1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
4 #include <linux/bitfield.h>
5 #include <linux/net/intel/libie/rx.h>
6 #include <linux/prefetch.h>
9 #include "iavf_trace.h"
10 #include "iavf_prototype.h"
12 static __le64
build_ctob(u32 td_cmd
, u32 td_offset
, unsigned int size
,
15 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA
|
16 ((u64
)td_cmd
<< IAVF_TXD_QW1_CMD_SHIFT
) |
17 ((u64
)td_offset
<< IAVF_TXD_QW1_OFFSET_SHIFT
) |
18 ((u64
)size
<< IAVF_TXD_QW1_TX_BUF_SZ_SHIFT
) |
19 ((u64
)td_tag
<< IAVF_TXD_QW1_L2TAG1_SHIFT
));
22 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
25 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
26 * @ring: the ring that owns the buffer
27 * @tx_buffer: the buffer to free
29 static void iavf_unmap_and_free_tx_resource(struct iavf_ring
*ring
,
30 struct iavf_tx_buffer
*tx_buffer
)
33 if (tx_buffer
->tx_flags
& IAVF_TX_FLAGS_FD_SB
)
34 kfree(tx_buffer
->raw_buf
);
36 dev_kfree_skb_any(tx_buffer
->skb
);
37 if (dma_unmap_len(tx_buffer
, len
))
38 dma_unmap_single(ring
->dev
,
39 dma_unmap_addr(tx_buffer
, dma
),
40 dma_unmap_len(tx_buffer
, len
),
42 } else if (dma_unmap_len(tx_buffer
, len
)) {
43 dma_unmap_page(ring
->dev
,
44 dma_unmap_addr(tx_buffer
, dma
),
45 dma_unmap_len(tx_buffer
, len
),
49 tx_buffer
->next_to_watch
= NULL
;
50 tx_buffer
->skb
= NULL
;
51 dma_unmap_len_set(tx_buffer
, len
, 0);
52 /* tx_buffer must be completely set up in the transmit path */
56 * iavf_clean_tx_ring - Free any empty Tx buffers
57 * @tx_ring: ring to be cleaned
59 static void iavf_clean_tx_ring(struct iavf_ring
*tx_ring
)
61 unsigned long bi_size
;
64 /* ring already cleared, nothing to do */
68 /* Free all the Tx ring sk_buffs */
69 for (i
= 0; i
< tx_ring
->count
; i
++)
70 iavf_unmap_and_free_tx_resource(tx_ring
, &tx_ring
->tx_bi
[i
]);
72 bi_size
= sizeof(struct iavf_tx_buffer
) * tx_ring
->count
;
73 memset(tx_ring
->tx_bi
, 0, bi_size
);
75 /* Zero out the descriptor ring */
76 memset(tx_ring
->desc
, 0, tx_ring
->size
);
78 tx_ring
->next_to_use
= 0;
79 tx_ring
->next_to_clean
= 0;
84 /* cleanup Tx queue statistics */
85 netdev_tx_reset_queue(txring_txq(tx_ring
));
89 * iavf_free_tx_resources - Free Tx resources per queue
90 * @tx_ring: Tx descriptor ring for a specific queue
92 * Free all transmit software resources
94 void iavf_free_tx_resources(struct iavf_ring
*tx_ring
)
96 iavf_clean_tx_ring(tx_ring
);
97 kfree(tx_ring
->tx_bi
);
98 tx_ring
->tx_bi
= NULL
;
101 dma_free_coherent(tx_ring
->dev
, tx_ring
->size
,
102 tx_ring
->desc
, tx_ring
->dma
);
103 tx_ring
->desc
= NULL
;
108 * iavf_get_tx_pending - how many Tx descriptors not processed
109 * @ring: the ring of descriptors
110 * @in_sw: is tx_pending being checked in SW or HW
112 * Since there is no access to the ring head register
113 * in XL710, we need to use our local copies
115 static u32
iavf_get_tx_pending(struct iavf_ring
*ring
, bool in_sw
)
119 /* underlying hardware might not allow access and/or always return
120 * 0 for the head/tail registers so just use the cached values
122 head
= ring
->next_to_clean
;
123 tail
= ring
->next_to_use
;
126 return (head
< tail
) ?
127 tail
- head
: (tail
+ ring
->count
- head
);
133 * iavf_force_wb - Issue SW Interrupt so HW does a wb
134 * @vsi: the VSI we care about
135 * @q_vector: the vector on which to force writeback
137 static void iavf_force_wb(struct iavf_vsi
*vsi
, struct iavf_q_vector
*q_vector
)
139 u32 val
= IAVF_VFINT_DYN_CTLN1_INTENA_MASK
|
140 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK
| /* set noitr */
141 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK
|
142 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
143 /* allow 00 to be written to the index */;
146 IAVF_VFINT_DYN_CTLN1(q_vector
->reg_idx
),
151 * iavf_detect_recover_hung - Function to detect and recover hung_queues
152 * @vsi: pointer to vsi struct with tx queues
154 * VSI has netdev and netdev has TX queues. This function is to check each of
155 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
157 void iavf_detect_recover_hung(struct iavf_vsi
*vsi
)
159 struct iavf_ring
*tx_ring
= NULL
;
160 struct net_device
*netdev
;
167 if (test_bit(__IAVF_VSI_DOWN
, vsi
->state
))
170 netdev
= vsi
->netdev
;
174 if (!netif_carrier_ok(netdev
))
177 for (i
= 0; i
< vsi
->back
->num_active_queues
; i
++) {
178 tx_ring
= &vsi
->back
->tx_rings
[i
];
179 if (tx_ring
&& tx_ring
->desc
) {
180 /* If packet counter has not changed the queue is
181 * likely stalled, so force an interrupt for this
184 * prev_pkt_ctr would be negative if there was no
187 packets
= tx_ring
->stats
.packets
& INT_MAX
;
188 if (tx_ring
->prev_pkt_ctr
== packets
) {
189 iavf_force_wb(vsi
, tx_ring
->q_vector
);
193 /* Memory barrier between read of packet count and call
194 * to iavf_get_tx_pending()
197 tx_ring
->prev_pkt_ctr
=
198 iavf_get_tx_pending(tx_ring
, true) ? packets
: -1;
206 * iavf_clean_tx_irq - Reclaim resources after transmit completes
207 * @vsi: the VSI we care about
208 * @tx_ring: Tx ring to clean
209 * @napi_budget: Used to determine if we are in netpoll
211 * Returns true if there's any budget left (e.g. the clean is finished)
213 static bool iavf_clean_tx_irq(struct iavf_vsi
*vsi
,
214 struct iavf_ring
*tx_ring
, int napi_budget
)
216 int i
= tx_ring
->next_to_clean
;
217 struct iavf_tx_buffer
*tx_buf
;
218 struct iavf_tx_desc
*tx_desc
;
219 unsigned int total_bytes
= 0, total_packets
= 0;
220 unsigned int budget
= IAVF_DEFAULT_IRQ_WORK
;
222 tx_buf
= &tx_ring
->tx_bi
[i
];
223 tx_desc
= IAVF_TX_DESC(tx_ring
, i
);
227 struct iavf_tx_desc
*eop_desc
= tx_buf
->next_to_watch
;
229 /* if next_to_watch is not set then there is no work pending */
233 /* prevent any other reads prior to eop_desc */
236 iavf_trace(clean_tx_irq
, tx_ring
, tx_desc
, tx_buf
);
237 /* if the descriptor isn't done, no work yet to do */
238 if (!(eop_desc
->cmd_type_offset_bsz
&
239 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE
)))
242 /* clear next_to_watch to prevent false hangs */
243 tx_buf
->next_to_watch
= NULL
;
245 /* update the statistics for this packet */
246 total_bytes
+= tx_buf
->bytecount
;
247 total_packets
+= tx_buf
->gso_segs
;
250 napi_consume_skb(tx_buf
->skb
, napi_budget
);
252 /* unmap skb header data */
253 dma_unmap_single(tx_ring
->dev
,
254 dma_unmap_addr(tx_buf
, dma
),
255 dma_unmap_len(tx_buf
, len
),
258 /* clear tx_buffer data */
260 dma_unmap_len_set(tx_buf
, len
, 0);
262 /* unmap remaining buffers */
263 while (tx_desc
!= eop_desc
) {
264 iavf_trace(clean_tx_irq_unmap
,
265 tx_ring
, tx_desc
, tx_buf
);
272 tx_buf
= tx_ring
->tx_bi
;
273 tx_desc
= IAVF_TX_DESC(tx_ring
, 0);
276 /* unmap any remaining paged data */
277 if (dma_unmap_len(tx_buf
, len
)) {
278 dma_unmap_page(tx_ring
->dev
,
279 dma_unmap_addr(tx_buf
, dma
),
280 dma_unmap_len(tx_buf
, len
),
282 dma_unmap_len_set(tx_buf
, len
, 0);
286 /* move us one more past the eop_desc for start of next pkt */
292 tx_buf
= tx_ring
->tx_bi
;
293 tx_desc
= IAVF_TX_DESC(tx_ring
, 0);
298 /* update budget accounting */
300 } while (likely(budget
));
303 tx_ring
->next_to_clean
= i
;
304 u64_stats_update_begin(&tx_ring
->syncp
);
305 tx_ring
->stats
.bytes
+= total_bytes
;
306 tx_ring
->stats
.packets
+= total_packets
;
307 u64_stats_update_end(&tx_ring
->syncp
);
308 tx_ring
->q_vector
->tx
.total_bytes
+= total_bytes
;
309 tx_ring
->q_vector
->tx
.total_packets
+= total_packets
;
311 if (tx_ring
->flags
& IAVF_TXR_FLAGS_WB_ON_ITR
) {
312 /* check to see if there are < 4 descriptors
313 * waiting to be written back, then kick the hardware to force
314 * them to be written back in case we stay in NAPI.
315 * In this mode on X722 we do not enable Interrupt.
317 unsigned int j
= iavf_get_tx_pending(tx_ring
, false);
320 ((j
/ WB_STRIDE
) == 0) && (j
> 0) &&
321 !test_bit(__IAVF_VSI_DOWN
, vsi
->state
) &&
322 (IAVF_DESC_UNUSED(tx_ring
) != tx_ring
->count
))
323 tx_ring
->flags
|= IAVF_TXR_FLAGS_ARM_WB
;
326 /* notify netdev of completed buffers */
327 netdev_tx_completed_queue(txring_txq(tx_ring
),
328 total_packets
, total_bytes
);
330 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
331 if (unlikely(total_packets
&& netif_carrier_ok(tx_ring
->netdev
) &&
332 (IAVF_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
))) {
333 /* Make sure that anybody stopping the queue after this
334 * sees the new next_to_clean.
337 if (__netif_subqueue_stopped(tx_ring
->netdev
,
338 tx_ring
->queue_index
) &&
339 !test_bit(__IAVF_VSI_DOWN
, vsi
->state
)) {
340 netif_wake_subqueue(tx_ring
->netdev
,
341 tx_ring
->queue_index
);
342 ++tx_ring
->tx_stats
.restart_queue
;
350 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
351 * @vsi: the VSI we care about
352 * @q_vector: the vector on which to enable writeback
355 static void iavf_enable_wb_on_itr(struct iavf_vsi
*vsi
,
356 struct iavf_q_vector
*q_vector
)
358 u16 flags
= q_vector
->tx
.ring
[0].flags
;
361 if (!(flags
& IAVF_TXR_FLAGS_WB_ON_ITR
))
364 if (q_vector
->arm_wb_state
)
367 val
= IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK
|
368 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK
; /* set noitr */
371 IAVF_VFINT_DYN_CTLN1(q_vector
->reg_idx
), val
);
372 q_vector
->arm_wb_state
= true;
375 static bool iavf_container_is_rx(struct iavf_q_vector
*q_vector
,
376 struct iavf_ring_container
*rc
)
378 return &q_vector
->rx
== rc
;
381 #define IAVF_AIM_MULTIPLIER_100G 2560
382 #define IAVF_AIM_MULTIPLIER_50G 1280
383 #define IAVF_AIM_MULTIPLIER_40G 1024
384 #define IAVF_AIM_MULTIPLIER_20G 512
385 #define IAVF_AIM_MULTIPLIER_10G 256
386 #define IAVF_AIM_MULTIPLIER_1G 32
388 static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps
)
390 switch (speed_mbps
) {
392 return IAVF_AIM_MULTIPLIER_100G
;
394 return IAVF_AIM_MULTIPLIER_50G
;
396 return IAVF_AIM_MULTIPLIER_40G
;
399 return IAVF_AIM_MULTIPLIER_20G
;
402 return IAVF_AIM_MULTIPLIER_10G
;
405 return IAVF_AIM_MULTIPLIER_1G
;
410 iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl
)
412 switch (speed_virtchnl
) {
413 case VIRTCHNL_LINK_SPEED_40GB
:
414 return IAVF_AIM_MULTIPLIER_40G
;
415 case VIRTCHNL_LINK_SPEED_25GB
:
416 case VIRTCHNL_LINK_SPEED_20GB
:
417 return IAVF_AIM_MULTIPLIER_20G
;
418 case VIRTCHNL_LINK_SPEED_10GB
:
420 return IAVF_AIM_MULTIPLIER_10G
;
421 case VIRTCHNL_LINK_SPEED_1GB
:
422 case VIRTCHNL_LINK_SPEED_100MB
:
423 return IAVF_AIM_MULTIPLIER_1G
;
427 static unsigned int iavf_itr_divisor(struct iavf_adapter
*adapter
)
429 if (ADV_LINK_SUPPORT(adapter
))
430 return IAVF_ITR_ADAPTIVE_MIN_INC
*
431 iavf_mbps_itr_multiplier(adapter
->link_speed_mbps
);
433 return IAVF_ITR_ADAPTIVE_MIN_INC
*
434 iavf_virtchnl_itr_multiplier(adapter
->link_speed
);
438 * iavf_update_itr - update the dynamic ITR value based on statistics
439 * @q_vector: structure containing interrupt and ring information
440 * @rc: structure containing ring performance data
442 * Stores a new ITR value based on packets and byte
443 * counts during the last interrupt. The advantage of per interrupt
444 * computation is faster updates and more accurate ITR for the current
445 * traffic pattern. Constants in this function were computed
446 * based on theoretical maximum wire speed and thresholds were set based
447 * on testing data as well as attempting to minimize response time
448 * while increasing bulk throughput.
450 static void iavf_update_itr(struct iavf_q_vector
*q_vector
,
451 struct iavf_ring_container
*rc
)
453 unsigned int avg_wire_size
, packets
, bytes
, itr
;
454 unsigned long next_update
= jiffies
;
456 /* If we don't have any rings just leave ourselves set for maximum
457 * possible latency so we take ourselves out of the equation.
459 if (!rc
->ring
|| !ITR_IS_DYNAMIC(rc
->ring
->itr_setting
))
462 /* For Rx we want to push the delay up and default to low latency.
463 * for Tx we want to pull the delay down and default to high latency.
465 itr
= iavf_container_is_rx(q_vector
, rc
) ?
466 IAVF_ITR_ADAPTIVE_MIN_USECS
| IAVF_ITR_ADAPTIVE_LATENCY
:
467 IAVF_ITR_ADAPTIVE_MAX_USECS
| IAVF_ITR_ADAPTIVE_LATENCY
;
469 /* If we didn't update within up to 1 - 2 jiffies we can assume
470 * that either packets are coming in so slow there hasn't been
471 * any work, or that there is so much work that NAPI is dealing
472 * with interrupt moderation and we don't need to do anything.
474 if (time_after(next_update
, rc
->next_update
))
477 /* If itr_countdown is set it means we programmed an ITR within
478 * the last 4 interrupt cycles. This has a side effect of us
479 * potentially firing an early interrupt. In order to work around
480 * this we need to throw out any data received for a few
481 * interrupts following the update.
483 if (q_vector
->itr_countdown
) {
484 itr
= rc
->target_itr
;
488 packets
= rc
->total_packets
;
489 bytes
= rc
->total_bytes
;
491 if (iavf_container_is_rx(q_vector
, rc
)) {
492 /* If Rx there are 1 to 4 packets and bytes are less than
493 * 9000 assume insufficient data to use bulk rate limiting
494 * approach unless Tx is already in bulk rate limiting. We
495 * are likely latency driven.
497 if (packets
&& packets
< 4 && bytes
< 9000 &&
498 (q_vector
->tx
.target_itr
& IAVF_ITR_ADAPTIVE_LATENCY
)) {
499 itr
= IAVF_ITR_ADAPTIVE_LATENCY
;
502 } else if (packets
< 4) {
503 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
504 * bulk mode and we are receiving 4 or fewer packets just
505 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
506 * that the Rx can relax.
508 if (rc
->target_itr
== IAVF_ITR_ADAPTIVE_MAX_USECS
&&
509 (q_vector
->rx
.target_itr
& IAVF_ITR_MASK
) ==
510 IAVF_ITR_ADAPTIVE_MAX_USECS
)
512 } else if (packets
> 32) {
513 /* If we have processed over 32 packets in a single interrupt
514 * for Tx assume we need to switch over to "bulk" mode.
516 rc
->target_itr
&= ~IAVF_ITR_ADAPTIVE_LATENCY
;
519 /* We have no packets to actually measure against. This means
520 * either one of the other queues on this vector is active or
521 * we are a Tx queue doing TSO with too high of an interrupt rate.
523 * Between 4 and 56 we can assume that our current interrupt delay
524 * is only slightly too low. As such we should increase it by a small
528 itr
= rc
->target_itr
+ IAVF_ITR_ADAPTIVE_MIN_INC
;
529 if ((itr
& IAVF_ITR_MASK
) > IAVF_ITR_ADAPTIVE_MAX_USECS
) {
530 itr
&= IAVF_ITR_ADAPTIVE_LATENCY
;
531 itr
+= IAVF_ITR_ADAPTIVE_MAX_USECS
;
536 if (packets
<= 256) {
537 itr
= min(q_vector
->tx
.current_itr
, q_vector
->rx
.current_itr
);
538 itr
&= IAVF_ITR_MASK
;
540 /* Between 56 and 112 is our "goldilocks" zone where we are
541 * working out "just right". Just report that our current
542 * ITR is good for us.
547 /* If packet count is 128 or greater we are likely looking
548 * at a slight overrun of the delay we want. Try halving
549 * our delay to see if that will cut the number of packets
550 * in half per interrupt.
553 itr
&= IAVF_ITR_MASK
;
554 if (itr
< IAVF_ITR_ADAPTIVE_MIN_USECS
)
555 itr
= IAVF_ITR_ADAPTIVE_MIN_USECS
;
560 /* The paths below assume we are dealing with a bulk ITR since
561 * number of packets is greater than 256. We are just going to have
562 * to compute a value and try to bring the count under control,
563 * though for smaller packet sizes there isn't much we can do as
564 * NAPI polling will likely be kicking in sooner rather than later.
566 itr
= IAVF_ITR_ADAPTIVE_BULK
;
569 /* If packet counts are 256 or greater we can assume we have a gross
570 * overestimation of what the rate should be. Instead of trying to fine
571 * tune it just use the formula below to try and dial in an exact value
572 * give the current packet size of the frame.
574 avg_wire_size
= bytes
/ packets
;
576 /* The following is a crude approximation of:
577 * wmem_default / (size + overhead) = desired_pkts_per_int
578 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
579 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
581 * Assuming wmem_default is 212992 and overhead is 640 bytes per
582 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
585 * (170 * (size + 24)) / (size + 640) = ITR
587 * We first do some math on the packet size and then finally bitshift
588 * by 8 after rounding up. We also have to account for PCIe link speed
589 * difference as ITR scales based on this.
591 if (avg_wire_size
<= 60) {
592 /* Start at 250k ints/sec */
593 avg_wire_size
= 4096;
594 } else if (avg_wire_size
<= 380) {
595 /* 250K ints/sec to 60K ints/sec */
597 avg_wire_size
+= 1696;
598 } else if (avg_wire_size
<= 1084) {
599 /* 60K ints/sec to 36K ints/sec */
601 avg_wire_size
+= 11452;
602 } else if (avg_wire_size
<= 1980) {
603 /* 36K ints/sec to 30K ints/sec */
605 avg_wire_size
+= 22420;
607 /* plateau at a limit of 30K ints/sec */
608 avg_wire_size
= 32256;
611 /* If we are in low latency mode halve our delay which doubles the
612 * rate to somewhere between 100K to 16K ints/sec
614 if (itr
& IAVF_ITR_ADAPTIVE_LATENCY
)
617 /* Resultant value is 256 times larger than it needs to be. This
618 * gives us room to adjust the value as needed to either increase
619 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
621 * Use addition as we have already recorded the new latency flag
624 itr
+= DIV_ROUND_UP(avg_wire_size
,
625 iavf_itr_divisor(q_vector
->adapter
)) *
626 IAVF_ITR_ADAPTIVE_MIN_INC
;
628 if ((itr
& IAVF_ITR_MASK
) > IAVF_ITR_ADAPTIVE_MAX_USECS
) {
629 itr
&= IAVF_ITR_ADAPTIVE_LATENCY
;
630 itr
+= IAVF_ITR_ADAPTIVE_MAX_USECS
;
634 /* write back value */
635 rc
->target_itr
= itr
;
637 /* next update should occur within next jiffy */
638 rc
->next_update
= next_update
+ 1;
641 rc
->total_packets
= 0;
645 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
646 * @tx_ring: the tx ring to set up
648 * Return 0 on success, negative on error
650 int iavf_setup_tx_descriptors(struct iavf_ring
*tx_ring
)
652 struct device
*dev
= tx_ring
->dev
;
658 /* warn if we are about to overwrite the pointer */
659 WARN_ON(tx_ring
->tx_bi
);
660 bi_size
= sizeof(struct iavf_tx_buffer
) * tx_ring
->count
;
661 tx_ring
->tx_bi
= kzalloc(bi_size
, GFP_KERNEL
);
665 /* round up to nearest 4K */
666 tx_ring
->size
= tx_ring
->count
* sizeof(struct iavf_tx_desc
);
667 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
668 tx_ring
->desc
= dma_alloc_coherent(dev
, tx_ring
->size
,
669 &tx_ring
->dma
, GFP_KERNEL
);
670 if (!tx_ring
->desc
) {
671 dev_info(dev
, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
676 tx_ring
->next_to_use
= 0;
677 tx_ring
->next_to_clean
= 0;
678 tx_ring
->prev_pkt_ctr
= -1;
682 kfree(tx_ring
->tx_bi
);
683 tx_ring
->tx_bi
= NULL
;
688 * iavf_clean_rx_ring - Free Rx buffers
689 * @rx_ring: ring to be cleaned
691 static void iavf_clean_rx_ring(struct iavf_ring
*rx_ring
)
693 /* ring already cleared, nothing to do */
694 if (!rx_ring
->rx_fqes
)
698 dev_kfree_skb(rx_ring
->skb
);
702 /* Free all the Rx ring buffers */
703 for (u32 i
= rx_ring
->next_to_clean
; i
!= rx_ring
->next_to_use
; ) {
704 const struct libeth_fqe
*rx_fqes
= &rx_ring
->rx_fqes
[i
];
706 page_pool_put_full_page(rx_ring
->pp
, rx_fqes
->page
, false);
708 if (unlikely(++i
== rx_ring
->count
))
712 rx_ring
->next_to_clean
= 0;
713 rx_ring
->next_to_use
= 0;
717 * iavf_free_rx_resources - Free Rx resources
718 * @rx_ring: ring to clean the resources from
720 * Free all receive software resources
722 void iavf_free_rx_resources(struct iavf_ring
*rx_ring
)
724 struct libeth_fq fq
= {
725 .fqes
= rx_ring
->rx_fqes
,
729 iavf_clean_rx_ring(rx_ring
);
732 dma_free_coherent(rx_ring
->pp
->p
.dev
, rx_ring
->size
,
733 rx_ring
->desc
, rx_ring
->dma
);
734 rx_ring
->desc
= NULL
;
737 libeth_rx_fq_destroy(&fq
);
738 rx_ring
->rx_fqes
= NULL
;
743 * iavf_setup_rx_descriptors - Allocate Rx descriptors
744 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
746 * Returns 0 on success, negative on failure
748 int iavf_setup_rx_descriptors(struct iavf_ring
*rx_ring
)
750 struct libeth_fq fq
= {
751 .count
= rx_ring
->count
,
752 .buf_len
= LIBIE_MAX_RX_BUF_LEN
,
757 ret
= libeth_rx_fq_create(&fq
, &rx_ring
->q_vector
->napi
);
762 rx_ring
->rx_fqes
= fq
.fqes
;
763 rx_ring
->truesize
= fq
.truesize
;
764 rx_ring
->rx_buf_len
= fq
.buf_len
;
766 u64_stats_init(&rx_ring
->syncp
);
768 /* Round up to nearest 4K */
769 rx_ring
->size
= rx_ring
->count
* sizeof(union iavf_32byte_rx_desc
);
770 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
771 rx_ring
->desc
= dma_alloc_coherent(fq
.pp
->p
.dev
, rx_ring
->size
,
772 &rx_ring
->dma
, GFP_KERNEL
);
774 if (!rx_ring
->desc
) {
775 dev_info(fq
.pp
->p
.dev
, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
780 rx_ring
->next_to_clean
= 0;
781 rx_ring
->next_to_use
= 0;
786 libeth_rx_fq_destroy(&fq
);
787 rx_ring
->rx_fqes
= NULL
;
794 * iavf_release_rx_desc - Store the new tail and head values
795 * @rx_ring: ring to bump
796 * @val: new head index
798 static void iavf_release_rx_desc(struct iavf_ring
*rx_ring
, u32 val
)
800 rx_ring
->next_to_use
= val
;
802 /* Force memory writes to complete before letting h/w
803 * know there are new descriptors to fetch. (Only
804 * applicable for weak-ordered memory model archs,
808 writel(val
, rx_ring
->tail
);
812 * iavf_receive_skb - Send a completed packet up the stack
813 * @rx_ring: rx ring in play
814 * @skb: packet to send up
815 * @vlan_tag: vlan tag for packet
817 static void iavf_receive_skb(struct iavf_ring
*rx_ring
,
818 struct sk_buff
*skb
, u16 vlan_tag
)
820 struct iavf_q_vector
*q_vector
= rx_ring
->q_vector
;
822 if ((rx_ring
->netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
823 (vlan_tag
& VLAN_VID_MASK
))
824 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlan_tag
);
825 else if ((rx_ring
->netdev
->features
& NETIF_F_HW_VLAN_STAG_RX
) &&
826 vlan_tag
& VLAN_VID_MASK
)
827 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021AD
), vlan_tag
);
829 napi_gro_receive(&q_vector
->napi
, skb
);
833 * iavf_alloc_rx_buffers - Replace used receive buffers
834 * @rx_ring: ring to place buffers on
835 * @cleaned_count: number of buffers to replace
837 * Returns false if all allocations were successful, true if any fail
839 bool iavf_alloc_rx_buffers(struct iavf_ring
*rx_ring
, u16 cleaned_count
)
841 const struct libeth_fq_fp fq
= {
843 .fqes
= rx_ring
->rx_fqes
,
844 .truesize
= rx_ring
->truesize
,
845 .count
= rx_ring
->count
,
847 u16 ntu
= rx_ring
->next_to_use
;
848 union iavf_rx_desc
*rx_desc
;
850 /* do nothing if no valid netdev defined */
851 if (!rx_ring
->netdev
|| !cleaned_count
)
854 rx_desc
= IAVF_RX_DESC(rx_ring
, ntu
);
859 addr
= libeth_rx_alloc(&fq
, ntu
);
860 if (addr
== DMA_MAPPING_ERROR
)
863 /* Refresh the desc even if buffer_addrs didn't change
864 * because each write-back erases this info.
866 rx_desc
->read
.pkt_addr
= cpu_to_le64(addr
);
870 if (unlikely(ntu
== rx_ring
->count
)) {
871 rx_desc
= IAVF_RX_DESC(rx_ring
, 0);
875 /* clear the status bits for the next_to_use descriptor */
876 rx_desc
->wb
.qword1
.status_error_len
= 0;
879 } while (cleaned_count
);
881 if (rx_ring
->next_to_use
!= ntu
)
882 iavf_release_rx_desc(rx_ring
, ntu
);
887 if (rx_ring
->next_to_use
!= ntu
)
888 iavf_release_rx_desc(rx_ring
, ntu
);
890 rx_ring
->rx_stats
.alloc_page_failed
++;
892 /* make sure to come back via polling to try again after
899 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
900 * @vsi: the VSI we care about
901 * @skb: skb currently being received and modified
902 * @rx_desc: the receive descriptor
904 static void iavf_rx_checksum(struct iavf_vsi
*vsi
,
906 union iavf_rx_desc
*rx_desc
)
908 struct libeth_rx_pt decoded
;
909 u32 rx_error
, rx_status
;
914 skb
->ip_summed
= CHECKSUM_NONE
;
916 qword
= le64_to_cpu(rx_desc
->wb
.qword1
.status_error_len
);
917 ptype
= FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK
, qword
);
919 decoded
= libie_rx_pt_parse(ptype
);
920 if (!libeth_rx_pt_has_checksum(vsi
->netdev
, decoded
))
923 rx_error
= FIELD_GET(IAVF_RXD_QW1_ERROR_MASK
, qword
);
924 rx_status
= FIELD_GET(IAVF_RXD_QW1_STATUS_MASK
, qword
);
926 /* did the hardware decode the packet and checksum? */
927 if (!(rx_status
& BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT
)))
930 ipv4
= libeth_rx_pt_get_ip_ver(decoded
) == LIBETH_RX_PT_OUTER_IPV4
;
931 ipv6
= libeth_rx_pt_get_ip_ver(decoded
) == LIBETH_RX_PT_OUTER_IPV6
;
934 (rx_error
& (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT
) |
935 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT
))))
938 /* likely incorrect csum if alternate IP extension headers found */
940 rx_status
& BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT
))
941 /* don't increment checksum err here, non-fatal err */
944 /* there was some L4 error, count error and punt packet to the stack */
945 if (rx_error
& BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT
))
948 /* handle packets that were not able to be checksummed due
949 * to arrival speed, in this case the stack can compute
952 if (rx_error
& BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT
))
955 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
959 vsi
->back
->hw_csum_rx_error
++;
963 * iavf_rx_hash - set the hash value in the skb
964 * @ring: descriptor ring
965 * @rx_desc: specific descriptor
966 * @skb: skb currently being received and modified
967 * @rx_ptype: Rx packet type
969 static void iavf_rx_hash(struct iavf_ring
*ring
,
970 union iavf_rx_desc
*rx_desc
,
974 struct libeth_rx_pt decoded
;
976 const __le64 rss_mask
=
977 cpu_to_le64((u64
)IAVF_RX_DESC_FLTSTAT_RSS_HASH
<<
978 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT
);
980 decoded
= libie_rx_pt_parse(rx_ptype
);
981 if (!libeth_rx_pt_has_hash(ring
->netdev
, decoded
))
984 if ((rx_desc
->wb
.qword1
.status_error_len
& rss_mask
) == rss_mask
) {
985 hash
= le32_to_cpu(rx_desc
->wb
.qword0
.hi_dword
.rss
);
986 libeth_rx_pt_set_hash(skb
, hash
, decoded
);
991 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
992 * @rx_ring: rx descriptor ring packet is being transacted on
993 * @rx_desc: pointer to the EOP Rx descriptor
994 * @skb: pointer to current skb being populated
995 * @rx_ptype: the packet type decoded by hardware
997 * This function checks the ring, descriptor, and packet information in
998 * order to populate the hash, checksum, VLAN, protocol, and
999 * other fields within the skb.
1002 iavf_process_skb_fields(struct iavf_ring
*rx_ring
,
1003 union iavf_rx_desc
*rx_desc
, struct sk_buff
*skb
,
1006 iavf_rx_hash(rx_ring
, rx_desc
, skb
, rx_ptype
);
1008 iavf_rx_checksum(rx_ring
->vsi
, skb
, rx_desc
);
1010 skb_record_rx_queue(skb
, rx_ring
->queue_index
);
1012 /* modifies the skb - consumes the enet header */
1013 skb
->protocol
= eth_type_trans(skb
, rx_ring
->netdev
);
1017 * iavf_cleanup_headers - Correct empty headers
1018 * @rx_ring: rx descriptor ring packet is being transacted on
1019 * @skb: pointer to current skb being fixed
1021 * Also address the case where we are pulling data in on pages only
1022 * and as such no data is present in the skb header.
1024 * In addition if skb is not at least 60 bytes we need to pad it so that
1025 * it is large enough to qualify as a valid Ethernet frame.
1027 * Returns true if an error was encountered and skb was freed.
1029 static bool iavf_cleanup_headers(struct iavf_ring
*rx_ring
, struct sk_buff
*skb
)
1031 /* if eth_skb_pad returns an error the skb was freed */
1032 if (eth_skb_pad(skb
))
1039 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1040 * @skb: sk_buff to place the data into
1041 * @rx_buffer: buffer containing page to add
1042 * @size: packet length from rx_desc
1044 * This function will add the data contained in rx_buffer->page to the skb.
1045 * It will just attach the page as a frag to the skb.
1047 * The function will then update the page offset.
1049 static void iavf_add_rx_frag(struct sk_buff
*skb
,
1050 const struct libeth_fqe
*rx_buffer
,
1053 u32 hr
= rx_buffer
->page
->pp
->p
.offset
;
1055 skb_add_rx_frag(skb
, skb_shinfo(skb
)->nr_frags
, rx_buffer
->page
,
1056 rx_buffer
->offset
+ hr
, size
, rx_buffer
->truesize
);
1060 * iavf_build_skb - Build skb around an existing buffer
1061 * @rx_buffer: Rx buffer to pull data from
1062 * @size: size of buffer to add to skb
1064 * This function builds an skb around an existing Rx buffer, taking care
1065 * to set up the skb correctly and avoid any memcpy overhead.
1067 static struct sk_buff
*iavf_build_skb(const struct libeth_fqe
*rx_buffer
,
1070 u32 hr
= rx_buffer
->page
->pp
->p
.offset
;
1071 struct sk_buff
*skb
;
1074 /* prefetch first cache line of first page */
1075 va
= page_address(rx_buffer
->page
) + rx_buffer
->offset
;
1076 net_prefetch(va
+ hr
);
1078 /* build an skb around the page buffer */
1079 skb
= napi_build_skb(va
, rx_buffer
->truesize
);
1083 skb_mark_for_recycle(skb
);
1085 /* update pointers within the skb to store the data */
1086 skb_reserve(skb
, hr
);
1087 __skb_put(skb
, size
);
1093 * iavf_is_non_eop - process handling of non-EOP buffers
1094 * @rx_ring: Rx ring being processed
1095 * @rx_desc: Rx descriptor for current buffer
1096 * @skb: Current socket buffer containing buffer in progress
1098 * This function updates next to clean. If the buffer is an EOP buffer
1099 * this function exits returning false, otherwise it will place the
1100 * sk_buff in the next buffer to be chained and return true indicating
1101 * that this is in fact a non-EOP buffer.
1103 static bool iavf_is_non_eop(struct iavf_ring
*rx_ring
,
1104 union iavf_rx_desc
*rx_desc
,
1105 struct sk_buff
*skb
)
1107 u32 ntc
= rx_ring
->next_to_clean
+ 1;
1109 /* fetch, update, and store next to clean */
1110 ntc
= (ntc
< rx_ring
->count
) ? ntc
: 0;
1111 rx_ring
->next_to_clean
= ntc
;
1113 prefetch(IAVF_RX_DESC(rx_ring
, ntc
));
1115 /* if we are the last buffer then there is nothing else to do */
1116 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1117 if (likely(iavf_test_staterr(rx_desc
, IAVF_RXD_EOF
)))
1120 rx_ring
->rx_stats
.non_eop_descs
++;
1126 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1127 * @rx_ring: rx descriptor ring to transact packets on
1128 * @budget: Total limit on number of packets to process
1130 * This function provides a "bounce buffer" approach to Rx interrupt
1131 * processing. The advantage to this is that on systems that have
1132 * expensive overhead for IOMMU access this provides a means of avoiding
1133 * it by maintaining the mapping of the page to the system.
1135 * Returns amount of work completed
1137 static int iavf_clean_rx_irq(struct iavf_ring
*rx_ring
, int budget
)
1139 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1140 struct sk_buff
*skb
= rx_ring
->skb
;
1141 u16 cleaned_count
= IAVF_DESC_UNUSED(rx_ring
);
1142 bool failure
= false;
1144 while (likely(total_rx_packets
< (unsigned int)budget
)) {
1145 struct libeth_fqe
*rx_buffer
;
1146 union iavf_rx_desc
*rx_desc
;
1152 /* return some buffers to hardware, one at a time is too slow */
1153 if (cleaned_count
>= IAVF_RX_BUFFER_WRITE
) {
1154 failure
= failure
||
1155 iavf_alloc_rx_buffers(rx_ring
, cleaned_count
);
1159 rx_desc
= IAVF_RX_DESC(rx_ring
, rx_ring
->next_to_clean
);
1161 /* status_error_len will always be zero for unused descriptors
1162 * because it's cleared in cleanup, and overlaps with hdr_addr
1163 * which is always zero because packet split isn't used, if the
1164 * hardware wrote DD then the length will be non-zero
1166 qword
= le64_to_cpu(rx_desc
->wb
.qword1
.status_error_len
);
1168 /* This memory barrier is needed to keep us from reading
1169 * any other fields out of the rx_desc until we have
1170 * verified the descriptor has been written back.
1173 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1174 if (!iavf_test_staterr(rx_desc
, IAVF_RXD_DD
))
1177 size
= FIELD_GET(IAVF_RXD_QW1_LENGTH_PBUF_MASK
, qword
);
1179 iavf_trace(clean_rx_irq
, rx_ring
, rx_desc
, skb
);
1181 rx_buffer
= &rx_ring
->rx_fqes
[rx_ring
->next_to_clean
];
1182 if (!libeth_rx_sync_for_cpu(rx_buffer
, size
))
1185 /* retrieve a buffer from the ring */
1187 iavf_add_rx_frag(skb
, rx_buffer
, size
);
1189 skb
= iavf_build_skb(rx_buffer
, size
);
1191 /* exit if we failed to retrieve a buffer */
1193 rx_ring
->rx_stats
.alloc_buff_failed
++;
1200 if (iavf_is_non_eop(rx_ring
, rx_desc
, skb
) || unlikely(!skb
))
1203 /* ERR_MASK will only have valid bits if EOP set, and
1204 * what we are doing here is actually checking
1205 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1208 if (unlikely(iavf_test_staterr(rx_desc
, BIT(IAVF_RXD_QW1_ERROR_SHIFT
)))) {
1209 dev_kfree_skb_any(skb
);
1214 if (iavf_cleanup_headers(rx_ring
, skb
)) {
1219 /* probably a little skewed due to removing CRC */
1220 total_rx_bytes
+= skb
->len
;
1222 qword
= le64_to_cpu(rx_desc
->wb
.qword1
.status_error_len
);
1223 rx_ptype
= FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK
, qword
);
1225 /* populate checksum, VLAN, and protocol */
1226 iavf_process_skb_fields(rx_ring
, rx_desc
, skb
, rx_ptype
);
1228 if (qword
& BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT
) &&
1229 rx_ring
->flags
& IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1
)
1230 vlan_tag
= le16_to_cpu(rx_desc
->wb
.qword0
.lo_dword
.l2tag1
);
1231 if (rx_desc
->wb
.qword2
.ext_status
&
1232 cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT
)) &&
1233 rx_ring
->flags
& IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2
)
1234 vlan_tag
= le16_to_cpu(rx_desc
->wb
.qword2
.l2tag2_2
);
1236 iavf_trace(clean_rx_irq_rx
, rx_ring
, rx_desc
, skb
);
1237 iavf_receive_skb(rx_ring
, skb
, vlan_tag
);
1240 /* update budget accounting */
1246 u64_stats_update_begin(&rx_ring
->syncp
);
1247 rx_ring
->stats
.packets
+= total_rx_packets
;
1248 rx_ring
->stats
.bytes
+= total_rx_bytes
;
1249 u64_stats_update_end(&rx_ring
->syncp
);
1250 rx_ring
->q_vector
->rx
.total_packets
+= total_rx_packets
;
1251 rx_ring
->q_vector
->rx
.total_bytes
+= total_rx_bytes
;
1253 /* guarantee a trip back through this routine if there was a failure */
1254 return failure
? budget
: (int)total_rx_packets
;
1257 static inline u32
iavf_buildreg_itr(const int type
, u16 itr
)
1261 /* We don't bother with setting the CLEARPBA bit as the data sheet
1262 * points out doing so is "meaningless since it was already
1263 * auto-cleared". The auto-clearing happens when the interrupt is
1266 * Hardware errata 28 for also indicates that writing to a
1267 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1268 * an event in the PBA anyway so we need to rely on the automask
1269 * to hold pending events for us until the interrupt is re-enabled
1271 * The itr value is reported in microseconds, and the register
1272 * value is recorded in 2 microsecond units. For this reason we
1273 * only need to shift by the interval shift - 1 instead of the
1276 itr
&= IAVF_ITR_MASK
;
1278 val
= IAVF_VFINT_DYN_CTLN1_INTENA_MASK
|
1279 (type
<< IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT
) |
1280 (itr
<< (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT
- 1));
1285 /* a small macro to shorten up some long lines */
1286 #define INTREG IAVF_VFINT_DYN_CTLN1
1288 /* The act of updating the ITR will cause it to immediately trigger. In order
1289 * to prevent this from throwing off adaptive update statistics we defer the
1290 * update so that it can only happen so often. So after either Tx or Rx are
1291 * updated we make the adaptive scheme wait until either the ITR completely
1292 * expires via the next_update expiration or we have been through at least
1295 #define ITR_COUNTDOWN_START 3
1298 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1299 * @vsi: the VSI we care about
1300 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1303 static void iavf_update_enable_itr(struct iavf_vsi
*vsi
,
1304 struct iavf_q_vector
*q_vector
)
1306 struct iavf_hw
*hw
= &vsi
->back
->hw
;
1309 /* These will do nothing if dynamic updates are not enabled */
1310 iavf_update_itr(q_vector
, &q_vector
->tx
);
1311 iavf_update_itr(q_vector
, &q_vector
->rx
);
1313 /* This block of logic allows us to get away with only updating
1314 * one ITR value with each interrupt. The idea is to perform a
1315 * pseudo-lazy update with the following criteria.
1317 * 1. Rx is given higher priority than Tx if both are in same state
1318 * 2. If we must reduce an ITR that is given highest priority.
1319 * 3. We then give priority to increasing ITR based on amount.
1321 if (q_vector
->rx
.target_itr
< q_vector
->rx
.current_itr
) {
1322 /* Rx ITR needs to be reduced, this is highest priority */
1323 intval
= iavf_buildreg_itr(IAVF_RX_ITR
,
1324 q_vector
->rx
.target_itr
);
1325 q_vector
->rx
.current_itr
= q_vector
->rx
.target_itr
;
1326 q_vector
->itr_countdown
= ITR_COUNTDOWN_START
;
1327 } else if ((q_vector
->tx
.target_itr
< q_vector
->tx
.current_itr
) ||
1328 ((q_vector
->rx
.target_itr
- q_vector
->rx
.current_itr
) <
1329 (q_vector
->tx
.target_itr
- q_vector
->tx
.current_itr
))) {
1330 /* Tx ITR needs to be reduced, this is second priority
1331 * Tx ITR needs to be increased more than Rx, fourth priority
1333 intval
= iavf_buildreg_itr(IAVF_TX_ITR
,
1334 q_vector
->tx
.target_itr
);
1335 q_vector
->tx
.current_itr
= q_vector
->tx
.target_itr
;
1336 q_vector
->itr_countdown
= ITR_COUNTDOWN_START
;
1337 } else if (q_vector
->rx
.current_itr
!= q_vector
->rx
.target_itr
) {
1338 /* Rx ITR needs to be increased, third priority */
1339 intval
= iavf_buildreg_itr(IAVF_RX_ITR
,
1340 q_vector
->rx
.target_itr
);
1341 q_vector
->rx
.current_itr
= q_vector
->rx
.target_itr
;
1342 q_vector
->itr_countdown
= ITR_COUNTDOWN_START
;
1344 /* No ITR update, lowest priority */
1345 intval
= iavf_buildreg_itr(IAVF_ITR_NONE
, 0);
1346 if (q_vector
->itr_countdown
)
1347 q_vector
->itr_countdown
--;
1350 if (!test_bit(__IAVF_VSI_DOWN
, vsi
->state
))
1351 wr32(hw
, INTREG(q_vector
->reg_idx
), intval
);
1355 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1356 * @napi: napi struct with our devices info in it
1357 * @budget: amount of work driver is allowed to do this pass, in packets
1359 * This function will clean all queues associated with a q_vector.
1361 * Returns the amount of work done
1363 int iavf_napi_poll(struct napi_struct
*napi
, int budget
)
1365 struct iavf_q_vector
*q_vector
=
1366 container_of(napi
, struct iavf_q_vector
, napi
);
1367 struct iavf_vsi
*vsi
= q_vector
->vsi
;
1368 struct iavf_ring
*ring
;
1369 bool clean_complete
= true;
1370 bool arm_wb
= false;
1371 int budget_per_ring
;
1374 if (test_bit(__IAVF_VSI_DOWN
, vsi
->state
)) {
1375 napi_complete(napi
);
1379 /* Since the actual Tx work is minimal, we can give the Tx a larger
1380 * budget and be more aggressive about cleaning up the Tx descriptors.
1382 iavf_for_each_ring(ring
, q_vector
->tx
) {
1383 if (!iavf_clean_tx_irq(vsi
, ring
, budget
)) {
1384 clean_complete
= false;
1387 arm_wb
|= !!(ring
->flags
& IAVF_TXR_FLAGS_ARM_WB
);
1388 ring
->flags
&= ~IAVF_TXR_FLAGS_ARM_WB
;
1391 /* Handle case where we are called by netpoll with a budget of 0 */
1395 /* We attempt to distribute budget to each Rx queue fairly, but don't
1396 * allow the budget to go below 1 because that would exit polling early.
1398 budget_per_ring
= max(budget
/q_vector
->num_ringpairs
, 1);
1400 iavf_for_each_ring(ring
, q_vector
->rx
) {
1401 int cleaned
= iavf_clean_rx_irq(ring
, budget_per_ring
);
1403 work_done
+= cleaned
;
1404 /* if we clean as many as budgeted, we must not be done */
1405 if (cleaned
>= budget_per_ring
)
1406 clean_complete
= false;
1409 /* If work not completed, return budget and polling will return */
1410 if (!clean_complete
) {
1411 int cpu_id
= smp_processor_id();
1413 /* It is possible that the interrupt affinity has changed but,
1414 * if the cpu is pegged at 100%, polling will never exit while
1415 * traffic continues and the interrupt will be stuck on this
1416 * cpu. We check to make sure affinity is correct before we
1417 * continue to poll, otherwise we must stop polling so the
1418 * interrupt can move to the correct cpu.
1420 if (!cpumask_test_cpu(cpu_id
, &q_vector
->affinity_mask
)) {
1421 /* Tell napi that we are done polling */
1422 napi_complete_done(napi
, work_done
);
1424 /* Force an interrupt */
1425 iavf_force_wb(vsi
, q_vector
);
1427 /* Return budget-1 so that polling stops */
1432 q_vector
->tx
.ring
[0].tx_stats
.tx_force_wb
++;
1433 iavf_enable_wb_on_itr(vsi
, q_vector
);
1438 if (vsi
->back
->flags
& IAVF_TXR_FLAGS_WB_ON_ITR
)
1439 q_vector
->arm_wb_state
= false;
1441 /* Exit the polling mode, but don't re-enable interrupts if stack might
1442 * poll us due to busy-polling
1444 if (likely(napi_complete_done(napi
, work_done
)))
1445 iavf_update_enable_itr(vsi
, q_vector
);
1447 return min_t(int, work_done
, budget
- 1);
1451 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1453 * @tx_ring: ring to send buffer on
1454 * @flags: the tx flags to be set
1456 * Checks the skb and set up correspondingly several generic transmit flags
1457 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1459 * Returns error code indicate the frame should be dropped upon error and the
1460 * otherwise returns 0 to indicate the flags has been set properly.
1462 static void iavf_tx_prepare_vlan_flags(struct sk_buff
*skb
,
1463 struct iavf_ring
*tx_ring
, u32
*flags
)
1468 /* stack will only request hardware VLAN insertion offload for protocols
1469 * that the driver supports and has enabled
1471 if (!skb_vlan_tag_present(skb
))
1474 tx_flags
|= skb_vlan_tag_get(skb
) << IAVF_TX_FLAGS_VLAN_SHIFT
;
1475 if (tx_ring
->flags
& IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2
) {
1476 tx_flags
|= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN
;
1477 } else if (tx_ring
->flags
& IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1
) {
1478 tx_flags
|= IAVF_TX_FLAGS_HW_VLAN
;
1480 dev_dbg(tx_ring
->dev
, "Unsupported Tx VLAN tag location requested\n");
1488 * iavf_tso - set up the tso context descriptor
1489 * @first: pointer to first Tx buffer for xmit
1490 * @hdr_len: ptr to the size of the packet header
1491 * @cd_type_cmd_tso_mss: Quad Word 1
1493 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1495 static int iavf_tso(struct iavf_tx_buffer
*first
, u8
*hdr_len
,
1496 u64
*cd_type_cmd_tso_mss
)
1498 struct sk_buff
*skb
= first
->skb
;
1499 u64 cd_cmd
, cd_tso_len
, cd_mss
;
1510 u32 paylen
, l4_offset
;
1511 u16 gso_segs
, gso_size
;
1514 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1517 if (!skb_is_gso(skb
))
1520 err
= skb_cow_head(skb
, 0);
1524 ip
.hdr
= skb_network_header(skb
);
1525 l4
.hdr
= skb_transport_header(skb
);
1527 /* initialize outer IP header fields */
1528 if (ip
.v4
->version
== 4) {
1532 ip
.v6
->payload_len
= 0;
1535 if (skb_shinfo(skb
)->gso_type
& (SKB_GSO_GRE
|
1539 SKB_GSO_UDP_TUNNEL
|
1540 SKB_GSO_UDP_TUNNEL_CSUM
)) {
1541 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
) &&
1542 (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_TUNNEL_CSUM
)) {
1545 /* determine offset of outer transport header */
1546 l4_offset
= l4
.hdr
- skb
->data
;
1548 /* remove payload length from outer checksum */
1549 paylen
= skb
->len
- l4_offset
;
1550 csum_replace_by_diff(&l4
.udp
->check
,
1551 (__force __wsum
)htonl(paylen
));
1554 /* reset pointers to inner headers */
1555 ip
.hdr
= skb_inner_network_header(skb
);
1556 l4
.hdr
= skb_inner_transport_header(skb
);
1558 /* initialize inner IP header fields */
1559 if (ip
.v4
->version
== 4) {
1563 ip
.v6
->payload_len
= 0;
1567 /* determine offset of inner transport header */
1568 l4_offset
= l4
.hdr
- skb
->data
;
1569 /* remove payload length from inner checksum */
1570 paylen
= skb
->len
- l4_offset
;
1572 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_L4
) {
1573 csum_replace_by_diff(&l4
.udp
->check
,
1574 (__force __wsum
)htonl(paylen
));
1575 /* compute length of UDP segmentation header */
1576 *hdr_len
= (u8
)sizeof(l4
.udp
) + l4_offset
;
1578 csum_replace_by_diff(&l4
.tcp
->check
,
1579 (__force __wsum
)htonl(paylen
));
1580 /* compute length of TCP segmentation header */
1581 *hdr_len
= (u8
)((l4
.tcp
->doff
* 4) + l4_offset
);
1584 /* pull values out of skb_shinfo */
1585 gso_size
= skb_shinfo(skb
)->gso_size
;
1586 gso_segs
= skb_shinfo(skb
)->gso_segs
;
1588 /* update GSO size and bytecount with header size */
1589 first
->gso_segs
= gso_segs
;
1590 first
->bytecount
+= (first
->gso_segs
- 1) * *hdr_len
;
1592 /* find the field values */
1593 cd_cmd
= IAVF_TX_CTX_DESC_TSO
;
1594 cd_tso_len
= skb
->len
- *hdr_len
;
1596 *cd_type_cmd_tso_mss
|= (cd_cmd
<< IAVF_TXD_CTX_QW1_CMD_SHIFT
) |
1597 (cd_tso_len
<< IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT
) |
1598 (cd_mss
<< IAVF_TXD_CTX_QW1_MSS_SHIFT
);
1603 * iavf_tx_enable_csum - Enable Tx checksum offloads
1605 * @tx_flags: pointer to Tx flags currently set
1606 * @td_cmd: Tx descriptor command bits to set
1607 * @td_offset: Tx descriptor header offsets to set
1608 * @tx_ring: Tx descriptor ring
1609 * @cd_tunneling: ptr to context desc bits
1611 static int iavf_tx_enable_csum(struct sk_buff
*skb
, u32
*tx_flags
,
1612 u32
*td_cmd
, u32
*td_offset
,
1613 struct iavf_ring
*tx_ring
,
1626 unsigned char *exthdr
;
1627 u32 offset
, cmd
= 0;
1631 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1634 ip
.hdr
= skb_network_header(skb
);
1635 l4
.hdr
= skb_transport_header(skb
);
1637 /* compute outer L2 header size */
1638 offset
= ((ip
.hdr
- skb
->data
) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT
;
1640 if (skb
->encapsulation
) {
1642 /* define outer network header type */
1643 if (*tx_flags
& IAVF_TX_FLAGS_IPV4
) {
1644 tunnel
|= (*tx_flags
& IAVF_TX_FLAGS_TSO
) ?
1645 IAVF_TX_CTX_EXT_IP_IPV4
:
1646 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM
;
1648 l4_proto
= ip
.v4
->protocol
;
1649 } else if (*tx_flags
& IAVF_TX_FLAGS_IPV6
) {
1650 tunnel
|= IAVF_TX_CTX_EXT_IP_IPV6
;
1652 exthdr
= ip
.hdr
+ sizeof(*ip
.v6
);
1653 l4_proto
= ip
.v6
->nexthdr
;
1654 if (l4
.hdr
!= exthdr
)
1655 ipv6_skip_exthdr(skb
, exthdr
- skb
->data
,
1656 &l4_proto
, &frag_off
);
1659 /* define outer transport */
1662 tunnel
|= IAVF_TXD_CTX_UDP_TUNNELING
;
1663 *tx_flags
|= IAVF_TX_FLAGS_VXLAN_TUNNEL
;
1666 tunnel
|= IAVF_TXD_CTX_GRE_TUNNELING
;
1667 *tx_flags
|= IAVF_TX_FLAGS_VXLAN_TUNNEL
;
1671 *tx_flags
|= IAVF_TX_FLAGS_VXLAN_TUNNEL
;
1672 l4
.hdr
= skb_inner_network_header(skb
);
1675 if (*tx_flags
& IAVF_TX_FLAGS_TSO
)
1678 skb_checksum_help(skb
);
1682 /* compute outer L3 header size */
1683 tunnel
|= ((l4
.hdr
- ip
.hdr
) / 4) <<
1684 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT
;
1686 /* switch IP header pointer from outer to inner header */
1687 ip
.hdr
= skb_inner_network_header(skb
);
1689 /* compute tunnel header size */
1690 tunnel
|= ((ip
.hdr
- l4
.hdr
) / 2) <<
1691 IAVF_TXD_CTX_QW0_NATLEN_SHIFT
;
1693 /* indicate if we need to offload outer UDP header */
1694 if ((*tx_flags
& IAVF_TX_FLAGS_TSO
) &&
1695 !(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
) &&
1696 (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_TUNNEL_CSUM
))
1697 tunnel
|= IAVF_TXD_CTX_QW0_L4T_CS_MASK
;
1699 /* record tunnel offload values */
1700 *cd_tunneling
|= tunnel
;
1702 /* switch L4 header pointer from outer to inner */
1703 l4
.hdr
= skb_inner_transport_header(skb
);
1706 /* reset type as we transition from outer to inner headers */
1707 *tx_flags
&= ~(IAVF_TX_FLAGS_IPV4
| IAVF_TX_FLAGS_IPV6
);
1708 if (ip
.v4
->version
== 4)
1709 *tx_flags
|= IAVF_TX_FLAGS_IPV4
;
1710 if (ip
.v6
->version
== 6)
1711 *tx_flags
|= IAVF_TX_FLAGS_IPV6
;
1714 /* Enable IP checksum offloads */
1715 if (*tx_flags
& IAVF_TX_FLAGS_IPV4
) {
1716 l4_proto
= ip
.v4
->protocol
;
1717 /* the stack computes the IP header already, the only time we
1718 * need the hardware to recompute it is in the case of TSO.
1720 cmd
|= (*tx_flags
& IAVF_TX_FLAGS_TSO
) ?
1721 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM
:
1722 IAVF_TX_DESC_CMD_IIPT_IPV4
;
1723 } else if (*tx_flags
& IAVF_TX_FLAGS_IPV6
) {
1724 cmd
|= IAVF_TX_DESC_CMD_IIPT_IPV6
;
1726 exthdr
= ip
.hdr
+ sizeof(*ip
.v6
);
1727 l4_proto
= ip
.v6
->nexthdr
;
1728 if (l4
.hdr
!= exthdr
)
1729 ipv6_skip_exthdr(skb
, exthdr
- skb
->data
,
1730 &l4_proto
, &frag_off
);
1733 /* compute inner L3 header size */
1734 offset
|= ((l4
.hdr
- ip
.hdr
) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT
;
1736 /* Enable L4 checksum offloads */
1739 /* enable checksum offloads */
1740 cmd
|= IAVF_TX_DESC_CMD_L4T_EOFT_TCP
;
1741 offset
|= l4
.tcp
->doff
<< IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT
;
1744 /* enable SCTP checksum offload */
1745 cmd
|= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP
;
1746 offset
|= (sizeof(struct sctphdr
) >> 2) <<
1747 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT
;
1750 /* enable UDP checksum offload */
1751 cmd
|= IAVF_TX_DESC_CMD_L4T_EOFT_UDP
;
1752 offset
|= (sizeof(struct udphdr
) >> 2) <<
1753 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT
;
1756 if (*tx_flags
& IAVF_TX_FLAGS_TSO
)
1758 skb_checksum_help(skb
);
1763 *td_offset
|= offset
;
1769 * iavf_create_tx_ctx - Build the Tx context descriptor
1770 * @tx_ring: ring to create the descriptor on
1771 * @cd_type_cmd_tso_mss: Quad Word 1
1772 * @cd_tunneling: Quad Word 0 - bits 0-31
1773 * @cd_l2tag2: Quad Word 0 - bits 32-63
1775 static void iavf_create_tx_ctx(struct iavf_ring
*tx_ring
,
1776 const u64 cd_type_cmd_tso_mss
,
1777 const u32 cd_tunneling
, const u32 cd_l2tag2
)
1779 struct iavf_tx_context_desc
*context_desc
;
1780 int i
= tx_ring
->next_to_use
;
1782 if ((cd_type_cmd_tso_mss
== IAVF_TX_DESC_DTYPE_CONTEXT
) &&
1783 !cd_tunneling
&& !cd_l2tag2
)
1786 /* grab the next descriptor */
1787 context_desc
= IAVF_TX_CTXTDESC(tx_ring
, i
);
1790 tx_ring
->next_to_use
= (i
< tx_ring
->count
) ? i
: 0;
1792 /* cpu_to_le32 and assign to struct fields */
1793 context_desc
->tunneling_params
= cpu_to_le32(cd_tunneling
);
1794 context_desc
->l2tag2
= cpu_to_le16(cd_l2tag2
);
1795 context_desc
->rsvd
= cpu_to_le16(0);
1796 context_desc
->type_cmd_tso_mss
= cpu_to_le64(cd_type_cmd_tso_mss
);
1800 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
1803 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1804 * and so we need to figure out the cases where we need to linearize the skb.
1806 * For TSO we need to count the TSO header and segment payload separately.
1807 * As such we need to check cases where we have 7 fragments or more as we
1808 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1809 * the segment payload in the first descriptor, and another 7 for the
1812 bool __iavf_chk_linearize(struct sk_buff
*skb
)
1814 const skb_frag_t
*frag
, *stale
;
1817 /* no need to check if number of frags is less than 7 */
1818 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1819 if (nr_frags
< (IAVF_MAX_BUFFER_TXD
- 1))
1822 /* We need to walk through the list and validate that each group
1823 * of 6 fragments totals at least gso_size.
1825 nr_frags
-= IAVF_MAX_BUFFER_TXD
- 2;
1826 frag
= &skb_shinfo(skb
)->frags
[0];
1828 /* Initialize size to the negative value of gso_size minus 1. We
1829 * use this as the worst case scenerio in which the frag ahead
1830 * of us only provides one byte which is why we are limited to 6
1831 * descriptors for a single transmit as the header and previous
1832 * fragment are already consuming 2 descriptors.
1834 sum
= 1 - skb_shinfo(skb
)->gso_size
;
1836 /* Add size of frags 0 through 4 to create our initial sum */
1837 sum
+= skb_frag_size(frag
++);
1838 sum
+= skb_frag_size(frag
++);
1839 sum
+= skb_frag_size(frag
++);
1840 sum
+= skb_frag_size(frag
++);
1841 sum
+= skb_frag_size(frag
++);
1843 /* Walk through fragments adding latest fragment, testing it, and
1844 * then removing stale fragments from the sum.
1846 for (stale
= &skb_shinfo(skb
)->frags
[0];; stale
++) {
1847 int stale_size
= skb_frag_size(stale
);
1849 sum
+= skb_frag_size(frag
++);
1851 /* The stale fragment may present us with a smaller
1852 * descriptor than the actual fragment size. To account
1853 * for that we need to remove all the data on the front and
1854 * figure out what the remainder would be in the last
1855 * descriptor associated with the fragment.
1857 if (stale_size
> IAVF_MAX_DATA_PER_TXD
) {
1858 int align_pad
= -(skb_frag_off(stale
)) &
1859 (IAVF_MAX_READ_REQ_SIZE
- 1);
1862 stale_size
-= align_pad
;
1865 sum
-= IAVF_MAX_DATA_PER_TXD_ALIGNED
;
1866 stale_size
-= IAVF_MAX_DATA_PER_TXD_ALIGNED
;
1867 } while (stale_size
> IAVF_MAX_DATA_PER_TXD
);
1870 /* if sum is negative we failed to make sufficient progress */
1884 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
1885 * @tx_ring: the ring to be checked
1886 * @size: the size buffer we want to assure is available
1888 * Returns -EBUSY if a stop is needed, else 0
1890 int __iavf_maybe_stop_tx(struct iavf_ring
*tx_ring
, int size
)
1892 netif_stop_subqueue(tx_ring
->netdev
, tx_ring
->queue_index
);
1893 /* Memory barrier before checking head and tail */
1896 /* Check again in a case another CPU has just made room available. */
1897 if (likely(IAVF_DESC_UNUSED(tx_ring
) < size
))
1900 /* A reprieve! - use start_queue because it doesn't call schedule */
1901 netif_start_subqueue(tx_ring
->netdev
, tx_ring
->queue_index
);
1902 ++tx_ring
->tx_stats
.restart_queue
;
1907 * iavf_tx_map - Build the Tx descriptor
1908 * @tx_ring: ring to send buffer on
1910 * @first: first buffer info buffer to use
1911 * @tx_flags: collected send information
1912 * @hdr_len: size of the packet header
1913 * @td_cmd: the command field in the descriptor
1914 * @td_offset: offset for checksum or crc
1916 static void iavf_tx_map(struct iavf_ring
*tx_ring
, struct sk_buff
*skb
,
1917 struct iavf_tx_buffer
*first
, u32 tx_flags
,
1918 const u8 hdr_len
, u32 td_cmd
, u32 td_offset
)
1920 unsigned int data_len
= skb
->data_len
;
1921 unsigned int size
= skb_headlen(skb
);
1923 struct iavf_tx_buffer
*tx_bi
;
1924 struct iavf_tx_desc
*tx_desc
;
1925 u16 i
= tx_ring
->next_to_use
;
1929 if (tx_flags
& IAVF_TX_FLAGS_HW_VLAN
) {
1930 td_cmd
|= IAVF_TX_DESC_CMD_IL2TAG1
;
1931 td_tag
= FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK
, tx_flags
);
1934 first
->tx_flags
= tx_flags
;
1936 dma
= dma_map_single(tx_ring
->dev
, skb
->data
, size
, DMA_TO_DEVICE
);
1938 tx_desc
= IAVF_TX_DESC(tx_ring
, i
);
1941 for (frag
= &skb_shinfo(skb
)->frags
[0];; frag
++) {
1942 unsigned int max_data
= IAVF_MAX_DATA_PER_TXD_ALIGNED
;
1944 if (dma_mapping_error(tx_ring
->dev
, dma
))
1947 /* record length, and DMA address */
1948 dma_unmap_len_set(tx_bi
, len
, size
);
1949 dma_unmap_addr_set(tx_bi
, dma
, dma
);
1951 /* align size to end of page */
1952 max_data
+= -dma
& (IAVF_MAX_READ_REQ_SIZE
- 1);
1953 tx_desc
->buffer_addr
= cpu_to_le64(dma
);
1955 while (unlikely(size
> IAVF_MAX_DATA_PER_TXD
)) {
1956 tx_desc
->cmd_type_offset_bsz
=
1957 build_ctob(td_cmd
, td_offset
,
1963 if (i
== tx_ring
->count
) {
1964 tx_desc
= IAVF_TX_DESC(tx_ring
, 0);
1971 max_data
= IAVF_MAX_DATA_PER_TXD_ALIGNED
;
1972 tx_desc
->buffer_addr
= cpu_to_le64(dma
);
1975 if (likely(!data_len
))
1978 tx_desc
->cmd_type_offset_bsz
= build_ctob(td_cmd
, td_offset
,
1984 if (i
== tx_ring
->count
) {
1985 tx_desc
= IAVF_TX_DESC(tx_ring
, 0);
1989 size
= skb_frag_size(frag
);
1992 dma
= skb_frag_dma_map(tx_ring
->dev
, frag
, 0, size
,
1995 tx_bi
= &tx_ring
->tx_bi
[i
];
1998 netdev_tx_sent_queue(txring_txq(tx_ring
), first
->bytecount
);
2001 if (i
== tx_ring
->count
)
2004 tx_ring
->next_to_use
= i
;
2006 iavf_maybe_stop_tx(tx_ring
, DESC_NEEDED
);
2008 /* write last descriptor with RS and EOP bits */
2009 td_cmd
|= IAVF_TXD_CMD
;
2010 tx_desc
->cmd_type_offset_bsz
=
2011 build_ctob(td_cmd
, td_offset
, size
, td_tag
);
2013 skb_tx_timestamp(skb
);
2015 /* Force memory writes to complete before letting h/w know there
2016 * are new descriptors to fetch.
2018 * We also use this memory barrier to make certain all of the
2019 * status bits have been updated before next_to_watch is written.
2023 /* set next_to_watch value indicating a packet is present */
2024 first
->next_to_watch
= tx_desc
;
2026 /* notify HW of packet */
2027 if (netif_xmit_stopped(txring_txq(tx_ring
)) || !netdev_xmit_more()) {
2028 writel(i
, tx_ring
->tail
);
2034 dev_info(tx_ring
->dev
, "TX DMA map failed\n");
2036 /* clear dma mappings for failed tx_bi map */
2038 tx_bi
= &tx_ring
->tx_bi
[i
];
2039 iavf_unmap_and_free_tx_resource(tx_ring
, tx_bi
);
2047 tx_ring
->next_to_use
= i
;
2051 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2053 * @tx_ring: ring to send buffer on
2055 * Returns NETDEV_TX_OK if sent, else an error code
2057 static netdev_tx_t
iavf_xmit_frame_ring(struct sk_buff
*skb
,
2058 struct iavf_ring
*tx_ring
)
2060 u64 cd_type_cmd_tso_mss
= IAVF_TX_DESC_DTYPE_CONTEXT
;
2061 u32 cd_tunneling
= 0, cd_l2tag2
= 0;
2062 struct iavf_tx_buffer
*first
;
2070 /* prefetch the data, we'll need it later */
2071 prefetch(skb
->data
);
2073 iavf_trace(xmit_frame_ring
, skb
, tx_ring
);
2075 count
= iavf_xmit_descriptor_count(skb
);
2076 if (iavf_chk_linearize(skb
, count
)) {
2077 if (__skb_linearize(skb
)) {
2078 dev_kfree_skb_any(skb
);
2079 return NETDEV_TX_OK
;
2081 count
= iavf_txd_use_count(skb
->len
);
2082 tx_ring
->tx_stats
.tx_linearize
++;
2085 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2086 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2087 * + 4 desc gap to avoid the cache line where head is,
2088 * + 1 desc for context descriptor,
2089 * otherwise try next time
2091 if (iavf_maybe_stop_tx(tx_ring
, count
+ 4 + 1)) {
2092 tx_ring
->tx_stats
.tx_busy
++;
2093 return NETDEV_TX_BUSY
;
2096 /* record the location of the first descriptor for this packet */
2097 first
= &tx_ring
->tx_bi
[tx_ring
->next_to_use
];
2099 first
->bytecount
= skb
->len
;
2100 first
->gso_segs
= 1;
2102 /* prepare the xmit flags */
2103 iavf_tx_prepare_vlan_flags(skb
, tx_ring
, &tx_flags
);
2104 if (tx_flags
& IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN
) {
2105 cd_type_cmd_tso_mss
|= IAVF_TX_CTX_DESC_IL2TAG2
<<
2106 IAVF_TXD_CTX_QW1_CMD_SHIFT
;
2107 cd_l2tag2
= FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK
, tx_flags
);
2110 /* obtain protocol of skb */
2111 protocol
= vlan_get_protocol(skb
);
2113 /* setup IPv4/IPv6 offloads */
2114 if (protocol
== htons(ETH_P_IP
))
2115 tx_flags
|= IAVF_TX_FLAGS_IPV4
;
2116 else if (protocol
== htons(ETH_P_IPV6
))
2117 tx_flags
|= IAVF_TX_FLAGS_IPV6
;
2119 tso
= iavf_tso(first
, &hdr_len
, &cd_type_cmd_tso_mss
);
2124 tx_flags
|= IAVF_TX_FLAGS_TSO
;
2126 /* Always offload the checksum, since it's in the data descriptor */
2127 tso
= iavf_tx_enable_csum(skb
, &tx_flags
, &td_cmd
, &td_offset
,
2128 tx_ring
, &cd_tunneling
);
2132 /* always enable CRC insertion offload */
2133 td_cmd
|= IAVF_TX_DESC_CMD_ICRC
;
2135 iavf_create_tx_ctx(tx_ring
, cd_type_cmd_tso_mss
,
2136 cd_tunneling
, cd_l2tag2
);
2138 iavf_tx_map(tx_ring
, skb
, first
, tx_flags
, hdr_len
,
2141 return NETDEV_TX_OK
;
2144 iavf_trace(xmit_frame_ring_drop
, first
->skb
, tx_ring
);
2145 dev_kfree_skb_any(first
->skb
);
2147 return NETDEV_TX_OK
;
2151 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2153 * @netdev: network interface device structure
2155 * Returns NETDEV_TX_OK if sent, else an error code
2157 netdev_tx_t
iavf_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
2159 struct iavf_adapter
*adapter
= netdev_priv(netdev
);
2160 struct iavf_ring
*tx_ring
= &adapter
->tx_rings
[skb
->queue_mapping
];
2162 /* hardware can't handle really short frames, hardware padding works
2165 if (unlikely(skb
->len
< IAVF_MIN_TX_LEN
)) {
2166 if (skb_pad(skb
, IAVF_MIN_TX_LEN
- skb
->len
))
2167 return NETDEV_TX_OK
;
2168 skb
->len
= IAVF_MIN_TX_LEN
;
2169 skb_set_tail_pointer(skb
, IAVF_MIN_TX_LEN
);
2172 return iavf_xmit_frame_ring(skb
, tx_ring
);