1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 /* ethtool support for e1000 */
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
17 enum { NETDEV_STATS
, E1000_STATS
};
20 char stat_string
[ETH_GSTRING_LEN
];
26 static const char e1000e_priv_flags_strings
[][ETH_GSTRING_LEN
] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0)
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
33 #define E1000_STAT(str, m) { \
35 .type = E1000_STATS, \
36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 .stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
40 .type = NETDEV_STATS, \
41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
44 static const struct e1000_stats e1000_gstrings_stats
[] = {
45 E1000_STAT("rx_packets", stats
.gprc
),
46 E1000_STAT("tx_packets", stats
.gptc
),
47 E1000_STAT("rx_bytes", stats
.gorc
),
48 E1000_STAT("tx_bytes", stats
.gotc
),
49 E1000_STAT("rx_broadcast", stats
.bprc
),
50 E1000_STAT("tx_broadcast", stats
.bptc
),
51 E1000_STAT("rx_multicast", stats
.mprc
),
52 E1000_STAT("tx_multicast", stats
.mptc
),
53 E1000_NETDEV_STAT("rx_errors", rx_errors
),
54 E1000_NETDEV_STAT("tx_errors", tx_errors
),
55 E1000_NETDEV_STAT("tx_dropped", tx_dropped
),
56 E1000_STAT("multicast", stats
.mprc
),
57 E1000_STAT("collisions", stats
.colc
),
58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors
),
59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors
),
60 E1000_STAT("rx_crc_errors", stats
.crcerrs
),
61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors
),
62 E1000_STAT("rx_no_buffer_count", stats
.rnbc
),
63 E1000_STAT("rx_missed_errors", stats
.mpc
),
64 E1000_STAT("tx_aborted_errors", stats
.ecol
),
65 E1000_STAT("tx_carrier_errors", stats
.tncrs
),
66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors
),
67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors
),
68 E1000_STAT("tx_window_errors", stats
.latecol
),
69 E1000_STAT("tx_abort_late_coll", stats
.latecol
),
70 E1000_STAT("tx_deferred_ok", stats
.dc
),
71 E1000_STAT("tx_single_coll_ok", stats
.scc
),
72 E1000_STAT("tx_multi_coll_ok", stats
.mcc
),
73 E1000_STAT("tx_timeout_count", tx_timeout_count
),
74 E1000_STAT("tx_restart_queue", restart_queue
),
75 E1000_STAT("rx_long_length_errors", stats
.roc
),
76 E1000_STAT("rx_short_length_errors", stats
.ruc
),
77 E1000_STAT("rx_align_errors", stats
.algnerrc
),
78 E1000_STAT("tx_tcp_seg_good", stats
.tsctc
),
79 E1000_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
80 E1000_STAT("rx_flow_control_xon", stats
.xonrxc
),
81 E1000_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
82 E1000_STAT("tx_flow_control_xon", stats
.xontxc
),
83 E1000_STAT("tx_flow_control_xoff", stats
.xofftxc
),
84 E1000_STAT("rx_csum_offload_good", hw_csum_good
),
85 E1000_STAT("rx_csum_offload_errors", hw_csum_err
),
86 E1000_STAT("rx_header_split", rx_hdr_split
),
87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed
),
88 E1000_STAT("tx_smbus", stats
.mgptc
),
89 E1000_STAT("rx_smbus", stats
.mgprc
),
90 E1000_STAT("dropped_smbus", stats
.mgpdc
),
91 E1000_STAT("rx_dma_failed", rx_dma_failed
),
92 E1000_STAT("tx_dma_failed", tx_dma_failed
),
93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared
),
94 E1000_STAT("uncorr_ecc_errors", uncorr_errors
),
95 E1000_STAT("corr_ecc_errors", corr_errors
),
96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts
),
97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped
),
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
110 static int e1000_get_link_ksettings(struct net_device
*netdev
,
111 struct ethtool_link_ksettings
*cmd
)
113 u32 speed
, supported
, advertising
, lp_advertising
, lpa_t
;
114 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
115 struct e1000_hw
*hw
= &adapter
->hw
;
117 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
118 supported
= (SUPPORTED_10baseT_Half
|
119 SUPPORTED_10baseT_Full
|
120 SUPPORTED_100baseT_Half
|
121 SUPPORTED_100baseT_Full
|
122 SUPPORTED_1000baseT_Full
|
123 SUPPORTED_Asym_Pause
|
127 if (hw
->phy
.type
== e1000_phy_ife
)
128 supported
&= ~SUPPORTED_1000baseT_Full
;
129 advertising
= ADVERTISED_TP
;
131 if (hw
->mac
.autoneg
== 1) {
132 advertising
|= ADVERTISED_Autoneg
;
133 /* the e1000 autoneg seems to match ethtool nicely */
134 advertising
|= hw
->phy
.autoneg_advertised
;
137 cmd
->base
.port
= PORT_TP
;
138 cmd
->base
.phy_address
= hw
->phy
.addr
;
140 supported
= (SUPPORTED_1000baseT_Full
|
144 advertising
= (ADVERTISED_1000baseT_Full
|
148 cmd
->base
.port
= PORT_FIBRE
;
151 speed
= SPEED_UNKNOWN
;
152 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
154 if (netif_running(netdev
)) {
155 if (netif_carrier_ok(netdev
)) {
156 speed
= adapter
->link_speed
;
157 cmd
->base
.duplex
= adapter
->link_duplex
- 1;
160 u32 status
= er32(STATUS
);
162 if (status
& E1000_STATUS_LU
) {
163 if (status
& E1000_STATUS_SPEED_1000
)
165 else if (status
& E1000_STATUS_SPEED_100
)
170 if (status
& E1000_STATUS_FD
)
171 cmd
->base
.duplex
= DUPLEX_FULL
;
173 cmd
->base
.duplex
= DUPLEX_HALF
;
177 cmd
->base
.speed
= speed
;
178 cmd
->base
.autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
179 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
181 /* MDI-X => 2; MDI =>1; Invalid =>0 */
182 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
183 netif_carrier_ok(netdev
))
184 cmd
->base
.eth_tp_mdix
= hw
->phy
.is_mdix
?
185 ETH_TP_MDI_X
: ETH_TP_MDI
;
187 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI_INVALID
;
189 if (hw
->phy
.mdix
== AUTO_ALL_MODES
)
190 cmd
->base
.eth_tp_mdix_ctrl
= ETH_TP_MDI_AUTO
;
192 cmd
->base
.eth_tp_mdix_ctrl
= hw
->phy
.mdix
;
194 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
195 cmd
->base
.eth_tp_mdix_ctrl
= ETH_TP_MDI_INVALID
;
197 lpa_t
= mii_stat1000_to_ethtool_lpa_t(adapter
->phy_regs
.stat1000
);
198 lp_advertising
= lpa_t
|
199 mii_lpa_to_ethtool_lpa_t(adapter
->phy_regs
.lpa
);
201 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
203 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
205 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.lp_advertising
,
211 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
213 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
217 /* Make sure dplx is at most 1 bit and lsb of speed is not set
218 * for the switch() below to work
220 if ((spd
& 1) || (dplx
& ~1))
223 /* Fiber NICs only allow 1000 gbps Full duplex */
224 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
225 (spd
!= SPEED_1000
) && (dplx
!= DUPLEX_FULL
)) {
229 switch (spd
+ dplx
) {
230 case SPEED_10
+ DUPLEX_HALF
:
231 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
233 case SPEED_10
+ DUPLEX_FULL
:
234 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
236 case SPEED_100
+ DUPLEX_HALF
:
237 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
239 case SPEED_100
+ DUPLEX_FULL
:
240 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
242 case SPEED_1000
+ DUPLEX_FULL
:
243 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
245 adapter
->hw
.phy
.autoneg_advertised
=
248 mac
->forced_speed_duplex
= ADVERTISE_1000_FULL
;
251 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
256 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
257 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
262 e_err("Unsupported Speed/Duplex configuration\n");
266 static int e1000_set_link_ksettings(struct net_device
*netdev
,
267 const struct ethtool_link_ksettings
*cmd
)
269 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
270 struct e1000_hw
*hw
= &adapter
->hw
;
274 ethtool_convert_link_mode_to_legacy_u32(&advertising
,
275 cmd
->link_modes
.advertising
);
277 /* When SoL/IDER sessions are active, autoneg/speed/duplex
280 if (hw
->phy
.ops
.check_reset_block
&&
281 hw
->phy
.ops
.check_reset_block(hw
)) {
282 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
286 /* MDI setting is only allowed when autoneg enabled because
287 * some hardware doesn't allow MDI setting when speed or
290 if (cmd
->base
.eth_tp_mdix_ctrl
) {
291 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
294 if ((cmd
->base
.eth_tp_mdix_ctrl
!= ETH_TP_MDI_AUTO
) &&
295 (cmd
->base
.autoneg
!= AUTONEG_ENABLE
)) {
296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
301 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
302 usleep_range(1000, 2000);
304 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
306 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
307 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
308 ADVERTISED_FIBRE
| ADVERTISED_Autoneg
;
310 hw
->phy
.autoneg_advertised
= advertising
|
311 ADVERTISED_TP
| ADVERTISED_Autoneg
;
312 advertising
= hw
->phy
.autoneg_advertised
;
313 if (adapter
->fc_autoneg
)
314 hw
->fc
.requested_mode
= e1000_fc_default
;
316 u32 speed
= cmd
->base
.speed
;
317 /* calling this overrides forced MDI setting */
318 if (e1000_set_spd_dplx(adapter
, speed
, cmd
->base
.duplex
)) {
324 /* MDI-X => 2; MDI => 1; Auto => 3 */
325 if (cmd
->base
.eth_tp_mdix_ctrl
) {
326 /* fix up the value for auto (3 => 0) as zero is mapped
329 if (cmd
->base
.eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO
)
330 hw
->phy
.mdix
= AUTO_ALL_MODES
;
332 hw
->phy
.mdix
= cmd
->base
.eth_tp_mdix_ctrl
;
336 if (netif_running(adapter
->netdev
)) {
337 e1000e_down(adapter
, true);
340 e1000e_reset(adapter
);
344 clear_bit(__E1000_RESETTING
, &adapter
->state
);
348 static void e1000_get_pauseparam(struct net_device
*netdev
,
349 struct ethtool_pauseparam
*pause
)
351 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
352 struct e1000_hw
*hw
= &adapter
->hw
;
355 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
357 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
) {
359 } else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
) {
361 } else if (hw
->fc
.current_mode
== e1000_fc_full
) {
367 static int e1000_set_pauseparam(struct net_device
*netdev
,
368 struct ethtool_pauseparam
*pause
)
370 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
371 struct e1000_hw
*hw
= &adapter
->hw
;
374 adapter
->fc_autoneg
= pause
->autoneg
;
376 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
377 usleep_range(1000, 2000);
379 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
380 hw
->fc
.requested_mode
= e1000_fc_default
;
381 if (netif_running(adapter
->netdev
)) {
382 e1000e_down(adapter
, true);
385 e1000e_reset(adapter
);
388 if (pause
->rx_pause
&& pause
->tx_pause
)
389 hw
->fc
.requested_mode
= e1000_fc_full
;
390 else if (pause
->rx_pause
&& !pause
->tx_pause
)
391 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
392 else if (!pause
->rx_pause
&& pause
->tx_pause
)
393 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
394 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
395 hw
->fc
.requested_mode
= e1000_fc_none
;
397 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
399 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
400 retval
= hw
->mac
.ops
.setup_link(hw
);
401 /* implicit goto out */
403 retval
= e1000e_force_mac_fc(hw
);
406 e1000e_set_fc_watermarks(hw
);
411 clear_bit(__E1000_RESETTING
, &adapter
->state
);
415 static u32
e1000_get_msglevel(struct net_device
*netdev
)
417 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
418 return adapter
->msg_enable
;
421 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
423 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
424 adapter
->msg_enable
= data
;
427 static int e1000_get_regs_len(struct net_device __always_unused
*netdev
)
429 #define E1000_REGS_LEN 32 /* overestimate */
430 return E1000_REGS_LEN
* sizeof(u32
);
433 static void e1000_get_regs(struct net_device
*netdev
,
434 struct ethtool_regs
*regs
, void *p
)
436 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
437 struct e1000_hw
*hw
= &adapter
->hw
;
441 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
443 regs
->version
= (1u << 24) |
444 (adapter
->pdev
->revision
<< 16) |
445 adapter
->pdev
->device
;
447 regs_buff
[0] = er32(CTRL
);
448 regs_buff
[1] = er32(STATUS
);
450 regs_buff
[2] = er32(RCTL
);
451 regs_buff
[3] = er32(RDLEN(0));
452 regs_buff
[4] = er32(RDH(0));
453 regs_buff
[5] = er32(RDT(0));
454 regs_buff
[6] = er32(RDTR
);
456 regs_buff
[7] = er32(TCTL
);
457 regs_buff
[8] = er32(TDLEN(0));
458 regs_buff
[9] = er32(TDH(0));
459 regs_buff
[10] = er32(TDT(0));
460 regs_buff
[11] = er32(TIDV
);
462 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
464 /* ethtool doesn't use anything past this point, so all this
465 * code is likely legacy junk for apps that may or may not exist
467 if (hw
->phy
.type
== e1000_phy_m88
) {
468 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
469 regs_buff
[13] = (u32
)phy_data
; /* cable length */
470 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
471 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
472 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
473 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
474 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
475 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
476 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
477 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
478 /* phy receive errors */
479 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
480 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
482 regs_buff
[21] = 0; /* was idle_errors */
483 e1e_rphy(hw
, MII_STAT1000
, &phy_data
);
484 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
485 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
488 static int e1000_get_eeprom_len(struct net_device
*netdev
)
490 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
491 return adapter
->hw
.nvm
.word_size
* 2;
494 static int e1000_get_eeprom(struct net_device
*netdev
,
495 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
497 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
498 struct e1000_hw
*hw
= &adapter
->hw
;
505 if (eeprom
->len
== 0)
508 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
510 first_word
= eeprom
->offset
>> 1;
511 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
513 eeprom_buff
= kmalloc_array(last_word
- first_word
+ 1, sizeof(u16
),
518 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
519 ret_val
= e1000_read_nvm(hw
, first_word
,
520 last_word
- first_word
+ 1,
523 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
524 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
532 /* a read error occurred, throw away the result */
533 memset(eeprom_buff
, 0xff, sizeof(u16
) *
534 (last_word
- first_word
+ 1));
536 /* Device's eeprom is always little-endian, word addressable */
537 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
538 le16_to_cpus(&eeprom_buff
[i
]);
541 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
547 static int e1000_set_eeprom(struct net_device
*netdev
,
548 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
550 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
551 struct e1000_hw
*hw
= &adapter
->hw
;
560 if (eeprom
->len
== 0)
564 (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
567 if (adapter
->flags
& FLAG_READ_ONLY_NVM
)
570 max_len
= hw
->nvm
.word_size
* 2;
572 first_word
= eeprom
->offset
>> 1;
573 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
574 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
578 ptr
= (void *)eeprom_buff
;
580 if (eeprom
->offset
& 1) {
581 /* need read/modify/write of first changed EEPROM word */
582 /* only the second byte of the word is being modified */
583 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
586 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (!ret_val
))
587 /* need read/modify/write of last changed EEPROM word */
588 /* only the first byte of the word is being modified */
589 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
590 &eeprom_buff
[last_word
- first_word
]);
595 /* Device's eeprom is always little-endian, word addressable */
596 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
597 le16_to_cpus(&eeprom_buff
[i
]);
599 memcpy(ptr
, bytes
, eeprom
->len
);
601 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
602 cpu_to_le16s(&eeprom_buff
[i
]);
604 ret_val
= e1000_write_nvm(hw
, first_word
,
605 last_word
- first_word
+ 1, eeprom_buff
);
610 /* Update the checksum over the first part of the EEPROM if needed
611 * and flush shadow RAM for applicable controllers
613 if ((first_word
<= NVM_CHECKSUM_REG
) ||
614 (hw
->mac
.type
== e1000_82583
) ||
615 (hw
->mac
.type
== e1000_82574
) ||
616 (hw
->mac
.type
== e1000_82573
))
617 ret_val
= e1000e_update_nvm_checksum(hw
);
624 static void e1000_get_drvinfo(struct net_device
*netdev
,
625 struct ethtool_drvinfo
*drvinfo
)
627 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
629 strscpy(drvinfo
->driver
, e1000e_driver_name
, sizeof(drvinfo
->driver
));
631 /* EEPROM image version # is reported as firmware version # for
634 snprintf(drvinfo
->fw_version
, sizeof(drvinfo
->fw_version
),
636 FIELD_GET(0xF000, adapter
->eeprom_vers
),
637 FIELD_GET(0x0FF0, adapter
->eeprom_vers
),
638 (adapter
->eeprom_vers
& 0x000F));
640 strscpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
641 sizeof(drvinfo
->bus_info
));
644 static void e1000_get_ringparam(struct net_device
*netdev
,
645 struct ethtool_ringparam
*ring
,
646 struct kernel_ethtool_ringparam
*kernel_ring
,
647 struct netlink_ext_ack
*extack
)
649 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
651 ring
->rx_max_pending
= E1000_MAX_RXD
;
652 ring
->tx_max_pending
= E1000_MAX_TXD
;
653 ring
->rx_pending
= adapter
->rx_ring_count
;
654 ring
->tx_pending
= adapter
->tx_ring_count
;
657 static int e1000_set_ringparam(struct net_device
*netdev
,
658 struct ethtool_ringparam
*ring
,
659 struct kernel_ethtool_ringparam
*kernel_ring
,
660 struct netlink_ext_ack
*extack
)
662 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
663 struct e1000_ring
*temp_tx
= NULL
, *temp_rx
= NULL
;
664 int err
= 0, size
= sizeof(struct e1000_ring
);
665 bool set_tx
= false, set_rx
= false;
666 u16 new_rx_count
, new_tx_count
;
668 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
671 new_rx_count
= clamp_t(u32
, ring
->rx_pending
, E1000_MIN_RXD
,
673 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
675 new_tx_count
= clamp_t(u32
, ring
->tx_pending
, E1000_MIN_TXD
,
677 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
679 if ((new_tx_count
== adapter
->tx_ring_count
) &&
680 (new_rx_count
== adapter
->rx_ring_count
))
684 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
685 usleep_range(1000, 2000);
687 if (!netif_running(adapter
->netdev
)) {
688 /* Set counts now and allocate resources during open() */
689 adapter
->tx_ring
->count
= new_tx_count
;
690 adapter
->rx_ring
->count
= new_rx_count
;
691 adapter
->tx_ring_count
= new_tx_count
;
692 adapter
->rx_ring_count
= new_rx_count
;
696 set_tx
= (new_tx_count
!= adapter
->tx_ring_count
);
697 set_rx
= (new_rx_count
!= adapter
->rx_ring_count
);
699 /* Allocate temporary storage for ring updates */
701 temp_tx
= vmalloc(size
);
708 temp_rx
= vmalloc(size
);
715 e1000e_down(adapter
, true);
717 /* We can't just free everything and then setup again, because the
718 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
719 * structs. First, attempt to allocate new resources...
722 memcpy(temp_tx
, adapter
->tx_ring
, size
);
723 temp_tx
->count
= new_tx_count
;
724 err
= e1000e_setup_tx_resources(temp_tx
);
729 memcpy(temp_rx
, adapter
->rx_ring
, size
);
730 temp_rx
->count
= new_rx_count
;
731 err
= e1000e_setup_rx_resources(temp_rx
);
736 /* ...then free the old resources and copy back any new ring data */
738 e1000e_free_tx_resources(adapter
->tx_ring
);
739 memcpy(adapter
->tx_ring
, temp_tx
, size
);
740 adapter
->tx_ring_count
= new_tx_count
;
743 e1000e_free_rx_resources(adapter
->rx_ring
);
744 memcpy(adapter
->rx_ring
, temp_rx
, size
);
745 adapter
->rx_ring_count
= new_rx_count
;
750 e1000e_free_tx_resources(temp_tx
);
757 clear_bit(__E1000_RESETTING
, &adapter
->state
);
761 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
,
762 int reg
, int offset
, u32 mask
, u32 write
)
765 static const u32 test
[] = {
766 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
768 for (pat
= 0; pat
< ARRAY_SIZE(test
); pat
++) {
769 E1000_WRITE_REG_ARRAY(&adapter
->hw
, reg
, offset
,
770 (test
[pat
] & write
));
771 val
= E1000_READ_REG_ARRAY(&adapter
->hw
, reg
, offset
);
772 if (val
!= (test
[pat
] & write
& mask
)) {
773 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
774 reg
+ (offset
<< 2), val
,
775 (test
[pat
] & write
& mask
));
783 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
,
784 int reg
, u32 mask
, u32 write
)
788 __ew32(&adapter
->hw
, reg
, write
& mask
);
789 val
= __er32(&adapter
->hw
, reg
);
790 if ((write
& mask
) != (val
& mask
)) {
791 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
792 reg
, (val
& mask
), (write
& mask
));
799 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
801 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
804 #define REG_PATTERN_TEST(reg, mask, write) \
805 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
807 #define REG_SET_AND_CHECK(reg, mask, write) \
809 if (reg_set_and_check(adapter, data, reg, mask, write)) \
813 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
815 struct e1000_hw
*hw
= &adapter
->hw
;
816 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
825 /* The status register is Read Only, so a write should fail.
826 * Some bits that get toggled are ignored. There are several bits
827 * on newer hardware that are r/w.
832 case e1000_80003es2lan
:
840 before
= er32(STATUS
);
841 value
= (er32(STATUS
) & toggle
);
842 ew32(STATUS
, toggle
);
843 after
= er32(STATUS
) & toggle
;
844 if (value
!= after
) {
845 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
850 /* restore previous status */
851 ew32(STATUS
, before
);
853 if (!(adapter
->flags
& FLAG_IS_ICH
)) {
854 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
855 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
856 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
857 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
860 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
861 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
862 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
863 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
864 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
865 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
866 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
867 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
868 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
869 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
871 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
873 before
= ((adapter
->flags
& FLAG_IS_ICH
) ? 0x06C3B33E : 0x06DFB3FE);
874 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
875 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
877 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
879 if (!(adapter
->flags
& FLAG_IS_ICH
))
880 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
881 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
882 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
903 if (mac
->type
>= e1000_pch_lpt
)
904 wlock_mac
= FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK
, er32(FWSM
));
906 for (i
= 0; i
< mac
->rar_entry_count
; i
++) {
907 if (mac
->type
>= e1000_pch_lpt
) {
908 /* Cannot test write-protected SHRAL[n] registers */
909 if ((wlock_mac
== 1) || (wlock_mac
&& (i
> wlock_mac
)))
912 /* SHRAH[9] different than the others */
918 if (mac
->type
== e1000_pch2lan
) {
919 /* SHRAH[0,1,2] different than previous */
922 /* SHRAH[3] different than SHRAH[0,1,2] */
925 /* RAR[1-6] owned by management engine - skipping */
930 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1), mask
,
932 /* reset index to actual value */
933 if ((mac
->type
== e1000_pch2lan
) && (i
> 6))
937 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
938 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
945 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
952 /* Read and add up the contents of the EEPROM */
953 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
954 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
961 /* If Checksum is not Correct return error else test passed */
962 if ((checksum
!= (u16
)NVM_SUM
) && !(*data
))
968 static irqreturn_t
e1000_test_intr(int __always_unused irq
, void *data
)
970 struct net_device
*netdev
= (struct net_device
*)data
;
971 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
972 struct e1000_hw
*hw
= &adapter
->hw
;
974 adapter
->test_icr
|= er32(ICR
);
979 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
981 struct net_device
*netdev
= adapter
->netdev
;
982 struct e1000_hw
*hw
= &adapter
->hw
;
985 u32 irq
= adapter
->pdev
->irq
;
988 int int_mode
= E1000E_INT_MODE_LEGACY
;
992 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
993 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
) {
994 int_mode
= adapter
->int_mode
;
995 e1000e_reset_interrupt_capability(adapter
);
996 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
997 e1000e_set_interrupt_capability(adapter
);
999 /* Hook up test interrupt handler just for this test */
1000 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
1003 } else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
, netdev
->name
,
1009 e_info("testing %s interrupt\n", (shared_int
? "shared" : "unshared"));
1011 /* Disable all the interrupts */
1012 ew32(IMC
, 0xFFFFFFFF);
1014 usleep_range(10000, 11000);
1016 /* Test each interrupt */
1017 for (i
= 0; i
< 10; i
++) {
1018 /* Interrupt to test */
1021 if (adapter
->flags
& FLAG_IS_ICH
) {
1023 case E1000_ICR_RXSEQ
:
1026 if (adapter
->hw
.mac
.type
== e1000_ich8lan
||
1027 adapter
->hw
.mac
.type
== e1000_ich9lan
)
1036 /* Disable the interrupt to be reported in
1037 * the cause register and then force the same
1038 * interrupt and see if one gets posted. If
1039 * an interrupt was posted to the bus, the
1042 adapter
->test_icr
= 0;
1046 usleep_range(10000, 11000);
1048 if (adapter
->test_icr
& mask
) {
1054 /* Enable the interrupt to be reported in
1055 * the cause register and then force the same
1056 * interrupt and see if one gets posted. If
1057 * an interrupt was not posted to the bus, the
1060 adapter
->test_icr
= 0;
1064 usleep_range(10000, 11000);
1066 if (!(adapter
->test_icr
& mask
)) {
1072 /* Disable the other interrupts to be reported in
1073 * the cause register and then force the other
1074 * interrupts and see if any get posted. If
1075 * an interrupt was posted to the bus, the
1078 adapter
->test_icr
= 0;
1079 ew32(IMC
, ~mask
& 0x00007FFF);
1080 ew32(ICS
, ~mask
& 0x00007FFF);
1082 usleep_range(10000, 11000);
1084 if (adapter
->test_icr
) {
1091 /* Disable all the interrupts */
1092 ew32(IMC
, 0xFFFFFFFF);
1094 usleep_range(10000, 11000);
1096 /* Unhook test interrupt handler */
1097 free_irq(irq
, netdev
);
1100 if (int_mode
== E1000E_INT_MODE_MSIX
) {
1101 e1000e_reset_interrupt_capability(adapter
);
1102 adapter
->int_mode
= int_mode
;
1103 e1000e_set_interrupt_capability(adapter
);
1109 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1111 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1112 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1113 struct pci_dev
*pdev
= adapter
->pdev
;
1114 struct e1000_buffer
*buffer_info
;
1117 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1118 for (i
= 0; i
< tx_ring
->count
; i
++) {
1119 buffer_info
= &tx_ring
->buffer_info
[i
];
1121 if (buffer_info
->dma
)
1122 dma_unmap_single(&pdev
->dev
,
1124 buffer_info
->length
,
1126 dev_kfree_skb(buffer_info
->skb
);
1130 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1131 for (i
= 0; i
< rx_ring
->count
; i
++) {
1132 buffer_info
= &rx_ring
->buffer_info
[i
];
1134 if (buffer_info
->dma
)
1135 dma_unmap_single(&pdev
->dev
,
1137 2048, DMA_FROM_DEVICE
);
1138 dev_kfree_skb(buffer_info
->skb
);
1142 if (tx_ring
->desc
) {
1143 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1145 tx_ring
->desc
= NULL
;
1147 if (rx_ring
->desc
) {
1148 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1150 rx_ring
->desc
= NULL
;
1153 kfree(tx_ring
->buffer_info
);
1154 tx_ring
->buffer_info
= NULL
;
1155 kfree(rx_ring
->buffer_info
);
1156 rx_ring
->buffer_info
= NULL
;
1159 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1161 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1162 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1163 struct pci_dev
*pdev
= adapter
->pdev
;
1164 struct e1000_hw
*hw
= &adapter
->hw
;
1169 /* Setup Tx descriptor ring and Tx buffers */
1171 if (!tx_ring
->count
)
1172 tx_ring
->count
= E1000_DEFAULT_TXD
;
1174 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1175 sizeof(struct e1000_buffer
), GFP_KERNEL
);
1176 if (!tx_ring
->buffer_info
) {
1181 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1182 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1183 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1184 &tx_ring
->dma
, GFP_KERNEL
);
1185 if (!tx_ring
->desc
) {
1189 tx_ring
->next_to_use
= 0;
1190 tx_ring
->next_to_clean
= 0;
1192 ew32(TDBAL(0), ((u64
)tx_ring
->dma
& 0x00000000FFFFFFFF));
1193 ew32(TDBAH(0), ((u64
)tx_ring
->dma
>> 32));
1194 ew32(TDLEN(0), tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1197 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
| E1000_TCTL_MULR
|
1198 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1199 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1201 for (i
= 0; i
< tx_ring
->count
; i
++) {
1202 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1203 struct sk_buff
*skb
;
1204 unsigned int skb_size
= 1024;
1206 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1211 skb_put(skb
, skb_size
);
1212 tx_ring
->buffer_info
[i
].skb
= skb
;
1213 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1214 tx_ring
->buffer_info
[i
].dma
=
1215 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1217 if (dma_mapping_error(&pdev
->dev
,
1218 tx_ring
->buffer_info
[i
].dma
)) {
1222 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1223 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1224 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1225 E1000_TXD_CMD_IFCS
|
1227 tx_desc
->upper
.data
= 0;
1230 /* Setup Rx descriptor ring and Rx buffers */
1232 if (!rx_ring
->count
)
1233 rx_ring
->count
= E1000_DEFAULT_RXD
;
1235 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1236 sizeof(struct e1000_buffer
), GFP_KERNEL
);
1237 if (!rx_ring
->buffer_info
) {
1242 rx_ring
->size
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
1243 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1244 &rx_ring
->dma
, GFP_KERNEL
);
1245 if (!rx_ring
->desc
) {
1249 rx_ring
->next_to_use
= 0;
1250 rx_ring
->next_to_clean
= 0;
1253 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
1254 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1255 ew32(RDBAL(0), ((u64
)rx_ring
->dma
& 0xFFFFFFFF));
1256 ew32(RDBAH(0), ((u64
)rx_ring
->dma
>> 32));
1257 ew32(RDLEN(0), rx_ring
->size
);
1260 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1261 E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_LPE
|
1262 E1000_RCTL_SBP
| E1000_RCTL_SECRC
|
1263 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1264 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1267 for (i
= 0; i
< rx_ring
->count
; i
++) {
1268 union e1000_rx_desc_extended
*rx_desc
;
1269 struct sk_buff
*skb
;
1271 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1276 skb_reserve(skb
, NET_IP_ALIGN
);
1277 rx_ring
->buffer_info
[i
].skb
= skb
;
1278 rx_ring
->buffer_info
[i
].dma
=
1279 dma_map_single(&pdev
->dev
, skb
->data
, 2048,
1281 if (dma_mapping_error(&pdev
->dev
,
1282 rx_ring
->buffer_info
[i
].dma
)) {
1286 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1287 rx_desc
->read
.buffer_addr
=
1288 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1289 memset(skb
->data
, 0x00, skb
->len
);
1295 e1000_free_desc_rings(adapter
);
1299 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1301 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1302 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1303 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1304 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1305 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1308 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1310 struct e1000_hw
*hw
= &adapter
->hw
;
1315 hw
->mac
.autoneg
= 0;
1317 if (hw
->phy
.type
== e1000_phy_ife
) {
1318 /* force 100, set loopback */
1319 e1e_wphy(hw
, MII_BMCR
, 0x6100);
1321 /* Now set up the MAC to the same speed/duplex as the PHY. */
1322 ctrl_reg
= er32(CTRL
);
1323 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1324 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1325 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1326 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1327 E1000_CTRL_FD
); /* Force Duplex to FULL */
1329 ew32(CTRL
, ctrl_reg
);
1331 usleep_range(500, 1000);
1336 /* Specific PHY configuration for loopback */
1337 switch (hw
->phy
.type
) {
1339 /* Auto-MDI/MDIX Off */
1340 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1341 /* reset to update Auto-MDI/MDIX */
1342 e1e_wphy(hw
, MII_BMCR
, 0x9140);
1344 e1e_wphy(hw
, MII_BMCR
, 0x8140);
1346 case e1000_phy_gg82563
:
1347 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1350 /* Set Default MAC Interface speed to 1GB */
1351 e1e_rphy(hw
, PHY_REG(2, 21), &phy_reg
);
1354 e1e_wphy(hw
, PHY_REG(2, 21), phy_reg
);
1355 /* Assert SW reset for above settings to take effect */
1356 hw
->phy
.ops
.commit(hw
);
1357 usleep_range(1000, 2000);
1358 /* Force Full Duplex */
1359 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1360 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x000C);
1361 /* Set Link Up (in force link) */
1362 e1e_rphy(hw
, PHY_REG(776, 16), &phy_reg
);
1363 e1e_wphy(hw
, PHY_REG(776, 16), phy_reg
| 0x0040);
1365 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1366 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x0040);
1367 /* Set Early Link Enable */
1368 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1369 e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| 0x0400);
1371 case e1000_phy_82577
:
1372 case e1000_phy_82578
:
1373 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1374 ret_val
= hw
->phy
.ops
.acquire(hw
);
1376 e_err("Cannot setup 1Gbps loopback.\n");
1379 e1000_configure_k1_ich8lan(hw
, false);
1380 hw
->phy
.ops
.release(hw
);
1382 case e1000_phy_82579
:
1383 /* Disable PHY energy detect power down */
1384 e1e_rphy(hw
, PHY_REG(0, 21), &phy_reg
);
1385 e1e_wphy(hw
, PHY_REG(0, 21), phy_reg
& ~BIT(3));
1386 /* Disable full chip energy detect */
1387 e1e_rphy(hw
, PHY_REG(776, 18), &phy_reg
);
1388 e1e_wphy(hw
, PHY_REG(776, 18), phy_reg
| 1);
1389 /* Enable loopback on the PHY */
1390 e1e_wphy(hw
, I82577_PHY_LBK_CTRL
, 0x8001);
1396 /* force 1000, set loopback */
1397 e1e_wphy(hw
, MII_BMCR
, 0x4140);
1400 /* Now set up the MAC to the same speed/duplex as the PHY. */
1401 ctrl_reg
= er32(CTRL
);
1402 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1403 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1404 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1405 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1406 E1000_CTRL_FD
); /* Force Duplex to FULL */
1408 if (adapter
->flags
& FLAG_IS_ICH
)
1409 ctrl_reg
|= E1000_CTRL_SLU
; /* Set Link Up */
1411 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1412 hw
->phy
.type
== e1000_phy_m88
) {
1413 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1415 /* Set the ILOS bit on the fiber Nic if half duplex link is
1418 if ((er32(STATUS
) & E1000_STATUS_FD
) == 0)
1419 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1422 ew32(CTRL
, ctrl_reg
);
1424 /* Disable the receiver on the PHY so when a cable is plugged in, the
1425 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1427 if (hw
->phy
.type
== e1000_phy_m88
)
1428 e1000_phy_disable_receiver(adapter
);
1430 usleep_range(500, 1000);
1435 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1437 struct e1000_hw
*hw
= &adapter
->hw
;
1438 u32 ctrl
= er32(CTRL
);
1441 /* special requirements for 82571/82572 fiber adapters */
1443 /* jump through hoops to make sure link is up because serdes
1444 * link is hardwired up
1446 ctrl
|= E1000_CTRL_SLU
;
1449 /* disable autoneg */
1454 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1457 /* set invert loss of signal */
1459 ctrl
|= E1000_CTRL_ILOS
;
1463 /* special write to serdes control register to enable SerDes analog
1466 ew32(SCTL
, E1000_SCTL_ENABLE_SERDES_LOOPBACK
);
1468 usleep_range(10000, 11000);
1473 /* only call this for fiber/serdes connections to es2lan */
1474 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1476 struct e1000_hw
*hw
= &adapter
->hw
;
1477 u32 ctrlext
= er32(CTRL_EXT
);
1478 u32 ctrl
= er32(CTRL
);
1480 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1481 * on mac_type 80003es2lan)
1483 adapter
->tx_fifo_head
= ctrlext
;
1485 /* clear the serdes mode bits, putting the device into mac loopback */
1486 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1487 ew32(CTRL_EXT
, ctrlext
);
1489 /* force speed to 1000/FD, link up */
1490 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1491 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1492 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1495 /* set mac loopback */
1497 ctrl
|= E1000_RCTL_LBM_MAC
;
1500 /* set testing mode parameters (no need to reset later) */
1501 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1502 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1504 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1509 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1511 struct e1000_hw
*hw
= &adapter
->hw
;
1512 u32 rctl
, fext_nvm11
, tarc0
;
1514 if (hw
->mac
.type
>= e1000_pch_spt
) {
1515 fext_nvm11
= er32(FEXTNVM11
);
1516 fext_nvm11
|= E1000_FEXTNVM11_DISABLE_MULR_FIX
;
1517 ew32(FEXTNVM11
, fext_nvm11
);
1518 tarc0
= er32(TARC(0));
1519 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1520 tarc0
&= 0xcfffffff;
1521 /* set bit 29 (value of MULR requests is now 2) */
1522 tarc0
|= 0x20000000;
1523 ew32(TARC(0), tarc0
);
1525 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1526 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1527 switch (hw
->mac
.type
) {
1528 case e1000_80003es2lan
:
1529 return e1000_set_es2lan_mac_loopback(adapter
);
1532 return e1000_set_82571_fiber_loopback(adapter
);
1535 rctl
|= E1000_RCTL_LBM_TCVR
;
1539 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1540 return e1000_integrated_phy_loopback(adapter
);
1546 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1548 struct e1000_hw
*hw
= &adapter
->hw
;
1549 u32 rctl
, fext_nvm11
, tarc0
;
1553 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1556 switch (hw
->mac
.type
) {
1565 fext_nvm11
= er32(FEXTNVM11
);
1566 fext_nvm11
&= ~E1000_FEXTNVM11_DISABLE_MULR_FIX
;
1567 ew32(FEXTNVM11
, fext_nvm11
);
1568 tarc0
= er32(TARC(0));
1569 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1570 /* set bit 29 (value of MULR requests is now 0) */
1571 tarc0
&= 0xcfffffff;
1572 ew32(TARC(0), tarc0
);
1574 case e1000_80003es2lan
:
1575 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1576 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1577 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1578 ew32(CTRL_EXT
, adapter
->tx_fifo_head
);
1579 adapter
->tx_fifo_head
= 0;
1584 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1585 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1586 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1588 usleep_range(10000, 11000);
1593 hw
->mac
.autoneg
= 1;
1594 if (hw
->phy
.type
== e1000_phy_gg82563
)
1595 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1596 e1e_rphy(hw
, MII_BMCR
, &phy_reg
);
1597 if (phy_reg
& BMCR_LOOPBACK
) {
1598 phy_reg
&= ~BMCR_LOOPBACK
;
1599 e1e_wphy(hw
, MII_BMCR
, phy_reg
);
1600 if (hw
->phy
.ops
.commit
)
1601 hw
->phy
.ops
.commit(hw
);
1607 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1608 unsigned int frame_size
)
1610 memset(skb
->data
, 0xFF, frame_size
);
1612 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1613 skb
->data
[frame_size
/ 2 + 10] = 0xBE;
1614 skb
->data
[frame_size
/ 2 + 12] = 0xAF;
1617 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1618 unsigned int frame_size
)
1621 if (*(skb
->data
+ 3) == 0xFF)
1622 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1623 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1628 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1630 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1631 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1632 struct pci_dev
*pdev
= adapter
->pdev
;
1633 struct e1000_hw
*hw
= &adapter
->hw
;
1634 struct e1000_buffer
*buffer_info
;
1641 ew32(RDT(0), rx_ring
->count
- 1);
1643 /* Calculate the loop count based on the largest descriptor ring
1644 * The idea is to wrap the largest ring a number of times using 64
1645 * send/receive pairs during each loop
1648 if (rx_ring
->count
<= tx_ring
->count
)
1649 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1651 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1655 /* loop count loop */
1656 for (j
= 0; j
<= lc
; j
++) {
1657 /* send the packets */
1658 for (i
= 0; i
< 64; i
++) {
1659 buffer_info
= &tx_ring
->buffer_info
[k
];
1661 e1000_create_lbtest_frame(buffer_info
->skb
, 1024);
1662 dma_sync_single_for_device(&pdev
->dev
,
1664 buffer_info
->length
,
1667 if (k
== tx_ring
->count
)
1673 time
= jiffies
; /* set the start time for the receive */
1675 /* receive the sent packets */
1677 buffer_info
= &rx_ring
->buffer_info
[l
];
1679 dma_sync_single_for_cpu(&pdev
->dev
,
1680 buffer_info
->dma
, 2048,
1683 ret_val
= e1000_check_lbtest_frame(buffer_info
->skb
,
1688 if (l
== rx_ring
->count
)
1690 /* time + 20 msecs (200 msecs on 2.4) is more than
1691 * enough time to complete the receives, if it's
1692 * exceeded, break and error off
1694 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1695 if (good_cnt
!= 64) {
1696 ret_val
= 13; /* ret_val is the same as mis-compare */
1699 if (time_after(jiffies
, time
+ 20)) {
1700 ret_val
= 14; /* error code for time out error */
1707 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1709 struct e1000_hw
*hw
= &adapter
->hw
;
1711 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1712 if (hw
->phy
.ops
.check_reset_block
&&
1713 hw
->phy
.ops
.check_reset_block(hw
)) {
1714 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1719 *data
= e1000_setup_desc_rings(adapter
);
1723 *data
= e1000_setup_loopback_test(adapter
);
1727 *data
= e1000_run_loopback_test(adapter
);
1728 e1000_loopback_cleanup(adapter
);
1731 e1000_free_desc_rings(adapter
);
1736 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1738 struct e1000_hw
*hw
= &adapter
->hw
;
1741 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1744 hw
->mac
.serdes_has_link
= false;
1746 /* On some blade server designs, link establishment
1747 * could take as long as 2-3 minutes
1750 hw
->mac
.ops
.check_for_link(hw
);
1751 if (hw
->mac
.serdes_has_link
)
1754 } while (i
++ < 3750);
1758 hw
->mac
.ops
.check_for_link(hw
);
1759 if (hw
->mac
.autoneg
)
1760 /* On some Phy/switch combinations, link establishment
1761 * can take a few seconds more than expected.
1763 msleep_interruptible(5000);
1765 if (!(er32(STATUS
) & E1000_STATUS_LU
))
1771 static int e1000e_get_sset_count(struct net_device __always_unused
*netdev
,
1776 return E1000_TEST_LEN
;
1778 return E1000_STATS_LEN
;
1779 case ETH_SS_PRIV_FLAGS
:
1780 return E1000E_PRIV_FLAGS_STR_LEN
;
1786 static void e1000_diag_test(struct net_device
*netdev
,
1787 struct ethtool_test
*eth_test
, u64
*data
)
1789 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1790 u16 autoneg_advertised
;
1791 u8 forced_speed_duplex
;
1793 bool if_running
= netif_running(netdev
);
1795 set_bit(__E1000_TESTING
, &adapter
->state
);
1798 /* Get control of and reset hardware */
1799 if (adapter
->flags
& FLAG_HAS_AMT
)
1800 e1000e_get_hw_control(adapter
);
1802 e1000e_power_up_phy(adapter
);
1804 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1805 e1000e_reset(adapter
);
1806 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1809 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1812 /* save speed, duplex, autoneg settings */
1813 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1814 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1815 autoneg
= adapter
->hw
.mac
.autoneg
;
1817 e_info("offline testing starting\n");
1820 /* indicate we're in test mode */
1821 e1000e_close(netdev
);
1823 if (e1000_reg_test(adapter
, &data
[0]))
1824 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1826 e1000e_reset(adapter
);
1827 if (e1000_eeprom_test(adapter
, &data
[1]))
1828 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1830 e1000e_reset(adapter
);
1831 if (e1000_intr_test(adapter
, &data
[2]))
1832 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1834 e1000e_reset(adapter
);
1835 if (e1000_loopback_test(adapter
, &data
[3]))
1836 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1838 /* force this routine to wait until autoneg complete/timeout */
1839 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1840 e1000e_reset(adapter
);
1841 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1843 if (e1000_link_test(adapter
, &data
[4]))
1844 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1846 /* restore speed, duplex, autoneg settings */
1847 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1848 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1849 adapter
->hw
.mac
.autoneg
= autoneg
;
1850 e1000e_reset(adapter
);
1852 clear_bit(__E1000_TESTING
, &adapter
->state
);
1854 e1000e_open(netdev
);
1858 e_info("online testing starting\n");
1860 /* register, eeprom, intr and loopback tests not run online */
1866 if (e1000_link_test(adapter
, &data
[4]))
1867 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1869 clear_bit(__E1000_TESTING
, &adapter
->state
);
1873 e1000e_reset(adapter
);
1875 if (adapter
->flags
& FLAG_HAS_AMT
)
1876 e1000e_release_hw_control(adapter
);
1879 msleep_interruptible(4 * 1000);
1882 static void e1000_get_wol(struct net_device
*netdev
,
1883 struct ethtool_wolinfo
*wol
)
1885 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1890 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1891 !device_can_wakeup(&adapter
->pdev
->dev
))
1894 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1895 WAKE_BCAST
| WAKE_MAGIC
| WAKE_PHY
;
1897 /* apply any specific unsupported masks here */
1898 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1899 wol
->supported
&= ~WAKE_UCAST
;
1901 if (adapter
->wol
& E1000_WUFC_EX
)
1902 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1905 if (adapter
->wol
& E1000_WUFC_EX
)
1906 wol
->wolopts
|= WAKE_UCAST
;
1907 if (adapter
->wol
& E1000_WUFC_MC
)
1908 wol
->wolopts
|= WAKE_MCAST
;
1909 if (adapter
->wol
& E1000_WUFC_BC
)
1910 wol
->wolopts
|= WAKE_BCAST
;
1911 if (adapter
->wol
& E1000_WUFC_MAG
)
1912 wol
->wolopts
|= WAKE_MAGIC
;
1913 if (adapter
->wol
& E1000_WUFC_LNKC
)
1914 wol
->wolopts
|= WAKE_PHY
;
1917 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1919 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1921 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1922 !device_can_wakeup(&adapter
->pdev
->dev
) ||
1923 (wol
->wolopts
& ~(WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
|
1924 WAKE_MAGIC
| WAKE_PHY
)))
1927 /* these settings will always override what we currently have */
1930 if (wol
->wolopts
& WAKE_UCAST
)
1931 adapter
->wol
|= E1000_WUFC_EX
;
1932 if (wol
->wolopts
& WAKE_MCAST
)
1933 adapter
->wol
|= E1000_WUFC_MC
;
1934 if (wol
->wolopts
& WAKE_BCAST
)
1935 adapter
->wol
|= E1000_WUFC_BC
;
1936 if (wol
->wolopts
& WAKE_MAGIC
)
1937 adapter
->wol
|= E1000_WUFC_MAG
;
1938 if (wol
->wolopts
& WAKE_PHY
)
1939 adapter
->wol
|= E1000_WUFC_LNKC
;
1941 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1946 static int e1000_set_phys_id(struct net_device
*netdev
,
1947 enum ethtool_phys_id_state state
)
1949 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1950 struct e1000_hw
*hw
= &adapter
->hw
;
1953 case ETHTOOL_ID_ACTIVE
:
1954 pm_runtime_get_sync(netdev
->dev
.parent
);
1956 if (!hw
->mac
.ops
.blink_led
)
1957 return 2; /* cycle on/off twice per second */
1959 hw
->mac
.ops
.blink_led(hw
);
1962 case ETHTOOL_ID_INACTIVE
:
1963 if (hw
->phy
.type
== e1000_phy_ife
)
1964 e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1965 hw
->mac
.ops
.led_off(hw
);
1966 hw
->mac
.ops
.cleanup_led(hw
);
1967 pm_runtime_put_sync(netdev
->dev
.parent
);
1971 hw
->mac
.ops
.led_on(hw
);
1974 case ETHTOOL_ID_OFF
:
1975 hw
->mac
.ops
.led_off(hw
);
1982 static int e1000_get_coalesce(struct net_device
*netdev
,
1983 struct ethtool_coalesce
*ec
,
1984 struct kernel_ethtool_coalesce
*kernel_coal
,
1985 struct netlink_ext_ack
*extack
)
1987 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1989 if (adapter
->itr_setting
<= 4)
1990 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1992 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1997 static int e1000_set_coalesce(struct net_device
*netdev
,
1998 struct ethtool_coalesce
*ec
,
1999 struct kernel_ethtool_coalesce
*kernel_coal
,
2000 struct netlink_ext_ack
*extack
)
2002 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2004 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
2005 ((ec
->rx_coalesce_usecs
> 4) &&
2006 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
2007 (ec
->rx_coalesce_usecs
== 2))
2010 if (ec
->rx_coalesce_usecs
== 4) {
2011 adapter
->itr_setting
= 4;
2012 adapter
->itr
= adapter
->itr_setting
;
2013 } else if (ec
->rx_coalesce_usecs
<= 3) {
2014 adapter
->itr
= 20000;
2015 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
2017 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
2018 adapter
->itr_setting
= adapter
->itr
& ~3;
2021 if (adapter
->itr_setting
!= 0)
2022 e1000e_write_itr(adapter
, adapter
->itr
);
2024 e1000e_write_itr(adapter
, 0);
2029 static int e1000_nway_reset(struct net_device
*netdev
)
2031 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2033 if (!netif_running(netdev
))
2036 if (!adapter
->hw
.mac
.autoneg
)
2039 e1000e_reinit_locked(adapter
);
2044 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
2045 struct ethtool_stats __always_unused
*stats
,
2048 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2049 struct rtnl_link_stats64 net_stats
;
2053 dev_get_stats(netdev
, &net_stats
);
2055 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
2056 switch (e1000_gstrings_stats
[i
].type
) {
2058 p
= (char *)&net_stats
+
2059 e1000_gstrings_stats
[i
].stat_offset
;
2062 p
= (char *)adapter
+
2063 e1000_gstrings_stats
[i
].stat_offset
;
2070 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
2071 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2075 static void e1000_get_strings(struct net_device __always_unused
*netdev
,
2076 u32 stringset
, u8
*data
)
2081 switch (stringset
) {
2083 memcpy(data
, e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
2086 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
2087 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
2089 p
+= ETH_GSTRING_LEN
;
2092 case ETH_SS_PRIV_FLAGS
:
2093 memcpy(data
, e1000e_priv_flags_strings
,
2094 E1000E_PRIV_FLAGS_STR_LEN
* ETH_GSTRING_LEN
);
2099 static int e1000_get_rxnfc(struct net_device
*netdev
,
2100 struct ethtool_rxnfc
*info
,
2101 u32 __always_unused
*rule_locs
)
2105 switch (info
->cmd
) {
2106 case ETHTOOL_GRXFH
: {
2107 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2108 struct e1000_hw
*hw
= &adapter
->hw
;
2113 if (!(mrqc
& E1000_MRQC_RSS_FIELD_MASK
))
2116 switch (info
->flow_type
) {
2118 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV4_TCP
)
2119 info
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2123 case AH_ESP_V4_FLOW
:
2125 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV4
)
2126 info
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2129 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV6_TCP
)
2130 info
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2134 case AH_ESP_V6_FLOW
:
2136 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV6
)
2137 info
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2149 static int e1000e_get_eee(struct net_device
*netdev
, struct ethtool_keee
*edata
)
2151 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2152 struct e1000_hw
*hw
= &adapter
->hw
;
2153 u16 cap_addr
, lpa_addr
, pcs_stat_addr
, phy_data
;
2156 if (!(adapter
->flags2
& FLAG2_HAS_EEE
))
2159 switch (hw
->phy
.type
) {
2160 case e1000_phy_82579
:
2161 cap_addr
= I82579_EEE_CAPABILITY
;
2162 lpa_addr
= I82579_EEE_LP_ABILITY
;
2163 pcs_stat_addr
= I82579_EEE_PCS_STATUS
;
2165 case e1000_phy_i217
:
2166 cap_addr
= I217_EEE_CAPABILITY
;
2167 lpa_addr
= I217_EEE_LP_ABILITY
;
2168 pcs_stat_addr
= I217_EEE_PCS_STATUS
;
2174 ret_val
= hw
->phy
.ops
.acquire(hw
);
2178 /* EEE Capability */
2179 ret_val
= e1000_read_emi_reg_locked(hw
, cap_addr
, &phy_data
);
2182 mii_eee_cap1_mod_linkmode_t(edata
->supported
, phy_data
);
2184 /* EEE Advertised */
2185 mii_eee_cap1_mod_linkmode_t(edata
->advertised
, adapter
->eee_advert
);
2187 /* EEE Link Partner Advertised */
2188 ret_val
= e1000_read_emi_reg_locked(hw
, lpa_addr
, &phy_data
);
2191 mii_eee_cap1_mod_linkmode_t(edata
->lp_advertised
, phy_data
);
2193 /* EEE PCS Status */
2194 ret_val
= e1000_read_emi_reg_locked(hw
, pcs_stat_addr
, &phy_data
);
2197 if (hw
->phy
.type
== e1000_phy_82579
)
2200 /* Result of the EEE auto negotiation - there is no register that
2201 * has the status of the EEE negotiation so do a best-guess based
2202 * on whether Tx or Rx LPI indications have been received.
2204 if (phy_data
& (E1000_EEE_TX_LPI_RCVD
| E1000_EEE_RX_LPI_RCVD
))
2205 edata
->eee_active
= true;
2207 edata
->eee_enabled
= !hw
->dev_spec
.ich8lan
.eee_disable
;
2208 edata
->tx_lpi_enabled
= true;
2209 edata
->tx_lpi_timer
= er32(LPIC
) >> E1000_LPIC_LPIET_SHIFT
;
2212 hw
->phy
.ops
.release(hw
);
2219 static int e1000e_set_eee(struct net_device
*netdev
, struct ethtool_keee
*edata
)
2221 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2222 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported
) = {};
2223 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp
) = {};
2224 struct e1000_hw
*hw
= &adapter
->hw
;
2225 struct ethtool_keee eee_curr
;
2228 ret_val
= e1000e_get_eee(netdev
, &eee_curr
);
2232 if (eee_curr
.tx_lpi_enabled
!= edata
->tx_lpi_enabled
) {
2233 e_err("Setting EEE tx-lpi is not supported\n");
2237 if (eee_curr
.tx_lpi_timer
!= edata
->tx_lpi_timer
) {
2238 e_err("Setting EEE Tx LPI timer is not supported\n");
2242 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT
,
2244 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT
,
2247 if (linkmode_andnot(tmp
, edata
->advertised
, supported
)) {
2248 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2252 adapter
->eee_advert
= linkmode_to_mii_eee_cap1_t(edata
->advertised
);
2254 hw
->dev_spec
.ich8lan
.eee_disable
= !edata
->eee_enabled
;
2256 /* reset the link */
2257 if (netif_running(netdev
))
2258 e1000e_reinit_locked(adapter
);
2260 e1000e_reset(adapter
);
2265 static int e1000e_get_ts_info(struct net_device
*netdev
,
2266 struct kernel_ethtool_ts_info
*info
)
2268 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2270 ethtool_op_get_ts_info(netdev
, info
);
2272 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
2275 info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
2276 SOF_TIMESTAMPING_RX_HARDWARE
|
2277 SOF_TIMESTAMPING_RAW_HARDWARE
);
2279 info
->tx_types
= BIT(HWTSTAMP_TX_OFF
) | BIT(HWTSTAMP_TX_ON
);
2281 info
->rx_filters
= (BIT(HWTSTAMP_FILTER_NONE
) |
2282 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC
) |
2283 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
) |
2284 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC
) |
2285 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
) |
2286 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC
) |
2287 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
) |
2288 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT
) |
2289 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC
) |
2290 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
) |
2291 BIT(HWTSTAMP_FILTER_ALL
));
2293 if (adapter
->ptp_clock
)
2294 info
->phc_index
= ptp_clock_index(adapter
->ptp_clock
);
2299 static u32
e1000e_get_priv_flags(struct net_device
*netdev
)
2301 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2304 if (adapter
->flags2
& FLAG2_ENABLE_S0IX_FLOWS
)
2305 priv_flags
|= E1000E_PRIV_FLAGS_S0IX_ENABLED
;
2310 static int e1000e_set_priv_flags(struct net_device
*netdev
, u32 priv_flags
)
2312 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2313 unsigned int flags2
= adapter
->flags2
;
2315 flags2
&= ~FLAG2_ENABLE_S0IX_FLOWS
;
2316 if (priv_flags
& E1000E_PRIV_FLAGS_S0IX_ENABLED
) {
2317 struct e1000_hw
*hw
= &adapter
->hw
;
2319 if (hw
->mac
.type
< e1000_pch_cnp
)
2321 flags2
|= FLAG2_ENABLE_S0IX_FLOWS
;
2324 if (flags2
!= adapter
->flags2
)
2325 adapter
->flags2
= flags2
;
2330 static const struct ethtool_ops e1000_ethtool_ops
= {
2331 .supported_coalesce_params
= ETHTOOL_COALESCE_RX_USECS
,
2332 .get_drvinfo
= e1000_get_drvinfo
,
2333 .get_regs_len
= e1000_get_regs_len
,
2334 .get_regs
= e1000_get_regs
,
2335 .get_wol
= e1000_get_wol
,
2336 .set_wol
= e1000_set_wol
,
2337 .get_msglevel
= e1000_get_msglevel
,
2338 .set_msglevel
= e1000_set_msglevel
,
2339 .nway_reset
= e1000_nway_reset
,
2340 .get_link
= ethtool_op_get_link
,
2341 .get_eeprom_len
= e1000_get_eeprom_len
,
2342 .get_eeprom
= e1000_get_eeprom
,
2343 .set_eeprom
= e1000_set_eeprom
,
2344 .get_ringparam
= e1000_get_ringparam
,
2345 .set_ringparam
= e1000_set_ringparam
,
2346 .get_pauseparam
= e1000_get_pauseparam
,
2347 .set_pauseparam
= e1000_set_pauseparam
,
2348 .self_test
= e1000_diag_test
,
2349 .get_strings
= e1000_get_strings
,
2350 .set_phys_id
= e1000_set_phys_id
,
2351 .get_ethtool_stats
= e1000_get_ethtool_stats
,
2352 .get_sset_count
= e1000e_get_sset_count
,
2353 .get_coalesce
= e1000_get_coalesce
,
2354 .set_coalesce
= e1000_set_coalesce
,
2355 .get_rxnfc
= e1000_get_rxnfc
,
2356 .get_ts_info
= e1000e_get_ts_info
,
2357 .get_eee
= e1000e_get_eee
,
2358 .set_eee
= e1000e_set_eee
,
2359 .get_link_ksettings
= e1000_get_link_ksettings
,
2360 .set_link_ksettings
= e1000_set_link_ksettings
,
2361 .get_priv_flags
= e1000e_get_priv_flags
,
2362 .set_priv_flags
= e1000e_set_priv_flags
,
2365 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
2367 netdev
->ethtool_ops
= &e1000_ethtool_ops
;