache(struct funeth_rxq *q)
577 struct funeth_rxbuf *b = q->cache.bufs;
578 unsigned int i;
580 for (i = 0; i <= q->cache.mask; i++, b++)
581 funeth_free_page(q, b);
583 kvfree(q->cache.bufs);
584 q->cache.bufs = NULL;
587 int fun_rxq_set_bpf(struct funeth_rxq *q, struct bpf_prog *prog)
589 struct funeth_priv *fp = netdev_priv(q->netdev);
590 struct fun_admin_epcq_req cmd;
591 u16 headroom;
592 int err;
594 headroom = prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM;
595 if (headroom != q->headroom) {
596 cmd.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_EPCQ,
597 sizeof(cmd));
598 cmd.u.modify =
599 FUN_ADMIN_EPCQ_MODIFY_REQ_INIT(FUN_ADMIN_SUBOP_MODIFY,
600 0, q->hw_cqid, headroom);
601 err = fun_submit_admin_sync_cmd(fp->fdev, &cmd.common, NULL, 0,
603 if (err)
604 return err;
605 q->headroom = headroom;
608 WRITE_ONCE(q->xdp_prog, prog);
609 return 0;
612 /* Create an Rx queue, allocating the host memory it needs. */
613 static struct funeth_rxq *fun_rxq_create_sw(struct net_device *dev,
614 unsigned int qidx,
615 unsigned int ncqe,
616 unsigned int nrqe,
617 struct fun_irq *irq)
619 struct funeth_priv *fp = netdev_priv(dev);
620 struct funeth_rxq *q;
621 int err = -ENOMEM;
622 int numa_node;
624 numa_node = fun_irq_node(irq);
625 q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node);
626 if (!q)
627 goto err;
629 q->qidx = qidx;
630 q->netdev = dev;
631 q->cq_mask = ncqe - 1;
632 q->rq_mask = nrqe - 1;
633 q->numa_node = numa_node;
634 q->rq_db_thres = nrqe / 4;
635 u64_stats_init(&q->syncp);
636 q->dma_dev = &fp->pdev->dev;
638 q->rqes = fun_alloc_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes),
639 sizeof(*q->bufs), false, numa_node,
640 &q->rq_dma_addr, (void **)&q->bufs, NULL);
641 if (!q->rqes)
642 goto free_q;
644 q->cqes = fun_alloc_ring_mem(q->dma_dev, ncqe, FUNETH_CQE_SIZE, 0,
645 false, numa_node, &q->cq_dma_addr, NULL,
646 NULL);
647 if (!q->cqes)
648 goto free_rqes;
650 err = fun_rxq_init_cache(&q->cache, nrqe, numa_node);
651 if (err)
652 goto free_cqes;
654 err = fun_rxq_alloc_bufs(q, numa_node);
655 if (err)
656 goto free_cache;
658 q->stats.rx_bufs = q->rq_mask;
659 q->init_state = FUN_QSTATE_INIT_SW;
660 return q;
662 free_cache:
663 fun_rxq_free_cache(q);
664 free_cqes:
665 dma_free_coherent(q->dma_dev, ncqe * FUNETH_CQE_SIZE, q->cqes,
666 q->cq_dma_addr);
667 free_rqes:
668 fun_free_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), false, q->rqes,
669 q->rq_dma_addr, q->bufs);
670 free_q:
671 kfree(q);
672 err:
673 netdev_err(dev, "Unable to allocate memory for Rx queue %u\n", qidx);
674 return ERR_PTR(err);
677 static void fun_rxq_free_sw(struct funeth_rxq *q)
679 struct funeth_priv *fp = netdev_priv(q->netdev);
681 fun_rxq_free_cache(q);
682 fun_rxq_free_bufs(q);
683 fun_free_ring_mem(q->dma_dev, q->rq_mask + 1, sizeof(*q->rqes), false,
684 q->rqes, q->rq_dma_addr, q->bufs);
685 dma_free_coherent(q->dma_dev, (q->cq_mask + 1) * FUNETH_CQE_SIZE,
686 q->cqes, q->cq_dma_addr);
688 /* Before freeing the queue transfer key counters to the device. */
689 fp->rx_packets += q->stats.rx_pkts;
690 fp->rx_bytes += q->stats.rx_bytes;
691 fp->rx_dropped += q->stats.rx_map_err + q->stats.rx_mem_drops;
693 kfree(q);
696 /* Create an Rx queue's resources on the device. */
697 int fun_rxq_create_dev(struct funeth_rxq *q, struct fun_irq *irq)
699 struct funeth_priv *fp = netdev_priv(q->netdev);
700 unsigned int ncqe = q->cq_mask + 1;
701 unsigned int nrqe = q->rq_mask + 1;
702 int err;
704 err = xdp_rxq_info_reg(&q->xdp_rxq, q->netdev, q->qidx,
705 irq->napi.napi_id);
706 if (err)
707 goto out;
709 err = xdp_rxq_info_reg_mem_model(&q->xdp_rxq, MEM_TYPE_PAGE_SHARED,
710 NULL);
711 if (err)
712 goto xdp_unreg;
714 q->phase = 1;
715 q->irq_cnt = 0;
716 q->cq_head = 0;
717 q->rq_cons = 0;
718 q->rq_cons_db = 0;
719 q->buf_offset = 0;
720 q->napi = &irq->napi;
721 q->irq_db_val = fp->cq_irq_db;
722 q->next_cqe_info = cqe_to_info(q->cqes);
724 q->xdp_prog = fp->xdp_prog;
725 q->headroom = fp->xdp_prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM;
727 err = fun_sq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR |
728 FUN_ADMIN_EPSQ_CREATE_FLAG_RQ, 0,
729 FUN_HCI_ID_INVALID, 0, nrqe, q->rq_dma_addr, 0, 0,
730 0, 0, fp->fdev->kern_end_qid, PAGE_SHIFT,
731 &q->hw_sqid, &q->rq_db);
732 if (err)
733 goto xdp_unreg;
735 err = fun_cq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR |
736 FUN_ADMIN_EPCQ_CREATE_FLAG_RQ, 0,
737 q->hw_sqid, ilog2(FUNETH_CQE_SIZE), ncqe,
738 q->cq_dma_addr, q->headroom, FUN_RX_TAILROOM, 0, 0,
739 irq->irq_idx, 0, fp->fdev->kern_end_qid,
740 &q->hw_cqid, &q->cq_db);
741 if (err)
742 goto free_rq;
744 irq->rxq = q;
745 writel(q->rq_mask, q->rq_db);
746 q->init_state = FUN_QSTATE_INIT_FULL;
748 netif_info(fp, ifup, q->netdev,
749 "Rx queue %u, depth %u/%u, HW qid %u/%u, IRQ idx %u, node %d, headroom %u\n",
750 q->qidx, ncqe, nrqe, q->hw_cqid, q->hw_sqid, irq->irq_idx,
751 q->numa_node, q->headroom);
752 return 0;
754 free_rq:
755 fun_destroy_sq(fp->fdev, q->hw_sqid);
756 xdp_unreg:
757 xdp_rxq_info_unreg(&q->xdp_rxq);
758 out:
759 netdev_err(q->netdev,
760 "Failed to create Rx queue %u on device, error %d\n",
761 q->qidx, err);
762 return err;
765 static void fun_rxq_free_dev(struct funeth_rxq *q)
767 struct funeth_priv *fp = netdev_priv(q->netdev);
768 struct fun_irq *irq;
770 if (q->init_state < FUN_QSTATE_INIT_FULL)
771 return;
773 irq = container_of(q->napi, struct fun_irq, napi);
774 netif_info(fp, ifdown, q->netdev,
775 "Freeing Rx queue %u (id %u/%u), IRQ %u\n",
776 q->qidx, q->hw_cqid, q->hw_sqid, irq->irq_idx);
778 irq->rxq = NULL;
779 xdp_rxq_info_unreg(&q->xdp_rxq);
780 fun_destroy_sq(fp->fdev, q->hw_sqid);
781 fun_destroy_cq(fp->fdev, q->hw_cqid);
782 q->init_state = FUN_QSTATE_INIT_SW;
785 /* Create or advance an Rx queue, allocating all the host and device resources
786 * needed to reach the target state.
788 int funeth_rxq_create(struct net_device *dev, unsigned int qidx,
789 unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq,
790 int state, struct funeth_rxq **qp)
792 struct funeth_rxq *q = *qp;
793 int err;
795 if (!q) {
796 q = fun_rxq_create_sw(dev, qidx, ncqe, nrqe, irq);
797 if (IS_ERR(q))
798 return PTR_ERR(q);
801 if (q->init_state >= state)
802 goto out;
804 err = fun_rxq_create_dev(q, irq);
805 if (err) {
806 if (!*qp)
807 fun_rxq_free_sw(q);
808 return err;
811 out:
812 *qp = q;
813 return 0;
816 /* Free Rx queue resources until it reaches the target state. */
817 struct funeth_rxq *funeth_rxq_free(struct funeth_rxq *q, int state)
819 if (state < FUN_QSTATE_INIT_FULL)
820 fun_rxq_free_dev(q);
822 if (state == FUN_QSTATE_DESTROYED) {
823 fun_rxq_free_sw(q);
824 q = NULL;
827 return q;