1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
5 #include <linux/ethtool.h>
7 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
8 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
9 u16
*data
, bool read
, bool page_set
);
10 static u32
e1000_get_phy_addr_for_hv_page(u32 page
);
11 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
12 u16
*data
, bool read
);
14 /* Cable length tables */
15 static const u16 e1000_m88_cable_length_table
[] = {
16 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
19 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
20 ARRAY_SIZE(e1000_m88_cable_length_table)
22 static const u16 e1000_igp_2_cable_length_table
[] = {
23 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
24 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
25 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
26 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
27 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
28 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
29 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
33 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
34 ARRAY_SIZE(e1000_igp_2_cable_length_table)
37 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
38 * @hw: pointer to the HW structure
40 * Read the PHY management control register and check whether a PHY reset
41 * is blocked. If a reset is not blocked return 0, otherwise
42 * return E1000_BLK_PHY_RESET (12).
44 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
50 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ? E1000_BLK_PHY_RESET
: 0;
54 * e1000e_get_phy_id - Retrieve the PHY ID and revision
55 * @hw: pointer to the HW structure
57 * Reads the PHY registers and stores the PHY ID and possibly the PHY
58 * revision in the hardware structure.
60 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
62 struct e1000_phy_info
*phy
= &hw
->phy
;
67 if (!phy
->ops
.read_reg
)
70 while (retry_count
< 2) {
71 ret_val
= e1e_rphy(hw
, MII_PHYSID1
, &phy_id
);
75 phy
->id
= (u32
)(phy_id
<< 16);
77 ret_val
= e1e_rphy(hw
, MII_PHYSID2
, &phy_id
);
81 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
82 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
84 if (phy
->id
!= 0 && phy
->id
!= PHY_REVISION_MASK
)
94 * e1000e_phy_reset_dsp - Reset PHY DSP
95 * @hw: pointer to the HW structure
97 * Reset the digital signal processor.
99 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
103 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
107 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
110 void e1000e_disable_phy_retry(struct e1000_hw
*hw
)
112 hw
->phy
.retry_enabled
= false;
115 void e1000e_enable_phy_retry(struct e1000_hw
*hw
)
117 hw
->phy
.retry_enabled
= true;
121 * e1000e_read_phy_reg_mdic - Read MDI control register
122 * @hw: pointer to the HW structure
123 * @offset: register offset to be read
124 * @data: pointer to the read data
126 * Reads the MDI control register in the PHY at offset and stores the
127 * information read to data.
129 s32
e1000e_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
131 u32 i
, mdic
= 0, retry_counter
, retry_max
;
132 struct e1000_phy_info
*phy
= &hw
->phy
;
135 if (offset
> MAX_PHY_REG_ADDRESS
) {
136 e_dbg("PHY Address %d is out of range\n", offset
);
137 return -E1000_ERR_PARAM
;
140 retry_max
= phy
->retry_enabled
? phy
->retry_count
: 0;
142 /* Set up Op-code, Phy Address, and register offset in the MDI
143 * Control register. The MAC will take care of interfacing with the
144 * PHY to retrieve the desired data.
146 for (retry_counter
= 0; retry_counter
<= retry_max
; retry_counter
++) {
149 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
150 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
151 (E1000_MDIC_OP_READ
));
155 /* Poll the ready bit to see if the MDI read completed
156 * Increasing the time out as testing showed failures with
159 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
162 if (mdic
& E1000_MDIC_READY
)
165 if (!(mdic
& E1000_MDIC_READY
)) {
166 e_dbg("MDI Read PHY Reg Address %d did not complete\n",
170 if (mdic
& E1000_MDIC_ERROR
) {
171 e_dbg("MDI Read PHY Reg Address %d Error\n", offset
);
174 if (FIELD_GET(E1000_MDIC_REG_MASK
, mdic
) != offset
) {
175 e_dbg("MDI Read offset error - requested %d, returned %d\n",
176 offset
, FIELD_GET(E1000_MDIC_REG_MASK
, mdic
));
180 /* Allow some time after each MDIC transaction to avoid
181 * reading duplicate data in the next MDIC transaction.
183 if (hw
->mac
.type
== e1000_pch2lan
)
191 if (retry_counter
!= retry_max
) {
192 e_dbg("Perform retry on PHY transaction...\n");
197 return -E1000_ERR_PHY
;
201 * e1000e_write_phy_reg_mdic - Write MDI control register
202 * @hw: pointer to the HW structure
203 * @offset: register offset to write to
204 * @data: data to write to register at offset
206 * Writes data to MDI control register in the PHY at offset.
208 s32
e1000e_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
210 u32 i
, mdic
= 0, retry_counter
, retry_max
;
211 struct e1000_phy_info
*phy
= &hw
->phy
;
214 if (offset
> MAX_PHY_REG_ADDRESS
) {
215 e_dbg("PHY Address %d is out of range\n", offset
);
216 return -E1000_ERR_PARAM
;
219 retry_max
= phy
->retry_enabled
? phy
->retry_count
: 0;
221 /* Set up Op-code, Phy Address, and register offset in the MDI
222 * Control register. The MAC will take care of interfacing with the
223 * PHY to retrieve the desired data.
225 for (retry_counter
= 0; retry_counter
<= retry_max
; retry_counter
++) {
228 mdic
= (((u32
)data
) |
229 (offset
<< E1000_MDIC_REG_SHIFT
) |
230 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
231 (E1000_MDIC_OP_WRITE
));
235 /* Poll the ready bit to see if the MDI read completed
236 * Increasing the time out as testing showed failures with
239 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
242 if (mdic
& E1000_MDIC_READY
)
245 if (!(mdic
& E1000_MDIC_READY
)) {
246 e_dbg("MDI Write PHY Reg Address %d did not complete\n",
250 if (mdic
& E1000_MDIC_ERROR
) {
251 e_dbg("MDI Write PHY Reg Address %d Error\n", offset
);
254 if (FIELD_GET(E1000_MDIC_REG_MASK
, mdic
) != offset
) {
255 e_dbg("MDI Write offset error - requested %d, returned %d\n",
256 offset
, FIELD_GET(E1000_MDIC_REG_MASK
, mdic
));
260 /* Allow some time after each MDIC transaction to avoid
261 * reading duplicate data in the next MDIC transaction.
263 if (hw
->mac
.type
== e1000_pch2lan
)
269 if (retry_counter
!= retry_max
) {
270 e_dbg("Perform retry on PHY transaction...\n");
275 return -E1000_ERR_PHY
;
279 * e1000e_read_phy_reg_m88 - Read m88 PHY register
280 * @hw: pointer to the HW structure
281 * @offset: register offset to be read
282 * @data: pointer to the read data
284 * Acquires semaphore, if necessary, then reads the PHY register at offset
285 * and storing the retrieved information in data. Release any acquired
286 * semaphores before exiting.
288 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
292 ret_val
= hw
->phy
.ops
.acquire(hw
);
296 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
299 hw
->phy
.ops
.release(hw
);
305 * e1000e_write_phy_reg_m88 - Write m88 PHY register
306 * @hw: pointer to the HW structure
307 * @offset: register offset to write to
308 * @data: data to write at register offset
310 * Acquires semaphore, if necessary, then writes the data to PHY register
311 * at the offset. Release any acquired semaphores before exiting.
313 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
317 ret_val
= hw
->phy
.ops
.acquire(hw
);
321 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
324 hw
->phy
.ops
.release(hw
);
330 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
331 * @hw: pointer to the HW structure
332 * @page: page to set (shifted left when necessary)
334 * Sets PHY page required for PHY register access. Assumes semaphore is
335 * already acquired. Note, this function sets phy.addr to 1 so the caller
336 * must set it appropriately (if necessary) after this function returns.
338 s32
e1000_set_page_igp(struct e1000_hw
*hw
, u16 page
)
340 e_dbg("Setting page 0x%x\n", page
);
344 return e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, page
);
348 * __e1000e_read_phy_reg_igp - Read igp PHY register
349 * @hw: pointer to the HW structure
350 * @offset: register offset to be read
351 * @data: pointer to the read data
352 * @locked: semaphore has already been acquired or not
354 * Acquires semaphore, if necessary, then reads the PHY register at offset
355 * and stores the retrieved information in data. Release any acquired
356 * semaphores before exiting.
358 static s32
__e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
364 if (!hw
->phy
.ops
.acquire
)
367 ret_val
= hw
->phy
.ops
.acquire(hw
);
372 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
373 ret_val
= e1000e_write_phy_reg_mdic(hw
,
374 IGP01E1000_PHY_PAGE_SELECT
,
377 ret_val
= e1000e_read_phy_reg_mdic(hw
,
378 MAX_PHY_REG_ADDRESS
& offset
,
381 hw
->phy
.ops
.release(hw
);
387 * e1000e_read_phy_reg_igp - Read igp PHY register
388 * @hw: pointer to the HW structure
389 * @offset: register offset to be read
390 * @data: pointer to the read data
392 * Acquires semaphore then reads the PHY register at offset and stores the
393 * retrieved information in data.
394 * Release the acquired semaphore before exiting.
396 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
398 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, false);
402 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
403 * @hw: pointer to the HW structure
404 * @offset: register offset to be read
405 * @data: pointer to the read data
407 * Reads the PHY register at offset and stores the retrieved information
408 * in data. Assumes semaphore already acquired.
410 s32
e1000e_read_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
412 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, true);
416 * __e1000e_write_phy_reg_igp - Write igp PHY register
417 * @hw: pointer to the HW structure
418 * @offset: register offset to write to
419 * @data: data to write at register offset
420 * @locked: semaphore has already been acquired or not
422 * Acquires semaphore, if necessary, then writes the data to PHY register
423 * at the offset. Release any acquired semaphores before exiting.
425 static s32
__e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
,
431 if (!hw
->phy
.ops
.acquire
)
434 ret_val
= hw
->phy
.ops
.acquire(hw
);
439 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
440 ret_val
= e1000e_write_phy_reg_mdic(hw
,
441 IGP01E1000_PHY_PAGE_SELECT
,
444 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
&
447 hw
->phy
.ops
.release(hw
);
453 * e1000e_write_phy_reg_igp - Write igp PHY register
454 * @hw: pointer to the HW structure
455 * @offset: register offset to write to
456 * @data: data to write at register offset
458 * Acquires semaphore then writes the data to PHY register
459 * at the offset. Release any acquired semaphores before exiting.
461 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
463 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, false);
467 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
468 * @hw: pointer to the HW structure
469 * @offset: register offset to write to
470 * @data: data to write at register offset
472 * Writes the data to PHY register at the offset.
473 * Assumes semaphore already acquired.
475 s32
e1000e_write_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
477 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, true);
481 * __e1000_read_kmrn_reg - Read kumeran register
482 * @hw: pointer to the HW structure
483 * @offset: register offset to be read
484 * @data: pointer to the read data
485 * @locked: semaphore has already been acquired or not
487 * Acquires semaphore, if necessary. Then reads the PHY register at offset
488 * using the kumeran interface. The information retrieved is stored in data.
489 * Release any acquired semaphores before exiting.
491 static s32
__e1000_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
499 if (!hw
->phy
.ops
.acquire
)
502 ret_val
= hw
->phy
.ops
.acquire(hw
);
507 kmrnctrlsta
= FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET
, offset
) |
508 E1000_KMRNCTRLSTA_REN
;
509 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
514 kmrnctrlsta
= er32(KMRNCTRLSTA
);
515 *data
= (u16
)kmrnctrlsta
;
518 hw
->phy
.ops
.release(hw
);
524 * e1000e_read_kmrn_reg - Read kumeran register
525 * @hw: pointer to the HW structure
526 * @offset: register offset to be read
527 * @data: pointer to the read data
529 * Acquires semaphore then reads the PHY register at offset using the
530 * kumeran interface. The information retrieved is stored in data.
531 * Release the acquired semaphore before exiting.
533 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
535 return __e1000_read_kmrn_reg(hw
, offset
, data
, false);
539 * e1000e_read_kmrn_reg_locked - Read kumeran register
540 * @hw: pointer to the HW structure
541 * @offset: register offset to be read
542 * @data: pointer to the read data
544 * Reads the PHY register at offset using the kumeran interface. The
545 * information retrieved is stored in data.
546 * Assumes semaphore already acquired.
548 s32
e1000e_read_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
550 return __e1000_read_kmrn_reg(hw
, offset
, data
, true);
554 * __e1000_write_kmrn_reg - Write kumeran register
555 * @hw: pointer to the HW structure
556 * @offset: register offset to write to
557 * @data: data to write at register offset
558 * @locked: semaphore has already been acquired or not
560 * Acquires semaphore, if necessary. Then write the data to PHY register
561 * at the offset using the kumeran interface. Release any acquired semaphores
564 static s32
__e1000_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
,
572 if (!hw
->phy
.ops
.acquire
)
575 ret_val
= hw
->phy
.ops
.acquire(hw
);
580 kmrnctrlsta
= FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET
, offset
) | data
;
581 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
587 hw
->phy
.ops
.release(hw
);
593 * e1000e_write_kmrn_reg - Write kumeran register
594 * @hw: pointer to the HW structure
595 * @offset: register offset to write to
596 * @data: data to write at register offset
598 * Acquires semaphore then writes the data to the PHY register at the offset
599 * using the kumeran interface. Release the acquired semaphore before exiting.
601 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
603 return __e1000_write_kmrn_reg(hw
, offset
, data
, false);
607 * e1000e_write_kmrn_reg_locked - Write kumeran register
608 * @hw: pointer to the HW structure
609 * @offset: register offset to write to
610 * @data: data to write at register offset
612 * Write the data to PHY register at the offset using the kumeran interface.
613 * Assumes semaphore already acquired.
615 s32
e1000e_write_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
617 return __e1000_write_kmrn_reg(hw
, offset
, data
, true);
621 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
622 * @hw: pointer to the HW structure
624 * Sets up Master/slave mode
626 static s32
e1000_set_master_slave_mode(struct e1000_hw
*hw
)
631 /* Resolve Master/Slave mode */
632 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &phy_data
);
636 /* load defaults for future use */
637 hw
->phy
.original_ms_type
= (phy_data
& CTL1000_ENABLE_MASTER
) ?
638 ((phy_data
& CTL1000_AS_MASTER
) ?
639 e1000_ms_force_master
: e1000_ms_force_slave
) : e1000_ms_auto
;
641 switch (hw
->phy
.ms_type
) {
642 case e1000_ms_force_master
:
643 phy_data
|= (CTL1000_ENABLE_MASTER
| CTL1000_AS_MASTER
);
645 case e1000_ms_force_slave
:
646 phy_data
|= CTL1000_ENABLE_MASTER
;
647 phy_data
&= ~(CTL1000_AS_MASTER
);
650 phy_data
&= ~CTL1000_ENABLE_MASTER
;
656 return e1e_wphy(hw
, MII_CTRL1000
, phy_data
);
660 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
661 * @hw: pointer to the HW structure
663 * Sets up Carrier-sense on Transmit and downshift values.
665 s32
e1000_copper_link_setup_82577(struct e1000_hw
*hw
)
670 /* Enable CRS on Tx. This must be set for half-duplex operation. */
671 ret_val
= e1e_rphy(hw
, I82577_CFG_REG
, &phy_data
);
675 phy_data
|= I82577_CFG_ASSERT_CRS_ON_TX
;
677 /* Enable downshift */
678 phy_data
|= I82577_CFG_ENABLE_DOWNSHIFT
;
680 ret_val
= e1e_wphy(hw
, I82577_CFG_REG
, phy_data
);
684 /* Set MDI/MDIX mode */
685 ret_val
= e1e_rphy(hw
, I82577_PHY_CTRL_2
, &phy_data
);
688 phy_data
&= ~I82577_PHY_CTRL2_MDIX_CFG_MASK
;
694 switch (hw
->phy
.mdix
) {
698 phy_data
|= I82577_PHY_CTRL2_MANUAL_MDIX
;
702 phy_data
|= I82577_PHY_CTRL2_AUTO_MDI_MDIX
;
705 ret_val
= e1e_wphy(hw
, I82577_PHY_CTRL_2
, phy_data
);
709 return e1000_set_master_slave_mode(hw
);
713 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
714 * @hw: pointer to the HW structure
716 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
717 * and downshift values are set also.
719 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
721 struct e1000_phy_info
*phy
= &hw
->phy
;
725 /* Enable CRS on Tx. This must be set for half-duplex operation. */
726 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
730 /* For BM PHY this bit is downshift enable */
731 if (phy
->type
!= e1000_phy_bm
)
732 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
735 * MDI/MDI-X = 0 (default)
736 * 0 - Auto for all speeds
739 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
741 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
745 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
748 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
751 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
755 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
760 * disable_polarity_correction = 0 (default)
761 * Automatic Correction for Reversed Cable Polarity
765 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
766 if (phy
->disable_polarity_correction
)
767 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
769 /* Enable downshift on BM (disabled by default) */
770 if (phy
->type
== e1000_phy_bm
) {
771 /* For 82574/82583, first disable then enable downshift */
772 if (phy
->id
== BME1000_E_PHY_ID_R2
) {
773 phy_data
&= ~BME1000_PSCR_ENABLE_DOWNSHIFT
;
774 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
,
778 /* Commit the changes. */
779 ret_val
= phy
->ops
.commit(hw
);
781 e_dbg("Error committing the PHY changes\n");
786 phy_data
|= BME1000_PSCR_ENABLE_DOWNSHIFT
;
789 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
793 if ((phy
->type
== e1000_phy_m88
) &&
794 (phy
->revision
< E1000_REVISION_4
) &&
795 (phy
->id
!= BME1000_E_PHY_ID_R2
)) {
796 /* Force TX_CLK in the Extended PHY Specific Control Register
799 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
803 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
805 if ((phy
->revision
== 2) && (phy
->id
== M88E1111_I_PHY_ID
)) {
806 /* 82573L PHY - set the downshift counter to 5x. */
807 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
808 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
810 /* Configure Master and Slave downshift values */
811 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
812 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
813 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
814 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
816 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
821 if ((phy
->type
== e1000_phy_bm
) && (phy
->id
== BME1000_E_PHY_ID_R2
)) {
822 /* Set PHY page 0, register 29 to 0x0003 */
823 ret_val
= e1e_wphy(hw
, 29, 0x0003);
827 /* Set PHY page 0, register 30 to 0x0000 */
828 ret_val
= e1e_wphy(hw
, 30, 0x0000);
833 /* Commit the changes. */
834 if (phy
->ops
.commit
) {
835 ret_val
= phy
->ops
.commit(hw
);
837 e_dbg("Error committing the PHY changes\n");
842 if (phy
->type
== e1000_phy_82578
) {
843 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
847 /* 82578 PHY - set the downshift count to 1x. */
848 phy_data
|= I82578_EPSCR_DOWNSHIFT_ENABLE
;
849 phy_data
&= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK
;
850 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
859 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
860 * @hw: pointer to the HW structure
862 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
865 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
867 struct e1000_phy_info
*phy
= &hw
->phy
;
871 ret_val
= e1000_phy_hw_reset(hw
);
873 e_dbg("Error resetting the PHY.\n");
877 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
878 * timeout issues when LFS is enabled.
882 /* disable lplu d0 during driver init */
883 if (hw
->phy
.ops
.set_d0_lplu_state
) {
884 ret_val
= hw
->phy
.ops
.set_d0_lplu_state(hw
, false);
886 e_dbg("Error Disabling LPLU D0\n");
890 /* Configure mdi-mdix settings */
891 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
895 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
899 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
902 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
906 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
909 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
913 /* set auto-master slave resolution settings */
914 if (hw
->mac
.autoneg
) {
915 /* when autonegotiation advertisement is only 1000Mbps then we
916 * should disable SmartSpeed and enable Auto MasterSlave
917 * resolution as hardware default.
919 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
920 /* Disable SmartSpeed */
921 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
926 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
927 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
932 /* Set auto Master/Slave resolution process */
933 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &data
);
937 data
&= ~CTL1000_ENABLE_MASTER
;
938 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, data
);
943 ret_val
= e1000_set_master_slave_mode(hw
);
950 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
951 * @hw: pointer to the HW structure
953 * Reads the MII auto-neg advertisement register and/or the 1000T control
954 * register and if the PHY is already setup for auto-negotiation, then
955 * return successful. Otherwise, setup advertisement and flow control to
956 * the appropriate values for the wanted auto-negotiation.
958 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
960 struct e1000_phy_info
*phy
= &hw
->phy
;
962 u16 mii_autoneg_adv_reg
;
963 u16 mii_1000t_ctrl_reg
= 0;
965 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
967 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
968 ret_val
= e1e_rphy(hw
, MII_ADVERTISE
, &mii_autoneg_adv_reg
);
972 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
973 /* Read the MII 1000Base-T Control Register (Address 9). */
974 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &mii_1000t_ctrl_reg
);
979 /* Need to parse both autoneg_advertised and fc and set up
980 * the appropriate PHY registers. First we will parse for
981 * autoneg_advertised software override. Since we can advertise
982 * a plethora of combinations, we need to check each bit
986 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
987 * Advertisement Register (Address 4) and the 1000 mb speed bits in
988 * the 1000Base-T Control Register (Address 9).
990 mii_autoneg_adv_reg
&= ~(ADVERTISE_100FULL
|
992 ADVERTISE_10FULL
| ADVERTISE_10HALF
);
993 mii_1000t_ctrl_reg
&= ~(ADVERTISE_1000HALF
| ADVERTISE_1000FULL
);
995 e_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
997 /* Do we want to advertise 10 Mb Half Duplex? */
998 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
999 e_dbg("Advertise 10mb Half duplex\n");
1000 mii_autoneg_adv_reg
|= ADVERTISE_10HALF
;
1003 /* Do we want to advertise 10 Mb Full Duplex? */
1004 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
1005 e_dbg("Advertise 10mb Full duplex\n");
1006 mii_autoneg_adv_reg
|= ADVERTISE_10FULL
;
1009 /* Do we want to advertise 100 Mb Half Duplex? */
1010 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
1011 e_dbg("Advertise 100mb Half duplex\n");
1012 mii_autoneg_adv_reg
|= ADVERTISE_100HALF
;
1015 /* Do we want to advertise 100 Mb Full Duplex? */
1016 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
1017 e_dbg("Advertise 100mb Full duplex\n");
1018 mii_autoneg_adv_reg
|= ADVERTISE_100FULL
;
1021 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1022 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
1023 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1025 /* Do we want to advertise 1000 Mb Full Duplex? */
1026 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
1027 e_dbg("Advertise 1000mb Full duplex\n");
1028 mii_1000t_ctrl_reg
|= ADVERTISE_1000FULL
;
1031 /* Check for a software override of the flow control settings, and
1032 * setup the PHY advertisement registers accordingly. If
1033 * auto-negotiation is enabled, then software will have to set the
1034 * "PAUSE" bits to the correct value in the Auto-Negotiation
1035 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1038 * The possible values of the "fc" parameter are:
1039 * 0: Flow control is completely disabled
1040 * 1: Rx flow control is enabled (we can receive pause frames
1041 * but not send pause frames).
1042 * 2: Tx flow control is enabled (we can send pause frames
1043 * but we do not support receiving pause frames).
1044 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1045 * other: No software override. The flow control configuration
1046 * in the EEPROM is used.
1048 switch (hw
->fc
.current_mode
) {
1050 /* Flow control (Rx & Tx) is completely disabled by a
1051 * software over-ride.
1053 mii_autoneg_adv_reg
&=
1054 ~(ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1055 phy
->autoneg_advertised
&=
1056 ~(ADVERTISED_Pause
| ADVERTISED_Asym_Pause
);
1058 case e1000_fc_rx_pause
:
1059 /* Rx Flow control is enabled, and Tx Flow control is
1060 * disabled, by a software over-ride.
1062 * Since there really isn't a way to advertise that we are
1063 * capable of Rx Pause ONLY, we will advertise that we
1064 * support both symmetric and asymmetric Rx PAUSE. Later
1065 * (in e1000e_config_fc_after_link_up) we will disable the
1066 * hw's ability to send PAUSE frames.
1068 mii_autoneg_adv_reg
|=
1069 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1070 phy
->autoneg_advertised
|=
1071 (ADVERTISED_Pause
| ADVERTISED_Asym_Pause
);
1073 case e1000_fc_tx_pause
:
1074 /* Tx Flow control is enabled, and Rx Flow control is
1075 * disabled, by a software over-ride.
1077 mii_autoneg_adv_reg
|= ADVERTISE_PAUSE_ASYM
;
1078 mii_autoneg_adv_reg
&= ~ADVERTISE_PAUSE_CAP
;
1079 phy
->autoneg_advertised
|= ADVERTISED_Asym_Pause
;
1080 phy
->autoneg_advertised
&= ~ADVERTISED_Pause
;
1083 /* Flow control (both Rx and Tx) is enabled by a software
1086 mii_autoneg_adv_reg
|=
1087 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1088 phy
->autoneg_advertised
|=
1089 (ADVERTISED_Pause
| ADVERTISED_Asym_Pause
);
1092 e_dbg("Flow control param set incorrectly\n");
1093 return -E1000_ERR_CONFIG
;
1096 ret_val
= e1e_wphy(hw
, MII_ADVERTISE
, mii_autoneg_adv_reg
);
1100 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1102 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
)
1103 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, mii_1000t_ctrl_reg
);
1109 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1110 * @hw: pointer to the HW structure
1112 * Performs initial bounds checking on autoneg advertisement parameter, then
1113 * configure to advertise the full capability. Setup the PHY to autoneg
1114 * and restart the negotiation process between the link partner. If
1115 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1117 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
1119 struct e1000_phy_info
*phy
= &hw
->phy
;
1123 /* Perform some bounds checking on the autoneg advertisement
1126 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
1128 /* If autoneg_advertised is zero, we assume it was not defaulted
1129 * by the calling code so we set to advertise full capability.
1131 if (!phy
->autoneg_advertised
)
1132 phy
->autoneg_advertised
= phy
->autoneg_mask
;
1134 e_dbg("Reconfiguring auto-neg advertisement params\n");
1135 ret_val
= e1000_phy_setup_autoneg(hw
);
1137 e_dbg("Error Setting up Auto-Negotiation\n");
1140 e_dbg("Restarting Auto-Neg\n");
1142 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1143 * the Auto Neg Restart bit in the PHY control register.
1145 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
1149 phy_ctrl
|= (BMCR_ANENABLE
| BMCR_ANRESTART
);
1150 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
1154 /* Does the user want to wait for Auto-Neg to complete here, or
1155 * check at a later time (for example, callback routine).
1157 if (phy
->autoneg_wait_to_complete
) {
1158 ret_val
= e1000_wait_autoneg(hw
);
1160 e_dbg("Error while waiting for autoneg to complete\n");
1165 hw
->mac
.get_link_status
= true;
1171 * e1000e_setup_copper_link - Configure copper link settings
1172 * @hw: pointer to the HW structure
1174 * Calls the appropriate function to configure the link for auto-neg or forced
1175 * speed and duplex. Then we check for link, once link is established calls
1176 * to configure collision distance and flow control are called. If link is
1177 * not established, we return -E1000_ERR_PHY (-2).
1179 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
1184 if (hw
->mac
.autoneg
) {
1185 /* Setup autoneg and flow control advertisement and perform
1188 ret_val
= e1000_copper_link_autoneg(hw
);
1192 /* PHY will be set to 10H, 10F, 100H or 100F
1193 * depending on user settings.
1195 e_dbg("Forcing Speed and Duplex\n");
1196 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1198 e_dbg("Error Forcing Speed and Duplex\n");
1203 /* Check link status. Wait up to 100 microseconds for link to become
1206 ret_val
= e1000e_phy_has_link_generic(hw
, COPPER_LINK_UP_LIMIT
, 10,
1212 e_dbg("Valid link established!!!\n");
1213 hw
->mac
.ops
.config_collision_dist(hw
);
1214 ret_val
= e1000e_config_fc_after_link_up(hw
);
1216 e_dbg("Unable to establish link!!!\n");
1223 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1224 * @hw: pointer to the HW structure
1226 * Calls the PHY setup function to force speed and duplex. Clears the
1227 * auto-crossover to force MDI manually. Waits for link and returns
1228 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1230 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1232 struct e1000_phy_info
*phy
= &hw
->phy
;
1237 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1241 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1243 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1247 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1248 * forced whenever speed and duplex are forced.
1250 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1254 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1255 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1257 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1261 e_dbg("IGP PSCR: %X\n", phy_data
);
1265 if (phy
->autoneg_wait_to_complete
) {
1266 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1268 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1274 e_dbg("Link taking longer than expected.\n");
1277 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1285 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1286 * @hw: pointer to the HW structure
1288 * Calls the PHY setup function to force speed and duplex. Clears the
1289 * auto-crossover to force MDI manually. Resets the PHY to commit the
1290 * changes. If time expires while waiting for link up, we reset the DSP.
1291 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1292 * successful completion, else return corresponding error code.
1294 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1296 struct e1000_phy_info
*phy
= &hw
->phy
;
1301 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1302 * forced whenever speed and duplex are forced.
1304 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1308 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1309 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1313 e_dbg("M88E1000 PSCR: %X\n", phy_data
);
1315 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1319 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1321 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1325 /* Reset the phy to commit changes. */
1326 if (hw
->phy
.ops
.commit
) {
1327 ret_val
= hw
->phy
.ops
.commit(hw
);
1332 if (phy
->autoneg_wait_to_complete
) {
1333 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1335 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1341 if (hw
->phy
.type
!= e1000_phy_m88
) {
1342 e_dbg("Link taking longer than expected.\n");
1344 /* We didn't get link.
1345 * Reset the DSP and cross our fingers.
1347 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
,
1351 ret_val
= e1000e_phy_reset_dsp(hw
);
1358 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1364 if (hw
->phy
.type
!= e1000_phy_m88
)
1367 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1371 /* Resetting the phy means we need to re-force TX_CLK in the
1372 * Extended PHY Specific Control Register to 25MHz clock from
1373 * the reset value of 2.5MHz.
1375 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1376 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1380 /* In addition, we must re-enable CRS on Tx for both half and full
1383 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1387 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1388 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1394 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1395 * @hw: pointer to the HW structure
1397 * Forces the speed and duplex settings of the PHY.
1398 * This is a function pointer entry point only called by
1399 * PHY setup routines.
1401 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw
*hw
)
1403 struct e1000_phy_info
*phy
= &hw
->phy
;
1408 ret_val
= e1e_rphy(hw
, MII_BMCR
, &data
);
1412 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
1414 ret_val
= e1e_wphy(hw
, MII_BMCR
, data
);
1418 /* Disable MDI-X support for 10/100 */
1419 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1423 data
&= ~IFE_PMC_AUTO_MDIX
;
1424 data
&= ~IFE_PMC_FORCE_MDIX
;
1426 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
1430 e_dbg("IFE PMC: %X\n", data
);
1434 if (phy
->autoneg_wait_to_complete
) {
1435 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1437 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1443 e_dbg("Link taking longer than expected.\n");
1446 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1456 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1457 * @hw: pointer to the HW structure
1458 * @phy_ctrl: pointer to current value of MII_BMCR
1460 * Forces speed and duplex on the PHY by doing the following: disable flow
1461 * control, force speed/duplex on the MAC, disable auto speed detection,
1462 * disable auto-negotiation, configure duplex, configure speed, configure
1463 * the collision distance, write configuration to CTRL register. The
1464 * caller must write to the MII_BMCR register for these settings to
1467 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1469 struct e1000_mac_info
*mac
= &hw
->mac
;
1472 /* Turn off flow control when forcing speed/duplex */
1473 hw
->fc
.current_mode
= e1000_fc_none
;
1475 /* Force speed/duplex on the mac */
1477 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1478 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1480 /* Disable Auto Speed Detection */
1481 ctrl
&= ~E1000_CTRL_ASDE
;
1483 /* Disable autoneg on the phy */
1484 *phy_ctrl
&= ~BMCR_ANENABLE
;
1486 /* Forcing Full or Half Duplex? */
1487 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1488 ctrl
&= ~E1000_CTRL_FD
;
1489 *phy_ctrl
&= ~BMCR_FULLDPLX
;
1490 e_dbg("Half Duplex\n");
1492 ctrl
|= E1000_CTRL_FD
;
1493 *phy_ctrl
|= BMCR_FULLDPLX
;
1494 e_dbg("Full Duplex\n");
1497 /* Forcing 10mb or 100mb? */
1498 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1499 ctrl
|= E1000_CTRL_SPD_100
;
1500 *phy_ctrl
|= BMCR_SPEED100
;
1501 *phy_ctrl
&= ~BMCR_SPEED1000
;
1502 e_dbg("Forcing 100mb\n");
1504 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1505 *phy_ctrl
&= ~(BMCR_SPEED1000
| BMCR_SPEED100
);
1506 e_dbg("Forcing 10mb\n");
1509 hw
->mac
.ops
.config_collision_dist(hw
);
1515 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516 * @hw: pointer to the HW structure
1517 * @active: boolean used to enable/disable lplu
1519 * Success returns 0, Failure returns 1
1521 * The low power link up (lplu) state is set to the power management level D3
1522 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1523 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1524 * is used during Dx states where the power conservation is most important.
1525 * During driver activity, SmartSpeed should be enabled so performance is
1528 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1530 struct e1000_phy_info
*phy
= &hw
->phy
;
1534 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1539 data
&= ~IGP02E1000_PM_D3_LPLU
;
1540 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1543 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1544 * during Dx states where the power conservation is most
1545 * important. During driver activity we should enable
1546 * SmartSpeed, so performance is maintained.
1548 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1549 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1554 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1555 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1559 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1560 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1565 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1566 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1571 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1572 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1573 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1574 data
|= IGP02E1000_PM_D3_LPLU
;
1575 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1579 /* When LPLU is enabled, we should disable SmartSpeed */
1580 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1584 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1585 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1592 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1593 * @hw: pointer to the HW structure
1595 * Success returns 0, Failure returns 1
1597 * A downshift is detected by querying the PHY link health.
1599 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1601 struct e1000_phy_info
*phy
= &hw
->phy
;
1603 u16 phy_data
, offset
, mask
;
1605 switch (phy
->type
) {
1607 case e1000_phy_gg82563
:
1609 case e1000_phy_82578
:
1610 offset
= M88E1000_PHY_SPEC_STATUS
;
1611 mask
= M88E1000_PSSR_DOWNSHIFT
;
1613 case e1000_phy_igp_2
:
1614 case e1000_phy_igp_3
:
1615 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1616 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1619 /* speed downshift not supported */
1620 phy
->speed_downgraded
= false;
1624 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1627 phy
->speed_downgraded
= !!(phy_data
& mask
);
1633 * e1000_check_polarity_m88 - Checks the polarity.
1634 * @hw: pointer to the HW structure
1636 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1638 * Polarity is determined based on the PHY specific status register.
1640 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1642 struct e1000_phy_info
*phy
= &hw
->phy
;
1646 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1649 phy
->cable_polarity
= ((data
& M88E1000_PSSR_REV_POLARITY
)
1650 ? e1000_rev_polarity_reversed
1651 : e1000_rev_polarity_normal
);
1657 * e1000_check_polarity_igp - Checks the polarity.
1658 * @hw: pointer to the HW structure
1660 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1662 * Polarity is determined based on the PHY port status register, and the
1663 * current speed (since there is no polarity at 100Mbps).
1665 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1667 struct e1000_phy_info
*phy
= &hw
->phy
;
1669 u16 data
, offset
, mask
;
1671 /* Polarity is determined based on the speed of
1674 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1678 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1679 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1680 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1681 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1683 /* This really only applies to 10Mbps since
1684 * there is no polarity for 100Mbps (always 0).
1686 offset
= IGP01E1000_PHY_PORT_STATUS
;
1687 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1690 ret_val
= e1e_rphy(hw
, offset
, &data
);
1693 phy
->cable_polarity
= ((data
& mask
)
1694 ? e1000_rev_polarity_reversed
1695 : e1000_rev_polarity_normal
);
1701 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1702 * @hw: pointer to the HW structure
1704 * Polarity is determined on the polarity reversal feature being enabled.
1706 s32
e1000_check_polarity_ife(struct e1000_hw
*hw
)
1708 struct e1000_phy_info
*phy
= &hw
->phy
;
1710 u16 phy_data
, offset
, mask
;
1712 /* Polarity is determined based on the reversal feature being enabled.
1714 if (phy
->polarity_correction
) {
1715 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1716 mask
= IFE_PESC_POLARITY_REVERSED
;
1718 offset
= IFE_PHY_SPECIAL_CONTROL
;
1719 mask
= IFE_PSC_FORCE_POLARITY
;
1722 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1725 phy
->cable_polarity
= ((phy_data
& mask
)
1726 ? e1000_rev_polarity_reversed
1727 : e1000_rev_polarity_normal
);
1733 * e1000_wait_autoneg - Wait for auto-neg completion
1734 * @hw: pointer to the HW structure
1736 * Waits for auto-negotiation to complete or for the auto-negotiation time
1737 * limit to expire, which ever happens first.
1739 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1744 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1745 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1746 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1749 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1752 if (phy_status
& BMSR_ANEGCOMPLETE
)
1757 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1764 * e1000e_phy_has_link_generic - Polls PHY for link
1765 * @hw: pointer to the HW structure
1766 * @iterations: number of times to poll for link
1767 * @usec_interval: delay between polling attempts
1768 * @success: pointer to whether polling was successful or not
1770 * Polls the PHY status register for link, 'iterations' number of times.
1772 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1773 u32 usec_interval
, bool *success
)
1779 for (i
= 0; i
< iterations
; i
++) {
1780 /* Some PHYs require the MII_BMSR register to be read
1781 * twice due to the link bit being sticky. No harm doing
1782 * it across the board.
1784 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1786 /* If the first read fails, another entity may have
1787 * ownership of the resources, wait and try again to
1788 * see if they have relinquished the resources yet.
1790 if (usec_interval
>= 1000)
1791 msleep(usec_interval
/ 1000);
1793 udelay(usec_interval
);
1795 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1798 if (phy_status
& BMSR_LSTATUS
) {
1802 if (usec_interval
>= 1000)
1803 msleep(usec_interval
/ 1000);
1805 udelay(usec_interval
);
1812 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1813 * @hw: pointer to the HW structure
1815 * Reads the PHY specific status register to retrieve the cable length
1816 * information. The cable length is determined by averaging the minimum and
1817 * maximum values to get the "average" cable length. The m88 PHY has four
1818 * possible cable length values, which are:
1819 * Register Value Cable Length
1823 * 3 110 - 140 meters
1826 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1828 struct e1000_phy_info
*phy
= &hw
->phy
;
1830 u16 phy_data
, index
;
1832 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1836 index
= FIELD_GET(M88E1000_PSSR_CABLE_LENGTH
, phy_data
);
1838 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1)
1839 return -E1000_ERR_PHY
;
1841 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1842 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1844 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1850 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1851 * @hw: pointer to the HW structure
1853 * The automatic gain control (agc) normalizes the amplitude of the
1854 * received signal, adjusting for the attenuation produced by the
1855 * cable. By reading the AGC registers, which represent the
1856 * combination of coarse and fine gain value, the value can be put
1857 * into a lookup table to obtain the approximate cable length
1860 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1862 struct e1000_phy_info
*phy
= &hw
->phy
;
1864 u16 phy_data
, i
, agc_value
= 0;
1865 u16 cur_agc_index
, max_agc_index
= 0;
1866 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1867 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1868 IGP02E1000_PHY_AGC_A
,
1869 IGP02E1000_PHY_AGC_B
,
1870 IGP02E1000_PHY_AGC_C
,
1871 IGP02E1000_PHY_AGC_D
1874 /* Read the AGC registers for all channels */
1875 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1876 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1880 /* Getting bits 15:9, which represent the combination of
1881 * coarse and fine gain values. The result is a number
1882 * that can be put into the lookup table to obtain the
1883 * approximate cable length.
1885 cur_agc_index
= ((phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1886 IGP02E1000_AGC_LENGTH_MASK
);
1888 /* Array index bound check. */
1889 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1890 (cur_agc_index
== 0))
1891 return -E1000_ERR_PHY
;
1893 /* Remove min & max AGC values from calculation. */
1894 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1895 e1000_igp_2_cable_length_table
[cur_agc_index
])
1896 min_agc_index
= cur_agc_index
;
1897 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1898 e1000_igp_2_cable_length_table
[cur_agc_index
])
1899 max_agc_index
= cur_agc_index
;
1901 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1904 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1905 e1000_igp_2_cable_length_table
[max_agc_index
]);
1906 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1908 /* Calculate cable length with the error range of +/- 10 meters. */
1909 phy
->min_cable_length
= (((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1910 (agc_value
- IGP02E1000_AGC_RANGE
) : 0);
1911 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1913 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1919 * e1000e_get_phy_info_m88 - Retrieve PHY information
1920 * @hw: pointer to the HW structure
1922 * Valid for only copper links. Read the PHY status register (sticky read)
1923 * to verify that link is up. Read the PHY special control register to
1924 * determine the polarity and 10base-T extended distance. Read the PHY
1925 * special status register to determine MDI/MDIx and current speed. If
1926 * speed is 1000, then determine cable length, local and remote receiver.
1928 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1930 struct e1000_phy_info
*phy
= &hw
->phy
;
1935 if (phy
->media_type
!= e1000_media_type_copper
) {
1936 e_dbg("Phy info is only valid for copper media\n");
1937 return -E1000_ERR_CONFIG
;
1940 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1945 e_dbg("Phy info is only valid if link is up\n");
1946 return -E1000_ERR_CONFIG
;
1949 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1953 phy
->polarity_correction
= !!(phy_data
&
1954 M88E1000_PSCR_POLARITY_REVERSAL
);
1956 ret_val
= e1000_check_polarity_m88(hw
);
1960 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1964 phy
->is_mdix
= !!(phy_data
& M88E1000_PSSR_MDIX
);
1966 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1967 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
1971 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &phy_data
);
1975 phy
->local_rx
= (phy_data
& LPA_1000LOCALRXOK
)
1976 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1978 phy
->remote_rx
= (phy_data
& LPA_1000REMRXOK
)
1979 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1981 /* Set values to "undefined" */
1982 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1983 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1984 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1991 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1992 * @hw: pointer to the HW structure
1994 * Read PHY status to determine if link is up. If link is up, then
1995 * set/determine 10base-T extended distance and polarity correction. Read
1996 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1997 * determine on the cable length, local and remote receiver.
1999 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
2001 struct e1000_phy_info
*phy
= &hw
->phy
;
2006 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2011 e_dbg("Phy info is only valid if link is up\n");
2012 return -E1000_ERR_CONFIG
;
2015 phy
->polarity_correction
= true;
2017 ret_val
= e1000_check_polarity_igp(hw
);
2021 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
2025 phy
->is_mdix
= !!(data
& IGP01E1000_PSSR_MDIX
);
2027 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
2028 IGP01E1000_PSSR_SPEED_1000MBPS
) {
2029 ret_val
= phy
->ops
.get_cable_length(hw
);
2033 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
2037 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
2038 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
2040 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
2041 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
2043 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2044 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2045 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2052 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2053 * @hw: pointer to the HW structure
2055 * Populates "phy" structure with various feature states.
2057 s32
e1000_get_phy_info_ife(struct e1000_hw
*hw
)
2059 struct e1000_phy_info
*phy
= &hw
->phy
;
2064 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2069 e_dbg("Phy info is only valid if link is up\n");
2070 return -E1000_ERR_CONFIG
;
2073 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
2076 phy
->polarity_correction
= !(data
& IFE_PSC_AUTO_POLARITY_DISABLE
);
2078 if (phy
->polarity_correction
) {
2079 ret_val
= e1000_check_polarity_ife(hw
);
2083 /* Polarity is forced */
2084 phy
->cable_polarity
= ((data
& IFE_PSC_FORCE_POLARITY
)
2085 ? e1000_rev_polarity_reversed
2086 : e1000_rev_polarity_normal
);
2089 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
2093 phy
->is_mdix
= !!(data
& IFE_PMC_MDIX_STATUS
);
2095 /* The following parameters are undefined for 10/100 operation. */
2096 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2097 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2098 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2104 * e1000e_phy_sw_reset - PHY software reset
2105 * @hw: pointer to the HW structure
2107 * Does a software reset of the PHY by reading the PHY control register and
2108 * setting/write the control register reset bit to the PHY.
2110 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
2115 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
2119 phy_ctrl
|= BMCR_RESET
;
2120 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
2130 * e1000e_phy_hw_reset_generic - PHY hardware reset
2131 * @hw: pointer to the HW structure
2133 * Verify the reset block is not blocking us from resetting. Acquire
2134 * semaphore (if necessary) and read/set/write the device control reset
2135 * bit in the PHY. Wait the appropriate delay time for the device to
2136 * reset and release the semaphore (if necessary).
2138 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
2140 struct e1000_phy_info
*phy
= &hw
->phy
;
2144 if (phy
->ops
.check_reset_block
) {
2145 ret_val
= phy
->ops
.check_reset_block(hw
);
2150 ret_val
= phy
->ops
.acquire(hw
);
2155 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2158 udelay(phy
->reset_delay_us
);
2163 usleep_range(150, 300);
2165 phy
->ops
.release(hw
);
2167 return phy
->ops
.get_cfg_done(hw
);
2171 * e1000e_get_cfg_done_generic - Generic configuration done
2172 * @hw: pointer to the HW structure
2174 * Generic function to wait 10 milli-seconds for configuration to complete
2175 * and return success.
2177 s32
e1000e_get_cfg_done_generic(struct e1000_hw __always_unused
*hw
)
2185 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2186 * @hw: pointer to the HW structure
2188 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2190 s32
e1000e_phy_init_script_igp3(struct e1000_hw
*hw
)
2192 e_dbg("Running IGP 3 PHY init script\n");
2194 /* PHY init IGP 3 */
2195 /* Enable rise/fall, 10-mode work in class-A */
2196 e1e_wphy(hw
, 0x2F5B, 0x9018);
2197 /* Remove all caps from Replica path filter */
2198 e1e_wphy(hw
, 0x2F52, 0x0000);
2199 /* Bias trimming for ADC, AFE and Driver (Default) */
2200 e1e_wphy(hw
, 0x2FB1, 0x8B24);
2201 /* Increase Hybrid poly bias */
2202 e1e_wphy(hw
, 0x2FB2, 0xF8F0);
2203 /* Add 4% to Tx amplitude in Gig mode */
2204 e1e_wphy(hw
, 0x2010, 0x10B0);
2205 /* Disable trimming (TTT) */
2206 e1e_wphy(hw
, 0x2011, 0x0000);
2207 /* Poly DC correction to 94.6% + 2% for all channels */
2208 e1e_wphy(hw
, 0x20DD, 0x249A);
2209 /* ABS DC correction to 95.9% */
2210 e1e_wphy(hw
, 0x20DE, 0x00D3);
2211 /* BG temp curve trim */
2212 e1e_wphy(hw
, 0x28B4, 0x04CE);
2213 /* Increasing ADC OPAMP stage 1 currents to max */
2214 e1e_wphy(hw
, 0x2F70, 0x29E4);
2215 /* Force 1000 ( required for enabling PHY regs configuration) */
2216 e1e_wphy(hw
, 0x0000, 0x0140);
2217 /* Set upd_freq to 6 */
2218 e1e_wphy(hw
, 0x1F30, 0x1606);
2220 e1e_wphy(hw
, 0x1F31, 0xB814);
2221 /* Disable adaptive fixed FFE (Default) */
2222 e1e_wphy(hw
, 0x1F35, 0x002A);
2223 /* Enable FFE hysteresis */
2224 e1e_wphy(hw
, 0x1F3E, 0x0067);
2225 /* Fixed FFE for short cable lengths */
2226 e1e_wphy(hw
, 0x1F54, 0x0065);
2227 /* Fixed FFE for medium cable lengths */
2228 e1e_wphy(hw
, 0x1F55, 0x002A);
2229 /* Fixed FFE for long cable lengths */
2230 e1e_wphy(hw
, 0x1F56, 0x002A);
2231 /* Enable Adaptive Clip Threshold */
2232 e1e_wphy(hw
, 0x1F72, 0x3FB0);
2233 /* AHT reset limit to 1 */
2234 e1e_wphy(hw
, 0x1F76, 0xC0FF);
2235 /* Set AHT master delay to 127 msec */
2236 e1e_wphy(hw
, 0x1F77, 0x1DEC);
2237 /* Set scan bits for AHT */
2238 e1e_wphy(hw
, 0x1F78, 0xF9EF);
2239 /* Set AHT Preset bits */
2240 e1e_wphy(hw
, 0x1F79, 0x0210);
2241 /* Change integ_factor of channel A to 3 */
2242 e1e_wphy(hw
, 0x1895, 0x0003);
2243 /* Change prop_factor of channels BCD to 8 */
2244 e1e_wphy(hw
, 0x1796, 0x0008);
2245 /* Change cg_icount + enable integbp for channels BCD */
2246 e1e_wphy(hw
, 0x1798, 0xD008);
2247 /* Change cg_icount + enable integbp + change prop_factor_master
2248 * to 8 for channel A
2250 e1e_wphy(hw
, 0x1898, 0xD918);
2251 /* Disable AHT in Slave mode on channel A */
2252 e1e_wphy(hw
, 0x187A, 0x0800);
2253 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2256 e1e_wphy(hw
, 0x0019, 0x008D);
2257 /* Enable restart AN on an1000_dis change */
2258 e1e_wphy(hw
, 0x001B, 0x2080);
2259 /* Enable wh_fifo read clock in 10/100 modes */
2260 e1e_wphy(hw
, 0x0014, 0x0045);
2261 /* Restart AN, Speed selection is 1000 */
2262 e1e_wphy(hw
, 0x0000, 0x1340);
2268 * e1000e_get_phy_type_from_id - Get PHY type from id
2269 * @phy_id: phy_id read from the phy
2271 * Returns the phy type from the id.
2273 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
2275 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2278 case M88E1000_I_PHY_ID
:
2279 case M88E1000_E_PHY_ID
:
2280 case M88E1111_I_PHY_ID
:
2281 case M88E1011_I_PHY_ID
:
2282 phy_type
= e1000_phy_m88
;
2284 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2285 phy_type
= e1000_phy_igp_2
;
2287 case GG82563_E_PHY_ID
:
2288 phy_type
= e1000_phy_gg82563
;
2290 case IGP03E1000_E_PHY_ID
:
2291 phy_type
= e1000_phy_igp_3
;
2294 case IFE_PLUS_E_PHY_ID
:
2295 case IFE_C_E_PHY_ID
:
2296 phy_type
= e1000_phy_ife
;
2298 case BME1000_E_PHY_ID
:
2299 case BME1000_E_PHY_ID_R2
:
2300 phy_type
= e1000_phy_bm
;
2302 case I82578_E_PHY_ID
:
2303 phy_type
= e1000_phy_82578
;
2305 case I82577_E_PHY_ID
:
2306 phy_type
= e1000_phy_82577
;
2308 case I82579_E_PHY_ID
:
2309 phy_type
= e1000_phy_82579
;
2312 phy_type
= e1000_phy_i217
;
2315 phy_type
= e1000_phy_unknown
;
2322 * e1000e_determine_phy_address - Determines PHY address.
2323 * @hw: pointer to the HW structure
2325 * This uses a trial and error method to loop through possible PHY
2326 * addresses. It tests each by reading the PHY ID registers and
2327 * checking for a match.
2329 s32
e1000e_determine_phy_address(struct e1000_hw
*hw
)
2333 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2335 hw
->phy
.id
= phy_type
;
2337 for (phy_addr
= 0; phy_addr
< E1000_MAX_PHY_ADDR
; phy_addr
++) {
2338 hw
->phy
.addr
= phy_addr
;
2342 e1000e_get_phy_id(hw
);
2343 phy_type
= e1000e_get_phy_type_from_id(hw
->phy
.id
);
2345 /* If phy_type is valid, break - we found our
2348 if (phy_type
!= e1000_phy_unknown
)
2351 usleep_range(1000, 2000);
2356 return -E1000_ERR_PHY_TYPE
;
2360 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2361 * @page: page to access
2362 * @reg: register to check
2364 * Returns the phy address for the page requested.
2366 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
)
2370 if ((page
>= 768) || (page
== 0 && reg
== 25) || (reg
== 31))
2377 * e1000e_write_phy_reg_bm - Write BM PHY register
2378 * @hw: pointer to the HW structure
2379 * @offset: register offset to write to
2380 * @data: data to write at register offset
2382 * Acquires semaphore, if necessary, then writes the data to PHY register
2383 * at the offset. Release any acquired semaphores before exiting.
2385 s32
e1000e_write_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2388 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2390 ret_val
= hw
->phy
.ops
.acquire(hw
);
2394 /* Page 800 works differently than the rest so it has its own func */
2395 if (page
== BM_WUC_PAGE
) {
2396 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2401 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2403 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2404 u32 page_shift
, page_select
;
2406 /* Page select is register 31 for phy address 1 and 22 for
2407 * phy address 2 and 3. Page select is shifted only for
2410 if (hw
->phy
.addr
== 1) {
2411 page_shift
= IGP_PAGE_SHIFT
;
2412 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2415 page_select
= BM_PHY_PAGE_SELECT
;
2418 /* Page is shifted left, PHY expects (page x 32) */
2419 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2420 (page
<< page_shift
));
2425 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2429 hw
->phy
.ops
.release(hw
);
2434 * e1000e_read_phy_reg_bm - Read BM PHY register
2435 * @hw: pointer to the HW structure
2436 * @offset: register offset to be read
2437 * @data: pointer to the read data
2439 * Acquires semaphore, if necessary, then reads the PHY register at offset
2440 * and storing the retrieved information in data. Release any acquired
2441 * semaphores before exiting.
2443 s32
e1000e_read_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2446 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2448 ret_val
= hw
->phy
.ops
.acquire(hw
);
2452 /* Page 800 works differently than the rest so it has its own func */
2453 if (page
== BM_WUC_PAGE
) {
2454 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2459 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2461 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2462 u32 page_shift
, page_select
;
2464 /* Page select is register 31 for phy address 1 and 22 for
2465 * phy address 2 and 3. Page select is shifted only for
2468 if (hw
->phy
.addr
== 1) {
2469 page_shift
= IGP_PAGE_SHIFT
;
2470 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2473 page_select
= BM_PHY_PAGE_SELECT
;
2476 /* Page is shifted left, PHY expects (page x 32) */
2477 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2478 (page
<< page_shift
));
2483 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2486 hw
->phy
.ops
.release(hw
);
2491 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2492 * @hw: pointer to the HW structure
2493 * @offset: register offset to be read
2494 * @data: pointer to the read data
2496 * Acquires semaphore, if necessary, then reads the PHY register at offset
2497 * and storing the retrieved information in data. Release any acquired
2498 * semaphores before exiting.
2500 s32
e1000e_read_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2503 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2505 ret_val
= hw
->phy
.ops
.acquire(hw
);
2509 /* Page 800 works differently than the rest so it has its own func */
2510 if (page
== BM_WUC_PAGE
) {
2511 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2518 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2519 /* Page is shifted left, PHY expects (page x 32) */
2520 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2527 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2530 hw
->phy
.ops
.release(hw
);
2535 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2536 * @hw: pointer to the HW structure
2537 * @offset: register offset to write to
2538 * @data: data to write at register offset
2540 * Acquires semaphore, if necessary, then writes the data to PHY register
2541 * at the offset. Release any acquired semaphores before exiting.
2543 s32
e1000e_write_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2546 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2548 ret_val
= hw
->phy
.ops
.acquire(hw
);
2552 /* Page 800 works differently than the rest so it has its own func */
2553 if (page
== BM_WUC_PAGE
) {
2554 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2561 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2562 /* Page is shifted left, PHY expects (page x 32) */
2563 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2570 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2574 hw
->phy
.ops
.release(hw
);
2579 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2580 * @hw: pointer to the HW structure
2581 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2583 * Assumes semaphore already acquired and phy_reg points to a valid memory
2584 * address to store contents of the BM_WUC_ENABLE_REG register.
2586 s32
e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2591 /* All page select, port ctrl and wakeup registers use phy address 1 */
2594 /* Select Port Control Registers page */
2595 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2597 e_dbg("Could not set Port Control page\n");
2601 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
2603 e_dbg("Could not read PHY register %d.%d\n",
2604 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2608 /* Enable both PHY wakeup mode and Wakeup register page writes.
2609 * Prevent a power state change by disabling ME and Host PHY wakeup.
2612 temp
|= BM_WUC_ENABLE_BIT
;
2613 temp
&= ~(BM_WUC_ME_WU_BIT
| BM_WUC_HOST_WU_BIT
);
2615 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, temp
);
2617 e_dbg("Could not write PHY register %d.%d\n",
2618 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2622 /* Select Host Wakeup Registers page - caller now able to write
2623 * registers on the Wakeup registers page
2625 return e1000_set_page_igp(hw
, (BM_WUC_PAGE
<< IGP_PAGE_SHIFT
));
2629 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2630 * @hw: pointer to the HW structure
2631 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2633 * Restore BM_WUC_ENABLE_REG to its original value.
2635 * Assumes semaphore already acquired and *phy_reg is the contents of the
2636 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2639 s32
e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2643 /* Select Port Control Registers page */
2644 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2646 e_dbg("Could not set Port Control page\n");
2650 /* Restore 769.17 to its original value */
2651 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, *phy_reg
);
2653 e_dbg("Could not restore PHY register %d.%d\n",
2654 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2660 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2661 * @hw: pointer to the HW structure
2662 * @offset: register offset to be read or written
2663 * @data: pointer to the data to read or write
2664 * @read: determines if operation is read or write
2665 * @page_set: BM_WUC_PAGE already set and access enabled
2667 * Read the PHY register at offset and store the retrieved information in
2668 * data, or write data to PHY register at offset. Note the procedure to
2669 * access the PHY wakeup registers is different than reading the other PHY
2670 * registers. It works as such:
2671 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2672 * 2) Set page to 800 for host (801 if we were manageability)
2673 * 3) Write the address using the address opcode (0x11)
2674 * 4) Read or write the data using the data opcode (0x12)
2675 * 5) Restore 769.17.2 to its original value
2677 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2678 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2680 * Assumes semaphore is already acquired. When page_set==true, assumes
2681 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2682 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2684 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
2685 u16
*data
, bool read
, bool page_set
)
2688 u16 reg
= BM_PHY_REG_NUM(offset
);
2689 u16 page
= BM_PHY_REG_PAGE(offset
);
2692 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2693 if ((hw
->mac
.type
== e1000_pchlan
) &&
2694 (!(er32(PHY_CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)))
2695 e_dbg("Attempting to access page %d while gig enabled.\n",
2699 /* Enable access to PHY wakeup registers */
2700 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2702 e_dbg("Could not enable PHY wakeup reg access\n");
2707 e_dbg("Accessing PHY page %d reg 0x%x\n", page
, reg
);
2709 /* Write the Wakeup register page offset value using opcode 0x11 */
2710 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ADDRESS_OPCODE
, reg
);
2712 e_dbg("Could not write address opcode to page %d\n", page
);
2717 /* Read the Wakeup register page value using opcode 0x12 */
2718 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2721 /* Write the Wakeup register page value using opcode 0x12 */
2722 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2727 e_dbg("Could not access PHY reg %d.%d\n", page
, reg
);
2732 ret_val
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2738 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2739 * @hw: pointer to the HW structure
2741 * In the case of a PHY power down to save power, or to turn off link during a
2742 * driver unload, or wake on lan is not enabled, restore the link to previous
2745 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2750 /* The PHY will retain its settings across a power down/up cycle */
2751 ret
= e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2753 e_dbg("Error reading PHY register\n");
2756 mii_reg
&= ~BMCR_PDOWN
;
2757 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2761 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2762 * @hw: pointer to the HW structure
2764 * In the case of a PHY power down to save power, or to turn off link during a
2765 * driver unload, or wake on lan is not enabled, restore the link to previous
2768 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2773 /* The PHY will retain its settings across a power down/up cycle */
2774 ret
= e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2776 e_dbg("Error reading PHY register\n");
2779 mii_reg
|= BMCR_PDOWN
;
2780 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2781 usleep_range(1000, 2000);
2785 * __e1000_read_phy_reg_hv - Read HV PHY register
2786 * @hw: pointer to the HW structure
2787 * @offset: register offset to be read
2788 * @data: pointer to the read data
2789 * @locked: semaphore has already been acquired or not
2790 * @page_set: BM_WUC_PAGE already set and access enabled
2792 * Acquires semaphore, if necessary, then reads the PHY register at offset
2793 * and stores the retrieved information in data. Release any acquired
2794 * semaphore before exiting.
2796 static s32
__e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
2797 bool locked
, bool page_set
)
2800 u16 page
= BM_PHY_REG_PAGE(offset
);
2801 u16 reg
= BM_PHY_REG_NUM(offset
);
2802 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2805 ret_val
= hw
->phy
.ops
.acquire(hw
);
2810 /* Page 800 works differently than the rest so it has its own func */
2811 if (page
== BM_WUC_PAGE
) {
2812 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2817 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2818 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2824 if (page
== HV_INTC_FC_PAGE_START
)
2827 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2828 /* Page is shifted left, PHY expects (page x 32) */
2829 ret_val
= e1000_set_page_igp(hw
,
2830 (page
<< IGP_PAGE_SHIFT
));
2832 hw
->phy
.addr
= phy_addr
;
2839 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2840 page
<< IGP_PAGE_SHIFT
, reg
);
2842 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
, data
);
2845 hw
->phy
.ops
.release(hw
);
2851 * e1000_read_phy_reg_hv - Read HV PHY register
2852 * @hw: pointer to the HW structure
2853 * @offset: register offset to be read
2854 * @data: pointer to the read data
2856 * Acquires semaphore then reads the PHY register at offset and stores
2857 * the retrieved information in data. Release the acquired semaphore
2860 s32
e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2862 return __e1000_read_phy_reg_hv(hw
, offset
, data
, false, false);
2866 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2867 * @hw: pointer to the HW structure
2868 * @offset: register offset to be read
2869 * @data: pointer to the read data
2871 * Reads the PHY register at offset and stores the retrieved information
2872 * in data. Assumes semaphore already acquired.
2874 s32
e1000_read_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2876 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, false);
2880 * e1000_read_phy_reg_page_hv - Read HV PHY register
2881 * @hw: pointer to the HW structure
2882 * @offset: register offset to write to
2883 * @data: data to write at register offset
2885 * Reads the PHY register at offset and stores the retrieved information
2886 * in data. Assumes semaphore already acquired and page already set.
2888 s32
e1000_read_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2890 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, true);
2894 * __e1000_write_phy_reg_hv - Write HV PHY register
2895 * @hw: pointer to the HW structure
2896 * @offset: register offset to write to
2897 * @data: data to write at register offset
2898 * @locked: semaphore has already been acquired or not
2899 * @page_set: BM_WUC_PAGE already set and access enabled
2901 * Acquires semaphore, if necessary, then writes the data to PHY register
2902 * at the offset. Release any acquired semaphores before exiting.
2904 static s32
__e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
,
2905 bool locked
, bool page_set
)
2908 u16 page
= BM_PHY_REG_PAGE(offset
);
2909 u16 reg
= BM_PHY_REG_NUM(offset
);
2910 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2913 ret_val
= hw
->phy
.ops
.acquire(hw
);
2918 /* Page 800 works differently than the rest so it has its own func */
2919 if (page
== BM_WUC_PAGE
) {
2920 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2925 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2926 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2932 if (page
== HV_INTC_FC_PAGE_START
)
2935 /* Workaround MDIO accesses being disabled after entering IEEE
2936 * Power Down (when bit 11 of the PHY Control register is set)
2938 if ((hw
->phy
.type
== e1000_phy_82578
) &&
2939 (hw
->phy
.revision
>= 1) &&
2940 (hw
->phy
.addr
== 2) &&
2941 !(MAX_PHY_REG_ADDRESS
& reg
) && (data
& BIT(11))) {
2944 ret_val
= e1000_access_phy_debug_regs_hv(hw
,
2951 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2952 /* Page is shifted left, PHY expects (page x 32) */
2953 ret_val
= e1000_set_page_igp(hw
,
2954 (page
<< IGP_PAGE_SHIFT
));
2956 hw
->phy
.addr
= phy_addr
;
2963 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2964 page
<< IGP_PAGE_SHIFT
, reg
);
2966 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2971 hw
->phy
.ops
.release(hw
);
2977 * e1000_write_phy_reg_hv - Write HV PHY register
2978 * @hw: pointer to the HW structure
2979 * @offset: register offset to write to
2980 * @data: data to write at register offset
2982 * Acquires semaphore then writes the data to PHY register at the offset.
2983 * Release the acquired semaphores before exiting.
2985 s32
e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2987 return __e1000_write_phy_reg_hv(hw
, offset
, data
, false, false);
2991 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2992 * @hw: pointer to the HW structure
2993 * @offset: register offset to write to
2994 * @data: data to write at register offset
2996 * Writes the data to PHY register at the offset. Assumes semaphore
2999 s32
e1000_write_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
3001 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, false);
3005 * e1000_write_phy_reg_page_hv - Write HV PHY register
3006 * @hw: pointer to the HW structure
3007 * @offset: register offset to write to
3008 * @data: data to write at register offset
3010 * Writes the data to PHY register at the offset. Assumes semaphore
3011 * already acquired and page already set.
3013 s32
e1000_write_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
3015 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, true);
3019 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3020 * @page: page to be accessed
3022 static u32
e1000_get_phy_addr_for_hv_page(u32 page
)
3026 if (page
>= HV_INTC_FC_PAGE_START
)
3033 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3034 * @hw: pointer to the HW structure
3035 * @offset: register offset to be read or written
3036 * @data: pointer to the data to be read or written
3037 * @read: determines if operation is read or write
3039 * Reads the PHY register at offset and stores the retrieved information
3040 * in data. Assumes semaphore already acquired. Note that the procedure
3041 * to access these regs uses the address port and data port to read/write.
3042 * These accesses done with PHY address 2 and without using pages.
3044 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
3045 u16
*data
, bool read
)
3051 /* This takes care of the difference with desktop vs mobile phy */
3052 addr_reg
= ((hw
->phy
.type
== e1000_phy_82578
) ?
3053 I82578_ADDR_REG
: I82577_ADDR_REG
);
3054 data_reg
= addr_reg
+ 1;
3056 /* All operations in this function are phy address 2 */
3059 /* masking with 0x3F to remove the page from offset */
3060 ret_val
= e1000e_write_phy_reg_mdic(hw
, addr_reg
, (u16
)offset
& 0x3F);
3062 e_dbg("Could not write the Address Offset port register\n");
3066 /* Read or write the data value next */
3068 ret_val
= e1000e_read_phy_reg_mdic(hw
, data_reg
, data
);
3070 ret_val
= e1000e_write_phy_reg_mdic(hw
, data_reg
, *data
);
3073 e_dbg("Could not access the Data port register\n");
3079 * e1000_link_stall_workaround_hv - Si workaround
3080 * @hw: pointer to the HW structure
3082 * This function works around a Si bug where the link partner can get
3083 * a link up indication before the PHY does. If small packets are sent
3084 * by the link partner they can be placed in the packet buffer without
3085 * being properly accounted for by the PHY and will stall preventing
3086 * further packets from being received. The workaround is to clear the
3087 * packet buffer after the PHY detects link up.
3089 s32
e1000_link_stall_workaround_hv(struct e1000_hw
*hw
)
3094 if (hw
->phy
.type
!= e1000_phy_82578
)
3097 /* Do not apply workaround if in PHY loopback bit 14 set */
3098 ret_val
= e1e_rphy(hw
, MII_BMCR
, &data
);
3100 e_dbg("Error reading PHY register\n");
3103 if (data
& BMCR_LOOPBACK
)
3106 /* check if link is up and at 1Gbps */
3107 ret_val
= e1e_rphy(hw
, BM_CS_STATUS
, &data
);
3111 data
&= (BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3112 BM_CS_STATUS_SPEED_MASK
);
3114 if (data
!= (BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3115 BM_CS_STATUS_SPEED_1000
))
3120 /* flush the packets in the fifo buffer */
3121 ret_val
= e1e_wphy(hw
, HV_MUX_DATA_CTRL
,
3122 (HV_MUX_DATA_CTRL_GEN_TO_MAC
|
3123 HV_MUX_DATA_CTRL_FORCE_SPEED
));
3127 return e1e_wphy(hw
, HV_MUX_DATA_CTRL
, HV_MUX_DATA_CTRL_GEN_TO_MAC
);
3131 * e1000_check_polarity_82577 - Checks the polarity.
3132 * @hw: pointer to the HW structure
3134 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3136 * Polarity is determined based on the PHY specific status register.
3138 s32
e1000_check_polarity_82577(struct e1000_hw
*hw
)
3140 struct e1000_phy_info
*phy
= &hw
->phy
;
3144 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3147 phy
->cable_polarity
= ((data
& I82577_PHY_STATUS2_REV_POLARITY
)
3148 ? e1000_rev_polarity_reversed
3149 : e1000_rev_polarity_normal
);
3155 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3156 * @hw: pointer to the HW structure
3158 * Calls the PHY setup function to force speed and duplex.
3160 s32
e1000_phy_force_speed_duplex_82577(struct e1000_hw
*hw
)
3162 struct e1000_phy_info
*phy
= &hw
->phy
;
3167 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
3171 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
3173 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
3179 if (phy
->autoneg_wait_to_complete
) {
3180 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3182 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3188 e_dbg("Link taking longer than expected.\n");
3191 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3199 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3200 * @hw: pointer to the HW structure
3202 * Read PHY status to determine if link is up. If link is up, then
3203 * set/determine 10base-T extended distance and polarity correction. Read
3204 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3205 * determine on the cable length, local and remote receiver.
3207 s32
e1000_get_phy_info_82577(struct e1000_hw
*hw
)
3209 struct e1000_phy_info
*phy
= &hw
->phy
;
3214 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3219 e_dbg("Phy info is only valid if link is up\n");
3220 return -E1000_ERR_CONFIG
;
3223 phy
->polarity_correction
= true;
3225 ret_val
= e1000_check_polarity_82577(hw
);
3229 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3233 phy
->is_mdix
= !!(data
& I82577_PHY_STATUS2_MDIX
);
3235 if ((data
& I82577_PHY_STATUS2_SPEED_MASK
) ==
3236 I82577_PHY_STATUS2_SPEED_1000MBPS
) {
3237 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
3241 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
3245 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
3246 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3248 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
3249 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3251 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
3252 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
3253 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
3260 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3261 * @hw: pointer to the HW structure
3263 * Reads the diagnostic status register and verifies result is valid before
3264 * placing it in the phy_cable_length field.
3266 s32
e1000_get_cable_length_82577(struct e1000_hw
*hw
)
3268 struct e1000_phy_info
*phy
= &hw
->phy
;
3270 u16 phy_data
, length
;
3272 ret_val
= e1e_rphy(hw
, I82577_PHY_DIAG_STATUS
, &phy_data
);
3276 length
= FIELD_GET(I82577_DSTATUS_CABLE_LENGTH
, phy_data
);
3278 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
3279 return -E1000_ERR_PHY
;
3281 phy
->cable_length
= length
;