1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/prefetch.h>
27 #include <linux/suspend.h>
30 #define CREATE_TRACE_POINTS
31 #include "e1000e_trace.h"
33 char e1000e_driver_name
[] = "e1000e";
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug
= -1;
37 module_param(debug
, int, 0);
38 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
40 static const struct e1000_info
*e1000_info_tbl
[] = {
41 [board_82571
] = &e1000_82571_info
,
42 [board_82572
] = &e1000_82572_info
,
43 [board_82573
] = &e1000_82573_info
,
44 [board_82574
] = &e1000_82574_info
,
45 [board_82583
] = &e1000_82583_info
,
46 [board_80003es2lan
] = &e1000_es2_info
,
47 [board_ich8lan
] = &e1000_ich8_info
,
48 [board_ich9lan
] = &e1000_ich9_info
,
49 [board_ich10lan
] = &e1000_ich10_info
,
50 [board_pchlan
] = &e1000_pch_info
,
51 [board_pch2lan
] = &e1000_pch2_info
,
52 [board_pch_lpt
] = &e1000_pch_lpt_info
,
53 [board_pch_spt
] = &e1000_pch_spt_info
,
54 [board_pch_cnp
] = &e1000_pch_cnp_info
,
55 [board_pch_tgp
] = &e1000_pch_tgp_info
,
56 [board_pch_adp
] = &e1000_pch_adp_info
,
57 [board_pch_mtp
] = &e1000_pch_mtp_info
,
60 struct e1000_reg_info
{
65 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
66 /* General Registers */
68 {E1000_STATUS
, "STATUS"},
69 {E1000_CTRL_EXT
, "CTRL_EXT"},
71 /* Interrupt Registers */
76 {E1000_RDLEN(0), "RDLEN"},
77 {E1000_RDH(0), "RDH"},
78 {E1000_RDT(0), "RDT"},
80 {E1000_RXDCTL(0), "RXDCTL"},
82 {E1000_RDBAL(0), "RDBAL"},
83 {E1000_RDBAH(0), "RDBAH"},
86 {E1000_RDFHS
, "RDFHS"},
87 {E1000_RDFTS
, "RDFTS"},
88 {E1000_RDFPC
, "RDFPC"},
92 {E1000_TDBAL(0), "TDBAL"},
93 {E1000_TDBAH(0), "TDBAH"},
94 {E1000_TDLEN(0), "TDLEN"},
95 {E1000_TDH(0), "TDH"},
96 {E1000_TDT(0), "TDT"},
98 {E1000_TXDCTL(0), "TXDCTL"},
100 {E1000_TARC(0), "TARC"},
101 {E1000_TDFH
, "TDFH"},
102 {E1000_TDFT
, "TDFT"},
103 {E1000_TDFHS
, "TDFHS"},
104 {E1000_TDFTS
, "TDFTS"},
105 {E1000_TDFPC
, "TDFPC"},
107 /* List Terminator */
112 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
113 * @hw: pointer to the HW structure
115 * When updating the MAC CSR registers, the Manageability Engine (ME) could
116 * be accessing the registers at the same time. Normally, this is handled in
117 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
118 * accesses later than it should which could result in the register to have
119 * an incorrect value. Workaround this by checking the FWSM register which
120 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
121 * and try again a number of times.
123 static void __ew32_prepare(struct e1000_hw
*hw
)
125 s32 i
= E1000_ICH_FWSM_PCIM2PCI_COUNT
;
127 while ((er32(FWSM
) & E1000_ICH_FWSM_PCIM2PCI
) && --i
)
131 void __ew32(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
133 if (hw
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
136 writel(val
, hw
->hw_addr
+ reg
);
140 * e1000_regdump - register printout routine
141 * @hw: pointer to the HW structure
142 * @reginfo: pointer to the register info table
144 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
150 switch (reginfo
->ofs
) {
151 case E1000_RXDCTL(0):
152 for (n
= 0; n
< 2; n
++)
153 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
155 case E1000_TXDCTL(0):
156 for (n
= 0; n
< 2; n
++)
157 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
160 for (n
= 0; n
< 2; n
++)
161 regs
[n
] = __er32(hw
, E1000_TARC(n
));
164 pr_info("%-15s %08x\n",
165 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
169 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
170 pr_info("%-15s %08x %08x\n", rname
, regs
[0], regs
[1]);
173 static void e1000e_dump_ps_pages(struct e1000_adapter
*adapter
,
174 struct e1000_buffer
*bi
)
177 struct e1000_ps_page
*ps_page
;
179 for (i
= 0; i
< adapter
->rx_ps_pages
; i
++) {
180 ps_page
= &bi
->ps_pages
[i
];
183 pr_info("packet dump for ps_page %d:\n", i
);
184 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
185 16, 1, page_address(ps_page
->page
),
192 * e1000e_dump - Print registers, Tx-ring and Rx-ring
193 * @adapter: board private structure
195 static void e1000e_dump(struct e1000_adapter
*adapter
)
197 struct net_device
*netdev
= adapter
->netdev
;
198 struct e1000_hw
*hw
= &adapter
->hw
;
199 struct e1000_reg_info
*reginfo
;
200 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
201 struct e1000_tx_desc
*tx_desc
;
206 struct e1000_buffer
*buffer_info
;
207 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
208 union e1000_rx_desc_packet_split
*rx_desc_ps
;
209 union e1000_rx_desc_extended
*rx_desc
;
219 if (!netif_msg_hw(adapter
))
222 /* Print netdevice Info */
224 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
225 pr_info("Device Name state trans_start\n");
226 pr_info("%-15s %016lX %016lX\n", netdev
->name
,
227 netdev
->state
, dev_trans_start(netdev
));
230 /* Print Registers */
231 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
232 pr_info(" Register Name Value\n");
233 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
234 reginfo
->name
; reginfo
++) {
235 e1000_regdump(hw
, reginfo
);
238 /* Print Tx Ring Summary */
239 if (!netdev
|| !netif_running(netdev
))
242 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
243 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
244 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
245 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
246 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
247 (unsigned long long)buffer_info
->dma
,
249 buffer_info
->next_to_watch
,
250 (unsigned long long)buffer_info
->time_stamp
);
253 if (!netif_msg_tx_done(adapter
))
254 goto rx_ring_summary
;
256 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
258 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
260 * Legacy Transmit Descriptor
261 * +--------------------------------------------------------------+
262 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
263 * +--------------------------------------------------------------+
264 * 8 | Special | CSS | Status | CMD | CSO | Length |
265 * +--------------------------------------------------------------+
266 * 63 48 47 36 35 32 31 24 23 16 15 0
268 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
269 * 63 48 47 40 39 32 31 16 15 8 7 0
270 * +----------------------------------------------------------------+
271 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
272 * +----------------------------------------------------------------+
273 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
274 * +----------------------------------------------------------------+
275 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
277 * Extended Data Descriptor (DTYP=0x1)
278 * +----------------------------------------------------------------+
279 * 0 | Buffer Address [63:0] |
280 * +----------------------------------------------------------------+
281 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
282 * +----------------------------------------------------------------+
283 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
285 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
286 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
287 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
288 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
289 const char *next_desc
;
290 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
291 buffer_info
= &tx_ring
->buffer_info
[i
];
292 u0
= (struct my_u0
*)tx_desc
;
293 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
294 next_desc
= " NTC/U";
295 else if (i
== tx_ring
->next_to_use
)
297 else if (i
== tx_ring
->next_to_clean
)
301 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
302 (!(le64_to_cpu(u0
->b
) & BIT(29)) ? 'l' :
303 ((le64_to_cpu(u0
->b
) & BIT(20)) ? 'd' : 'c')),
305 (unsigned long long)le64_to_cpu(u0
->a
),
306 (unsigned long long)le64_to_cpu(u0
->b
),
307 (unsigned long long)buffer_info
->dma
,
308 buffer_info
->length
, buffer_info
->next_to_watch
,
309 (unsigned long long)buffer_info
->time_stamp
,
310 buffer_info
->skb
, next_desc
);
312 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
313 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
314 16, 1, buffer_info
->skb
->data
,
315 buffer_info
->skb
->len
, true);
318 /* Print Rx Ring Summary */
320 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
321 pr_info("Queue [NTU] [NTC]\n");
322 pr_info(" %5d %5X %5X\n",
323 0, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
326 if (!netif_msg_rx_status(adapter
))
329 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
330 switch (adapter
->rx_ps_pages
) {
334 /* [Extended] Packet Split Receive Descriptor Format
336 * +-----------------------------------------------------+
337 * 0 | Buffer Address 0 [63:0] |
338 * +-----------------------------------------------------+
339 * 8 | Buffer Address 1 [63:0] |
340 * +-----------------------------------------------------+
341 * 16 | Buffer Address 2 [63:0] |
342 * +-----------------------------------------------------+
343 * 24 | Buffer Address 3 [63:0] |
344 * +-----------------------------------------------------+
346 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
347 /* [Extended] Receive Descriptor (Write-Back) Format
349 * 63 48 47 32 31 13 12 8 7 4 3 0
350 * +------------------------------------------------------+
351 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
352 * | Checksum | Ident | | Queue | | Type |
353 * +------------------------------------------------------+
354 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
355 * +------------------------------------------------------+
356 * 63 48 47 32 31 20 19 0
358 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
359 for (i
= 0; i
< rx_ring
->count
; i
++) {
360 const char *next_desc
;
361 buffer_info
= &rx_ring
->buffer_info
[i
];
362 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
363 u1
= (struct my_u1
*)rx_desc_ps
;
365 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
367 if (i
== rx_ring
->next_to_use
)
369 else if (i
== rx_ring
->next_to_clean
)
374 if (staterr
& E1000_RXD_STAT_DD
) {
375 /* Descriptor Done */
376 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
378 (unsigned long long)le64_to_cpu(u1
->a
),
379 (unsigned long long)le64_to_cpu(u1
->b
),
380 (unsigned long long)le64_to_cpu(u1
->c
),
381 (unsigned long long)le64_to_cpu(u1
->d
),
382 buffer_info
->skb
, next_desc
);
384 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
386 (unsigned long long)le64_to_cpu(u1
->a
),
387 (unsigned long long)le64_to_cpu(u1
->b
),
388 (unsigned long long)le64_to_cpu(u1
->c
),
389 (unsigned long long)le64_to_cpu(u1
->d
),
390 (unsigned long long)buffer_info
->dma
,
391 buffer_info
->skb
, next_desc
);
393 if (netif_msg_pktdata(adapter
))
394 e1000e_dump_ps_pages(adapter
,
401 /* Extended Receive Descriptor (Read) Format
403 * +-----------------------------------------------------+
404 * 0 | Buffer Address [63:0] |
405 * +-----------------------------------------------------+
407 * +-----------------------------------------------------+
409 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
410 /* Extended Receive Descriptor (Write-Back) Format
412 * 63 48 47 32 31 24 23 4 3 0
413 * +------------------------------------------------------+
415 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
416 * | Packet | IP | | | Type |
417 * | Checksum | Ident | | | |
418 * +------------------------------------------------------+
419 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
420 * +------------------------------------------------------+
421 * 63 48 47 32 31 20 19 0
423 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
425 for (i
= 0; i
< rx_ring
->count
; i
++) {
426 const char *next_desc
;
428 buffer_info
= &rx_ring
->buffer_info
[i
];
429 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
430 u1
= (struct my_u1
*)rx_desc
;
431 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
433 if (i
== rx_ring
->next_to_use
)
435 else if (i
== rx_ring
->next_to_clean
)
440 if (staterr
& E1000_RXD_STAT_DD
) {
441 /* Descriptor Done */
442 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
444 (unsigned long long)le64_to_cpu(u1
->a
),
445 (unsigned long long)le64_to_cpu(u1
->b
),
446 buffer_info
->skb
, next_desc
);
448 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
450 (unsigned long long)le64_to_cpu(u1
->a
),
451 (unsigned long long)le64_to_cpu(u1
->b
),
452 (unsigned long long)buffer_info
->dma
,
453 buffer_info
->skb
, next_desc
);
455 if (netif_msg_pktdata(adapter
) &&
457 print_hex_dump(KERN_INFO
, "",
458 DUMP_PREFIX_ADDRESS
, 16,
460 buffer_info
->skb
->data
,
461 adapter
->rx_buffer_len
,
469 * e1000_desc_unused - calculate if we have unused descriptors
470 * @ring: pointer to ring struct to perform calculation on
472 static int e1000_desc_unused(struct e1000_ring
*ring
)
474 if (ring
->next_to_clean
> ring
->next_to_use
)
475 return ring
->next_to_clean
- ring
->next_to_use
- 1;
477 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482 * @adapter: board private structure
483 * @hwtstamps: time stamp structure to update
484 * @systim: unsigned 64bit system time value.
486 * Convert the system time value stored in the RX/TXSTMP registers into a
487 * hwtstamp which can be used by the upper level time stamping functions.
489 * The 'systim_lock' spinlock is used to protect the consistency of the
490 * system time value. This is needed because reading the 64 bit time
491 * value involves reading two 32 bit registers. The first read latches the
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter
*adapter
,
495 struct skb_shared_hwtstamps
*hwtstamps
,
501 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
502 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
503 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
505 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
506 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511 * @adapter: board private structure
512 * @status: descriptor extended error and status field
513 * @skb: particular skb to include time stamp
515 * If the time stamp is valid, convert it into the timecounter ns value
516 * and store that result into the shhwtstamps structure which is passed
517 * up the network stack.
519 static void e1000e_rx_hwtstamp(struct e1000_adapter
*adapter
, u32 status
,
522 struct e1000_hw
*hw
= &adapter
->hw
;
525 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) ||
526 !(status
& E1000_RXDEXT_STATERR_TST
) ||
527 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
530 /* The Rx time stamp registers contain the time stamp. No other
531 * received packet will be time stamped until the Rx time stamp
532 * registers are read. Because only one packet can be time stamped
533 * at a time, the register values must belong to this packet and
534 * therefore none of the other additional attributes need to be
537 rxstmp
= (u64
)er32(RXSTMPL
);
538 rxstmp
|= (u64
)er32(RXSTMPH
) << 32;
539 e1000e_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), rxstmp
);
541 adapter
->flags2
&= ~FLAG2_CHECK_RX_HWTSTAMP
;
545 * e1000_receive_skb - helper function to handle Rx indications
546 * @adapter: board private structure
547 * @netdev: pointer to netdev struct
548 * @staterr: descriptor extended error and status field as written by hardware
549 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
550 * @skb: pointer to sk_buff to be indicated to stack
552 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
553 struct net_device
*netdev
, struct sk_buff
*skb
,
554 u32 staterr
, __le16 vlan
)
556 u16 tag
= le16_to_cpu(vlan
);
558 e1000e_rx_hwtstamp(adapter
, staterr
, skb
);
560 skb
->protocol
= eth_type_trans(skb
, netdev
);
562 if (staterr
& E1000_RXD_STAT_VP
)
563 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tag
);
565 napi_gro_receive(&adapter
->napi
, skb
);
569 * e1000_rx_checksum - Receive Checksum Offload
570 * @adapter: board private structure
571 * @status_err: receive descriptor status and error fields
572 * @skb: socket buffer with received data
574 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
577 u16 status
= (u16
)status_err
;
578 u8 errors
= (u8
)(status_err
>> 24);
580 skb_checksum_none_assert(skb
);
582 /* Rx checksum disabled */
583 if (!(adapter
->netdev
->features
& NETIF_F_RXCSUM
))
586 /* Ignore Checksum bit is set */
587 if (status
& E1000_RXD_STAT_IXSM
)
590 /* TCP/UDP checksum error bit or IP checksum error bit is set */
591 if (errors
& (E1000_RXD_ERR_TCPE
| E1000_RXD_ERR_IPE
)) {
592 /* let the stack verify checksum errors */
593 adapter
->hw_csum_err
++;
597 /* TCP/UDP Checksum has not been calculated */
598 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
601 /* It must be a TCP or UDP packet with a valid checksum */
602 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
603 adapter
->hw_csum_good
++;
606 static void e1000e_update_rdt_wa(struct e1000_ring
*rx_ring
, unsigned int i
)
608 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
609 struct e1000_hw
*hw
= &adapter
->hw
;
612 writel(i
, rx_ring
->tail
);
614 if (unlikely(i
!= readl(rx_ring
->tail
))) {
615 u32 rctl
= er32(RCTL
);
617 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
618 e_err("ME firmware caused invalid RDT - resetting\n");
619 schedule_work(&adapter
->reset_task
);
623 static void e1000e_update_tdt_wa(struct e1000_ring
*tx_ring
, unsigned int i
)
625 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
626 struct e1000_hw
*hw
= &adapter
->hw
;
629 writel(i
, tx_ring
->tail
);
631 if (unlikely(i
!= readl(tx_ring
->tail
))) {
632 u32 tctl
= er32(TCTL
);
634 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
635 e_err("ME firmware caused invalid TDT - resetting\n");
636 schedule_work(&adapter
->reset_task
);
641 * e1000_alloc_rx_buffers - Replace used receive buffers
642 * @rx_ring: Rx descriptor ring
643 * @cleaned_count: number to reallocate
644 * @gfp: flags for allocation
646 static void e1000_alloc_rx_buffers(struct e1000_ring
*rx_ring
,
647 int cleaned_count
, gfp_t gfp
)
649 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
650 struct net_device
*netdev
= adapter
->netdev
;
651 struct pci_dev
*pdev
= adapter
->pdev
;
652 union e1000_rx_desc_extended
*rx_desc
;
653 struct e1000_buffer
*buffer_info
;
656 unsigned int bufsz
= adapter
->rx_buffer_len
;
658 i
= rx_ring
->next_to_use
;
659 buffer_info
= &rx_ring
->buffer_info
[i
];
661 while (cleaned_count
--) {
662 skb
= buffer_info
->skb
;
668 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
670 /* Better luck next round */
671 adapter
->alloc_rx_buff_failed
++;
675 buffer_info
->skb
= skb
;
677 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
678 adapter
->rx_buffer_len
,
680 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
681 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
682 adapter
->rx_dma_failed
++;
686 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
687 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
689 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
690 /* Force memory writes to complete before letting h/w
691 * know there are new descriptors to fetch. (Only
692 * applicable for weak-ordered memory model archs,
696 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
697 e1000e_update_rdt_wa(rx_ring
, i
);
699 writel(i
, rx_ring
->tail
);
702 if (i
== rx_ring
->count
)
704 buffer_info
= &rx_ring
->buffer_info
[i
];
707 rx_ring
->next_to_use
= i
;
711 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
712 * @rx_ring: Rx descriptor ring
713 * @cleaned_count: number to reallocate
714 * @gfp: flags for allocation
716 static void e1000_alloc_rx_buffers_ps(struct e1000_ring
*rx_ring
,
717 int cleaned_count
, gfp_t gfp
)
719 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
720 struct net_device
*netdev
= adapter
->netdev
;
721 struct pci_dev
*pdev
= adapter
->pdev
;
722 union e1000_rx_desc_packet_split
*rx_desc
;
723 struct e1000_buffer
*buffer_info
;
724 struct e1000_ps_page
*ps_page
;
728 i
= rx_ring
->next_to_use
;
729 buffer_info
= &rx_ring
->buffer_info
[i
];
731 while (cleaned_count
--) {
732 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
734 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
735 ps_page
= &buffer_info
->ps_pages
[j
];
736 if (j
>= adapter
->rx_ps_pages
) {
737 /* all unused desc entries get hw null ptr */
738 rx_desc
->read
.buffer_addr
[j
+ 1] =
742 if (!ps_page
->page
) {
743 ps_page
->page
= alloc_page(gfp
);
744 if (!ps_page
->page
) {
745 adapter
->alloc_rx_buff_failed
++;
748 ps_page
->dma
= dma_map_page(&pdev
->dev
,
752 if (dma_mapping_error(&pdev
->dev
,
754 dev_err(&adapter
->pdev
->dev
,
755 "Rx DMA page map failed\n");
756 adapter
->rx_dma_failed
++;
760 /* Refresh the desc even if buffer_addrs
761 * didn't change because each write-back
764 rx_desc
->read
.buffer_addr
[j
+ 1] =
765 cpu_to_le64(ps_page
->dma
);
768 skb
= __netdev_alloc_skb_ip_align(netdev
, adapter
->rx_ps_bsize0
,
772 adapter
->alloc_rx_buff_failed
++;
776 buffer_info
->skb
= skb
;
777 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
778 adapter
->rx_ps_bsize0
,
780 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
781 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
782 adapter
->rx_dma_failed
++;
784 dev_kfree_skb_any(skb
);
785 buffer_info
->skb
= NULL
;
789 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
791 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
792 /* Force memory writes to complete before letting h/w
793 * know there are new descriptors to fetch. (Only
794 * applicable for weak-ordered memory model archs,
798 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
799 e1000e_update_rdt_wa(rx_ring
, i
<< 1);
801 writel(i
<< 1, rx_ring
->tail
);
805 if (i
== rx_ring
->count
)
807 buffer_info
= &rx_ring
->buffer_info
[i
];
811 rx_ring
->next_to_use
= i
;
815 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
816 * @rx_ring: Rx descriptor ring
817 * @cleaned_count: number of buffers to allocate this pass
818 * @gfp: flags for allocation
821 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring
*rx_ring
,
822 int cleaned_count
, gfp_t gfp
)
824 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
825 struct net_device
*netdev
= adapter
->netdev
;
826 struct pci_dev
*pdev
= adapter
->pdev
;
827 union e1000_rx_desc_extended
*rx_desc
;
828 struct e1000_buffer
*buffer_info
;
831 unsigned int bufsz
= 256 - 16; /* for skb_reserve */
833 i
= rx_ring
->next_to_use
;
834 buffer_info
= &rx_ring
->buffer_info
[i
];
836 while (cleaned_count
--) {
837 skb
= buffer_info
->skb
;
843 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
844 if (unlikely(!skb
)) {
845 /* Better luck next round */
846 adapter
->alloc_rx_buff_failed
++;
850 buffer_info
->skb
= skb
;
852 /* allocate a new page if necessary */
853 if (!buffer_info
->page
) {
854 buffer_info
->page
= alloc_page(gfp
);
855 if (unlikely(!buffer_info
->page
)) {
856 adapter
->alloc_rx_buff_failed
++;
861 if (!buffer_info
->dma
) {
862 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
863 buffer_info
->page
, 0,
866 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
867 adapter
->alloc_rx_buff_failed
++;
872 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
873 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
875 if (unlikely(++i
== rx_ring
->count
))
877 buffer_info
= &rx_ring
->buffer_info
[i
];
880 if (likely(rx_ring
->next_to_use
!= i
)) {
881 rx_ring
->next_to_use
= i
;
882 if (unlikely(i
-- == 0))
883 i
= (rx_ring
->count
- 1);
885 /* Force memory writes to complete before letting h/w
886 * know there are new descriptors to fetch. (Only
887 * applicable for weak-ordered memory model archs,
891 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
892 e1000e_update_rdt_wa(rx_ring
, i
);
894 writel(i
, rx_ring
->tail
);
898 static inline void e1000_rx_hash(struct net_device
*netdev
, __le32 rss
,
901 if (netdev
->features
& NETIF_F_RXHASH
)
902 skb_set_hash(skb
, le32_to_cpu(rss
), PKT_HASH_TYPE_L3
);
906 * e1000_clean_rx_irq - Send received data up the network stack
907 * @rx_ring: Rx descriptor ring
908 * @work_done: output parameter for indicating completed work
909 * @work_to_do: how many packets we can clean
911 * the return value indicates whether actual cleaning was done, there
912 * is no guarantee that everything was cleaned
914 static bool e1000_clean_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
917 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
918 struct net_device
*netdev
= adapter
->netdev
;
919 struct pci_dev
*pdev
= adapter
->pdev
;
920 struct e1000_hw
*hw
= &adapter
->hw
;
921 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
922 struct e1000_buffer
*buffer_info
, *next_buffer
;
925 int cleaned_count
= 0;
926 bool cleaned
= false;
927 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
929 i
= rx_ring
->next_to_clean
;
930 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
931 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
932 buffer_info
= &rx_ring
->buffer_info
[i
];
934 while (staterr
& E1000_RXD_STAT_DD
) {
937 if (*work_done
>= work_to_do
)
940 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
942 skb
= buffer_info
->skb
;
943 buffer_info
->skb
= NULL
;
945 prefetch(skb
->data
- NET_IP_ALIGN
);
948 if (i
== rx_ring
->count
)
950 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
953 next_buffer
= &rx_ring
->buffer_info
[i
];
957 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
958 adapter
->rx_buffer_len
, DMA_FROM_DEVICE
);
959 buffer_info
->dma
= 0;
961 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
963 /* !EOP means multiple descriptors were used to store a single
964 * packet, if that's the case we need to toss it. In fact, we
965 * need to toss every packet with the EOP bit clear and the
966 * next frame that _does_ have the EOP bit set, as it is by
967 * definition only a frame fragment
969 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
970 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
972 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
973 /* All receives must fit into a single buffer */
974 e_dbg("Receive packet consumed multiple buffers\n");
976 buffer_info
->skb
= skb
;
977 if (staterr
& E1000_RXD_STAT_EOP
)
978 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
982 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
983 !(netdev
->features
& NETIF_F_RXALL
))) {
985 buffer_info
->skb
= skb
;
989 /* adjust length to remove Ethernet CRC */
990 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
991 /* If configured to store CRC, don't subtract FCS,
992 * but keep the FCS bytes out of the total_rx_bytes
995 if (netdev
->features
& NETIF_F_RXFCS
)
1001 total_rx_bytes
+= length
;
1004 /* code added for copybreak, this should improve
1005 * performance for small packets with large amounts
1006 * of reassembly being done in the stack
1008 if (length
< copybreak
) {
1009 struct sk_buff
*new_skb
=
1010 napi_alloc_skb(&adapter
->napi
, length
);
1012 skb_copy_to_linear_data_offset(new_skb
,
1018 /* save the skb in buffer_info as good */
1019 buffer_info
->skb
= skb
;
1022 /* else just continue with the old one */
1024 /* end copybreak code */
1025 skb_put(skb
, length
);
1027 /* Receive Checksum Offload */
1028 e1000_rx_checksum(adapter
, staterr
, skb
);
1030 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1032 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1033 rx_desc
->wb
.upper
.vlan
);
1036 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1038 /* return some buffers to hardware, one at a time is too slow */
1039 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1040 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1045 /* use prefetched values */
1047 buffer_info
= next_buffer
;
1049 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1051 rx_ring
->next_to_clean
= i
;
1053 cleaned_count
= e1000_desc_unused(rx_ring
);
1055 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1057 adapter
->total_rx_bytes
+= total_rx_bytes
;
1058 adapter
->total_rx_packets
+= total_rx_packets
;
1062 static void e1000_put_txbuf(struct e1000_ring
*tx_ring
,
1063 struct e1000_buffer
*buffer_info
,
1066 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1068 if (buffer_info
->dma
) {
1069 if (buffer_info
->mapped_as_page
)
1070 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1071 buffer_info
->length
, DMA_TO_DEVICE
);
1073 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1074 buffer_info
->length
, DMA_TO_DEVICE
);
1075 buffer_info
->dma
= 0;
1077 if (buffer_info
->skb
) {
1079 dev_kfree_skb_any(buffer_info
->skb
);
1081 dev_consume_skb_any(buffer_info
->skb
);
1082 buffer_info
->skb
= NULL
;
1084 buffer_info
->time_stamp
= 0;
1087 static void e1000_print_hw_hang(struct work_struct
*work
)
1089 struct e1000_adapter
*adapter
= container_of(work
,
1090 struct e1000_adapter
,
1092 struct net_device
*netdev
= adapter
->netdev
;
1093 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1094 unsigned int i
= tx_ring
->next_to_clean
;
1095 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1096 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1097 struct e1000_hw
*hw
= &adapter
->hw
;
1098 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1101 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1104 if (!adapter
->tx_hang_recheck
&& (adapter
->flags2
& FLAG2_DMA_BURST
)) {
1105 /* May be block on write-back, flush and detect again
1106 * flush pending descriptor writebacks to memory
1108 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1109 /* execute the writes immediately */
1111 /* Due to rare timing issues, write to TIDV again to ensure
1112 * the write is successful
1114 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1115 /* execute the writes immediately */
1117 adapter
->tx_hang_recheck
= true;
1120 adapter
->tx_hang_recheck
= false;
1122 if (er32(TDH(0)) == er32(TDT(0))) {
1123 e_dbg("false hang detected, ignoring\n");
1127 /* Real hang detected */
1128 netif_stop_queue(netdev
);
1130 e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1131 e1e_rphy(hw
, MII_STAT1000
, &phy_1000t_status
);
1132 e1e_rphy(hw
, MII_ESTATUS
, &phy_ext_status
);
1134 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1136 /* detected Hardware unit hang */
1137 e_err("Detected Hardware Unit Hang:\n"
1140 " next_to_use <%x>\n"
1141 " next_to_clean <%x>\n"
1142 "buffer_info[next_to_clean]:\n"
1143 " time_stamp <%lx>\n"
1144 " next_to_watch <%x>\n"
1146 " next_to_watch.status <%x>\n"
1149 "PHY 1000BASE-T Status <%x>\n"
1150 "PHY Extended Status <%x>\n"
1151 "PCI Status <%x>\n",
1152 readl(tx_ring
->head
), readl(tx_ring
->tail
), tx_ring
->next_to_use
,
1153 tx_ring
->next_to_clean
, tx_ring
->buffer_info
[eop
].time_stamp
,
1154 eop
, jiffies
, eop_desc
->upper
.fields
.status
, er32(STATUS
),
1155 phy_status
, phy_1000t_status
, phy_ext_status
, pci_status
);
1157 e1000e_dump(adapter
);
1159 /* Suggest workaround for known h/w issue */
1160 if ((hw
->mac
.type
== e1000_pchlan
) && (er32(CTRL
) & E1000_CTRL_TFCE
))
1161 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1165 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166 * @work: pointer to work struct
1168 * This work function polls the TSYNCTXCTL valid bit to determine when a
1169 * timestamp has been taken for the current stored skb. The timestamp must
1170 * be for this skb because only one such packet is allowed in the queue.
1172 static void e1000e_tx_hwtstamp_work(struct work_struct
*work
)
1174 struct e1000_adapter
*adapter
= container_of(work
, struct e1000_adapter
,
1176 struct e1000_hw
*hw
= &adapter
->hw
;
1178 if (er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
) {
1179 struct sk_buff
*skb
= adapter
->tx_hwtstamp_skb
;
1180 struct skb_shared_hwtstamps shhwtstamps
;
1183 txstmp
= er32(TXSTMPL
);
1184 txstmp
|= (u64
)er32(TXSTMPH
) << 32;
1186 e1000e_systim_to_hwtstamp(adapter
, &shhwtstamps
, txstmp
);
1188 /* Clear the global tx_hwtstamp_skb pointer and force writes
1189 * prior to notifying the stack of a Tx timestamp.
1191 adapter
->tx_hwtstamp_skb
= NULL
;
1192 wmb(); /* force write prior to skb_tstamp_tx */
1194 skb_tstamp_tx(skb
, &shhwtstamps
);
1195 dev_consume_skb_any(skb
);
1196 } else if (time_after(jiffies
, adapter
->tx_hwtstamp_start
1197 + adapter
->tx_timeout_factor
* HZ
)) {
1198 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1199 adapter
->tx_hwtstamp_skb
= NULL
;
1200 adapter
->tx_hwtstamp_timeouts
++;
1201 e_warn("clearing Tx timestamp hang\n");
1203 /* reschedule to check later */
1204 schedule_work(&adapter
->tx_hwtstamp_work
);
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1215 static bool e1000_clean_tx_irq(struct e1000_ring
*tx_ring
)
1217 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1218 struct net_device
*netdev
= adapter
->netdev
;
1219 struct e1000_hw
*hw
= &adapter
->hw
;
1220 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1221 struct e1000_buffer
*buffer_info
;
1222 unsigned int i
, eop
;
1223 unsigned int count
= 0;
1224 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1225 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1227 i
= tx_ring
->next_to_clean
;
1228 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1229 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1231 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1232 (count
< tx_ring
->count
)) {
1233 bool cleaned
= false;
1235 dma_rmb(); /* read buffer_info after eop_desc */
1236 for (; !cleaned
; count
++) {
1237 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1238 buffer_info
= &tx_ring
->buffer_info
[i
];
1239 cleaned
= (i
== eop
);
1242 total_tx_packets
+= buffer_info
->segs
;
1243 total_tx_bytes
+= buffer_info
->bytecount
;
1244 if (buffer_info
->skb
) {
1245 bytes_compl
+= buffer_info
->skb
->len
;
1250 e1000_put_txbuf(tx_ring
, buffer_info
, false);
1251 tx_desc
->upper
.data
= 0;
1254 if (i
== tx_ring
->count
)
1258 if (i
== tx_ring
->next_to_use
)
1260 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1261 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1264 tx_ring
->next_to_clean
= i
;
1266 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
1268 #define TX_WAKE_THRESHOLD 32
1269 if (count
&& netif_carrier_ok(netdev
) &&
1270 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1271 /* Make sure that anybody stopping the queue after this
1272 * sees the new next_to_clean.
1276 if (netif_queue_stopped(netdev
) &&
1277 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1278 netif_wake_queue(netdev
);
1279 ++adapter
->restart_queue
;
1283 if (adapter
->detect_tx_hung
) {
1284 /* Detect a transmit hang in hardware, this serializes the
1285 * check with the clearing of time_stamp and movement of i
1287 adapter
->detect_tx_hung
= false;
1288 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1289 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1290 + (adapter
->tx_timeout_factor
* HZ
)) &&
1291 !(er32(STATUS
) & E1000_STATUS_TXOFF
))
1292 schedule_work(&adapter
->print_hang_task
);
1294 adapter
->tx_hang_recheck
= false;
1296 adapter
->total_tx_bytes
+= total_tx_bytes
;
1297 adapter
->total_tx_packets
+= total_tx_packets
;
1298 return count
< tx_ring
->count
;
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 * @work_done: output parameter for indicating completed work
1305 * @work_to_do: how many packets we can clean
1307 * the return value indicates whether actual cleaning was done, there
1308 * is no guarantee that everything was cleaned
1310 static bool e1000_clean_rx_irq_ps(struct e1000_ring
*rx_ring
, int *work_done
,
1313 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1314 struct e1000_hw
*hw
= &adapter
->hw
;
1315 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1316 struct net_device
*netdev
= adapter
->netdev
;
1317 struct pci_dev
*pdev
= adapter
->pdev
;
1318 struct e1000_buffer
*buffer_info
, *next_buffer
;
1319 struct e1000_ps_page
*ps_page
;
1320 struct sk_buff
*skb
;
1322 u32 length
, staterr
;
1323 int cleaned_count
= 0;
1324 bool cleaned
= false;
1325 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1327 i
= rx_ring
->next_to_clean
;
1328 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1329 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1330 buffer_info
= &rx_ring
->buffer_info
[i
];
1332 while (staterr
& E1000_RXD_STAT_DD
) {
1333 if (*work_done
>= work_to_do
)
1336 skb
= buffer_info
->skb
;
1337 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1339 /* in the packet split case this is header only */
1340 prefetch(skb
->data
- NET_IP_ALIGN
);
1343 if (i
== rx_ring
->count
)
1345 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1348 next_buffer
= &rx_ring
->buffer_info
[i
];
1352 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1353 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1354 buffer_info
->dma
= 0;
1356 /* see !EOP comment in other Rx routine */
1357 if (!(staterr
& E1000_RXD_STAT_EOP
))
1358 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1360 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1361 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362 dev_kfree_skb_irq(skb
);
1363 if (staterr
& E1000_RXD_STAT_EOP
)
1364 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1368 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1369 !(netdev
->features
& NETIF_F_RXALL
))) {
1370 dev_kfree_skb_irq(skb
);
1374 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1377 e_dbg("Last part of the packet spanning multiple descriptors\n");
1378 dev_kfree_skb_irq(skb
);
1383 skb_put(skb
, length
);
1386 /* this looks ugly, but it seems compiler issues make
1387 * it more efficient than reusing j
1389 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1391 /* page alloc/put takes too long and effects small
1392 * packet throughput, so unsplit small packets and
1393 * save the alloc/put
1395 if (l1
&& (l1
<= copybreak
) &&
1396 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1397 ps_page
= &buffer_info
->ps_pages
[0];
1399 dma_sync_single_for_cpu(&pdev
->dev
,
1403 memcpy(skb_tail_pointer(skb
),
1404 page_address(ps_page
->page
), l1
);
1405 dma_sync_single_for_device(&pdev
->dev
,
1410 /* remove the CRC */
1411 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1412 if (!(netdev
->features
& NETIF_F_RXFCS
))
1421 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1422 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1426 ps_page
= &buffer_info
->ps_pages
[j
];
1427 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1430 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1431 ps_page
->page
= NULL
;
1433 skb
->data_len
+= length
;
1434 skb
->truesize
+= PAGE_SIZE
;
1437 /* strip the ethernet crc, problem is we're using pages now so
1438 * this whole operation can get a little cpu intensive
1440 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1441 if (!(netdev
->features
& NETIF_F_RXFCS
))
1442 pskb_trim(skb
, skb
->len
- 4);
1446 total_rx_bytes
+= skb
->len
;
1449 e1000_rx_checksum(adapter
, staterr
, skb
);
1451 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1453 if (rx_desc
->wb
.upper
.header_status
&
1454 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1455 adapter
->rx_hdr_split
++;
1457 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1458 rx_desc
->wb
.middle
.vlan
);
1461 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1462 buffer_info
->skb
= NULL
;
1464 /* return some buffers to hardware, one at a time is too slow */
1465 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1466 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1471 /* use prefetched values */
1473 buffer_info
= next_buffer
;
1475 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1477 rx_ring
->next_to_clean
= i
;
1479 cleaned_count
= e1000_desc_unused(rx_ring
);
1481 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1483 adapter
->total_rx_bytes
+= total_rx_bytes
;
1484 adapter
->total_rx_packets
+= total_rx_packets
;
1488 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1493 skb
->data_len
+= length
;
1494 skb
->truesize
+= PAGE_SIZE
;
1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499 * @rx_ring: Rx descriptor ring
1500 * @work_done: output parameter for indicating completed work
1501 * @work_to_do: how many packets we can clean
1503 * the return value indicates whether actual cleaning was done, there
1504 * is no guarantee that everything was cleaned
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
1509 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1510 struct net_device
*netdev
= adapter
->netdev
;
1511 struct pci_dev
*pdev
= adapter
->pdev
;
1512 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1513 struct e1000_buffer
*buffer_info
, *next_buffer
;
1514 u32 length
, staterr
;
1516 int cleaned_count
= 0;
1517 bool cleaned
= false;
1518 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1519 struct skb_shared_info
*shinfo
;
1521 i
= rx_ring
->next_to_clean
;
1522 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1523 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1524 buffer_info
= &rx_ring
->buffer_info
[i
];
1526 while (staterr
& E1000_RXD_STAT_DD
) {
1527 struct sk_buff
*skb
;
1529 if (*work_done
>= work_to_do
)
1532 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1534 skb
= buffer_info
->skb
;
1535 buffer_info
->skb
= NULL
;
1538 if (i
== rx_ring
->count
)
1540 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1543 next_buffer
= &rx_ring
->buffer_info
[i
];
1547 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1549 buffer_info
->dma
= 0;
1551 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1553 /* errors is only valid for DD + EOP descriptors */
1554 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1555 ((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1556 !(netdev
->features
& NETIF_F_RXALL
)))) {
1557 /* recycle both page and skb */
1558 buffer_info
->skb
= skb
;
1559 /* an error means any chain goes out the window too */
1560 if (rx_ring
->rx_skb_top
)
1561 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1562 rx_ring
->rx_skb_top
= NULL
;
1565 #define rxtop (rx_ring->rx_skb_top)
1566 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1567 /* this descriptor is only the beginning (or middle) */
1569 /* this is the beginning of a chain */
1571 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1574 /* this is the middle of a chain */
1575 shinfo
= skb_shinfo(rxtop
);
1576 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1577 buffer_info
->page
, 0,
1579 /* re-use the skb, only consumed the page */
1580 buffer_info
->skb
= skb
;
1582 e1000_consume_page(buffer_info
, rxtop
, length
);
1586 /* end of the chain */
1587 shinfo
= skb_shinfo(rxtop
);
1588 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1589 buffer_info
->page
, 0,
1591 /* re-use the current skb, we only consumed the
1594 buffer_info
->skb
= skb
;
1597 e1000_consume_page(buffer_info
, skb
, length
);
1599 /* no chain, got EOP, this buf is the packet
1600 * copybreak to save the put_page/alloc_page
1602 if (length
<= copybreak
&&
1603 skb_tailroom(skb
) >= length
) {
1604 memcpy(skb_tail_pointer(skb
),
1605 page_address(buffer_info
->page
),
1607 /* re-use the page, so don't erase
1610 skb_put(skb
, length
);
1612 skb_fill_page_desc(skb
, 0,
1613 buffer_info
->page
, 0,
1615 e1000_consume_page(buffer_info
, skb
,
1621 /* Receive Checksum Offload */
1622 e1000_rx_checksum(adapter
, staterr
, skb
);
1624 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1626 /* probably a little skewed due to removing CRC */
1627 total_rx_bytes
+= skb
->len
;
1630 /* eth type trans needs skb->data to point to something */
1631 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1632 e_err("pskb_may_pull failed.\n");
1633 dev_kfree_skb_irq(skb
);
1637 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1638 rx_desc
->wb
.upper
.vlan
);
1641 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1643 /* return some buffers to hardware, one at a time is too slow */
1644 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1645 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1650 /* use prefetched values */
1652 buffer_info
= next_buffer
;
1654 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1656 rx_ring
->next_to_clean
= i
;
1658 cleaned_count
= e1000_desc_unused(rx_ring
);
1660 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1662 adapter
->total_rx_bytes
+= total_rx_bytes
;
1663 adapter
->total_rx_packets
+= total_rx_packets
;
1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669 * @rx_ring: Rx descriptor ring
1671 static void e1000_clean_rx_ring(struct e1000_ring
*rx_ring
)
1673 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1674 struct e1000_buffer
*buffer_info
;
1675 struct e1000_ps_page
*ps_page
;
1676 struct pci_dev
*pdev
= adapter
->pdev
;
1679 /* Free all the Rx ring sk_buffs */
1680 for (i
= 0; i
< rx_ring
->count
; i
++) {
1681 buffer_info
= &rx_ring
->buffer_info
[i
];
1682 if (buffer_info
->dma
) {
1683 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1684 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1685 adapter
->rx_buffer_len
,
1687 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1688 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1689 PAGE_SIZE
, DMA_FROM_DEVICE
);
1690 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1691 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1692 adapter
->rx_ps_bsize0
,
1694 buffer_info
->dma
= 0;
1697 if (buffer_info
->page
) {
1698 put_page(buffer_info
->page
);
1699 buffer_info
->page
= NULL
;
1702 if (buffer_info
->skb
) {
1703 dev_kfree_skb(buffer_info
->skb
);
1704 buffer_info
->skb
= NULL
;
1707 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1708 ps_page
= &buffer_info
->ps_pages
[j
];
1711 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1714 put_page(ps_page
->page
);
1715 ps_page
->page
= NULL
;
1719 /* there also may be some cached data from a chained receive */
1720 if (rx_ring
->rx_skb_top
) {
1721 dev_kfree_skb(rx_ring
->rx_skb_top
);
1722 rx_ring
->rx_skb_top
= NULL
;
1725 /* Zero out the descriptor ring */
1726 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1728 rx_ring
->next_to_clean
= 0;
1729 rx_ring
->next_to_use
= 0;
1730 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1733 static void e1000e_downshift_workaround(struct work_struct
*work
)
1735 struct e1000_adapter
*adapter
= container_of(work
,
1736 struct e1000_adapter
,
1739 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1742 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1746 * e1000_intr_msi - Interrupt Handler
1747 * @irq: interrupt number
1748 * @data: pointer to a network interface device structure
1750 static irqreturn_t
e1000_intr_msi(int __always_unused irq
, void *data
)
1752 struct net_device
*netdev
= data
;
1753 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1754 struct e1000_hw
*hw
= &adapter
->hw
;
1755 u32 icr
= er32(ICR
);
1757 /* read ICR disables interrupts using IAM */
1758 if (icr
& E1000_ICR_LSC
) {
1759 hw
->mac
.get_link_status
= true;
1760 /* ICH8 workaround-- Call gig speed drop workaround on cable
1761 * disconnect (LSC) before accessing any PHY registers
1763 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1764 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1765 schedule_work(&adapter
->downshift_task
);
1767 /* 80003ES2LAN workaround-- For packet buffer work-around on
1768 * link down event; disable receives here in the ISR and reset
1769 * adapter in watchdog
1771 if (netif_carrier_ok(netdev
) &&
1772 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1773 /* disable receives */
1774 u32 rctl
= er32(RCTL
);
1776 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1777 adapter
->flags
|= FLAG_RESTART_NOW
;
1779 /* guard against interrupt when we're going down */
1780 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1781 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1784 /* Reset on uncorrectable ECC error */
1785 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
>= e1000_pch_lpt
)) {
1786 u32 pbeccsts
= er32(PBECCSTS
);
1788 adapter
->corr_errors
+=
1789 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1790 adapter
->uncorr_errors
+=
1791 FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
, pbeccsts
);
1793 /* Do the reset outside of interrupt context */
1794 schedule_work(&adapter
->reset_task
);
1796 /* return immediately since reset is imminent */
1800 if (napi_schedule_prep(&adapter
->napi
)) {
1801 adapter
->total_tx_bytes
= 0;
1802 adapter
->total_tx_packets
= 0;
1803 adapter
->total_rx_bytes
= 0;
1804 adapter
->total_rx_packets
= 0;
1805 __napi_schedule(&adapter
->napi
);
1812 * e1000_intr - Interrupt Handler
1813 * @irq: interrupt number
1814 * @data: pointer to a network interface device structure
1816 static irqreturn_t
e1000_intr(int __always_unused irq
, void *data
)
1818 struct net_device
*netdev
= data
;
1819 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1820 struct e1000_hw
*hw
= &adapter
->hw
;
1821 u32 rctl
, icr
= er32(ICR
);
1823 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1824 return IRQ_NONE
; /* Not our interrupt */
1826 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827 * not set, then the adapter didn't send an interrupt
1829 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1832 /* Interrupt Auto-Mask...upon reading ICR,
1833 * interrupts are masked. No need for the
1837 if (icr
& E1000_ICR_LSC
) {
1838 hw
->mac
.get_link_status
= true;
1839 /* ICH8 workaround-- Call gig speed drop workaround on cable
1840 * disconnect (LSC) before accessing any PHY registers
1842 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1843 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1844 schedule_work(&adapter
->downshift_task
);
1846 /* 80003ES2LAN workaround--
1847 * For packet buffer work-around on link down event;
1848 * disable receives here in the ISR and
1849 * reset adapter in watchdog
1851 if (netif_carrier_ok(netdev
) &&
1852 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1853 /* disable receives */
1855 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1856 adapter
->flags
|= FLAG_RESTART_NOW
;
1858 /* guard against interrupt when we're going down */
1859 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1860 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1863 /* Reset on uncorrectable ECC error */
1864 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
>= e1000_pch_lpt
)) {
1865 u32 pbeccsts
= er32(PBECCSTS
);
1867 adapter
->corr_errors
+=
1868 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1869 adapter
->uncorr_errors
+=
1870 FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
, pbeccsts
);
1872 /* Do the reset outside of interrupt context */
1873 schedule_work(&adapter
->reset_task
);
1875 /* return immediately since reset is imminent */
1879 if (napi_schedule_prep(&adapter
->napi
)) {
1880 adapter
->total_tx_bytes
= 0;
1881 adapter
->total_tx_packets
= 0;
1882 adapter
->total_rx_bytes
= 0;
1883 adapter
->total_rx_packets
= 0;
1884 __napi_schedule(&adapter
->napi
);
1890 static irqreturn_t
e1000_msix_other(int __always_unused irq
, void *data
)
1892 struct net_device
*netdev
= data
;
1893 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1894 struct e1000_hw
*hw
= &adapter
->hw
;
1895 u32 icr
= er32(ICR
);
1897 if (icr
& adapter
->eiac_mask
)
1898 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1900 if (icr
& E1000_ICR_LSC
) {
1901 hw
->mac
.get_link_status
= true;
1902 /* guard against interrupt when we're going down */
1903 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1904 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1907 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1908 ew32(IMS
, E1000_IMS_OTHER
| IMS_OTHER_MASK
);
1913 static irqreturn_t
e1000_intr_msix_tx(int __always_unused irq
, void *data
)
1915 struct net_device
*netdev
= data
;
1916 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1917 struct e1000_hw
*hw
= &adapter
->hw
;
1918 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1920 adapter
->total_tx_bytes
= 0;
1921 adapter
->total_tx_packets
= 0;
1923 if (!e1000_clean_tx_irq(tx_ring
))
1924 /* Ring was not completely cleaned, so fire another interrupt */
1925 ew32(ICS
, tx_ring
->ims_val
);
1927 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1928 ew32(IMS
, adapter
->tx_ring
->ims_val
);
1933 static irqreturn_t
e1000_intr_msix_rx(int __always_unused irq
, void *data
)
1935 struct net_device
*netdev
= data
;
1936 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1937 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1939 /* Write the ITR value calculated at the end of the
1940 * previous interrupt.
1942 if (rx_ring
->set_itr
) {
1943 u32 itr
= rx_ring
->itr_val
?
1944 1000000000 / (rx_ring
->itr_val
* 256) : 0;
1946 writel(itr
, rx_ring
->itr_register
);
1947 rx_ring
->set_itr
= 0;
1950 if (napi_schedule_prep(&adapter
->napi
)) {
1951 adapter
->total_rx_bytes
= 0;
1952 adapter
->total_rx_packets
= 0;
1953 __napi_schedule(&adapter
->napi
);
1959 * e1000_configure_msix - Configure MSI-X hardware
1960 * @adapter: board private structure
1962 * e1000_configure_msix sets up the hardware to properly
1963 * generate MSI-X interrupts.
1965 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1967 struct e1000_hw
*hw
= &adapter
->hw
;
1968 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1969 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1971 u32 ctrl_ext
, ivar
= 0;
1973 adapter
->eiac_mask
= 0;
1975 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976 if (hw
->mac
.type
== e1000_82574
) {
1977 u32 rfctl
= er32(RFCTL
);
1979 rfctl
|= E1000_RFCTL_ACK_DIS
;
1983 /* Configure Rx vector */
1984 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1985 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1986 if (rx_ring
->itr_val
)
1987 writel(1000000000 / (rx_ring
->itr_val
* 256),
1988 rx_ring
->itr_register
);
1990 writel(1, rx_ring
->itr_register
);
1991 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1993 /* Configure Tx vector */
1994 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1996 if (tx_ring
->itr_val
)
1997 writel(1000000000 / (tx_ring
->itr_val
* 256),
1998 tx_ring
->itr_register
);
2000 writel(1, tx_ring
->itr_register
);
2001 adapter
->eiac_mask
|= tx_ring
->ims_val
;
2002 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
2004 /* set vector for Other Causes, e.g. link changes */
2006 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
2007 if (rx_ring
->itr_val
)
2008 writel(1000000000 / (rx_ring
->itr_val
* 256),
2009 hw
->hw_addr
+ E1000_EITR_82574(vector
));
2011 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2013 /* Cause Tx interrupts on every write back */
2018 /* enable MSI-X PBA support */
2019 ctrl_ext
= er32(CTRL_EXT
) & ~E1000_CTRL_EXT_IAME
;
2020 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
| E1000_CTRL_EXT_EIAME
;
2021 ew32(CTRL_EXT
, ctrl_ext
);
2025 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
2027 if (adapter
->msix_entries
) {
2028 pci_disable_msix(adapter
->pdev
);
2029 kfree(adapter
->msix_entries
);
2030 adapter
->msix_entries
= NULL
;
2031 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2032 pci_disable_msi(adapter
->pdev
);
2033 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
2038 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039 * @adapter: board private structure
2041 * Attempt to configure interrupts using the best available
2042 * capabilities of the hardware and kernel.
2044 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
2049 switch (adapter
->int_mode
) {
2050 case E1000E_INT_MODE_MSIX
:
2051 if (adapter
->flags
& FLAG_HAS_MSIX
) {
2052 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
2053 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
2057 if (adapter
->msix_entries
) {
2058 struct e1000_adapter
*a
= adapter
;
2060 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2061 adapter
->msix_entries
[i
].entry
= i
;
2063 err
= pci_enable_msix_range(a
->pdev
,
2070 /* MSI-X failed, so fall through and try MSI */
2071 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2072 e1000e_reset_interrupt_capability(adapter
);
2074 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2076 case E1000E_INT_MODE_MSI
:
2077 if (!pci_enable_msi(adapter
->pdev
)) {
2078 adapter
->flags
|= FLAG_MSI_ENABLED
;
2080 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2081 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2084 case E1000E_INT_MODE_LEGACY
:
2085 /* Don't do anything; this is the system default */
2089 /* store the number of vectors being used */
2090 adapter
->num_vectors
= 1;
2094 * e1000_request_msix - Initialize MSI-X interrupts
2095 * @adapter: board private structure
2097 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2100 static int e1000_request_msix(struct e1000_adapter
*adapter
)
2102 struct net_device
*netdev
= adapter
->netdev
;
2103 int err
= 0, vector
= 0;
2105 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2106 snprintf(adapter
->rx_ring
->name
,
2107 sizeof(adapter
->rx_ring
->name
) - 1,
2108 "%.14s-rx-0", netdev
->name
);
2110 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2111 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2112 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
2116 adapter
->rx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2117 E1000_EITR_82574(vector
);
2118 adapter
->rx_ring
->itr_val
= adapter
->itr
;
2121 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2122 snprintf(adapter
->tx_ring
->name
,
2123 sizeof(adapter
->tx_ring
->name
) - 1,
2124 "%.14s-tx-0", netdev
->name
);
2126 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2127 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2128 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
2132 adapter
->tx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2133 E1000_EITR_82574(vector
);
2134 adapter
->tx_ring
->itr_val
= adapter
->itr
;
2137 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2138 e1000_msix_other
, 0, netdev
->name
, netdev
);
2142 e1000_configure_msix(adapter
);
2148 * e1000_request_irq - initialize interrupts
2149 * @adapter: board private structure
2151 * Attempts to configure interrupts using the best available
2152 * capabilities of the hardware and kernel.
2154 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2156 struct net_device
*netdev
= adapter
->netdev
;
2159 if (adapter
->msix_entries
) {
2160 err
= e1000_request_msix(adapter
);
2163 /* fall back to MSI */
2164 e1000e_reset_interrupt_capability(adapter
);
2165 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2166 e1000e_set_interrupt_capability(adapter
);
2168 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2169 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2170 netdev
->name
, netdev
);
2174 /* fall back to legacy interrupt */
2175 e1000e_reset_interrupt_capability(adapter
);
2176 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2179 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2180 netdev
->name
, netdev
);
2182 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2187 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2189 struct net_device
*netdev
= adapter
->netdev
;
2191 if (adapter
->msix_entries
) {
2194 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2197 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2200 /* Other Causes interrupt vector */
2201 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2205 free_irq(adapter
->pdev
->irq
, netdev
);
2209 * e1000_irq_disable - Mask off interrupt generation on the NIC
2210 * @adapter: board private structure
2212 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2214 struct e1000_hw
*hw
= &adapter
->hw
;
2217 if (adapter
->msix_entries
)
2218 ew32(EIAC_82574
, 0);
2221 if (adapter
->msix_entries
) {
2224 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2225 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2227 synchronize_irq(adapter
->pdev
->irq
);
2232 * e1000_irq_enable - Enable default interrupt generation settings
2233 * @adapter: board private structure
2235 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2237 struct e1000_hw
*hw
= &adapter
->hw
;
2239 if (adapter
->msix_entries
) {
2240 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2241 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
|
2243 } else if (hw
->mac
.type
>= e1000_pch_lpt
) {
2244 ew32(IMS
, IMS_ENABLE_MASK
| E1000_IMS_ECCER
);
2246 ew32(IMS
, IMS_ENABLE_MASK
);
2252 * e1000e_get_hw_control - get control of the h/w from f/w
2253 * @adapter: address of board private structure
2255 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256 * For ASF and Pass Through versions of f/w this means that
2257 * the driver is loaded. For AMT version (only with 82573)
2258 * of the f/w this means that the network i/f is open.
2260 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2262 struct e1000_hw
*hw
= &adapter
->hw
;
2266 /* Let firmware know the driver has taken over */
2267 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2269 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2270 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2271 ctrl_ext
= er32(CTRL_EXT
);
2272 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2277 * e1000e_release_hw_control - release control of the h/w to f/w
2278 * @adapter: address of board private structure
2280 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281 * For ASF and Pass Through versions of f/w this means that the
2282 * driver is no longer loaded. For AMT version (only with 82573) i
2283 * of the f/w this means that the network i/f is closed.
2286 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2288 struct e1000_hw
*hw
= &adapter
->hw
;
2292 /* Let firmware taken over control of h/w */
2293 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2295 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2296 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2297 ctrl_ext
= er32(CTRL_EXT
);
2298 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2303 * e1000_alloc_ring_dma - allocate memory for a ring structure
2304 * @adapter: board private structure
2305 * @ring: ring struct for which to allocate dma
2307 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2308 struct e1000_ring
*ring
)
2310 struct pci_dev
*pdev
= adapter
->pdev
;
2312 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2324 * Return 0 on success, negative on failure
2326 int e1000e_setup_tx_resources(struct e1000_ring
*tx_ring
)
2328 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2329 int err
= -ENOMEM
, size
;
2331 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2332 tx_ring
->buffer_info
= vzalloc(size
);
2333 if (!tx_ring
->buffer_info
)
2336 /* round up to nearest 4K */
2337 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2338 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2340 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2344 tx_ring
->next_to_use
= 0;
2345 tx_ring
->next_to_clean
= 0;
2349 vfree(tx_ring
->buffer_info
);
2350 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2358 * Returns 0 on success, negative on failure
2360 int e1000e_setup_rx_resources(struct e1000_ring
*rx_ring
)
2362 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2363 struct e1000_buffer
*buffer_info
;
2364 int i
, size
, desc_len
, err
= -ENOMEM
;
2366 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2367 rx_ring
->buffer_info
= vzalloc(size
);
2368 if (!rx_ring
->buffer_info
)
2371 for (i
= 0; i
< rx_ring
->count
; i
++) {
2372 buffer_info
= &rx_ring
->buffer_info
[i
];
2373 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2374 sizeof(struct e1000_ps_page
),
2376 if (!buffer_info
->ps_pages
)
2380 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2382 /* Round up to nearest 4K */
2383 rx_ring
->size
= rx_ring
->count
* desc_len
;
2384 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2386 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2390 rx_ring
->next_to_clean
= 0;
2391 rx_ring
->next_to_use
= 0;
2392 rx_ring
->rx_skb_top
= NULL
;
2397 for (i
= 0; i
< rx_ring
->count
; i
++) {
2398 buffer_info
= &rx_ring
->buffer_info
[i
];
2399 kfree(buffer_info
->ps_pages
);
2402 vfree(rx_ring
->buffer_info
);
2403 e_err("Unable to allocate memory for the receive descriptor ring\n");
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2411 static void e1000_clean_tx_ring(struct e1000_ring
*tx_ring
)
2413 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2414 struct e1000_buffer
*buffer_info
;
2418 for (i
= 0; i
< tx_ring
->count
; i
++) {
2419 buffer_info
= &tx_ring
->buffer_info
[i
];
2420 e1000_put_txbuf(tx_ring
, buffer_info
, false);
2423 netdev_reset_queue(adapter
->netdev
);
2424 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2425 memset(tx_ring
->buffer_info
, 0, size
);
2427 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2429 tx_ring
->next_to_use
= 0;
2430 tx_ring
->next_to_clean
= 0;
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2437 * Free all transmit software resources
2439 void e1000e_free_tx_resources(struct e1000_ring
*tx_ring
)
2441 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2442 struct pci_dev
*pdev
= adapter
->pdev
;
2444 e1000_clean_tx_ring(tx_ring
);
2446 vfree(tx_ring
->buffer_info
);
2447 tx_ring
->buffer_info
= NULL
;
2449 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2451 tx_ring
->desc
= NULL
;
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2458 * Free all receive software resources
2460 void e1000e_free_rx_resources(struct e1000_ring
*rx_ring
)
2462 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2463 struct pci_dev
*pdev
= adapter
->pdev
;
2466 e1000_clean_rx_ring(rx_ring
);
2468 for (i
= 0; i
< rx_ring
->count
; i
++)
2469 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2471 vfree(rx_ring
->buffer_info
);
2472 rx_ring
->buffer_info
= NULL
;
2474 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2476 rx_ring
->desc
= NULL
;
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
2481 * @itr_setting: current adapter->itr
2482 * @packets: the number of packets during this measurement interval
2483 * @bytes: the number of bytes during this measurement interval
2485 * Stores a new ITR value based on packets and byte
2486 * counts during the last interrupt. The advantage of per interrupt
2487 * computation is faster updates and more accurate ITR for the current
2488 * traffic pattern. Constants in this function were computed
2489 * based on theoretical maximum wire speed and thresholds were set based
2490 * on testing data as well as attempting to minimize response time
2491 * while increasing bulk throughput. This functionality is controlled
2492 * by the InterruptThrottleRate module parameter.
2494 static unsigned int e1000_update_itr(u16 itr_setting
, int packets
, int bytes
)
2496 unsigned int retval
= itr_setting
;
2501 switch (itr_setting
) {
2502 case lowest_latency
:
2503 /* handle TSO and jumbo frames */
2504 if (bytes
/ packets
> 8000)
2505 retval
= bulk_latency
;
2506 else if ((packets
< 5) && (bytes
> 512))
2507 retval
= low_latency
;
2509 case low_latency
: /* 50 usec aka 20000 ints/s */
2510 if (bytes
> 10000) {
2511 /* this if handles the TSO accounting */
2512 if (bytes
/ packets
> 8000)
2513 retval
= bulk_latency
;
2514 else if ((packets
< 10) || ((bytes
/ packets
) > 1200))
2515 retval
= bulk_latency
;
2516 else if ((packets
> 35))
2517 retval
= lowest_latency
;
2518 } else if (bytes
/ packets
> 2000) {
2519 retval
= bulk_latency
;
2520 } else if (packets
<= 2 && bytes
< 512) {
2521 retval
= lowest_latency
;
2524 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2525 if (bytes
> 25000) {
2527 retval
= low_latency
;
2528 } else if (bytes
< 6000) {
2529 retval
= low_latency
;
2537 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2540 u32 new_itr
= adapter
->itr
;
2542 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543 if (adapter
->link_speed
!= SPEED_1000
) {
2548 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2553 adapter
->tx_itr
= e1000_update_itr(adapter
->tx_itr
,
2554 adapter
->total_tx_packets
,
2555 adapter
->total_tx_bytes
);
2556 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2557 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2558 adapter
->tx_itr
= low_latency
;
2560 adapter
->rx_itr
= e1000_update_itr(adapter
->rx_itr
,
2561 adapter
->total_rx_packets
,
2562 adapter
->total_rx_bytes
);
2563 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2564 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2565 adapter
->rx_itr
= low_latency
;
2567 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2569 /* counts and packets in update_itr are dependent on these numbers */
2570 switch (current_itr
) {
2571 case lowest_latency
:
2575 new_itr
= 20000; /* aka hwitr = ~200 */
2585 if (new_itr
!= adapter
->itr
) {
2586 /* this attempts to bias the interrupt rate towards Bulk
2587 * by adding intermediate steps when interrupt rate is
2590 new_itr
= new_itr
> adapter
->itr
?
2591 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) : new_itr
;
2592 adapter
->itr
= new_itr
;
2593 adapter
->rx_ring
->itr_val
= new_itr
;
2594 if (adapter
->msix_entries
)
2595 adapter
->rx_ring
->set_itr
= 1;
2597 e1000e_write_itr(adapter
, new_itr
);
2602 * e1000e_write_itr - write the ITR value to the appropriate registers
2603 * @adapter: address of board private structure
2604 * @itr: new ITR value to program
2606 * e1000e_write_itr determines if the adapter is in MSI-X mode
2607 * and, if so, writes the EITR registers with the ITR value.
2608 * Otherwise, it writes the ITR value into the ITR register.
2610 void e1000e_write_itr(struct e1000_adapter
*adapter
, u32 itr
)
2612 struct e1000_hw
*hw
= &adapter
->hw
;
2613 u32 new_itr
= itr
? 1000000000 / (itr
* 256) : 0;
2615 if (adapter
->msix_entries
) {
2618 for (vector
= 0; vector
< adapter
->num_vectors
; vector
++)
2619 writel(new_itr
, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2626 * e1000_alloc_queues - Allocate memory for all rings
2627 * @adapter: board private structure to initialize
2629 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
2631 int size
= sizeof(struct e1000_ring
);
2633 adapter
->tx_ring
= kzalloc(size
, GFP_KERNEL
);
2634 if (!adapter
->tx_ring
)
2636 adapter
->tx_ring
->count
= adapter
->tx_ring_count
;
2637 adapter
->tx_ring
->adapter
= adapter
;
2639 adapter
->rx_ring
= kzalloc(size
, GFP_KERNEL
);
2640 if (!adapter
->rx_ring
)
2642 adapter
->rx_ring
->count
= adapter
->rx_ring_count
;
2643 adapter
->rx_ring
->adapter
= adapter
;
2647 e_err("Unable to allocate memory for queues\n");
2648 kfree(adapter
->rx_ring
);
2649 kfree(adapter
->tx_ring
);
2654 * e1000e_poll - NAPI Rx polling callback
2655 * @napi: struct associated with this polling callback
2656 * @budget: number of packets driver is allowed to process this poll
2658 static int e1000e_poll(struct napi_struct
*napi
, int budget
)
2660 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
2662 struct e1000_hw
*hw
= &adapter
->hw
;
2663 struct net_device
*poll_dev
= adapter
->netdev
;
2664 int tx_cleaned
= 1, work_done
= 0;
2666 adapter
= netdev_priv(poll_dev
);
2668 if (!adapter
->msix_entries
||
2669 (adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2670 tx_cleaned
= e1000_clean_tx_irq(adapter
->tx_ring
);
2672 adapter
->clean_rx(adapter
->rx_ring
, &work_done
, budget
);
2674 if (!tx_cleaned
|| work_done
== budget
)
2677 /* Exit the polling mode, but don't re-enable interrupts if stack might
2678 * poll us due to busy-polling
2680 if (likely(napi_complete_done(napi
, work_done
))) {
2681 if (adapter
->itr_setting
& 3)
2682 e1000_set_itr(adapter
);
2683 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2684 if (adapter
->msix_entries
)
2685 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2687 e1000_irq_enable(adapter
);
2694 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
2695 __always_unused __be16 proto
, u16 vid
)
2697 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2698 struct e1000_hw
*hw
= &adapter
->hw
;
2701 /* don't update vlan cookie if already programmed */
2702 if ((adapter
->hw
.mng_cookie
.status
&
2703 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2704 (vid
== adapter
->mng_vlan_id
))
2707 /* add VID to filter table */
2708 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2709 index
= (vid
>> 5) & 0x7F;
2710 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2711 vfta
|= BIT((vid
& 0x1F));
2712 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2715 set_bit(vid
, adapter
->active_vlans
);
2720 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
2721 __always_unused __be16 proto
, u16 vid
)
2723 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2724 struct e1000_hw
*hw
= &adapter
->hw
;
2727 if ((adapter
->hw
.mng_cookie
.status
&
2728 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2729 (vid
== adapter
->mng_vlan_id
)) {
2730 /* release control to f/w */
2731 e1000e_release_hw_control(adapter
);
2735 /* remove VID from filter table */
2736 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2737 index
= (vid
>> 5) & 0x7F;
2738 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2739 vfta
&= ~BIT((vid
& 0x1F));
2740 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2743 clear_bit(vid
, adapter
->active_vlans
);
2749 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750 * @adapter: board private structure to initialize
2752 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2754 struct net_device
*netdev
= adapter
->netdev
;
2755 struct e1000_hw
*hw
= &adapter
->hw
;
2758 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2759 /* disable VLAN receive filtering */
2761 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2764 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2765 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
2766 adapter
->mng_vlan_id
);
2767 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2773 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774 * @adapter: board private structure to initialize
2776 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2778 struct e1000_hw
*hw
= &adapter
->hw
;
2781 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2782 /* enable VLAN receive filtering */
2784 rctl
|= E1000_RCTL_VFE
;
2785 rctl
&= ~E1000_RCTL_CFIEN
;
2791 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792 * @adapter: board private structure to initialize
2794 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2796 struct e1000_hw
*hw
= &adapter
->hw
;
2799 /* disable VLAN tag insert/strip */
2801 ctrl
&= ~E1000_CTRL_VME
;
2806 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807 * @adapter: board private structure to initialize
2809 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2811 struct e1000_hw
*hw
= &adapter
->hw
;
2814 /* enable VLAN tag insert/strip */
2816 ctrl
|= E1000_CTRL_VME
;
2820 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2822 struct net_device
*netdev
= adapter
->netdev
;
2823 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2824 u16 old_vid
= adapter
->mng_vlan_id
;
2826 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2827 e1000_vlan_rx_add_vid(netdev
, htons(ETH_P_8021Q
), vid
);
2828 adapter
->mng_vlan_id
= vid
;
2831 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2832 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
), old_vid
);
2835 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2839 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), 0);
2841 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2842 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
2845 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2847 struct e1000_hw
*hw
= &adapter
->hw
;
2848 u32 manc
, manc2h
, mdef
, i
, j
;
2850 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2855 /* enable receiving management packets to the host. this will probably
2856 * generate destination unreachable messages from the host OS, but
2857 * the packets will be handled on SMBUS
2859 manc
|= E1000_MANC_EN_MNG2HOST
;
2860 manc2h
= er32(MANC2H
);
2862 switch (hw
->mac
.type
) {
2864 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2868 /* Check if IPMI pass-through decision filter already exists;
2871 for (i
= 0, j
= 0; i
< 8; i
++) {
2872 mdef
= er32(MDEF(i
));
2874 /* Ignore filters with anything other than IPMI ports */
2875 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2878 /* Enable this decision filter in MANC2H */
2885 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2888 /* Create new decision filter in an empty filter */
2889 for (i
= 0, j
= 0; i
< 8; i
++)
2890 if (er32(MDEF(i
)) == 0) {
2891 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2892 E1000_MDEF_PORT_664
));
2899 e_warn("Unable to create IPMI pass-through filter\n");
2903 ew32(MANC2H
, manc2h
);
2908 * e1000_configure_tx - Configure Transmit Unit after Reset
2909 * @adapter: board private structure
2911 * Configure the Tx unit of the MAC after a reset.
2913 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2915 struct e1000_hw
*hw
= &adapter
->hw
;
2916 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2918 u32 tdlen
, tctl
, tarc
;
2920 /* Setup the HW Tx Head and Tail descriptor pointers */
2921 tdba
= tx_ring
->dma
;
2922 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2923 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
2924 ew32(TDBAH(0), (tdba
>> 32));
2925 ew32(TDLEN(0), tdlen
);
2928 tx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_TDH(0);
2929 tx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_TDT(0);
2931 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
2932 e1000e_update_tdt_wa(tx_ring
, 0);
2934 /* Set the Tx Interrupt Delay register */
2935 ew32(TIDV
, adapter
->tx_int_delay
);
2936 /* Tx irq moderation */
2937 ew32(TADV
, adapter
->tx_abs_int_delay
);
2939 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2940 u32 txdctl
= er32(TXDCTL(0));
2942 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2943 E1000_TXDCTL_WTHRESH
);
2944 /* set up some performance related parameters to encourage the
2945 * hardware to use the bus more efficiently in bursts, depends
2946 * on the tx_int_delay to be enabled,
2947 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948 * hthresh = 1 ==> prefetch when one or more available
2949 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950 * BEWARE: this seems to work but should be considered first if
2951 * there are Tx hangs or other Tx related bugs
2953 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2954 ew32(TXDCTL(0), txdctl
);
2956 /* erratum work around: set txdctl the same for both queues */
2957 ew32(TXDCTL(1), er32(TXDCTL(0)));
2959 /* Program the Transmit Control Register */
2961 tctl
&= ~E1000_TCTL_CT
;
2962 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2963 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2965 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2966 tarc
= er32(TARC(0));
2967 /* set the speed mode bit, we'll clear it if we're not at
2968 * gigabit link later
2970 #define SPEED_MODE_BIT BIT(21)
2971 tarc
|= SPEED_MODE_BIT
;
2972 ew32(TARC(0), tarc
);
2975 /* errata: program both queues to unweighted RR */
2976 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2977 tarc
= er32(TARC(0));
2979 ew32(TARC(0), tarc
);
2980 tarc
= er32(TARC(1));
2982 ew32(TARC(1), tarc
);
2985 /* Setup Transmit Descriptor Settings for eop descriptor */
2986 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2988 /* only set IDE if we are delaying interrupts using the timers */
2989 if (adapter
->tx_int_delay
)
2990 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2992 /* enable Report Status bit */
2993 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2997 hw
->mac
.ops
.config_collision_dist(hw
);
2999 /* SPT and KBL Si errata workaround to avoid data corruption */
3000 if (hw
->mac
.type
== e1000_pch_spt
) {
3003 reg_val
= er32(IOSFPC
);
3004 reg_val
|= E1000_RCTL_RDMTS_HEX
;
3005 ew32(IOSFPC
, reg_val
);
3007 reg_val
= er32(TARC(0));
3008 /* SPT and KBL Si errata workaround to avoid Tx hang.
3009 * Dropping the number of outstanding requests from
3010 * 3 to 2 in order to avoid a buffer overrun.
3012 reg_val
&= ~E1000_TARC0_CB_MULTIQ_3_REQ
;
3013 reg_val
|= E1000_TARC0_CB_MULTIQ_2_REQ
;
3014 ew32(TARC(0), reg_val
);
3018 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3019 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3022 * e1000_setup_rctl - configure the receive control registers
3023 * @adapter: Board private structure
3025 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
3027 struct e1000_hw
*hw
= &adapter
->hw
;
3031 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3032 * If jumbo frames not set, program related MAC/PHY registers
3035 if (hw
->mac
.type
>= e1000_pch2lan
) {
3038 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
3039 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
3041 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
3044 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3047 /* Program MC offset vector base */
3049 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
3050 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
3051 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
3052 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
3054 /* Do not Store bad packets */
3055 rctl
&= ~E1000_RCTL_SBP
;
3057 /* Enable Long Packet receive */
3058 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
3059 rctl
&= ~E1000_RCTL_LPE
;
3061 rctl
|= E1000_RCTL_LPE
;
3063 /* Some systems expect that the CRC is included in SMBUS traffic. The
3064 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065 * host memory when this is enabled
3067 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
3068 rctl
|= E1000_RCTL_SECRC
;
3070 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
3074 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
3077 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
3079 e1e_rphy(hw
, 22, &phy_data
);
3081 phy_data
|= BIT(14);
3082 e1e_wphy(hw
, 0x10, 0x2823);
3083 e1e_wphy(hw
, 0x11, 0x0003);
3084 e1e_wphy(hw
, 22, phy_data
);
3087 /* Setup buffer sizes */
3088 rctl
&= ~E1000_RCTL_SZ_4096
;
3089 rctl
|= E1000_RCTL_BSEX
;
3090 switch (adapter
->rx_buffer_len
) {
3093 rctl
|= E1000_RCTL_SZ_2048
;
3094 rctl
&= ~E1000_RCTL_BSEX
;
3097 rctl
|= E1000_RCTL_SZ_4096
;
3100 rctl
|= E1000_RCTL_SZ_8192
;
3103 rctl
|= E1000_RCTL_SZ_16384
;
3107 /* Enable Extended Status in all Receive Descriptors */
3108 rfctl
= er32(RFCTL
);
3109 rfctl
|= E1000_RFCTL_EXTEN
;
3112 /* 82571 and greater support packet-split where the protocol
3113 * header is placed in skb->data and the packet data is
3114 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115 * In the case of a non-split, skb->data is linearly filled,
3116 * followed by the page buffers. Therefore, skb->data is
3117 * sized to hold the largest protocol header.
3119 * allocations using alloc_page take too long for regular MTU
3120 * so only enable packet split for jumbo frames
3122 * Using pages when the page size is greater than 16k wastes
3123 * a lot of memory, since we allocate 3 pages at all times
3126 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
3127 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
3128 adapter
->rx_ps_pages
= pages
;
3130 adapter
->rx_ps_pages
= 0;
3132 if (adapter
->rx_ps_pages
) {
3135 /* Enable Packet split descriptors */
3136 rctl
|= E1000_RCTL_DTYP_PS
;
3138 psrctl
|= adapter
->rx_ps_bsize0
>> E1000_PSRCTL_BSIZE0_SHIFT
;
3140 switch (adapter
->rx_ps_pages
) {
3142 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE3_SHIFT
;
3145 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE2_SHIFT
;
3148 psrctl
|= PAGE_SIZE
>> E1000_PSRCTL_BSIZE1_SHIFT
;
3152 ew32(PSRCTL
, psrctl
);
3155 /* This is useful for sniffing bad packets. */
3156 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
3157 /* UPE and MPE will be handled by normal PROMISC logic
3158 * in e1000e_set_rx_mode
3160 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
3161 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
3162 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
3164 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
3165 E1000_RCTL_DPF
| /* Allow filtered pause */
3166 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
3167 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168 * and that breaks VLANs.
3173 /* just started the receive unit, no need to restart */
3174 adapter
->flags
&= ~FLAG_RESTART_NOW
;
3178 * e1000_configure_rx - Configure Receive Unit after Reset
3179 * @adapter: board private structure
3181 * Configure the Rx unit of the MAC after a reset.
3183 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
3185 struct e1000_hw
*hw
= &adapter
->hw
;
3186 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3188 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
3190 if (adapter
->rx_ps_pages
) {
3191 /* this is a 32 byte descriptor */
3192 rdlen
= rx_ring
->count
*
3193 sizeof(union e1000_rx_desc_packet_split
);
3194 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3195 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3196 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3197 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3198 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3199 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3201 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3202 adapter
->clean_rx
= e1000_clean_rx_irq
;
3203 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3206 /* disable receives while setting up the descriptors */
3208 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3209 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3211 usleep_range(10000, 11000);
3213 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3214 /* set the writeback threshold (only takes effect if the RDTR
3215 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216 * enable prefetching of 0x20 Rx descriptors
3222 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3223 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3226 /* set the Receive Delay Timer Register */
3227 ew32(RDTR
, adapter
->rx_int_delay
);
3229 /* irq moderation */
3230 ew32(RADV
, adapter
->rx_abs_int_delay
);
3231 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3232 e1000e_write_itr(adapter
, adapter
->itr
);
3234 ctrl_ext
= er32(CTRL_EXT
);
3235 /* Auto-Mask interrupts upon ICR access */
3236 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3237 ew32(IAM
, 0xffffffff);
3238 ew32(CTRL_EXT
, ctrl_ext
);
3241 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3242 * the Base and Length of the Rx Descriptor Ring
3244 rdba
= rx_ring
->dma
;
3245 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
3246 ew32(RDBAH(0), (rdba
>> 32));
3247 ew32(RDLEN(0), rdlen
);
3250 rx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_RDH(0);
3251 rx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_RDT(0);
3253 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
3254 e1000e_update_rdt_wa(rx_ring
, 0);
3256 /* Enable Receive Checksum Offload for TCP and UDP */
3257 rxcsum
= er32(RXCSUM
);
3258 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
)
3259 rxcsum
|= E1000_RXCSUM_TUOFL
;
3261 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3262 ew32(RXCSUM
, rxcsum
);
3264 /* With jumbo frames, excessive C-state transition latencies result
3265 * in dropped transactions.
3267 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3269 ((er32(PBA
) & E1000_PBA_RXA_MASK
) * 1024 -
3270 adapter
->max_frame_size
) * 8 / 1000;
3272 if (adapter
->flags
& FLAG_IS_ICH
) {
3273 u32 rxdctl
= er32(RXDCTL(0));
3275 ew32(RXDCTL(0), rxdctl
| 0x3 | BIT(8));
3278 dev_info(&adapter
->pdev
->dev
,
3279 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280 cpu_latency_qos_update_request(&adapter
->pm_qos_req
, lat
);
3282 cpu_latency_qos_update_request(&adapter
->pm_qos_req
,
3283 PM_QOS_DEFAULT_VALUE
);
3286 /* Enable Receives */
3291 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292 * @netdev: network interface device structure
3294 * Writes multicast address list to the MTA hash table.
3295 * Returns: -ENOMEM on failure
3296 * 0 on no addresses written
3297 * X on writing X addresses to MTA
3299 static int e1000e_write_mc_addr_list(struct net_device
*netdev
)
3301 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3302 struct e1000_hw
*hw
= &adapter
->hw
;
3303 struct netdev_hw_addr
*ha
;
3307 if (netdev_mc_empty(netdev
)) {
3308 /* nothing to program, so clear mc list */
3309 hw
->mac
.ops
.update_mc_addr_list(hw
, NULL
, 0);
3313 mta_list
= kcalloc(netdev_mc_count(netdev
), ETH_ALEN
, GFP_ATOMIC
);
3317 /* update_mc_addr_list expects a packed array of only addresses. */
3319 netdev_for_each_mc_addr(ha
, netdev
)
3320 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3322 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
);
3325 return netdev_mc_count(netdev
);
3329 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330 * @netdev: network interface device structure
3332 * Writes unicast address list to the RAR table.
3333 * Returns: -ENOMEM on failure/insufficient address space
3334 * 0 on no addresses written
3335 * X on writing X addresses to the RAR table
3337 static int e1000e_write_uc_addr_list(struct net_device
*netdev
)
3339 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3340 struct e1000_hw
*hw
= &adapter
->hw
;
3341 unsigned int rar_entries
;
3344 rar_entries
= hw
->mac
.ops
.rar_get_count(hw
);
3346 /* save a rar entry for our hardware address */
3349 /* save a rar entry for the LAA workaround */
3350 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
)
3353 /* return ENOMEM indicating insufficient memory for addresses */
3354 if (netdev_uc_count(netdev
) > rar_entries
)
3357 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3358 struct netdev_hw_addr
*ha
;
3360 /* write the addresses in reverse order to avoid write
3363 netdev_for_each_uc_addr(ha
, netdev
) {
3368 ret_val
= hw
->mac
.ops
.rar_set(hw
, ha
->addr
, rar_entries
--);
3375 /* zero out the remaining RAR entries not used above */
3376 for (; rar_entries
> 0; rar_entries
--) {
3377 ew32(RAH(rar_entries
), 0);
3378 ew32(RAL(rar_entries
), 0);
3386 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387 * @netdev: network interface device structure
3389 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390 * address list or the network interface flags are updated. This routine is
3391 * responsible for configuring the hardware for proper unicast, multicast,
3392 * promiscuous mode, and all-multi behavior.
3394 static void e1000e_set_rx_mode(struct net_device
*netdev
)
3396 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3397 struct e1000_hw
*hw
= &adapter
->hw
;
3400 if (pm_runtime_suspended(netdev
->dev
.parent
))
3403 /* Check for Promiscuous and All Multicast modes */
3406 /* clear the affected bits */
3407 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3409 if (netdev
->flags
& IFF_PROMISC
) {
3410 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3411 /* Do not hardware filter VLANs in promisc mode */
3412 e1000e_vlan_filter_disable(adapter
);
3416 if (netdev
->flags
& IFF_ALLMULTI
) {
3417 rctl
|= E1000_RCTL_MPE
;
3419 /* Write addresses to the MTA, if the attempt fails
3420 * then we should just turn on promiscuous mode so
3421 * that we can at least receive multicast traffic
3423 count
= e1000e_write_mc_addr_list(netdev
);
3425 rctl
|= E1000_RCTL_MPE
;
3427 e1000e_vlan_filter_enable(adapter
);
3428 /* Write addresses to available RAR registers, if there is not
3429 * sufficient space to store all the addresses then enable
3430 * unicast promiscuous mode
3432 count
= e1000e_write_uc_addr_list(netdev
);
3434 rctl
|= E1000_RCTL_UPE
;
3439 if (netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
3440 e1000e_vlan_strip_enable(adapter
);
3442 e1000e_vlan_strip_disable(adapter
);
3445 static void e1000e_setup_rss_hash(struct e1000_adapter
*adapter
)
3447 struct e1000_hw
*hw
= &adapter
->hw
;
3452 netdev_rss_key_fill(rss_key
, sizeof(rss_key
));
3453 for (i
= 0; i
< 10; i
++)
3454 ew32(RSSRK(i
), rss_key
[i
]);
3456 /* Direct all traffic to queue 0 */
3457 for (i
= 0; i
< 32; i
++)
3460 /* Disable raw packet checksumming so that RSS hash is placed in
3461 * descriptor on writeback.
3463 rxcsum
= er32(RXCSUM
);
3464 rxcsum
|= E1000_RXCSUM_PCSD
;
3466 ew32(RXCSUM
, rxcsum
);
3468 mrqc
= (E1000_MRQC_RSS_FIELD_IPV4
|
3469 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
3470 E1000_MRQC_RSS_FIELD_IPV6
|
3471 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
3472 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
3478 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479 * @adapter: board private structure
3480 * @timinca: pointer to returned time increment attributes
3482 * Get attributes for incrementing the System Time Register SYSTIML/H at
3483 * the default base frequency, and set the cyclecounter shift value.
3485 s32
e1000e_get_base_timinca(struct e1000_adapter
*adapter
, u32
*timinca
)
3487 struct e1000_hw
*hw
= &adapter
->hw
;
3488 u32 incvalue
, incperiod
, shift
;
3490 /* Make sure clock is enabled on I217/I218/I219 before checking
3493 if ((hw
->mac
.type
>= e1000_pch_lpt
) &&
3494 !(er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) &&
3495 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_ENABLED
)) {
3496 u32 fextnvm7
= er32(FEXTNVM7
);
3498 if (!(fextnvm7
& BIT(0))) {
3499 ew32(FEXTNVM7
, fextnvm7
| BIT(0));
3504 switch (hw
->mac
.type
) {
3506 /* Stable 96MHz frequency */
3507 incperiod
= INCPERIOD_96MHZ
;
3508 incvalue
= INCVALUE_96MHZ
;
3509 shift
= INCVALUE_SHIFT_96MHZ
;
3510 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHZ
;
3513 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3514 /* Stable 96MHz frequency */
3515 incperiod
= INCPERIOD_96MHZ
;
3516 incvalue
= INCVALUE_96MHZ
;
3517 shift
= INCVALUE_SHIFT_96MHZ
;
3518 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHZ
;
3520 /* Stable 25MHz frequency */
3521 incperiod
= INCPERIOD_25MHZ
;
3522 incvalue
= INCVALUE_25MHZ
;
3523 shift
= INCVALUE_SHIFT_25MHZ
;
3524 adapter
->cc
.shift
= shift
;
3528 /* Stable 24MHz frequency */
3529 incperiod
= INCPERIOD_24MHZ
;
3530 incvalue
= INCVALUE_24MHZ
;
3531 shift
= INCVALUE_SHIFT_24MHZ
;
3532 adapter
->cc
.shift
= shift
;
3541 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3542 /* Stable 24MHz frequency */
3543 incperiod
= INCPERIOD_24MHZ
;
3544 incvalue
= INCVALUE_24MHZ
;
3545 shift
= INCVALUE_SHIFT_24MHZ
;
3546 adapter
->cc
.shift
= shift
;
3548 /* Stable 38400KHz frequency */
3549 incperiod
= INCPERIOD_38400KHZ
;
3550 incvalue
= INCVALUE_38400KHZ
;
3551 shift
= INCVALUE_SHIFT_38400KHZ
;
3552 adapter
->cc
.shift
= shift
;
3557 /* Stable 25MHz frequency */
3558 incperiod
= INCPERIOD_25MHZ
;
3559 incvalue
= INCVALUE_25MHZ
;
3560 shift
= INCVALUE_SHIFT_25MHZ
;
3561 adapter
->cc
.shift
= shift
;
3567 *timinca
= ((incperiod
<< E1000_TIMINCA_INCPERIOD_SHIFT
) |
3568 ((incvalue
<< shift
) & E1000_TIMINCA_INCVALUE_MASK
));
3574 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3575 * @adapter: board private structure
3576 * @config: timestamp configuration
3578 * Outgoing time stamping can be enabled and disabled. Play nice and
3579 * disable it when requested, although it shouldn't cause any overhead
3580 * when no packet needs it. At most one packet in the queue may be
3581 * marked for time stamping, otherwise it would be impossible to tell
3582 * for sure to which packet the hardware time stamp belongs.
3584 * Incoming time stamping has to be configured via the hardware filters.
3585 * Not all combinations are supported, in particular event type has to be
3586 * specified. Matching the kind of event packet is not supported, with the
3587 * exception of "all V2 events regardless of level 2 or 4".
3589 static int e1000e_config_hwtstamp(struct e1000_adapter
*adapter
,
3590 struct hwtstamp_config
*config
)
3592 struct e1000_hw
*hw
= &adapter
->hw
;
3593 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
3594 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
3601 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3604 switch (config
->tx_type
) {
3605 case HWTSTAMP_TX_OFF
:
3608 case HWTSTAMP_TX_ON
:
3614 switch (config
->rx_filter
) {
3615 case HWTSTAMP_FILTER_NONE
:
3618 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3619 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3620 rxmtrl
= E1000_RXMTRL_PTP_V1_SYNC_MESSAGE
;
3623 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3624 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3625 rxmtrl
= E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE
;
3628 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3629 /* Also time stamps V2 L2 Path Delay Request/Response */
3630 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3631 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3634 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3635 /* Also time stamps V2 L2 Path Delay Request/Response. */
3636 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3637 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3640 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3641 /* Hardware cannot filter just V2 L4 Sync messages */
3643 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3644 /* Also time stamps V2 Path Delay Request/Response. */
3645 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3646 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3650 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3651 /* Hardware cannot filter just V2 L4 Delay Request messages */
3653 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3654 /* Also time stamps V2 Path Delay Request/Response. */
3655 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3656 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3660 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3661 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3662 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3664 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3665 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
3666 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
3670 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3671 /* For V1, the hardware can only filter Sync messages or
3672 * Delay Request messages but not both so fall-through to
3673 * time stamp all packets.
3676 case HWTSTAMP_FILTER_NTP_ALL
:
3677 case HWTSTAMP_FILTER_ALL
:
3680 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
3681 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3687 adapter
->hwtstamp_config
= *config
;
3689 /* enable/disable Tx h/w time stamping */
3690 regval
= er32(TSYNCTXCTL
);
3691 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
3692 regval
|= tsync_tx_ctl
;
3693 ew32(TSYNCTXCTL
, regval
);
3694 if ((er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) !=
3695 (regval
& E1000_TSYNCTXCTL_ENABLED
)) {
3696 e_err("Timesync Tx Control register not set as expected\n");
3700 /* enable/disable Rx h/w time stamping */
3701 regval
= er32(TSYNCRXCTL
);
3702 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
3703 regval
|= tsync_rx_ctl
;
3704 ew32(TSYNCRXCTL
, regval
);
3705 if ((er32(TSYNCRXCTL
) & (E1000_TSYNCRXCTL_ENABLED
|
3706 E1000_TSYNCRXCTL_TYPE_MASK
)) !=
3707 (regval
& (E1000_TSYNCRXCTL_ENABLED
|
3708 E1000_TSYNCRXCTL_TYPE_MASK
))) {
3709 e_err("Timesync Rx Control register not set as expected\n");
3713 /* L2: define ethertype filter for time stamped packets */
3715 rxmtrl
|= ETH_P_1588
;
3717 /* define which PTP packets get time stamped */
3718 ew32(RXMTRL
, rxmtrl
);
3720 /* Filter by destination port */
3722 rxudp
= PTP_EV_PORT
;
3723 cpu_to_be16s(&rxudp
);
3729 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3737 * e1000_configure - configure the hardware for Rx and Tx
3738 * @adapter: private board structure
3740 static void e1000_configure(struct e1000_adapter
*adapter
)
3742 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3744 e1000e_set_rx_mode(adapter
->netdev
);
3746 e1000_restore_vlan(adapter
);
3747 e1000_init_manageability_pt(adapter
);
3749 e1000_configure_tx(adapter
);
3751 if (adapter
->netdev
->features
& NETIF_F_RXHASH
)
3752 e1000e_setup_rss_hash(adapter
);
3753 e1000_setup_rctl(adapter
);
3754 e1000_configure_rx(adapter
);
3755 adapter
->alloc_rx_buf(rx_ring
, e1000_desc_unused(rx_ring
), GFP_KERNEL
);
3759 * e1000e_power_up_phy - restore link in case the phy was powered down
3760 * @adapter: address of board private structure
3762 * The phy may be powered down to save power and turn off link when the
3763 * driver is unloaded and wake on lan is not enabled (among others)
3764 * *** this routine MUST be followed by a call to e1000e_reset ***
3766 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3768 if (adapter
->hw
.phy
.ops
.power_up
)
3769 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3771 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3775 * e1000_power_down_phy - Power down the PHY
3776 * @adapter: board private structure
3778 * Power down the PHY so no link is implied when interface is down.
3779 * The PHY cannot be powered down if management or WoL is active.
3781 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3783 if (adapter
->hw
.phy
.ops
.power_down
)
3784 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3788 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3789 * @adapter: board private structure
3791 * We want to clear all pending descriptors from the TX ring.
3792 * zeroing happens when the HW reads the regs. We assign the ring itself as
3793 * the data of the next descriptor. We don't care about the data we are about
3796 static void e1000_flush_tx_ring(struct e1000_adapter
*adapter
)
3798 struct e1000_hw
*hw
= &adapter
->hw
;
3799 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3800 struct e1000_tx_desc
*tx_desc
= NULL
;
3801 u32 tdt
, tctl
, txd_lower
= E1000_TXD_CMD_IFCS
;
3805 ew32(TCTL
, tctl
| E1000_TCTL_EN
);
3807 BUG_ON(tdt
!= tx_ring
->next_to_use
);
3808 tx_desc
= E1000_TX_DESC(*tx_ring
, tx_ring
->next_to_use
);
3809 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->dma
);
3811 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
| size
);
3812 tx_desc
->upper
.data
= 0;
3813 /* flush descriptors to memory before notifying the HW */
3815 tx_ring
->next_to_use
++;
3816 if (tx_ring
->next_to_use
== tx_ring
->count
)
3817 tx_ring
->next_to_use
= 0;
3818 ew32(TDT(0), tx_ring
->next_to_use
);
3819 usleep_range(200, 250);
3823 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3824 * @adapter: board private structure
3826 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3828 static void e1000_flush_rx_ring(struct e1000_adapter
*adapter
)
3831 struct e1000_hw
*hw
= &adapter
->hw
;
3834 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3836 usleep_range(100, 150);
3838 rxdctl
= er32(RXDCTL(0));
3839 /* zero the lower 14 bits (prefetch and host thresholds) */
3840 rxdctl
&= 0xffffc000;
3842 /* update thresholds: prefetch threshold to 31, host threshold to 1
3843 * and make sure the granularity is "descriptors" and not "cache lines"
3845 rxdctl
|= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC
);
3847 ew32(RXDCTL(0), rxdctl
);
3848 /* momentarily enable the RX ring for the changes to take effect */
3849 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3851 usleep_range(100, 150);
3852 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3856 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3857 * @adapter: board private structure
3859 * In i219, the descriptor rings must be emptied before resetting the HW
3860 * or before changing the device state to D3 during runtime (runtime PM).
3862 * Failure to do this will cause the HW to enter a unit hang state which can
3863 * only be released by PCI reset on the device
3867 static void e1000_flush_desc_rings(struct e1000_adapter
*adapter
)
3870 u32 fext_nvm11
, tdlen
;
3871 struct e1000_hw
*hw
= &adapter
->hw
;
3873 /* First, disable MULR fix in FEXTNVM11 */
3874 fext_nvm11
= er32(FEXTNVM11
);
3875 fext_nvm11
|= E1000_FEXTNVM11_DISABLE_MULR_FIX
;
3876 ew32(FEXTNVM11
, fext_nvm11
);
3877 /* do nothing if we're not in faulty state, or if the queue is empty */
3878 tdlen
= er32(TDLEN(0));
3879 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3881 if (!(hang_state
& FLUSH_DESC_REQUIRED
) || !tdlen
)
3883 e1000_flush_tx_ring(adapter
);
3884 /* recheck, maybe the fault is caused by the rx ring */
3885 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3887 if (hang_state
& FLUSH_DESC_REQUIRED
)
3888 e1000_flush_rx_ring(adapter
);
3892 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3893 * @adapter: board private structure
3895 * When the MAC is reset, all hardware bits for timesync will be reset to the
3896 * default values. This function will restore the settings last in place.
3897 * Since the clock SYSTIME registers are reset, we will simply restore the
3898 * cyclecounter to the kernel real clock time.
3900 static void e1000e_systim_reset(struct e1000_adapter
*adapter
)
3902 struct ptp_clock_info
*info
= &adapter
->ptp_clock_info
;
3903 struct e1000_hw
*hw
= &adapter
->hw
;
3904 unsigned long flags
;
3908 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3911 if (info
->adjfine
) {
3912 /* restore the previous ptp frequency delta */
3913 ret_val
= info
->adjfine(info
, adapter
->ptp_delta
);
3915 /* set the default base frequency if no adjustment possible */
3916 ret_val
= e1000e_get_base_timinca(adapter
, &timinca
);
3918 ew32(TIMINCA
, timinca
);
3922 dev_warn(&adapter
->pdev
->dev
,
3923 "Failed to restore TIMINCA clock rate delta: %d\n",
3928 /* reset the systim ns time counter */
3929 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
3930 timecounter_init(&adapter
->tc
, &adapter
->cc
,
3931 ktime_to_ns(ktime_get_real()));
3932 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
3934 /* restore the previous hwtstamp configuration settings */
3935 e1000e_config_hwtstamp(adapter
, &adapter
->hwtstamp_config
);
3939 * e1000e_reset - bring the hardware into a known good state
3940 * @adapter: board private structure
3942 * This function boots the hardware and enables some settings that
3943 * require a configuration cycle of the hardware - those cannot be
3944 * set/changed during runtime. After reset the device needs to be
3945 * properly configured for Rx, Tx etc.
3947 void e1000e_reset(struct e1000_adapter
*adapter
)
3949 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3950 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3951 struct e1000_hw
*hw
= &adapter
->hw
;
3952 u32 tx_space
, min_tx_space
, min_rx_space
;
3953 u32 pba
= adapter
->pba
;
3956 /* reset Packet Buffer Allocation to default */
3959 if (adapter
->max_frame_size
> (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3960 /* To maintain wire speed transmits, the Tx FIFO should be
3961 * large enough to accommodate two full transmit packets,
3962 * rounded up to the next 1KB and expressed in KB. Likewise,
3963 * the Rx FIFO should be large enough to accommodate at least
3964 * one full receive packet and is similarly rounded up and
3968 /* upper 16 bits has Tx packet buffer allocation size in KB */
3969 tx_space
= pba
>> 16;
3970 /* lower 16 bits has Rx packet buffer allocation size in KB */
3972 /* the Tx fifo also stores 16 bytes of information about the Tx
3973 * but don't include ethernet FCS because hardware appends it
3975 min_tx_space
= (adapter
->max_frame_size
+
3976 sizeof(struct e1000_tx_desc
) - ETH_FCS_LEN
) * 2;
3977 min_tx_space
= ALIGN(min_tx_space
, 1024);
3978 min_tx_space
>>= 10;
3979 /* software strips receive CRC, so leave room for it */
3980 min_rx_space
= adapter
->max_frame_size
;
3981 min_rx_space
= ALIGN(min_rx_space
, 1024);
3982 min_rx_space
>>= 10;
3984 /* If current Tx allocation is less than the min Tx FIFO size,
3985 * and the min Tx FIFO size is less than the current Rx FIFO
3986 * allocation, take space away from current Rx allocation
3988 if ((tx_space
< min_tx_space
) &&
3989 ((min_tx_space
- tx_space
) < pba
)) {
3990 pba
-= min_tx_space
- tx_space
;
3992 /* if short on Rx space, Rx wins and must trump Tx
3995 if (pba
< min_rx_space
)
4002 /* flow control settings
4004 * The high water mark must be low enough to fit one full frame
4005 * (or the size used for early receive) above it in the Rx FIFO.
4006 * Set it to the lower of:
4007 * - 90% of the Rx FIFO size, and
4008 * - the full Rx FIFO size minus one full frame
4010 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
4011 fc
->pause_time
= 0xFFFF;
4013 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
4014 fc
->send_xon
= true;
4015 fc
->current_mode
= fc
->requested_mode
;
4017 switch (hw
->mac
.type
) {
4019 case e1000_ich10lan
:
4020 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
4023 fc
->high_water
= 0x2800;
4024 fc
->low_water
= fc
->high_water
- 8;
4029 hwm
= min(((pba
<< 10) * 9 / 10),
4030 ((pba
<< 10) - adapter
->max_frame_size
));
4032 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
4033 fc
->low_water
= fc
->high_water
- 8;
4036 /* Workaround PCH LOM adapter hangs with certain network
4037 * loads. If hangs persist, try disabling Tx flow control.
4039 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
4040 fc
->high_water
= 0x3500;
4041 fc
->low_water
= 0x1500;
4043 fc
->high_water
= 0x5000;
4044 fc
->low_water
= 0x3000;
4046 fc
->refresh_time
= 0x1000;
4058 fc
->refresh_time
= 0xFFFF;
4059 fc
->pause_time
= 0xFFFF;
4061 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
) {
4062 fc
->high_water
= 0x05C20;
4063 fc
->low_water
= 0x05048;
4069 fc
->high_water
= ((pba
<< 10) * 9 / 10) & E1000_FCRTH_RTH
;
4070 fc
->low_water
= ((pba
<< 10) * 8 / 10) & E1000_FCRTL_RTL
;
4074 /* Alignment of Tx data is on an arbitrary byte boundary with the
4075 * maximum size per Tx descriptor limited only to the transmit
4076 * allocation of the packet buffer minus 96 bytes with an upper
4077 * limit of 24KB due to receive synchronization limitations.
4079 adapter
->tx_fifo_limit
= min_t(u32
, ((er32(PBA
) >> 16) << 10) - 96,
4082 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4083 * fit in receive buffer.
4085 if (adapter
->itr_setting
& 0x3) {
4086 if ((adapter
->max_frame_size
* 2) > (pba
<< 10)) {
4087 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
4088 dev_info(&adapter
->pdev
->dev
,
4089 "Interrupt Throttle Rate off\n");
4090 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
4091 e1000e_write_itr(adapter
, 0);
4093 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
4094 dev_info(&adapter
->pdev
->dev
,
4095 "Interrupt Throttle Rate on\n");
4096 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
4097 adapter
->itr
= 20000;
4098 e1000e_write_itr(adapter
, adapter
->itr
);
4102 if (hw
->mac
.type
>= e1000_pch_spt
)
4103 e1000_flush_desc_rings(adapter
);
4104 /* Allow time for pending master requests to run */
4105 mac
->ops
.reset_hw(hw
);
4107 /* For parts with AMT enabled, let the firmware know
4108 * that the network interface is in control
4110 if (adapter
->flags
& FLAG_HAS_AMT
)
4111 e1000e_get_hw_control(adapter
);
4115 if (mac
->ops
.init_hw(hw
))
4116 e_err("Hardware Error\n");
4118 e1000_update_mng_vlan(adapter
);
4120 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4121 ew32(VET
, ETH_P_8021Q
);
4123 e1000e_reset_adaptive(hw
);
4125 /* restore systim and hwtstamp settings */
4126 e1000e_systim_reset(adapter
);
4128 /* Set EEE advertisement as appropriate */
4129 if (adapter
->flags2
& FLAG2_HAS_EEE
) {
4133 switch (hw
->phy
.type
) {
4134 case e1000_phy_82579
:
4135 adv_addr
= I82579_EEE_ADVERTISEMENT
;
4137 case e1000_phy_i217
:
4138 adv_addr
= I217_EEE_ADVERTISEMENT
;
4141 dev_err(&adapter
->pdev
->dev
,
4142 "Invalid PHY type setting EEE advertisement\n");
4146 ret_val
= hw
->phy
.ops
.acquire(hw
);
4148 dev_err(&adapter
->pdev
->dev
,
4149 "EEE advertisement - unable to acquire PHY\n");
4153 e1000_write_emi_reg_locked(hw
, adv_addr
,
4154 hw
->dev_spec
.ich8lan
.eee_disable
?
4155 0 : adapter
->eee_advert
);
4157 hw
->phy
.ops
.release(hw
);
4160 if (!netif_running(adapter
->netdev
) &&
4161 !test_bit(__E1000_TESTING
, &adapter
->state
))
4162 e1000_power_down_phy(adapter
);
4164 e1000_get_phy_info(hw
);
4166 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
4167 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
4169 /* speed up time to link by disabling smart power down, ignore
4170 * the return value of this function because there is nothing
4171 * different we would do if it failed
4173 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
4174 phy_data
&= ~IGP02E1000_PM_SPD
;
4175 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
4177 if (hw
->mac
.type
>= e1000_pch_spt
&& adapter
->int_mode
== 0) {
4180 /* Fextnvm7 @ 0xe4[2] = 1 */
4181 reg
= er32(FEXTNVM7
);
4182 reg
|= E1000_FEXTNVM7_SIDE_CLK_UNGATE
;
4183 ew32(FEXTNVM7
, reg
);
4184 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4185 reg
= er32(FEXTNVM9
);
4186 reg
|= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS
|
4187 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS
;
4188 ew32(FEXTNVM9
, reg
);
4194 * e1000e_trigger_lsc - trigger an LSC interrupt
4195 * @adapter: board private structure
4197 * Fire a link status change interrupt to start the watchdog.
4199 static void e1000e_trigger_lsc(struct e1000_adapter
*adapter
)
4201 struct e1000_hw
*hw
= &adapter
->hw
;
4203 if (adapter
->msix_entries
)
4204 ew32(ICS
, E1000_ICS_LSC
| E1000_ICS_OTHER
);
4206 ew32(ICS
, E1000_ICS_LSC
);
4209 void e1000e_up(struct e1000_adapter
*adapter
)
4211 /* hardware has been reset, we need to reload some things */
4212 e1000_configure(adapter
);
4214 clear_bit(__E1000_DOWN
, &adapter
->state
);
4216 if (adapter
->msix_entries
)
4217 e1000_configure_msix(adapter
);
4218 e1000_irq_enable(adapter
);
4220 /* Tx queue started by watchdog timer when link is up */
4222 e1000e_trigger_lsc(adapter
);
4225 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
4227 struct e1000_hw
*hw
= &adapter
->hw
;
4229 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
4232 /* flush pending descriptor writebacks to memory */
4233 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4234 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4236 /* execute the writes immediately */
4239 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4240 * write is successful
4242 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4243 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4245 /* execute the writes immediately */
4249 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
4252 * e1000e_down - quiesce the device and optionally reset the hardware
4253 * @adapter: board private structure
4254 * @reset: boolean flag to reset the hardware or not
4256 void e1000e_down(struct e1000_adapter
*adapter
, bool reset
)
4258 struct net_device
*netdev
= adapter
->netdev
;
4259 struct e1000_hw
*hw
= &adapter
->hw
;
4262 /* signal that we're down so the interrupt handler does not
4263 * reschedule our watchdog timer
4265 set_bit(__E1000_DOWN
, &adapter
->state
);
4267 netif_carrier_off(netdev
);
4269 /* disable receives in the hardware */
4271 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
4272 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
4273 /* flush and sleep below */
4275 netif_stop_queue(netdev
);
4277 /* disable transmits in the hardware */
4279 tctl
&= ~E1000_TCTL_EN
;
4282 /* flush both disables and wait for them to finish */
4284 usleep_range(10000, 11000);
4286 e1000_irq_disable(adapter
);
4288 napi_synchronize(&adapter
->napi
);
4290 del_timer_sync(&adapter
->watchdog_timer
);
4291 del_timer_sync(&adapter
->phy_info_timer
);
4293 spin_lock(&adapter
->stats64_lock
);
4294 e1000e_update_stats(adapter
);
4295 spin_unlock(&adapter
->stats64_lock
);
4297 e1000e_flush_descriptors(adapter
);
4299 adapter
->link_speed
= 0;
4300 adapter
->link_duplex
= 0;
4302 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4303 if ((hw
->mac
.type
>= e1000_pch2lan
) &&
4304 (adapter
->netdev
->mtu
> ETH_DATA_LEN
) &&
4305 e1000_lv_jumbo_workaround_ich8lan(hw
, false))
4306 e_dbg("failed to disable jumbo frame workaround mode\n");
4308 if (!pci_channel_offline(adapter
->pdev
)) {
4310 e1000e_reset(adapter
);
4311 else if (hw
->mac
.type
>= e1000_pch_spt
)
4312 e1000_flush_desc_rings(adapter
);
4314 e1000_clean_tx_ring(adapter
->tx_ring
);
4315 e1000_clean_rx_ring(adapter
->rx_ring
);
4318 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
4321 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4322 usleep_range(1000, 1100);
4323 e1000e_down(adapter
, true);
4325 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4329 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4330 * @hw: pointer to the HW structure
4331 * @systim: PHC time value read, sanitized and returned
4332 * @sts: structure to hold system time before and after reading SYSTIML,
4335 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4336 * check to see that the time is incrementing at a reasonable
4337 * rate and is a multiple of incvalue.
4339 static u64
e1000e_sanitize_systim(struct e1000_hw
*hw
, u64 systim
,
4340 struct ptp_system_timestamp
*sts
)
4342 u64 time_delta
, rem
, temp
;
4347 incvalue
= er32(TIMINCA
) & E1000_TIMINCA_INCVALUE_MASK
;
4348 for (i
= 0; i
< E1000_MAX_82574_SYSTIM_REREADS
; i
++) {
4349 /* latch SYSTIMH on read of SYSTIML */
4350 ptp_read_system_prets(sts
);
4351 systim_next
= (u64
)er32(SYSTIML
);
4352 ptp_read_system_postts(sts
);
4353 systim_next
|= (u64
)er32(SYSTIMH
) << 32;
4355 time_delta
= systim_next
- systim
;
4357 /* VMWare users have seen incvalue of zero, don't div / 0 */
4358 rem
= incvalue
? do_div(temp
, incvalue
) : (time_delta
!= 0);
4360 systim
= systim_next
;
4362 if ((time_delta
< E1000_82574_SYSTIM_EPSILON
) && (rem
== 0))
4370 * e1000e_read_systim - read SYSTIM register
4371 * @adapter: board private structure
4372 * @sts: structure which will contain system time before and after reading
4373 * SYSTIML, may be NULL
4375 u64
e1000e_read_systim(struct e1000_adapter
*adapter
,
4376 struct ptp_system_timestamp
*sts
)
4378 struct e1000_hw
*hw
= &adapter
->hw
;
4379 u32 systimel
, systimel_2
, systimeh
;
4381 /* SYSTIMH latching upon SYSTIML read does not work well.
4382 * This means that if SYSTIML overflows after we read it but before
4383 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4384 * will experience a huge non linear increment in the systime value
4385 * to fix that we test for overflow and if true, we re-read systime.
4387 ptp_read_system_prets(sts
);
4388 systimel
= er32(SYSTIML
);
4389 ptp_read_system_postts(sts
);
4390 systimeh
= er32(SYSTIMH
);
4391 /* Is systimel is so large that overflow is possible? */
4392 if (systimel
>= (u32
)0xffffffff - E1000_TIMINCA_INCVALUE_MASK
) {
4393 ptp_read_system_prets(sts
);
4394 systimel_2
= er32(SYSTIML
);
4395 ptp_read_system_postts(sts
);
4396 if (systimel
> systimel_2
) {
4397 /* There was an overflow, read again SYSTIMH, and use
4400 systimeh
= er32(SYSTIMH
);
4401 systimel
= systimel_2
;
4404 systim
= (u64
)systimel
;
4405 systim
|= (u64
)systimeh
<< 32;
4407 if (adapter
->flags2
& FLAG2_CHECK_SYSTIM_OVERFLOW
)
4408 systim
= e1000e_sanitize_systim(hw
, systim
, sts
);
4414 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4415 * @cc: cyclecounter structure
4417 static u64
e1000e_cyclecounter_read(const struct cyclecounter
*cc
)
4419 struct e1000_adapter
*adapter
= container_of(cc
, struct e1000_adapter
,
4422 return e1000e_read_systim(adapter
, NULL
);
4426 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4427 * @adapter: board private structure to initialize
4429 * e1000_sw_init initializes the Adapter private data structure.
4430 * Fields are initialized based on PCI device information and
4431 * OS network device settings (MTU size).
4433 static int e1000_sw_init(struct e1000_adapter
*adapter
)
4435 struct net_device
*netdev
= adapter
->netdev
;
4437 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
4438 adapter
->rx_ps_bsize0
= 128;
4439 adapter
->max_frame_size
= netdev
->mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
4440 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
4441 adapter
->tx_ring_count
= E1000_DEFAULT_TXD
;
4442 adapter
->rx_ring_count
= E1000_DEFAULT_RXD
;
4444 spin_lock_init(&adapter
->stats64_lock
);
4446 e1000e_set_interrupt_capability(adapter
);
4448 if (e1000_alloc_queues(adapter
))
4451 /* Setup hardware time stamping cyclecounter */
4452 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
4453 adapter
->cc
.read
= e1000e_cyclecounter_read
;
4454 adapter
->cc
.mask
= CYCLECOUNTER_MASK(64);
4455 adapter
->cc
.mult
= 1;
4456 /* cc.shift set in e1000e_get_base_tininca() */
4458 spin_lock_init(&adapter
->systim_lock
);
4459 INIT_WORK(&adapter
->tx_hwtstamp_work
, e1000e_tx_hwtstamp_work
);
4462 /* Explicitly disable IRQ since the NIC can be in any state. */
4463 e1000_irq_disable(adapter
);
4465 set_bit(__E1000_DOWN
, &adapter
->state
);
4470 * e1000_intr_msi_test - Interrupt Handler
4471 * @irq: interrupt number
4472 * @data: pointer to a network interface device structure
4474 static irqreturn_t
e1000_intr_msi_test(int __always_unused irq
, void *data
)
4476 struct net_device
*netdev
= data
;
4477 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4478 struct e1000_hw
*hw
= &adapter
->hw
;
4479 u32 icr
= er32(ICR
);
4481 e_dbg("icr is %08X\n", icr
);
4482 if (icr
& E1000_ICR_RXSEQ
) {
4483 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
4484 /* Force memory writes to complete before acknowledging the
4485 * interrupt is handled.
4494 * e1000_test_msi_interrupt - Returns 0 for successful test
4495 * @adapter: board private struct
4497 * code flow taken from tg3.c
4499 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
4501 struct net_device
*netdev
= adapter
->netdev
;
4502 struct e1000_hw
*hw
= &adapter
->hw
;
4505 /* poll_enable hasn't been called yet, so don't need disable */
4506 /* clear any pending events */
4509 /* free the real vector and request a test handler */
4510 e1000_free_irq(adapter
);
4511 e1000e_reset_interrupt_capability(adapter
);
4513 /* Assume that the test fails, if it succeeds then the test
4514 * MSI irq handler will unset this flag
4516 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
4518 err
= pci_enable_msi(adapter
->pdev
);
4520 goto msi_test_failed
;
4522 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
4523 netdev
->name
, netdev
);
4525 pci_disable_msi(adapter
->pdev
);
4526 goto msi_test_failed
;
4529 /* Force memory writes to complete before enabling and firing an
4534 e1000_irq_enable(adapter
);
4536 /* fire an unusual interrupt on the test handler */
4537 ew32(ICS
, E1000_ICS_RXSEQ
);
4541 e1000_irq_disable(adapter
);
4543 rmb(); /* read flags after interrupt has been fired */
4545 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
4546 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
4547 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4549 e_dbg("MSI interrupt test succeeded!\n");
4552 free_irq(adapter
->pdev
->irq
, netdev
);
4553 pci_disable_msi(adapter
->pdev
);
4556 e1000e_set_interrupt_capability(adapter
);
4557 return e1000_request_irq(adapter
);
4561 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4562 * @adapter: board private struct
4564 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4566 static int e1000_test_msi(struct e1000_adapter
*adapter
)
4571 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
4574 /* disable SERR in case the MSI write causes a master abort */
4575 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4576 if (pci_cmd
& PCI_COMMAND_SERR
)
4577 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
4578 pci_cmd
& ~PCI_COMMAND_SERR
);
4580 err
= e1000_test_msi_interrupt(adapter
);
4582 /* re-enable SERR */
4583 if (pci_cmd
& PCI_COMMAND_SERR
) {
4584 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4585 pci_cmd
|= PCI_COMMAND_SERR
;
4586 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
4593 * e1000e_open - Called when a network interface is made active
4594 * @netdev: network interface device structure
4596 * Returns 0 on success, negative value on failure
4598 * The open entry point is called when a network interface is made
4599 * active by the system (IFF_UP). At this point all resources needed
4600 * for transmit and receive operations are allocated, the interrupt
4601 * handler is registered with the OS, the watchdog timer is started,
4602 * and the stack is notified that the interface is ready.
4604 int e1000e_open(struct net_device
*netdev
)
4606 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4607 struct e1000_hw
*hw
= &adapter
->hw
;
4608 struct pci_dev
*pdev
= adapter
->pdev
;
4612 /* disallow open during test */
4613 if (test_bit(__E1000_TESTING
, &adapter
->state
))
4616 pm_runtime_get_sync(&pdev
->dev
);
4618 netif_carrier_off(netdev
);
4619 netif_stop_queue(netdev
);
4621 /* allocate transmit descriptors */
4622 err
= e1000e_setup_tx_resources(adapter
->tx_ring
);
4626 /* allocate receive descriptors */
4627 err
= e1000e_setup_rx_resources(adapter
->rx_ring
);
4631 /* If AMT is enabled, let the firmware know that the network
4632 * interface is now open and reset the part to a known state.
4634 if (adapter
->flags
& FLAG_HAS_AMT
) {
4635 e1000e_get_hw_control(adapter
);
4636 e1000e_reset(adapter
);
4639 e1000e_power_up_phy(adapter
);
4641 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4642 if ((adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
4643 e1000_update_mng_vlan(adapter
);
4645 /* DMA latency requirement to workaround jumbo issue */
4646 cpu_latency_qos_add_request(&adapter
->pm_qos_req
, PM_QOS_DEFAULT_VALUE
);
4648 /* before we allocate an interrupt, we must be ready to handle it.
4649 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4650 * as soon as we call pci_request_irq, so we have to setup our
4651 * clean_rx handler before we do so.
4653 e1000_configure(adapter
);
4655 err
= e1000_request_irq(adapter
);
4659 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4660 * ignore e1000e MSI messages, which means we need to test our MSI
4663 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
4664 err
= e1000_test_msi(adapter
);
4666 e_err("Interrupt allocation failed\n");
4671 /* From here on the code is the same as e1000e_up() */
4672 clear_bit(__E1000_DOWN
, &adapter
->state
);
4674 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
)
4675 irq
= adapter
->msix_entries
[0].vector
;
4677 irq
= adapter
->pdev
->irq
;
4679 netif_napi_set_irq(&adapter
->napi
, irq
);
4680 napi_enable(&adapter
->napi
);
4681 netif_queue_set_napi(netdev
, 0, NETDEV_QUEUE_TYPE_RX
, &adapter
->napi
);
4682 netif_queue_set_napi(netdev
, 0, NETDEV_QUEUE_TYPE_TX
, &adapter
->napi
);
4684 e1000_irq_enable(adapter
);
4686 adapter
->tx_hang_recheck
= false;
4688 hw
->mac
.get_link_status
= true;
4689 pm_runtime_put(&pdev
->dev
);
4691 e1000e_trigger_lsc(adapter
);
4696 cpu_latency_qos_remove_request(&adapter
->pm_qos_req
);
4697 e1000e_release_hw_control(adapter
);
4698 e1000_power_down_phy(adapter
);
4699 e1000e_free_rx_resources(adapter
->rx_ring
);
4701 e1000e_free_tx_resources(adapter
->tx_ring
);
4703 e1000e_reset(adapter
);
4704 pm_runtime_put_sync(&pdev
->dev
);
4710 * e1000e_close - Disables a network interface
4711 * @netdev: network interface device structure
4713 * Returns 0, this is not allowed to fail
4715 * The close entry point is called when an interface is de-activated
4716 * by the OS. The hardware is still under the drivers control, but
4717 * needs to be disabled. A global MAC reset is issued to stop the
4718 * hardware, and all transmit and receive resources are freed.
4720 int e1000e_close(struct net_device
*netdev
)
4722 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4723 struct pci_dev
*pdev
= adapter
->pdev
;
4724 int count
= E1000_CHECK_RESET_COUNT
;
4726 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
4727 usleep_range(10000, 11000);
4729 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4731 pm_runtime_get_sync(&pdev
->dev
);
4733 if (netif_device_present(netdev
)) {
4734 e1000e_down(adapter
, true);
4735 e1000_free_irq(adapter
);
4737 /* Link status message must follow this format */
4738 netdev_info(netdev
, "NIC Link is Down\n");
4741 netif_queue_set_napi(netdev
, 0, NETDEV_QUEUE_TYPE_RX
, NULL
);
4742 netif_queue_set_napi(netdev
, 0, NETDEV_QUEUE_TYPE_TX
, NULL
);
4743 napi_disable(&adapter
->napi
);
4745 e1000e_free_tx_resources(adapter
->tx_ring
);
4746 e1000e_free_rx_resources(adapter
->rx_ring
);
4748 /* kill manageability vlan ID if supported, but not if a vlan with
4749 * the same ID is registered on the host OS (let 8021q kill it)
4751 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
4752 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
4753 adapter
->mng_vlan_id
);
4755 /* If AMT is enabled, let the firmware know that the network
4756 * interface is now closed
4758 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
4759 !test_bit(__E1000_TESTING
, &adapter
->state
))
4760 e1000e_release_hw_control(adapter
);
4762 cpu_latency_qos_remove_request(&adapter
->pm_qos_req
);
4764 pm_runtime_put_sync(&pdev
->dev
);
4770 * e1000_set_mac - Change the Ethernet Address of the NIC
4771 * @netdev: network interface device structure
4772 * @p: pointer to an address structure
4774 * Returns 0 on success, negative on failure
4776 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
4778 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4779 struct e1000_hw
*hw
= &adapter
->hw
;
4780 struct sockaddr
*addr
= p
;
4782 if (!is_valid_ether_addr(addr
->sa_data
))
4783 return -EADDRNOTAVAIL
;
4785 eth_hw_addr_set(netdev
, addr
->sa_data
);
4786 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
4788 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
4790 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
4791 /* activate the work around */
4792 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
4794 /* Hold a copy of the LAA in RAR[14] This is done so that
4795 * between the time RAR[0] gets clobbered and the time it
4796 * gets fixed (in e1000_watchdog), the actual LAA is in one
4797 * of the RARs and no incoming packets directed to this port
4798 * are dropped. Eventually the LAA will be in RAR[0] and
4801 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
,
4802 adapter
->hw
.mac
.rar_entry_count
- 1);
4809 * e1000e_update_phy_task - work thread to update phy
4810 * @work: pointer to our work struct
4812 * this worker thread exists because we must acquire a
4813 * semaphore to read the phy, which we could msleep while
4814 * waiting for it, and we can't msleep in a timer.
4816 static void e1000e_update_phy_task(struct work_struct
*work
)
4818 struct e1000_adapter
*adapter
= container_of(work
,
4819 struct e1000_adapter
,
4821 struct e1000_hw
*hw
= &adapter
->hw
;
4823 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4826 e1000_get_phy_info(hw
);
4828 /* Enable EEE on 82579 after link up */
4829 if (hw
->phy
.type
>= e1000_phy_82579
)
4830 e1000_set_eee_pchlan(hw
);
4834 * e1000_update_phy_info - timre call-back to update PHY info
4835 * @t: pointer to timer_list containing private info adapter
4837 * Need to wait a few seconds after link up to get diagnostic information from
4840 static void e1000_update_phy_info(struct timer_list
*t
)
4842 struct e1000_adapter
*adapter
= from_timer(adapter
, t
, phy_info_timer
);
4844 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4847 schedule_work(&adapter
->update_phy_task
);
4851 * e1000e_update_phy_stats - Update the PHY statistics counters
4852 * @adapter: board private structure
4854 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4856 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
4858 struct e1000_hw
*hw
= &adapter
->hw
;
4862 ret_val
= hw
->phy
.ops
.acquire(hw
);
4866 /* A page set is expensive so check if already on desired page.
4867 * If not, set to the page with the PHY status registers.
4870 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4874 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
4875 ret_val
= hw
->phy
.ops
.set_page(hw
,
4876 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4881 /* Single Collision Count */
4882 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4883 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4885 adapter
->stats
.scc
+= phy_data
;
4887 /* Excessive Collision Count */
4888 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4889 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4891 adapter
->stats
.ecol
+= phy_data
;
4893 /* Multiple Collision Count */
4894 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4895 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4897 adapter
->stats
.mcc
+= phy_data
;
4899 /* Late Collision Count */
4900 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4901 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4903 adapter
->stats
.latecol
+= phy_data
;
4905 /* Collision Count - also used for adaptive IFS */
4906 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4907 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4909 hw
->mac
.collision_delta
= phy_data
;
4912 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4913 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4915 adapter
->stats
.dc
+= phy_data
;
4917 /* Transmit with no CRS */
4918 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4919 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4921 adapter
->stats
.tncrs
+= phy_data
;
4924 hw
->phy
.ops
.release(hw
);
4928 * e1000e_update_stats - Update the board statistics counters
4929 * @adapter: board private structure
4931 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4933 struct net_device
*netdev
= adapter
->netdev
;
4934 struct e1000_hw
*hw
= &adapter
->hw
;
4935 struct pci_dev
*pdev
= adapter
->pdev
;
4937 /* Prevent stats update while adapter is being reset, or if the pci
4938 * connection is down.
4940 if (adapter
->link_speed
== 0)
4942 if (pci_channel_offline(pdev
))
4945 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4946 adapter
->stats
.gprc
+= er32(GPRC
);
4947 adapter
->stats
.gorc
+= er32(GORCL
);
4948 er32(GORCH
); /* Clear gorc */
4949 adapter
->stats
.bprc
+= er32(BPRC
);
4950 adapter
->stats
.mprc
+= er32(MPRC
);
4951 adapter
->stats
.roc
+= er32(ROC
);
4953 adapter
->stats
.mpc
+= er32(MPC
);
4955 /* Half-duplex statistics */
4956 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4957 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4958 e1000e_update_phy_stats(adapter
);
4960 adapter
->stats
.scc
+= er32(SCC
);
4961 adapter
->stats
.ecol
+= er32(ECOL
);
4962 adapter
->stats
.mcc
+= er32(MCC
);
4963 adapter
->stats
.latecol
+= er32(LATECOL
);
4964 adapter
->stats
.dc
+= er32(DC
);
4966 hw
->mac
.collision_delta
= er32(COLC
);
4968 if ((hw
->mac
.type
!= e1000_82574
) &&
4969 (hw
->mac
.type
!= e1000_82583
))
4970 adapter
->stats
.tncrs
+= er32(TNCRS
);
4972 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4975 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4976 adapter
->stats
.xontxc
+= er32(XONTXC
);
4977 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4978 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4979 adapter
->stats
.gptc
+= er32(GPTC
);
4980 adapter
->stats
.gotc
+= er32(GOTCL
);
4981 er32(GOTCH
); /* Clear gotc */
4982 adapter
->stats
.rnbc
+= er32(RNBC
);
4983 adapter
->stats
.ruc
+= er32(RUC
);
4985 adapter
->stats
.mptc
+= er32(MPTC
);
4986 adapter
->stats
.bptc
+= er32(BPTC
);
4988 /* used for adaptive IFS */
4990 hw
->mac
.tx_packet_delta
= er32(TPT
);
4991 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4993 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4994 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4995 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4996 adapter
->stats
.tsctc
+= er32(TSCTC
);
4997 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4999 /* Fill out the OS statistics structure */
5000 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
5001 netdev
->stats
.collisions
= adapter
->stats
.colc
;
5005 /* RLEC on some newer hardware can be incorrect so build
5006 * our own version based on RUC and ROC
5008 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
5009 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5010 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
5011 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
5013 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
5014 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
5015 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
5018 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
5019 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
5020 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
5021 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
5023 /* Tx Dropped needs to be maintained elsewhere */
5025 /* Management Stats */
5026 adapter
->stats
.mgptc
+= er32(MGTPTC
);
5027 adapter
->stats
.mgprc
+= er32(MGTPRC
);
5028 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
5030 /* Correctable ECC Errors */
5031 if (hw
->mac
.type
>= e1000_pch_lpt
) {
5032 u32 pbeccsts
= er32(PBECCSTS
);
5034 adapter
->corr_errors
+=
5035 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
5036 adapter
->uncorr_errors
+=
5037 FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
, pbeccsts
);
5042 * e1000_phy_read_status - Update the PHY register status snapshot
5043 * @adapter: board private structure
5045 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
5047 struct e1000_hw
*hw
= &adapter
->hw
;
5048 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
5050 if (!pm_runtime_suspended((&adapter
->pdev
->dev
)->parent
) &&
5051 (er32(STATUS
) & E1000_STATUS_LU
) &&
5052 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
5055 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy
->bmcr
);
5056 ret_val
|= e1e_rphy(hw
, MII_BMSR
, &phy
->bmsr
);
5057 ret_val
|= e1e_rphy(hw
, MII_ADVERTISE
, &phy
->advertise
);
5058 ret_val
|= e1e_rphy(hw
, MII_LPA
, &phy
->lpa
);
5059 ret_val
|= e1e_rphy(hw
, MII_EXPANSION
, &phy
->expansion
);
5060 ret_val
|= e1e_rphy(hw
, MII_CTRL1000
, &phy
->ctrl1000
);
5061 ret_val
|= e1e_rphy(hw
, MII_STAT1000
, &phy
->stat1000
);
5062 ret_val
|= e1e_rphy(hw
, MII_ESTATUS
, &phy
->estatus
);
5064 e_warn("Error reading PHY register\n");
5066 /* Do not read PHY registers if link is not up
5067 * Set values to typical power-on defaults
5069 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
5070 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
5071 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
5073 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
5074 ADVERTISE_ALL
| ADVERTISE_CSMA
);
5076 phy
->expansion
= EXPANSION_ENABLENPAGE
;
5077 phy
->ctrl1000
= ADVERTISE_1000FULL
;
5079 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
5083 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
5085 struct e1000_hw
*hw
= &adapter
->hw
;
5086 u32 ctrl
= er32(CTRL
);
5088 /* Link status message must follow this format for user tools */
5089 netdev_info(adapter
->netdev
,
5090 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5091 adapter
->link_speed
,
5092 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half",
5093 (ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
) ? "Rx/Tx" :
5094 (ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
5095 (ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None");
5098 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
5100 struct e1000_hw
*hw
= &adapter
->hw
;
5101 bool link_active
= false;
5104 /* get_link_status is set on LSC (link status) interrupt or
5105 * Rx sequence error interrupt. get_link_status will stay
5106 * true until the check_for_link establishes link
5107 * for copper adapters ONLY
5109 switch (hw
->phy
.media_type
) {
5110 case e1000_media_type_copper
:
5111 if (hw
->mac
.get_link_status
) {
5112 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5113 link_active
= !hw
->mac
.get_link_status
;
5118 case e1000_media_type_fiber
:
5119 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5120 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
5122 case e1000_media_type_internal_serdes
:
5123 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5124 link_active
= hw
->mac
.serdes_has_link
;
5127 case e1000_media_type_unknown
:
5131 if ((ret_val
== -E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
5132 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
5133 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5134 e_info("Gigabit has been disabled, downgrading speed\n");
5140 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
5142 /* make sure the receive unit is started */
5143 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
5144 (adapter
->flags
& FLAG_RESTART_NOW
)) {
5145 struct e1000_hw
*hw
= &adapter
->hw
;
5146 u32 rctl
= er32(RCTL
);
5148 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
5149 adapter
->flags
&= ~FLAG_RESTART_NOW
;
5153 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
5155 struct e1000_hw
*hw
= &adapter
->hw
;
5157 /* With 82574 controllers, PHY needs to be checked periodically
5158 * for hung state and reset, if two calls return true
5160 if (e1000_check_phy_82574(hw
))
5161 adapter
->phy_hang_count
++;
5163 adapter
->phy_hang_count
= 0;
5165 if (adapter
->phy_hang_count
> 1) {
5166 adapter
->phy_hang_count
= 0;
5167 e_dbg("PHY appears hung - resetting\n");
5168 schedule_work(&adapter
->reset_task
);
5173 * e1000_watchdog - Timer Call-back
5174 * @t: pointer to timer_list containing private info adapter
5176 static void e1000_watchdog(struct timer_list
*t
)
5178 struct e1000_adapter
*adapter
= from_timer(adapter
, t
, watchdog_timer
);
5180 /* Do the rest outside of interrupt context */
5181 schedule_work(&adapter
->watchdog_task
);
5183 /* TODO: make this use queue_delayed_work() */
5186 static void e1000_watchdog_task(struct work_struct
*work
)
5188 struct e1000_adapter
*adapter
= container_of(work
,
5189 struct e1000_adapter
,
5191 struct net_device
*netdev
= adapter
->netdev
;
5192 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
5193 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
5194 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5195 u32 dmoff_exit_timeout
= 100, tries
= 0;
5196 struct e1000_hw
*hw
= &adapter
->hw
;
5197 u32 link
, tctl
, pcim_state
;
5199 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5202 link
= e1000e_has_link(adapter
);
5203 if ((netif_carrier_ok(netdev
)) && link
) {
5204 /* Cancel scheduled suspend requests. */
5205 pm_runtime_resume(netdev
->dev
.parent
);
5207 e1000e_enable_receives(adapter
);
5211 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
5212 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
5213 e1000_update_mng_vlan(adapter
);
5216 if (!netif_carrier_ok(netdev
)) {
5219 /* Cancel scheduled suspend requests. */
5220 pm_runtime_resume(netdev
->dev
.parent
);
5222 /* Checking if MAC is in DMoff state*/
5223 if (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
) {
5224 pcim_state
= er32(STATUS
);
5225 while (pcim_state
& E1000_STATUS_PCIM_STATE
) {
5226 if (tries
++ == dmoff_exit_timeout
) {
5227 e_dbg("Error in exiting dmoff\n");
5230 usleep_range(10000, 20000);
5231 pcim_state
= er32(STATUS
);
5233 /* Checking if MAC exited DMoff state */
5234 if (!(pcim_state
& E1000_STATUS_PCIM_STATE
))
5235 e1000_phy_hw_reset(&adapter
->hw
);
5239 /* update snapshot of PHY registers on LSC */
5240 e1000_phy_read_status(adapter
);
5241 mac
->ops
.get_link_up_info(&adapter
->hw
,
5242 &adapter
->link_speed
,
5243 &adapter
->link_duplex
);
5244 e1000_print_link_info(adapter
);
5246 /* check if SmartSpeed worked */
5247 e1000e_check_downshift(hw
);
5248 if (phy
->speed_downgraded
)
5250 "Link Speed was downgraded by SmartSpeed\n");
5252 /* On supported PHYs, check for duplex mismatch only
5253 * if link has autonegotiated at 10/100 half
5255 if ((hw
->phy
.type
== e1000_phy_igp_3
||
5256 hw
->phy
.type
== e1000_phy_bm
) &&
5258 (adapter
->link_speed
== SPEED_10
||
5259 adapter
->link_speed
== SPEED_100
) &&
5260 (adapter
->link_duplex
== HALF_DUPLEX
)) {
5263 e1e_rphy(hw
, MII_EXPANSION
, &autoneg_exp
);
5265 if (!(autoneg_exp
& EXPANSION_NWAY
))
5266 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5269 /* adjust timeout factor according to speed/duplex */
5270 adapter
->tx_timeout_factor
= 1;
5271 switch (adapter
->link_speed
) {
5274 adapter
->tx_timeout_factor
= 16;
5278 adapter
->tx_timeout_factor
= 10;
5282 /* workaround: re-program speed mode bit after
5285 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
5289 tarc0
= er32(TARC(0));
5290 tarc0
&= ~SPEED_MODE_BIT
;
5291 ew32(TARC(0), tarc0
);
5294 /* enable transmits in the hardware, need to do this
5295 * after setting TARC(0)
5298 tctl
|= E1000_TCTL_EN
;
5301 /* Perform any post-link-up configuration before
5302 * reporting link up.
5304 if (phy
->ops
.cfg_on_link_up
)
5305 phy
->ops
.cfg_on_link_up(hw
);
5307 netif_wake_queue(netdev
);
5308 netif_carrier_on(netdev
);
5310 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5311 mod_timer(&adapter
->phy_info_timer
,
5312 round_jiffies(jiffies
+ 2 * HZ
));
5315 if (netif_carrier_ok(netdev
)) {
5316 adapter
->link_speed
= 0;
5317 adapter
->link_duplex
= 0;
5318 /* Link status message must follow this format */
5319 netdev_info(netdev
, "NIC Link is Down\n");
5320 netif_carrier_off(netdev
);
5321 netif_stop_queue(netdev
);
5322 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5323 mod_timer(&adapter
->phy_info_timer
,
5324 round_jiffies(jiffies
+ 2 * HZ
));
5326 /* 8000ES2LAN requires a Rx packet buffer work-around
5327 * on link down event; reset the controller to flush
5328 * the Rx packet buffer.
5330 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
5331 adapter
->flags
|= FLAG_RESTART_NOW
;
5333 pm_schedule_suspend(netdev
->dev
.parent
,
5339 spin_lock(&adapter
->stats64_lock
);
5340 e1000e_update_stats(adapter
);
5342 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
5343 adapter
->tpt_old
= adapter
->stats
.tpt
;
5344 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
5345 adapter
->colc_old
= adapter
->stats
.colc
;
5347 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
5348 adapter
->gorc_old
= adapter
->stats
.gorc
;
5349 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
5350 adapter
->gotc_old
= adapter
->stats
.gotc
;
5351 spin_unlock(&adapter
->stats64_lock
);
5353 /* If the link is lost the controller stops DMA, but
5354 * if there is queued Tx work it cannot be done. So
5355 * reset the controller to flush the Tx packet buffers.
5357 if (!netif_carrier_ok(netdev
) &&
5358 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
))
5359 adapter
->flags
|= FLAG_RESTART_NOW
;
5361 /* If reset is necessary, do it outside of interrupt context. */
5362 if (adapter
->flags
& FLAG_RESTART_NOW
) {
5363 schedule_work(&adapter
->reset_task
);
5364 /* return immediately since reset is imminent */
5368 e1000e_update_adaptive(&adapter
->hw
);
5370 /* Simple mode for Interrupt Throttle Rate (ITR) */
5371 if (adapter
->itr_setting
== 4) {
5372 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5373 * Total asymmetrical Tx or Rx gets ITR=8000;
5374 * everyone else is between 2000-8000.
5376 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
5377 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
5378 adapter
->gotc
- adapter
->gorc
:
5379 adapter
->gorc
- adapter
->gotc
) / 10000;
5380 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
5382 e1000e_write_itr(adapter
, itr
);
5385 /* Cause software interrupt to ensure Rx ring is cleaned */
5386 if (adapter
->msix_entries
)
5387 ew32(ICS
, adapter
->rx_ring
->ims_val
);
5389 ew32(ICS
, E1000_ICS_RXDMT0
);
5391 /* flush pending descriptors to memory before detecting Tx hang */
5392 e1000e_flush_descriptors(adapter
);
5394 /* Force detection of hung controller every watchdog period */
5395 adapter
->detect_tx_hung
= true;
5397 /* With 82571 controllers, LAA may be overwritten due to controller
5398 * reset from the other port. Set the appropriate LAA in RAR[0]
5400 if (e1000e_get_laa_state_82571(hw
))
5401 hw
->mac
.ops
.rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
5403 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
5404 e1000e_check_82574_phy_workaround(adapter
);
5406 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5407 if (adapter
->hwtstamp_config
.rx_filter
!= HWTSTAMP_FILTER_NONE
) {
5408 if ((adapter
->flags2
& FLAG2_CHECK_RX_HWTSTAMP
) &&
5409 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
)) {
5411 adapter
->rx_hwtstamp_cleared
++;
5413 adapter
->flags2
|= FLAG2_CHECK_RX_HWTSTAMP
;
5417 /* Reset the timer */
5418 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5419 mod_timer(&adapter
->watchdog_timer
,
5420 round_jiffies(jiffies
+ 2 * HZ
));
5423 #define E1000_TX_FLAGS_CSUM 0x00000001
5424 #define E1000_TX_FLAGS_VLAN 0x00000002
5425 #define E1000_TX_FLAGS_TSO 0x00000004
5426 #define E1000_TX_FLAGS_IPV4 0x00000008
5427 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5428 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5429 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5430 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5432 static int e1000_tso(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5435 struct e1000_context_desc
*context_desc
;
5436 struct e1000_buffer
*buffer_info
;
5440 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
5443 if (!skb_is_gso(skb
))
5446 err
= skb_cow_head(skb
, 0);
5450 hdr_len
= skb_tcp_all_headers(skb
);
5451 mss
= skb_shinfo(skb
)->gso_size
;
5452 if (protocol
== htons(ETH_P_IP
)) {
5453 struct iphdr
*iph
= ip_hdr(skb
);
5456 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
5458 cmd_length
= E1000_TXD_CMD_IP
;
5459 ipcse
= skb_transport_offset(skb
) - 1;
5460 } else if (skb_is_gso_v6(skb
)) {
5461 tcp_v6_gso_csum_prep(skb
);
5464 ipcss
= skb_network_offset(skb
);
5465 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
5466 tucss
= skb_transport_offset(skb
);
5467 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
5469 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
5470 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
5472 i
= tx_ring
->next_to_use
;
5473 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5474 buffer_info
= &tx_ring
->buffer_info
[i
];
5476 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
5477 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
5478 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
5479 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
5480 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
5481 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5482 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
5483 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
5484 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
5486 buffer_info
->time_stamp
= jiffies
;
5487 buffer_info
->next_to_watch
= i
;
5490 if (i
== tx_ring
->count
)
5492 tx_ring
->next_to_use
= i
;
5497 static bool e1000_tx_csum(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5500 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5501 struct e1000_context_desc
*context_desc
;
5502 struct e1000_buffer
*buffer_info
;
5505 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
5507 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
5511 case cpu_to_be16(ETH_P_IP
):
5512 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
5513 cmd_len
|= E1000_TXD_CMD_TCP
;
5515 case cpu_to_be16(ETH_P_IPV6
):
5516 /* XXX not handling all IPV6 headers */
5517 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
5518 cmd_len
|= E1000_TXD_CMD_TCP
;
5521 if (unlikely(net_ratelimit()))
5522 e_warn("checksum_partial proto=%x!\n",
5523 be16_to_cpu(protocol
));
5527 css
= skb_checksum_start_offset(skb
);
5529 i
= tx_ring
->next_to_use
;
5530 buffer_info
= &tx_ring
->buffer_info
[i
];
5531 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5533 context_desc
->lower_setup
.ip_config
= 0;
5534 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
5535 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum_offset
;
5536 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5537 context_desc
->tcp_seg_setup
.data
= 0;
5538 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
5540 buffer_info
->time_stamp
= jiffies
;
5541 buffer_info
->next_to_watch
= i
;
5544 if (i
== tx_ring
->count
)
5546 tx_ring
->next_to_use
= i
;
5551 static int e1000_tx_map(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5552 unsigned int first
, unsigned int max_per_txd
,
5553 unsigned int nr_frags
)
5555 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5556 struct pci_dev
*pdev
= adapter
->pdev
;
5557 struct e1000_buffer
*buffer_info
;
5558 unsigned int len
= skb_headlen(skb
);
5559 unsigned int offset
= 0, size
, count
= 0, i
;
5560 unsigned int f
, bytecount
, segs
;
5562 i
= tx_ring
->next_to_use
;
5565 buffer_info
= &tx_ring
->buffer_info
[i
];
5566 size
= min(len
, max_per_txd
);
5568 buffer_info
->length
= size
;
5569 buffer_info
->time_stamp
= jiffies
;
5570 buffer_info
->next_to_watch
= i
;
5571 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
5573 size
, DMA_TO_DEVICE
);
5574 buffer_info
->mapped_as_page
= false;
5575 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5584 if (i
== tx_ring
->count
)
5589 for (f
= 0; f
< nr_frags
; f
++) {
5590 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[f
];
5592 len
= skb_frag_size(frag
);
5597 if (i
== tx_ring
->count
)
5600 buffer_info
= &tx_ring
->buffer_info
[i
];
5601 size
= min(len
, max_per_txd
);
5603 buffer_info
->length
= size
;
5604 buffer_info
->time_stamp
= jiffies
;
5605 buffer_info
->next_to_watch
= i
;
5606 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
5609 buffer_info
->mapped_as_page
= true;
5610 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5619 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
5620 /* multiply data chunks by size of headers */
5621 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
5623 tx_ring
->buffer_info
[i
].skb
= skb
;
5624 tx_ring
->buffer_info
[i
].segs
= segs
;
5625 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
5626 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
5631 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
5632 buffer_info
->dma
= 0;
5638 i
+= tx_ring
->count
;
5640 buffer_info
= &tx_ring
->buffer_info
[i
];
5641 e1000_put_txbuf(tx_ring
, buffer_info
, true);
5647 static void e1000_tx_queue(struct e1000_ring
*tx_ring
, int tx_flags
, int count
)
5649 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5650 struct e1000_tx_desc
*tx_desc
= NULL
;
5651 struct e1000_buffer
*buffer_info
;
5652 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
5655 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
5656 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
5658 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5660 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
5661 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
5664 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
5665 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5666 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5669 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
5670 txd_lower
|= E1000_TXD_CMD_VLE
;
5671 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
5674 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5675 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
5677 if (unlikely(tx_flags
& E1000_TX_FLAGS_HWTSTAMP
)) {
5678 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5679 txd_upper
|= E1000_TXD_EXTCMD_TSTAMP
;
5682 i
= tx_ring
->next_to_use
;
5685 buffer_info
= &tx_ring
->buffer_info
[i
];
5686 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
5687 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
5688 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
|
5689 buffer_info
->length
);
5690 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
5693 if (i
== tx_ring
->count
)
5695 } while (--count
> 0);
5697 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
5699 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5700 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5701 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
5703 /* Force memory writes to complete before letting h/w
5704 * know there are new descriptors to fetch. (Only
5705 * applicable for weak-ordered memory model archs,
5710 tx_ring
->next_to_use
= i
;
5713 #define MINIMUM_DHCP_PACKET_SIZE 282
5714 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
5715 struct sk_buff
*skb
)
5717 struct e1000_hw
*hw
= &adapter
->hw
;
5720 if (skb_vlan_tag_present(skb
) &&
5721 !((skb_vlan_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
5722 (adapter
->hw
.mng_cookie
.status
&
5723 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
5726 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
5729 if (((struct ethhdr
*)skb
->data
)->h_proto
!= htons(ETH_P_IP
))
5733 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+ 14);
5736 if (ip
->protocol
!= IPPROTO_UDP
)
5739 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
5740 if (ntohs(udp
->dest
) != 67)
5743 offset
= (u8
*)udp
+ 8 - skb
->data
;
5744 length
= skb
->len
- offset
;
5745 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
5751 static int __e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5753 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5755 netif_stop_queue(adapter
->netdev
);
5756 /* Herbert's original patch had:
5757 * smp_mb__after_netif_stop_queue();
5758 * but since that doesn't exist yet, just open code it.
5762 /* We need to check again in a case another CPU has just
5763 * made room available.
5765 if (e1000_desc_unused(tx_ring
) < size
)
5769 netif_start_queue(adapter
->netdev
);
5770 ++adapter
->restart_queue
;
5774 static int e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5776 BUG_ON(size
> tx_ring
->count
);
5778 if (e1000_desc_unused(tx_ring
) >= size
)
5780 return __e1000_maybe_stop_tx(tx_ring
, size
);
5783 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
5784 struct net_device
*netdev
)
5786 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5787 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5789 unsigned int tx_flags
= 0;
5790 unsigned int len
= skb_headlen(skb
);
5791 unsigned int nr_frags
;
5796 __be16 protocol
= vlan_get_protocol(skb
);
5798 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
5799 dev_kfree_skb_any(skb
);
5800 return NETDEV_TX_OK
;
5803 if (skb
->len
<= 0) {
5804 dev_kfree_skb_any(skb
);
5805 return NETDEV_TX_OK
;
5808 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5809 * pad skb in order to meet this minimum size requirement
5811 if (skb_put_padto(skb
, 17))
5812 return NETDEV_TX_OK
;
5814 mss
= skb_shinfo(skb
)->gso_size
;
5818 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5819 * points to just header, pull a few bytes of payload from
5820 * frags into skb->data
5822 hdr_len
= skb_tcp_all_headers(skb
);
5823 /* we do this workaround for ES2LAN, but it is un-necessary,
5824 * avoiding it could save a lot of cycles
5826 if (skb
->data_len
&& (hdr_len
== len
)) {
5827 unsigned int pull_size
;
5829 pull_size
= min_t(unsigned int, 4, skb
->data_len
);
5830 if (!__pskb_pull_tail(skb
, pull_size
)) {
5831 e_err("__pskb_pull_tail failed.\n");
5832 dev_kfree_skb_any(skb
);
5833 return NETDEV_TX_OK
;
5835 len
= skb_headlen(skb
);
5839 /* reserve a descriptor for the offload context */
5840 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
5844 count
+= DIV_ROUND_UP(len
, adapter
->tx_fifo_limit
);
5846 nr_frags
= skb_shinfo(skb
)->nr_frags
;
5847 for (f
= 0; f
< nr_frags
; f
++)
5848 count
+= DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
5849 adapter
->tx_fifo_limit
);
5851 if (adapter
->hw
.mac
.tx_pkt_filtering
)
5852 e1000_transfer_dhcp_info(adapter
, skb
);
5854 /* need: count + 2 desc gap to keep tail from touching
5855 * head, otherwise try next time
5857 if (e1000_maybe_stop_tx(tx_ring
, count
+ 2))
5858 return NETDEV_TX_BUSY
;
5860 if (skb_vlan_tag_present(skb
)) {
5861 tx_flags
|= E1000_TX_FLAGS_VLAN
;
5862 tx_flags
|= (skb_vlan_tag_get(skb
) <<
5863 E1000_TX_FLAGS_VLAN_SHIFT
);
5866 first
= tx_ring
->next_to_use
;
5868 tso
= e1000_tso(tx_ring
, skb
, protocol
);
5870 dev_kfree_skb_any(skb
);
5871 return NETDEV_TX_OK
;
5875 tx_flags
|= E1000_TX_FLAGS_TSO
;
5876 else if (e1000_tx_csum(tx_ring
, skb
, protocol
))
5877 tx_flags
|= E1000_TX_FLAGS_CSUM
;
5879 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5880 * 82571 hardware supports TSO capabilities for IPv6 as well...
5881 * no longer assume, we must.
5883 if (protocol
== htons(ETH_P_IP
))
5884 tx_flags
|= E1000_TX_FLAGS_IPV4
;
5886 if (unlikely(skb
->no_fcs
))
5887 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
5889 /* if count is 0 then mapping error has occurred */
5890 count
= e1000_tx_map(tx_ring
, skb
, first
, adapter
->tx_fifo_limit
,
5893 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
5894 (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
)) {
5895 if (!adapter
->tx_hwtstamp_skb
) {
5896 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
5897 tx_flags
|= E1000_TX_FLAGS_HWTSTAMP
;
5898 adapter
->tx_hwtstamp_skb
= skb_get(skb
);
5899 adapter
->tx_hwtstamp_start
= jiffies
;
5900 schedule_work(&adapter
->tx_hwtstamp_work
);
5902 adapter
->tx_hwtstamp_skipped
++;
5906 skb_tx_timestamp(skb
);
5908 netdev_sent_queue(netdev
, skb
->len
);
5909 e1000_tx_queue(tx_ring
, tx_flags
, count
);
5910 /* Make sure there is space in the ring for the next send. */
5911 e1000_maybe_stop_tx(tx_ring
,
5912 ((MAX_SKB_FRAGS
+ 1) *
5913 DIV_ROUND_UP(PAGE_SIZE
,
5914 adapter
->tx_fifo_limit
) + 4));
5916 if (!netdev_xmit_more() ||
5917 netif_xmit_stopped(netdev_get_tx_queue(netdev
, 0))) {
5918 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
5919 e1000e_update_tdt_wa(tx_ring
,
5920 tx_ring
->next_to_use
);
5922 writel(tx_ring
->next_to_use
, tx_ring
->tail
);
5925 dev_kfree_skb_any(skb
);
5926 tx_ring
->buffer_info
[first
].time_stamp
= 0;
5927 tx_ring
->next_to_use
= first
;
5930 return NETDEV_TX_OK
;
5934 * e1000_tx_timeout - Respond to a Tx Hang
5935 * @netdev: network interface device structure
5936 * @txqueue: index of the hung queue (unused)
5938 static void e1000_tx_timeout(struct net_device
*netdev
, unsigned int __always_unused txqueue
)
5940 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5942 /* Do the reset outside of interrupt context */
5943 adapter
->tx_timeout_count
++;
5944 schedule_work(&adapter
->reset_task
);
5947 static void e1000_reset_task(struct work_struct
*work
)
5949 struct e1000_adapter
*adapter
;
5950 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5953 /* don't run the task if already down */
5954 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
5959 if (!(adapter
->flags
& FLAG_RESTART_NOW
)) {
5960 e1000e_dump(adapter
);
5961 e_err("Reset adapter unexpectedly\n");
5963 e1000e_reinit_locked(adapter
);
5968 * e1000e_get_stats64 - Get System Network Statistics
5969 * @netdev: network interface device structure
5970 * @stats: rtnl_link_stats64 pointer
5972 * Returns the address of the device statistics structure.
5974 void e1000e_get_stats64(struct net_device
*netdev
,
5975 struct rtnl_link_stats64
*stats
)
5977 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5979 spin_lock(&adapter
->stats64_lock
);
5980 e1000e_update_stats(adapter
);
5981 /* Fill out the OS statistics structure */
5982 stats
->rx_bytes
= adapter
->stats
.gorc
;
5983 stats
->rx_packets
= adapter
->stats
.gprc
;
5984 stats
->tx_bytes
= adapter
->stats
.gotc
;
5985 stats
->tx_packets
= adapter
->stats
.gptc
;
5986 stats
->multicast
= adapter
->stats
.mprc
;
5987 stats
->collisions
= adapter
->stats
.colc
;
5991 /* RLEC on some newer hardware can be incorrect so build
5992 * our own version based on RUC and ROC
5994 stats
->rx_errors
= adapter
->stats
.rxerrc
+
5995 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5996 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
5997 stats
->rx_length_errors
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
5998 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
5999 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
6000 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
6003 stats
->tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
6004 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
6005 stats
->tx_window_errors
= adapter
->stats
.latecol
;
6006 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
6008 /* Tx Dropped needs to be maintained elsewhere */
6010 spin_unlock(&adapter
->stats64_lock
);
6014 * e1000_change_mtu - Change the Maximum Transfer Unit
6015 * @netdev: network interface device structure
6016 * @new_mtu: new value for maximum frame size
6018 * Returns 0 on success, negative on failure
6020 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
6022 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6023 int max_frame
= new_mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
6025 /* Jumbo frame support */
6026 if ((new_mtu
> ETH_DATA_LEN
) &&
6027 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
6028 e_err("Jumbo Frames not supported.\n");
6032 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6033 if ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
6034 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
6035 (new_mtu
> ETH_DATA_LEN
)) {
6036 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6040 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
6041 usleep_range(1000, 1100);
6042 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6043 adapter
->max_frame_size
= max_frame
;
6044 netdev_dbg(netdev
, "changing MTU from %d to %d\n",
6045 netdev
->mtu
, new_mtu
);
6046 WRITE_ONCE(netdev
->mtu
, new_mtu
);
6048 pm_runtime_get_sync(netdev
->dev
.parent
);
6050 if (netif_running(netdev
))
6051 e1000e_down(adapter
, true);
6053 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6054 * means we reserve 2 more, this pushes us to allocate from the next
6056 * i.e. RXBUFFER_2048 --> size-4096 slab
6057 * However with the new *_jumbo_rx* routines, jumbo receives will use
6061 if (max_frame
<= 2048)
6062 adapter
->rx_buffer_len
= 2048;
6064 adapter
->rx_buffer_len
= 4096;
6066 /* adjust allocation if LPE protects us, and we aren't using SBP */
6067 if (max_frame
<= (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
))
6068 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
6070 if (netif_running(netdev
))
6073 e1000e_reset(adapter
);
6075 pm_runtime_put_sync(netdev
->dev
.parent
);
6077 clear_bit(__E1000_RESETTING
, &adapter
->state
);
6082 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
6085 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6086 struct mii_ioctl_data
*data
= if_mii(ifr
);
6088 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
6093 data
->phy_id
= adapter
->hw
.phy
.addr
;
6096 e1000_phy_read_status(adapter
);
6098 switch (data
->reg_num
& 0x1F) {
6100 data
->val_out
= adapter
->phy_regs
.bmcr
;
6103 data
->val_out
= adapter
->phy_regs
.bmsr
;
6106 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
6109 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
6112 data
->val_out
= adapter
->phy_regs
.advertise
;
6115 data
->val_out
= adapter
->phy_regs
.lpa
;
6118 data
->val_out
= adapter
->phy_regs
.expansion
;
6121 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
6124 data
->val_out
= adapter
->phy_regs
.stat1000
;
6127 data
->val_out
= adapter
->phy_regs
.estatus
;
6141 * e1000e_hwtstamp_set - control hardware time stamping
6142 * @netdev: network interface device structure
6143 * @ifr: interface request
6145 * Outgoing time stamping can be enabled and disabled. Play nice and
6146 * disable it when requested, although it shouldn't cause any overhead
6147 * when no packet needs it. At most one packet in the queue may be
6148 * marked for time stamping, otherwise it would be impossible to tell
6149 * for sure to which packet the hardware time stamp belongs.
6151 * Incoming time stamping has to be configured via the hardware filters.
6152 * Not all combinations are supported, in particular event type has to be
6153 * specified. Matching the kind of event packet is not supported, with the
6154 * exception of "all V2 events regardless of level 2 or 4".
6156 static int e1000e_hwtstamp_set(struct net_device
*netdev
, struct ifreq
*ifr
)
6158 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6159 struct hwtstamp_config config
;
6162 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
6165 ret_val
= e1000e_config_hwtstamp(adapter
, &config
);
6169 switch (config
.rx_filter
) {
6170 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
6171 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
6172 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
6173 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
6174 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
6175 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
6176 /* With V2 type filters which specify a Sync or Delay Request,
6177 * Path Delay Request/Response messages are also time stamped
6178 * by hardware so notify the caller the requested packets plus
6179 * some others are time stamped.
6181 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
6187 return copy_to_user(ifr
->ifr_data
, &config
,
6188 sizeof(config
)) ? -EFAULT
: 0;
6191 static int e1000e_hwtstamp_get(struct net_device
*netdev
, struct ifreq
*ifr
)
6193 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6195 return copy_to_user(ifr
->ifr_data
, &adapter
->hwtstamp_config
,
6196 sizeof(adapter
->hwtstamp_config
)) ? -EFAULT
: 0;
6199 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6205 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
6207 return e1000e_hwtstamp_set(netdev
, ifr
);
6209 return e1000e_hwtstamp_get(netdev
, ifr
);
6215 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
6217 struct e1000_hw
*hw
= &adapter
->hw
;
6218 u32 i
, mac_reg
, wuc
;
6219 u16 phy_reg
, wuc_enable
;
6222 /* copy MAC RARs to PHY RARs */
6223 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
6225 retval
= hw
->phy
.ops
.acquire(hw
);
6227 e_err("Could not acquire PHY\n");
6231 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6232 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6236 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6237 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
6238 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
6239 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
6240 (u16
)(mac_reg
& 0xFFFF));
6241 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
6242 (u16
)((mac_reg
>> 16) & 0xFFFF));
6245 /* configure PHY Rx Control register */
6246 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
6247 mac_reg
= er32(RCTL
);
6248 if (mac_reg
& E1000_RCTL_UPE
)
6249 phy_reg
|= BM_RCTL_UPE
;
6250 if (mac_reg
& E1000_RCTL_MPE
)
6251 phy_reg
|= BM_RCTL_MPE
;
6252 phy_reg
&= ~(BM_RCTL_MO_MASK
);
6253 if (mac_reg
& E1000_RCTL_MO_3
)
6254 phy_reg
|= (FIELD_GET(E1000_RCTL_MO_3
, mac_reg
)
6255 << BM_RCTL_MO_SHIFT
);
6256 if (mac_reg
& E1000_RCTL_BAM
)
6257 phy_reg
|= BM_RCTL_BAM
;
6258 if (mac_reg
& E1000_RCTL_PMCF
)
6259 phy_reg
|= BM_RCTL_PMCF
;
6260 mac_reg
= er32(CTRL
);
6261 if (mac_reg
& E1000_CTRL_RFCE
)
6262 phy_reg
|= BM_RCTL_RFCE
;
6263 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
6265 wuc
= E1000_WUC_PME_EN
;
6266 if (wufc
& (E1000_WUFC_MAG
| E1000_WUFC_LNKC
))
6267 wuc
|= E1000_WUC_APME
;
6269 /* enable PHY wakeup in MAC register */
6271 ew32(WUC
, (E1000_WUC_PHY_WAKE
| E1000_WUC_APMPME
|
6272 E1000_WUC_PME_STATUS
| wuc
));
6274 /* configure and enable PHY wakeup in PHY registers */
6275 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
6276 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, wuc
);
6278 /* activate PHY wakeup */
6279 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
6280 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6282 e_err("Could not set PHY Host Wakeup bit\n");
6284 hw
->phy
.ops
.release(hw
);
6289 static void e1000e_flush_lpic(struct pci_dev
*pdev
)
6291 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6292 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6293 struct e1000_hw
*hw
= &adapter
->hw
;
6296 pm_runtime_get_sync(netdev
->dev
.parent
);
6298 ret_val
= hw
->phy
.ops
.acquire(hw
);
6302 pr_info("EEE TX LPI TIMER: %08X\n",
6303 er32(LPIC
) >> E1000_LPIC_LPIET_SHIFT
);
6305 hw
->phy
.ops
.release(hw
);
6308 pm_runtime_put_sync(netdev
->dev
.parent
);
6311 /* S0ix implementation */
6312 static void e1000e_s0ix_entry_flow(struct e1000_adapter
*adapter
)
6314 struct e1000_hw
*hw
= &adapter
->hw
;
6318 if (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
&&
6319 hw
->mac
.type
>= e1000_pch_adp
) {
6320 /* Request ME configure the device for S0ix */
6321 mac_data
= er32(H2ME
);
6322 mac_data
|= E1000_H2ME_START_DPG
;
6323 mac_data
&= ~E1000_H2ME_EXIT_DPG
;
6324 trace_e1000e_trace_mac_register(mac_data
);
6325 ew32(H2ME
, mac_data
);
6327 /* Request driver configure the device to S0ix */
6328 /* Disable the periodic inband message,
6329 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6331 e1e_rphy(hw
, HV_PM_CTRL
, &phy_data
);
6332 phy_data
&= ~HV_PM_CTRL_K1_CLK_REQ
;
6333 phy_data
|= BIT(10);
6334 e1e_wphy(hw
, HV_PM_CTRL
, phy_data
);
6336 /* Make sure we don't exit K1 every time a new packet arrives
6337 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6339 e1e_rphy(hw
, I217_CGFREG
, &phy_data
);
6341 e1e_wphy(hw
, I217_CGFREG
, phy_data
);
6343 /* Change the MAC/PHY interface to SMBus
6344 * Force the SMBus in PHY page769_23[0] = 1
6345 * Force the SMBus in MAC CTRL_EXT[11] = 1
6347 e1e_rphy(hw
, CV_SMB_CTRL
, &phy_data
);
6348 phy_data
|= CV_SMB_CTRL_FORCE_SMBUS
;
6349 e1e_wphy(hw
, CV_SMB_CTRL
, phy_data
);
6350 mac_data
= er32(CTRL_EXT
);
6351 mac_data
|= E1000_CTRL_EXT_FORCE_SMBUS
;
6352 ew32(CTRL_EXT
, mac_data
);
6354 /* DFT control: PHY bit: page769_20[0] = 1
6355 * page769_20[7] - PHY PLL stop
6356 * page769_20[8] - PHY go to the electrical idle
6357 * page769_20[9] - PHY serdes disable
6358 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6360 e1e_rphy(hw
, I82579_DFT_CTRL
, &phy_data
);
6365 e1e_wphy(hw
, I82579_DFT_CTRL
, phy_data
);
6367 mac_data
= er32(EXTCNF_CTRL
);
6368 mac_data
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
6369 ew32(EXTCNF_CTRL
, mac_data
);
6371 /* Disable disconnected cable conditioning for Power Gating */
6372 mac_data
= er32(DPGFR
);
6374 ew32(DPGFR
, mac_data
);
6376 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6377 mac_data
= er32(CTRL_EXT
);
6378 mac_data
|= E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
6379 ew32(CTRL_EXT
, mac_data
);
6382 /* Enable the Dynamic Power Gating in the MAC */
6383 mac_data
= er32(FEXTNVM7
);
6384 mac_data
|= BIT(22);
6385 ew32(FEXTNVM7
, mac_data
);
6387 /* Don't wake from dynamic Power Gating with clock request */
6388 mac_data
= er32(FEXTNVM12
);
6389 mac_data
|= BIT(12);
6390 ew32(FEXTNVM12
, mac_data
);
6392 /* Ungate PGCB clock */
6393 mac_data
= er32(FEXTNVM9
);
6394 mac_data
&= ~BIT(28);
6395 ew32(FEXTNVM9
, mac_data
);
6397 /* Enable K1 off to enable mPHY Power Gating */
6398 mac_data
= er32(FEXTNVM6
);
6399 mac_data
|= BIT(31);
6400 ew32(FEXTNVM6
, mac_data
);
6402 /* Enable mPHY power gating for any link and speed */
6403 mac_data
= er32(FEXTNVM8
);
6405 ew32(FEXTNVM8
, mac_data
);
6407 /* No MAC DPG gating SLP_S0 in modern standby
6408 * Switch the logic of the lanphypc to use PMC counter
6410 mac_data
= er32(FEXTNVM5
);
6412 ew32(FEXTNVM5
, mac_data
);
6414 /* Disable the time synchronization clock */
6415 mac_data
= er32(FEXTNVM7
);
6416 mac_data
|= BIT(31);
6417 mac_data
&= ~BIT(0);
6418 ew32(FEXTNVM7
, mac_data
);
6420 /* Dynamic Power Gating Enable */
6421 mac_data
= er32(CTRL_EXT
);
6423 ew32(CTRL_EXT
, mac_data
);
6425 /* Check MAC Tx/Rx packet buffer pointers.
6426 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6427 * pending traffic indication that would prevent power gating.
6429 mac_data
= er32(TDFH
);
6432 mac_data
= er32(TDFT
);
6435 mac_data
= er32(TDFHS
);
6438 mac_data
= er32(TDFTS
);
6441 mac_data
= er32(TDFPC
);
6444 mac_data
= er32(RDFH
);
6447 mac_data
= er32(RDFT
);
6450 mac_data
= er32(RDFHS
);
6453 mac_data
= er32(RDFTS
);
6456 mac_data
= er32(RDFPC
);
6461 static void e1000e_s0ix_exit_flow(struct e1000_adapter
*adapter
)
6463 struct e1000_hw
*hw
= &adapter
->hw
;
6464 bool firmware_bug
= false;
6469 if (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
&&
6470 hw
->mac
.type
>= e1000_pch_adp
) {
6471 /* Keep the GPT clock enabled for CSME */
6472 mac_data
= er32(FEXTNVM
);
6474 ew32(FEXTNVM
, mac_data
);
6475 /* Request ME unconfigure the device from S0ix */
6476 mac_data
= er32(H2ME
);
6477 mac_data
&= ~E1000_H2ME_START_DPG
;
6478 mac_data
|= E1000_H2ME_EXIT_DPG
;
6479 trace_e1000e_trace_mac_register(mac_data
);
6480 ew32(H2ME
, mac_data
);
6482 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6483 * If this takes more than 1 second, show a warning indicating a
6486 while (!(er32(EXFWSM
) & E1000_EXFWSM_DPG_EXIT_DONE
)) {
6487 if (i
> 100 && !firmware_bug
)
6488 firmware_bug
= true;
6491 e_dbg("Timeout (firmware bug): %d msec\n",
6496 usleep_range(10000, 11000);
6499 e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6502 e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i
* 10);
6504 /* Request driver unconfigure the device from S0ix */
6506 /* Cancel disable disconnected cable conditioning
6509 mac_data
= er32(DPGFR
);
6510 mac_data
&= ~BIT(2);
6511 ew32(DPGFR
, mac_data
);
6513 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6514 mac_data
= er32(CTRL_EXT
);
6515 mac_data
&= 0xFFF7FFFF;
6516 ew32(CTRL_EXT
, mac_data
);
6518 /* Enable the periodic inband message,
6519 * Request PCIe clock in K1 page770_17[10:9] =01b
6521 e1e_rphy(hw
, HV_PM_CTRL
, &phy_data
);
6523 phy_data
|= HV_PM_CTRL_K1_CLK_REQ
;
6524 e1e_wphy(hw
, HV_PM_CTRL
, phy_data
);
6526 /* Return back configuration
6527 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6529 e1e_rphy(hw
, I217_CGFREG
, &phy_data
);
6531 e1e_wphy(hw
, I217_CGFREG
, phy_data
);
6533 /* Change the MAC/PHY interface to Kumeran
6534 * Unforce the SMBus in PHY page769_23[0] = 0
6535 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6537 e1e_rphy(hw
, CV_SMB_CTRL
, &phy_data
);
6538 phy_data
&= ~CV_SMB_CTRL_FORCE_SMBUS
;
6539 e1e_wphy(hw
, CV_SMB_CTRL
, phy_data
);
6540 mac_data
= er32(CTRL_EXT
);
6541 mac_data
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
6542 ew32(CTRL_EXT
, mac_data
);
6545 /* Disable Dynamic Power Gating */
6546 mac_data
= er32(CTRL_EXT
);
6547 mac_data
&= 0xFFFFFFF7;
6548 ew32(CTRL_EXT
, mac_data
);
6550 /* Enable the time synchronization clock */
6551 mac_data
= er32(FEXTNVM7
);
6552 mac_data
&= ~BIT(31);
6554 ew32(FEXTNVM7
, mac_data
);
6556 /* Disable the Dynamic Power Gating in the MAC */
6557 mac_data
= er32(FEXTNVM7
);
6558 mac_data
&= 0xFFBFFFFF;
6559 ew32(FEXTNVM7
, mac_data
);
6561 /* Disable mPHY power gating for any link and speed */
6562 mac_data
= er32(FEXTNVM8
);
6563 mac_data
&= ~BIT(9);
6564 ew32(FEXTNVM8
, mac_data
);
6566 /* Disable K1 off */
6567 mac_data
= er32(FEXTNVM6
);
6568 mac_data
&= ~BIT(31);
6569 ew32(FEXTNVM6
, mac_data
);
6571 /* Disable Ungate PGCB clock */
6572 mac_data
= er32(FEXTNVM9
);
6573 mac_data
|= BIT(28);
6574 ew32(FEXTNVM9
, mac_data
);
6576 /* Cancel not waking from dynamic
6577 * Power Gating with clock request
6579 mac_data
= er32(FEXTNVM12
);
6580 mac_data
&= ~BIT(12);
6581 ew32(FEXTNVM12
, mac_data
);
6583 /* Revert the lanphypc logic to use the internal Gbe counter
6584 * and not the PMC counter
6586 mac_data
= er32(FEXTNVM5
);
6587 mac_data
&= 0xFFFFFF7F;
6588 ew32(FEXTNVM5
, mac_data
);
6591 static int e1000e_pm_freeze(struct device
*dev
)
6593 struct net_device
*netdev
= dev_get_drvdata(dev
);
6594 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6599 present
= netif_device_present(netdev
);
6600 netif_device_detach(netdev
);
6602 if (present
&& netif_running(netdev
)) {
6603 int count
= E1000_CHECK_RESET_COUNT
;
6605 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6606 usleep_range(10000, 11000);
6608 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6610 /* Quiesce the device without resetting the hardware */
6611 e1000e_down(adapter
, false);
6612 e1000_free_irq(adapter
);
6616 e1000e_reset_interrupt_capability(adapter
);
6618 /* Allow time for pending master requests to run */
6619 e1000e_disable_pcie_master(&adapter
->hw
);
6624 static int __e1000_shutdown(struct pci_dev
*pdev
, bool runtime
)
6626 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6627 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6628 struct e1000_hw
*hw
= &adapter
->hw
;
6629 u32 ctrl
, ctrl_ext
, rctl
, status
, wufc
;
6632 /* Runtime suspend should only enable wakeup for link changes */
6634 wufc
= E1000_WUFC_LNKC
;
6635 else if (device_may_wakeup(&pdev
->dev
))
6636 wufc
= adapter
->wol
;
6640 status
= er32(STATUS
);
6641 if (status
& E1000_STATUS_LU
)
6642 wufc
&= ~E1000_WUFC_LNKC
;
6645 e1000_setup_rctl(adapter
);
6646 e1000e_set_rx_mode(netdev
);
6648 /* turn on all-multi mode if wake on multicast is enabled */
6649 if (wufc
& E1000_WUFC_MC
) {
6651 rctl
|= E1000_RCTL_MPE
;
6656 ctrl
|= E1000_CTRL_ADVD3WUC
;
6657 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
6658 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
6661 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
6662 adapter
->hw
.phy
.media_type
==
6663 e1000_media_type_internal_serdes
) {
6664 /* keep the laser running in D3 */
6665 ctrl_ext
= er32(CTRL_EXT
);
6666 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
6667 ew32(CTRL_EXT
, ctrl_ext
);
6671 e1000e_power_up_phy(adapter
);
6673 if (adapter
->flags
& FLAG_IS_ICH
)
6674 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
6676 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6677 /* enable wakeup by the PHY */
6678 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
6680 e_err("Failed to enable wakeup\n");
6681 goto skip_phy_configurations
;
6684 /* enable wakeup by the MAC */
6686 ew32(WUC
, E1000_WUC_PME_EN
);
6692 e1000_power_down_phy(adapter
);
6695 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
) {
6696 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
6697 } else if (hw
->mac
.type
>= e1000_pch_lpt
) {
6698 if (wufc
&& !(wufc
& (E1000_WUFC_EX
| E1000_WUFC_MC
| E1000_WUFC_BC
))) {
6699 /* ULP does not support wake from unicast, multicast
6702 retval
= e1000_enable_ulp_lpt_lp(hw
, !runtime
);
6704 e_err("Failed to enable ULP\n");
6705 goto skip_phy_configurations
;
6710 /* Ensure that the appropriate bits are set in LPI_CTRL
6713 if ((hw
->phy
.type
>= e1000_phy_i217
) &&
6714 adapter
->eee_advert
&& hw
->dev_spec
.ich8lan
.eee_lp_ability
) {
6717 retval
= hw
->phy
.ops
.acquire(hw
);
6719 retval
= e1e_rphy_locked(hw
, I82579_LPI_CTRL
,
6722 if (adapter
->eee_advert
&
6723 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6724 I82579_EEE_100_SUPPORTED
)
6725 lpi_ctrl
|= I82579_LPI_CTRL_100_ENABLE
;
6726 if (adapter
->eee_advert
&
6727 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6728 I82579_EEE_1000_SUPPORTED
)
6729 lpi_ctrl
|= I82579_LPI_CTRL_1000_ENABLE
;
6731 retval
= e1e_wphy_locked(hw
, I82579_LPI_CTRL
,
6735 hw
->phy
.ops
.release(hw
);
6738 skip_phy_configurations
:
6739 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6740 * would have already happened in close and is redundant.
6742 e1000e_release_hw_control(adapter
);
6744 pci_clear_master(pdev
);
6746 /* The pci-e switch on some quad port adapters will report a
6747 * correctable error when the MAC transitions from D0 to D3. To
6748 * prevent this we need to mask off the correctable errors on the
6749 * downstream port of the pci-e switch.
6751 * We don't have the associated upstream bridge while assigning
6752 * the PCI device into guest. For example, the KVM on power is
6755 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
6756 struct pci_dev
*us_dev
= pdev
->bus
->self
;
6762 pcie_capability_read_word(us_dev
, PCI_EXP_DEVCTL
, &devctl
);
6763 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
,
6764 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
6766 pci_save_state(pdev
);
6767 pci_prepare_to_sleep(pdev
);
6769 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
, devctl
);
6776 * __e1000e_disable_aspm - Disable ASPM states
6777 * @pdev: pointer to PCI device struct
6778 * @state: bit-mask of ASPM states to disable
6779 * @locked: indication if this context holds pci_bus_sem locked.
6781 * Some devices *must* have certain ASPM states disabled per hardware errata.
6783 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
, int locked
)
6785 struct pci_dev
*parent
= pdev
->bus
->self
;
6786 u16 aspm_dis_mask
= 0;
6787 u16 pdev_aspmc
, parent_aspmc
;
6790 case PCIE_LINK_STATE_L0S
:
6791 case PCIE_LINK_STATE_L0S
| PCIE_LINK_STATE_L1
:
6792 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L0S
;
6793 fallthrough
; /* can't have L1 without L0s */
6794 case PCIE_LINK_STATE_L1
:
6795 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L1
;
6801 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6802 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6805 pcie_capability_read_word(parent
, PCI_EXP_LNKCTL
,
6807 parent_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6810 /* Nothing to do if the ASPM states to be disabled already are */
6811 if (!(pdev_aspmc
& aspm_dis_mask
) &&
6812 (!parent
|| !(parent_aspmc
& aspm_dis_mask
)))
6815 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
6816 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L0S
) ?
6818 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L1
) ?
6821 #ifdef CONFIG_PCIEASPM
6823 pci_disable_link_state_locked(pdev
, state
);
6825 pci_disable_link_state(pdev
, state
);
6827 /* Double-check ASPM control. If not disabled by the above, the
6828 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6829 * not enabled); override by writing PCI config space directly.
6831 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6832 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6834 if (!(aspm_dis_mask
& pdev_aspmc
))
6838 /* Both device and parent should have the same ASPM setting.
6839 * Disable ASPM in downstream component first and then upstream.
6841 pcie_capability_clear_word(pdev
, PCI_EXP_LNKCTL
, aspm_dis_mask
);
6844 pcie_capability_clear_word(parent
, PCI_EXP_LNKCTL
,
6849 * e1000e_disable_aspm - Disable ASPM states.
6850 * @pdev: pointer to PCI device struct
6851 * @state: bit-mask of ASPM states to disable
6853 * This function acquires the pci_bus_sem!
6854 * Some devices *must* have certain ASPM states disabled per hardware errata.
6856 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6858 __e1000e_disable_aspm(pdev
, state
, 0);
6862 * e1000e_disable_aspm_locked - Disable ASPM states.
6863 * @pdev: pointer to PCI device struct
6864 * @state: bit-mask of ASPM states to disable
6866 * This function must be called with pci_bus_sem acquired!
6867 * Some devices *must* have certain ASPM states disabled per hardware errata.
6869 static void e1000e_disable_aspm_locked(struct pci_dev
*pdev
, u16 state
)
6871 __e1000e_disable_aspm(pdev
, state
, 1);
6874 static int e1000e_pm_thaw(struct device
*dev
)
6876 struct net_device
*netdev
= dev_get_drvdata(dev
);
6877 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6880 e1000e_set_interrupt_capability(adapter
);
6883 if (netif_running(netdev
)) {
6884 rc
= e1000_request_irq(adapter
);
6891 netif_device_attach(netdev
);
6898 static int __e1000_resume(struct pci_dev
*pdev
)
6900 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6901 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6902 struct e1000_hw
*hw
= &adapter
->hw
;
6903 u16 aspm_disable_flag
= 0;
6905 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6906 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6907 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6908 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6909 if (aspm_disable_flag
)
6910 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6912 pci_set_master(pdev
);
6914 if (hw
->mac
.type
>= e1000_pch2lan
)
6915 e1000_resume_workarounds_pchlan(&adapter
->hw
);
6917 e1000e_power_up_phy(adapter
);
6919 /* report the system wakeup cause from S3/S4 */
6920 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6923 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
6925 e_info("PHY Wakeup cause - %s\n",
6926 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
6927 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
6928 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
6929 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
6930 phy_data
& E1000_WUS_LNKC
?
6931 "Link Status Change" : "other");
6933 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
6935 u32 wus
= er32(WUS
);
6938 e_info("MAC Wakeup cause - %s\n",
6939 wus
& E1000_WUS_EX
? "Unicast Packet" :
6940 wus
& E1000_WUS_MC
? "Multicast Packet" :
6941 wus
& E1000_WUS_BC
? "Broadcast Packet" :
6942 wus
& E1000_WUS_MAG
? "Magic Packet" :
6943 wus
& E1000_WUS_LNKC
? "Link Status Change" :
6949 e1000e_reset(adapter
);
6951 e1000_init_manageability_pt(adapter
);
6953 /* If the controller has AMT, do not set DRV_LOAD until the interface
6954 * is up. For all other cases, let the f/w know that the h/w is now
6955 * under the control of the driver.
6957 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6958 e1000e_get_hw_control(adapter
);
6963 static int e1000e_pm_prepare(struct device
*dev
)
6965 return pm_runtime_suspended(dev
) &&
6966 pm_suspend_via_firmware();
6969 static int e1000e_pm_suspend(struct device
*dev
)
6971 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6972 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6973 struct pci_dev
*pdev
= to_pci_dev(dev
);
6976 e1000e_flush_lpic(pdev
);
6978 e1000e_pm_freeze(dev
);
6980 rc
= __e1000_shutdown(pdev
, false);
6982 /* Introduce S0ix implementation */
6983 if (adapter
->flags2
& FLAG2_ENABLE_S0IX_FLOWS
)
6984 e1000e_s0ix_entry_flow(adapter
);
6990 static int e1000e_pm_resume(struct device
*dev
)
6992 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6993 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6994 struct pci_dev
*pdev
= to_pci_dev(dev
);
6997 /* Introduce S0ix implementation */
6998 if (adapter
->flags2
& FLAG2_ENABLE_S0IX_FLOWS
)
6999 e1000e_s0ix_exit_flow(adapter
);
7001 rc
= __e1000_resume(pdev
);
7005 return e1000e_pm_thaw(dev
);
7008 static __maybe_unused
int e1000e_pm_runtime_idle(struct device
*dev
)
7010 struct net_device
*netdev
= dev_get_drvdata(dev
);
7011 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7014 eee_lp
= adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
;
7016 if (!e1000e_has_link(adapter
)) {
7017 adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
= eee_lp
;
7018 pm_schedule_suspend(dev
, 5 * MSEC_PER_SEC
);
7024 static int e1000e_pm_runtime_resume(struct device
*dev
)
7026 struct pci_dev
*pdev
= to_pci_dev(dev
);
7027 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7028 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7031 pdev
->pme_poll
= true;
7033 rc
= __e1000_resume(pdev
);
7037 if (netdev
->flags
& IFF_UP
)
7043 static int e1000e_pm_runtime_suspend(struct device
*dev
)
7045 struct pci_dev
*pdev
= to_pci_dev(dev
);
7046 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7047 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7049 if (netdev
->flags
& IFF_UP
) {
7050 int count
= E1000_CHECK_RESET_COUNT
;
7052 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
7053 usleep_range(10000, 11000);
7055 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
7057 /* Down the device without resetting the hardware */
7058 e1000e_down(adapter
, false);
7061 if (__e1000_shutdown(pdev
, true)) {
7062 e1000e_pm_runtime_resume(dev
);
7069 static void e1000_shutdown(struct pci_dev
*pdev
)
7071 e1000e_flush_lpic(pdev
);
7073 e1000e_pm_freeze(&pdev
->dev
);
7075 __e1000_shutdown(pdev
, false);
7078 #ifdef CONFIG_NET_POLL_CONTROLLER
7080 static irqreturn_t
e1000_intr_msix(int __always_unused irq
, void *data
)
7082 struct net_device
*netdev
= data
;
7083 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7085 if (adapter
->msix_entries
) {
7086 int vector
, msix_irq
;
7089 msix_irq
= adapter
->msix_entries
[vector
].vector
;
7090 if (disable_hardirq(msix_irq
))
7091 e1000_intr_msix_rx(msix_irq
, netdev
);
7092 enable_irq(msix_irq
);
7095 msix_irq
= adapter
->msix_entries
[vector
].vector
;
7096 if (disable_hardirq(msix_irq
))
7097 e1000_intr_msix_tx(msix_irq
, netdev
);
7098 enable_irq(msix_irq
);
7101 msix_irq
= adapter
->msix_entries
[vector
].vector
;
7102 if (disable_hardirq(msix_irq
))
7103 e1000_msix_other(msix_irq
, netdev
);
7104 enable_irq(msix_irq
);
7112 * @netdev: network interface device structure
7114 * Polling 'interrupt' - used by things like netconsole to send skbs
7115 * without having to re-enable interrupts. It's not called while
7116 * the interrupt routine is executing.
7118 static void e1000_netpoll(struct net_device
*netdev
)
7120 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7122 switch (adapter
->int_mode
) {
7123 case E1000E_INT_MODE_MSIX
:
7124 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
7126 case E1000E_INT_MODE_MSI
:
7127 if (disable_hardirq(adapter
->pdev
->irq
))
7128 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
7129 enable_irq(adapter
->pdev
->irq
);
7131 default: /* E1000E_INT_MODE_LEGACY */
7132 if (disable_hardirq(adapter
->pdev
->irq
))
7133 e1000_intr(adapter
->pdev
->irq
, netdev
);
7134 enable_irq(adapter
->pdev
->irq
);
7141 * e1000_io_error_detected - called when PCI error is detected
7142 * @pdev: Pointer to PCI device
7143 * @state: The current pci connection state
7145 * This function is called after a PCI bus error affecting
7146 * this device has been detected.
7148 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
7149 pci_channel_state_t state
)
7151 e1000e_pm_freeze(&pdev
->dev
);
7153 if (state
== pci_channel_io_perm_failure
)
7154 return PCI_ERS_RESULT_DISCONNECT
;
7156 pci_disable_device(pdev
);
7158 /* Request a slot reset. */
7159 return PCI_ERS_RESULT_NEED_RESET
;
7163 * e1000_io_slot_reset - called after the pci bus has been reset.
7164 * @pdev: Pointer to PCI device
7166 * Restart the card from scratch, as if from a cold-boot. Implementation
7167 * resembles the first-half of the e1000e_pm_resume routine.
7169 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
7171 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7172 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7173 struct e1000_hw
*hw
= &adapter
->hw
;
7174 u16 aspm_disable_flag
= 0;
7176 pci_ers_result_t result
;
7178 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
7179 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
7180 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
7181 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
7182 if (aspm_disable_flag
)
7183 e1000e_disable_aspm_locked(pdev
, aspm_disable_flag
);
7185 err
= pci_enable_device_mem(pdev
);
7188 "Cannot re-enable PCI device after reset.\n");
7189 result
= PCI_ERS_RESULT_DISCONNECT
;
7191 pdev
->state_saved
= true;
7192 pci_restore_state(pdev
);
7193 pci_set_master(pdev
);
7195 pci_enable_wake(pdev
, PCI_D3hot
, 0);
7196 pci_enable_wake(pdev
, PCI_D3cold
, 0);
7198 e1000e_reset(adapter
);
7200 result
= PCI_ERS_RESULT_RECOVERED
;
7207 * e1000_io_resume - called when traffic can start flowing again.
7208 * @pdev: Pointer to PCI device
7210 * This callback is called when the error recovery driver tells us that
7211 * its OK to resume normal operation. Implementation resembles the
7212 * second-half of the e1000e_pm_resume routine.
7214 static void e1000_io_resume(struct pci_dev
*pdev
)
7216 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7217 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7219 e1000_init_manageability_pt(adapter
);
7221 e1000e_pm_thaw(&pdev
->dev
);
7223 /* If the controller has AMT, do not set DRV_LOAD until the interface
7224 * is up. For all other cases, let the f/w know that the h/w is now
7225 * under the control of the driver.
7227 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7228 e1000e_get_hw_control(adapter
);
7231 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
7233 struct e1000_hw
*hw
= &adapter
->hw
;
7234 struct net_device
*netdev
= adapter
->netdev
;
7236 u8 pba_str
[E1000_PBANUM_LENGTH
];
7238 /* print bus type/speed/width info */
7239 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7241 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
7245 e_info("Intel(R) PRO/%s Network Connection\n",
7246 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
7247 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
7248 E1000_PBANUM_LENGTH
);
7250 strscpy((char *)pba_str
, "Unknown", sizeof(pba_str
));
7251 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7252 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
7255 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
7257 struct e1000_hw
*hw
= &adapter
->hw
;
7261 if (hw
->mac
.type
!= e1000_82573
)
7264 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
7266 if (!ret_val
&& (!(buf
& BIT(0)))) {
7267 /* Deep Smart Power Down (DSPD) */
7268 dev_warn(&adapter
->pdev
->dev
,
7269 "Warning: detected DSPD enabled in EEPROM\n");
7273 static netdev_features_t
e1000_fix_features(struct net_device
*netdev
,
7274 netdev_features_t features
)
7276 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7277 struct e1000_hw
*hw
= &adapter
->hw
;
7279 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7280 if ((hw
->mac
.type
>= e1000_pch2lan
) && (netdev
->mtu
> ETH_DATA_LEN
))
7281 features
&= ~NETIF_F_RXFCS
;
7283 /* Since there is no support for separate Rx/Tx vlan accel
7284 * enable/disable make sure Tx flag is always in same state as Rx.
7286 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
7287 features
|= NETIF_F_HW_VLAN_CTAG_TX
;
7289 features
&= ~NETIF_F_HW_VLAN_CTAG_TX
;
7294 static int e1000_set_features(struct net_device
*netdev
,
7295 netdev_features_t features
)
7297 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7298 netdev_features_t changed
= features
^ netdev
->features
;
7300 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
7301 adapter
->flags
|= FLAG_TSO_FORCE
;
7303 if (!(changed
& (NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_TX
|
7304 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_RXFCS
|
7308 if (changed
& NETIF_F_RXFCS
) {
7309 if (features
& NETIF_F_RXFCS
) {
7310 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
7312 /* We need to take it back to defaults, which might mean
7313 * stripping is still disabled at the adapter level.
7315 if (adapter
->flags2
& FLAG2_DFLT_CRC_STRIPPING
)
7316 adapter
->flags2
|= FLAG2_CRC_STRIPPING
;
7318 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
7322 netdev
->features
= features
;
7324 if (netif_running(netdev
))
7325 e1000e_reinit_locked(adapter
);
7327 e1000e_reset(adapter
);
7332 static const struct net_device_ops e1000e_netdev_ops
= {
7333 .ndo_open
= e1000e_open
,
7334 .ndo_stop
= e1000e_close
,
7335 .ndo_start_xmit
= e1000_xmit_frame
,
7336 .ndo_get_stats64
= e1000e_get_stats64
,
7337 .ndo_set_rx_mode
= e1000e_set_rx_mode
,
7338 .ndo_set_mac_address
= e1000_set_mac
,
7339 .ndo_change_mtu
= e1000_change_mtu
,
7340 .ndo_eth_ioctl
= e1000_ioctl
,
7341 .ndo_tx_timeout
= e1000_tx_timeout
,
7342 .ndo_validate_addr
= eth_validate_addr
,
7344 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
7345 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
7346 #ifdef CONFIG_NET_POLL_CONTROLLER
7347 .ndo_poll_controller
= e1000_netpoll
,
7349 .ndo_set_features
= e1000_set_features
,
7350 .ndo_fix_features
= e1000_fix_features
,
7351 .ndo_features_check
= passthru_features_check
,
7355 * e1000_probe - Device Initialization Routine
7356 * @pdev: PCI device information struct
7357 * @ent: entry in e1000_pci_tbl
7359 * Returns 0 on success, negative on failure
7361 * e1000_probe initializes an adapter identified by a pci_dev structure.
7362 * The OS initialization, configuring of the adapter private structure,
7363 * and a hardware reset occur.
7365 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7367 struct net_device
*netdev
;
7368 struct e1000_adapter
*adapter
;
7369 struct e1000_hw
*hw
;
7370 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
7371 resource_size_t mmio_start
, mmio_len
;
7372 resource_size_t flash_start
, flash_len
;
7373 static int cards_found
;
7374 u16 aspm_disable_flag
= 0;
7375 u16 eeprom_data
= 0;
7376 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
7380 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
7381 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
7382 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
7383 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
7384 if (aspm_disable_flag
)
7385 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
7387 err
= pci_enable_device_mem(pdev
);
7391 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
7394 "No usable DMA configuration, aborting\n");
7398 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
7399 err
= pci_request_selected_regions_exclusive(pdev
, bars
,
7400 e1000e_driver_name
);
7404 pci_set_master(pdev
);
7405 /* PCI config space info */
7406 err
= pci_save_state(pdev
);
7408 goto err_alloc_etherdev
;
7411 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
7413 goto err_alloc_etherdev
;
7415 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
7417 netdev
->irq
= pdev
->irq
;
7419 pci_set_drvdata(pdev
, netdev
);
7420 adapter
= netdev_priv(netdev
);
7422 adapter
->netdev
= netdev
;
7423 adapter
->pdev
= pdev
;
7425 adapter
->pba
= ei
->pba
;
7426 adapter
->flags
= ei
->flags
;
7427 adapter
->flags2
= ei
->flags2
;
7428 adapter
->hw
.adapter
= adapter
;
7429 adapter
->hw
.mac
.type
= ei
->mac
;
7430 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
7431 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
7433 mmio_start
= pci_resource_start(pdev
, 0);
7434 mmio_len
= pci_resource_len(pdev
, 0);
7437 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
7438 if (!adapter
->hw
.hw_addr
)
7441 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
7442 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
) &&
7443 (hw
->mac
.type
< e1000_pch_spt
)) {
7444 flash_start
= pci_resource_start(pdev
, 1);
7445 flash_len
= pci_resource_len(pdev
, 1);
7446 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
7447 if (!adapter
->hw
.flash_address
)
7451 /* Set default EEE advertisement */
7452 if (adapter
->flags2
& FLAG2_HAS_EEE
)
7453 adapter
->eee_advert
= MDIO_EEE_100TX
| MDIO_EEE_1000T
;
7455 /* construct the net_device struct */
7456 netdev
->netdev_ops
= &e1000e_netdev_ops
;
7457 e1000e_set_ethtool_ops(netdev
);
7458 netdev
->watchdog_timeo
= 5 * HZ
;
7459 netif_napi_add(netdev
, &adapter
->napi
, e1000e_poll
);
7460 strscpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
7462 netdev
->mem_start
= mmio_start
;
7463 netdev
->mem_end
= mmio_start
+ mmio_len
;
7465 adapter
->bd_number
= cards_found
++;
7467 e1000e_check_options(adapter
);
7469 /* setup adapter struct */
7470 err
= e1000_sw_init(adapter
);
7474 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
7475 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
7476 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
7478 err
= ei
->get_variants(adapter
);
7482 if ((adapter
->flags
& FLAG_IS_ICH
) &&
7483 (adapter
->flags
& FLAG_READ_ONLY_NVM
) &&
7484 (hw
->mac
.type
< e1000_pch_spt
))
7485 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
7487 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
7489 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
7491 /* Copper options */
7492 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
7493 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
7494 adapter
->hw
.phy
.disable_polarity_correction
= 0;
7495 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
7498 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
7499 dev_info(&pdev
->dev
,
7500 "PHY reset is blocked due to SOL/IDER session.\n");
7502 /* Set initial default active device features */
7503 netdev
->features
= (NETIF_F_SG
|
7504 NETIF_F_HW_VLAN_CTAG_RX
|
7505 NETIF_F_HW_VLAN_CTAG_TX
|
7512 /* disable TSO for pcie and 10/100 speeds to avoid
7513 * some hardware issues and for i219 to fix transfer
7514 * speed being capped at 60%
7516 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
7517 switch (adapter
->link_speed
) {
7520 e_info("10/100 speed: disabling TSO\n");
7521 netdev
->features
&= ~NETIF_F_TSO
;
7522 netdev
->features
&= ~NETIF_F_TSO6
;
7525 netdev
->features
|= NETIF_F_TSO
;
7526 netdev
->features
|= NETIF_F_TSO6
;
7532 if (hw
->mac
.type
== e1000_pch_spt
) {
7533 netdev
->features
&= ~NETIF_F_TSO
;
7534 netdev
->features
&= ~NETIF_F_TSO6
;
7538 /* Set user-changeable features (subset of all device features) */
7539 netdev
->hw_features
= netdev
->features
;
7540 netdev
->hw_features
|= NETIF_F_RXFCS
;
7541 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
7542 netdev
->hw_features
|= NETIF_F_RXALL
;
7544 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
7545 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
7547 netdev
->vlan_features
|= (NETIF_F_SG
|
7552 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
7554 netdev
->features
|= NETIF_F_HIGHDMA
;
7555 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
7557 /* MTU range: 68 - max_hw_frame_size */
7558 netdev
->min_mtu
= ETH_MIN_MTU
;
7559 netdev
->max_mtu
= adapter
->max_hw_frame_size
-
7560 (VLAN_ETH_HLEN
+ ETH_FCS_LEN
);
7562 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
7563 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
7565 /* before reading the NVM, reset the controller to
7566 * put the device in a known good starting state
7568 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
7570 /* systems with ASPM and others may see the checksum fail on the first
7571 * attempt. Let's give it a few tries
7574 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
7577 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
7583 e1000_eeprom_checks(adapter
);
7585 /* copy the MAC address */
7586 if (e1000e_read_mac_addr(&adapter
->hw
))
7588 "NVM Read Error while reading MAC address\n");
7590 eth_hw_addr_set(netdev
, adapter
->hw
.mac
.addr
);
7592 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
7593 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
7599 timer_setup(&adapter
->watchdog_timer
, e1000_watchdog
, 0);
7600 timer_setup(&adapter
->phy_info_timer
, e1000_update_phy_info
, 0);
7602 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
7603 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
7604 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
7605 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
7606 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
7608 /* Initialize link parameters. User can change them with ethtool */
7609 adapter
->hw
.mac
.autoneg
= 1;
7610 adapter
->fc_autoneg
= true;
7611 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
7612 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
7613 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
7615 /* Initial Wake on LAN setting - If APM wake is enabled in
7616 * the EEPROM, enable the ACPI Magic Packet filter
7618 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
7619 /* APME bit in EEPROM is mapped to WUC.APME */
7620 eeprom_data
= er32(WUC
);
7621 eeprom_apme_mask
= E1000_WUC_APME
;
7622 if ((hw
->mac
.type
> e1000_ich10lan
) &&
7623 (eeprom_data
& E1000_WUC_PHY_WAKE
))
7624 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
7625 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
7626 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
7627 (adapter
->hw
.bus
.func
== 1))
7628 ret_val
= e1000_read_nvm(&adapter
->hw
,
7629 NVM_INIT_CONTROL3_PORT_B
,
7632 ret_val
= e1000_read_nvm(&adapter
->hw
,
7633 NVM_INIT_CONTROL3_PORT_A
,
7637 /* fetch WoL from EEPROM */
7639 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val
);
7640 else if (eeprom_data
& eeprom_apme_mask
)
7641 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
7643 /* now that we have the eeprom settings, apply the special cases
7644 * where the eeprom may be wrong or the board simply won't support
7645 * wake on lan on a particular port
7647 if (!(adapter
->flags
& FLAG_HAS_WOL
))
7648 adapter
->eeprom_wol
= 0;
7650 /* initialize the wol settings based on the eeprom settings */
7651 adapter
->wol
= adapter
->eeprom_wol
;
7653 /* make sure adapter isn't asleep if manageability is enabled */
7654 if (adapter
->wol
|| (adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
7655 (hw
->mac
.ops
.check_mng_mode(hw
)))
7656 device_wakeup_enable(&pdev
->dev
);
7658 /* save off EEPROM version number */
7659 ret_val
= e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
7662 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val
);
7663 adapter
->eeprom_vers
= 0;
7666 /* init PTP hardware clock */
7667 e1000e_ptp_init(adapter
);
7669 /* reset the hardware with the new settings */
7670 e1000e_reset(adapter
);
7672 /* If the controller has AMT, do not set DRV_LOAD until the interface
7673 * is up. For all other cases, let the f/w know that the h/w is now
7674 * under the control of the driver.
7676 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7677 e1000e_get_hw_control(adapter
);
7679 if (hw
->mac
.type
>= e1000_pch_cnp
)
7680 adapter
->flags2
|= FLAG2_ENABLE_S0IX_FLOWS
;
7682 strscpy(netdev
->name
, "eth%d", sizeof(netdev
->name
));
7683 err
= register_netdev(netdev
);
7687 /* carrier off reporting is important to ethtool even BEFORE open */
7688 netif_carrier_off(netdev
);
7690 e1000_print_device_info(adapter
);
7692 dev_pm_set_driver_flags(&pdev
->dev
, DPM_FLAG_SMART_PREPARE
);
7694 if (pci_dev_run_wake(pdev
))
7695 pm_runtime_put_noidle(&pdev
->dev
);
7700 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7701 e1000e_release_hw_control(adapter
);
7703 if (hw
->phy
.ops
.check_reset_block
&& !hw
->phy
.ops
.check_reset_block(hw
))
7704 e1000_phy_hw_reset(&adapter
->hw
);
7706 kfree(adapter
->tx_ring
);
7707 kfree(adapter
->rx_ring
);
7709 if ((adapter
->hw
.flash_address
) && (hw
->mac
.type
< e1000_pch_spt
))
7710 iounmap(adapter
->hw
.flash_address
);
7711 e1000e_reset_interrupt_capability(adapter
);
7713 iounmap(adapter
->hw
.hw_addr
);
7715 free_netdev(netdev
);
7717 pci_release_mem_regions(pdev
);
7720 pci_disable_device(pdev
);
7725 * e1000_remove - Device Removal Routine
7726 * @pdev: PCI device information struct
7728 * e1000_remove is called by the PCI subsystem to alert the driver
7729 * that it should release a PCI device. This could be caused by a
7730 * Hot-Plug event, or because the driver is going to be removed from
7733 static void e1000_remove(struct pci_dev
*pdev
)
7735 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7736 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7738 e1000e_ptp_remove(adapter
);
7740 /* The timers may be rescheduled, so explicitly disable them
7741 * from being rescheduled.
7743 set_bit(__E1000_DOWN
, &adapter
->state
);
7744 del_timer_sync(&adapter
->watchdog_timer
);
7745 del_timer_sync(&adapter
->phy_info_timer
);
7747 cancel_work_sync(&adapter
->reset_task
);
7748 cancel_work_sync(&adapter
->watchdog_task
);
7749 cancel_work_sync(&adapter
->downshift_task
);
7750 cancel_work_sync(&adapter
->update_phy_task
);
7751 cancel_work_sync(&adapter
->print_hang_task
);
7753 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
7754 cancel_work_sync(&adapter
->tx_hwtstamp_work
);
7755 if (adapter
->tx_hwtstamp_skb
) {
7756 dev_consume_skb_any(adapter
->tx_hwtstamp_skb
);
7757 adapter
->tx_hwtstamp_skb
= NULL
;
7761 unregister_netdev(netdev
);
7763 if (pci_dev_run_wake(pdev
))
7764 pm_runtime_get_noresume(&pdev
->dev
);
7766 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7767 * would have already happened in close and is redundant.
7769 e1000e_release_hw_control(adapter
);
7771 e1000e_reset_interrupt_capability(adapter
);
7772 kfree(adapter
->tx_ring
);
7773 kfree(adapter
->rx_ring
);
7775 iounmap(adapter
->hw
.hw_addr
);
7776 if ((adapter
->hw
.flash_address
) &&
7777 (adapter
->hw
.mac
.type
< e1000_pch_spt
))
7778 iounmap(adapter
->hw
.flash_address
);
7779 pci_release_mem_regions(pdev
);
7781 free_netdev(netdev
);
7783 pci_disable_device(pdev
);
7786 /* PCI Error Recovery (ERS) */
7787 static const struct pci_error_handlers e1000_err_handler
= {
7788 .error_detected
= e1000_io_error_detected
,
7789 .slot_reset
= e1000_io_slot_reset
,
7790 .resume
= e1000_io_resume
,
7793 static const struct pci_device_id e1000_pci_tbl
[] = {
7794 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
7795 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
7796 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
7797 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
),
7799 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
7800 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
7801 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
7802 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
7803 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
7805 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
7806 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
7807 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
7808 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
7810 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
7811 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
7812 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
7814 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
7815 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
7816 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
7818 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
7819 board_80003es2lan
},
7820 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
7821 board_80003es2lan
},
7822 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
7823 board_80003es2lan
},
7824 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
7825 board_80003es2lan
},
7827 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
7828 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
7829 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
7830 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
7831 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
7832 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
7833 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
7834 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
7836 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
7837 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
7838 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
7839 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
7840 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
7841 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
7842 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
7843 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
7844 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
7846 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
7847 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
7848 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
7850 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
7851 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
7852 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
7854 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
7855 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
7856 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
7857 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
7859 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
7860 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
7862 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_LM
), board_pch_lpt
},
7863 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_V
), board_pch_lpt
},
7864 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_LM
), board_pch_lpt
},
7865 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_V
), board_pch_lpt
},
7866 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM2
), board_pch_lpt
},
7867 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V2
), board_pch_lpt
},
7868 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM3
), board_pch_lpt
},
7869 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V3
), board_pch_lpt
},
7870 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM
), board_pch_spt
},
7871 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V
), board_pch_spt
},
7872 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM2
), board_pch_spt
},
7873 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V2
), board_pch_spt
},
7874 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LBG_I219_LM3
), board_pch_spt
},
7875 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM4
), board_pch_spt
},
7876 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V4
), board_pch_spt
},
7877 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM5
), board_pch_spt
},
7878 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V5
), board_pch_spt
},
7879 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_LM6
), board_pch_cnp
},
7880 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_V6
), board_pch_cnp
},
7881 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_LM7
), board_pch_cnp
},
7882 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_V7
), board_pch_cnp
},
7883 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_LM8
), board_pch_cnp
},
7884 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_V8
), board_pch_cnp
},
7885 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_LM9
), board_pch_cnp
},
7886 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_V9
), board_pch_cnp
},
7887 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_LM10
), board_pch_cnp
},
7888 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_V10
), board_pch_cnp
},
7889 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_LM11
), board_pch_cnp
},
7890 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_V11
), board_pch_cnp
},
7891 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_LM12
), board_pch_spt
},
7892 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_V12
), board_pch_spt
},
7893 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_LM13
), board_pch_tgp
},
7894 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_V13
), board_pch_tgp
},
7895 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_LM14
), board_pch_tgp
},
7896 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_V14
), board_pch_tgp
},
7897 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_LM15
), board_pch_tgp
},
7898 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_V15
), board_pch_tgp
},
7899 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_RPL_I219_LM23
), board_pch_adp
},
7900 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_RPL_I219_V23
), board_pch_adp
},
7901 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_LM16
), board_pch_adp
},
7902 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_V16
), board_pch_adp
},
7903 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_LM17
), board_pch_adp
},
7904 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_V17
), board_pch_adp
},
7905 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_RPL_I219_LM22
), board_pch_adp
},
7906 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_RPL_I219_V22
), board_pch_adp
},
7907 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_LM19
), board_pch_adp
},
7908 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_V19
), board_pch_adp
},
7909 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_MTP_I219_LM18
), board_pch_mtp
},
7910 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_MTP_I219_V18
), board_pch_mtp
},
7911 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LNP_I219_LM20
), board_pch_mtp
},
7912 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LNP_I219_V20
), board_pch_mtp
},
7913 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LNP_I219_LM21
), board_pch_mtp
},
7914 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LNP_I219_V21
), board_pch_mtp
},
7915 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ARL_I219_LM24
), board_pch_mtp
},
7916 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ARL_I219_V24
), board_pch_mtp
},
7917 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_PTP_I219_LM25
), board_pch_mtp
},
7918 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_PTP_I219_V25
), board_pch_mtp
},
7919 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_PTP_I219_LM26
), board_pch_mtp
},
7920 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_PTP_I219_V26
), board_pch_mtp
},
7921 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_PTP_I219_LM27
), board_pch_mtp
},
7922 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_PTP_I219_V27
), board_pch_mtp
},
7923 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_NVL_I219_LM29
), board_pch_mtp
},
7924 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_NVL_I219_V29
), board_pch_mtp
},
7926 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7928 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
7930 static const struct dev_pm_ops e1000e_pm_ops
= {
7931 .prepare
= e1000e_pm_prepare
,
7932 .suspend
= e1000e_pm_suspend
,
7933 .resume
= e1000e_pm_resume
,
7934 .freeze
= e1000e_pm_freeze
,
7935 .thaw
= e1000e_pm_thaw
,
7936 .poweroff
= e1000e_pm_suspend
,
7937 .restore
= e1000e_pm_resume
,
7938 RUNTIME_PM_OPS(e1000e_pm_runtime_suspend
, e1000e_pm_runtime_resume
,
7939 e1000e_pm_runtime_idle
)
7942 /* PCI Device API Driver */
7943 static struct pci_driver e1000_driver
= {
7944 .name
= e1000e_driver_name
,
7945 .id_table
= e1000_pci_tbl
,
7946 .probe
= e1000_probe
,
7947 .remove
= e1000_remove
,
7948 .driver
.pm
= pm_ptr(&e1000e_pm_ops
),
7949 .shutdown
= e1000_shutdown
,
7950 .err_handler
= &e1000_err_handler
7954 * e1000_init_module - Driver Registration Routine
7956 * e1000_init_module is the first routine called when the driver is
7957 * loaded. All it does is register with the PCI subsystem.
7959 static int __init
e1000_init_module(void)
7961 pr_info("Intel(R) PRO/1000 Network Driver\n");
7962 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7964 return pci_register_driver(&e1000_driver
);
7966 module_init(e1000_init_module
);
7969 * e1000_exit_module - Driver Exit Cleanup Routine
7971 * e1000_exit_module is called just before the driver is removed
7974 static void __exit
e1000_exit_module(void)
7976 pci_unregister_driver(&e1000_driver
);
7978 module_exit(e1000_exit_module
);
7980 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7981 MODULE_LICENSE("GPL v2");