1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
7 /* Interrupt Throttling and Rate Limiting Goodies */
8 #define IAVF_DEFAULT_IRQ_WORK 256
10 /* The datasheet for the X710 and XL710 indicate that the maximum value for
11 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
12 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
13 * the register value which is divided by 2 lets use the actual values and
14 * avoid an excessive amount of translation.
16 #define IAVF_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
17 #define IAVF_ITR_MASK 0x1FFE /* mask for ITR register value */
18 #define IAVF_ITR_100K 10 /* all values below must be even */
19 #define IAVF_ITR_50K 20
20 #define IAVF_ITR_20K 50
21 #define IAVF_ITR_18K 60
22 #define IAVF_ITR_8K 122
23 #define IAVF_MAX_ITR 8160 /* maximum value as per datasheet */
24 #define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC)
25 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK)
26 #define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC))
28 #define IAVF_ITR_RX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
29 #define IAVF_ITR_TX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
31 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
32 * the value of the rate limit is non-zero
34 #define INTRL_ENA BIT(6)
35 #define IAVF_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
36 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
37 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
38 #define IAVF_INTRL_8K 125 /* 8000 ints/sec */
39 #define IAVF_INTRL_62K 16 /* 62500 ints/sec */
40 #define IAVF_INTRL_83K 12 /* 83333 ints/sec */
42 #define IAVF_QUEUE_END_OF_LIST 0x7FF
44 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
45 * registers and QINT registers or more generally anywhere in the manual
46 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
47 * register but instead is a special value meaning "don't update" ITR0/1/2.
53 IAVF_ITR_NONE
= 3 /* ITR_NONE must not be used as an index */
56 /* these are indexes into ITRN registers */
57 #define IAVF_RX_ITR IAVF_IDX_ITR0
58 #define IAVF_TX_ITR IAVF_IDX_ITR1
59 #define IAVF_PE_ITR IAVF_IDX_ITR2
61 /* Supported RSS offloads */
62 #define IAVF_DEFAULT_RSS_HENA ( \
63 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \
64 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
65 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \
66 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
67 BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \
68 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \
69 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \
70 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
71 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
72 BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \
73 BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD))
75 #define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \
76 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
77 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
78 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
79 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
80 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
81 BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
83 #define iavf_rx_desc iavf_32byte_rx_desc
86 * iavf_test_staterr - tests bits in Rx descriptor status and error fields
87 * @rx_desc: pointer to receive descriptor (in le64 format)
88 * @stat_err_bits: value to mask
90 * This function does some fast chicanery in order to return the
91 * value of the mask which is really only used for boolean tests.
92 * The status_error_len doesn't need to be shifted because it begins
95 static inline bool iavf_test_staterr(union iavf_rx_desc
*rx_desc
,
96 const u64 stat_err_bits
)
98 return !!(rx_desc
->wb
.qword1
.status_error_len
&
99 cpu_to_le64(stat_err_bits
));
102 /* How many Rx Buffers do we bundle into one write to the hardware ? */
103 #define IAVF_RX_INCREMENT(r, i) \
106 if ((i) == (r)->count) \
108 r->next_to_clean = i; \
111 #define IAVF_RX_NEXT_DESC(r, i, n) \
114 if ((i) == (r)->count) \
116 (n) = IAVF_RX_DESC((r), (i)); \
119 #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n) \
121 IAVF_RX_NEXT_DESC((r), (i), (n)); \
125 #define IAVF_MAX_BUFFER_TXD 8
126 #define IAVF_MIN_TX_LEN 17
128 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
129 * In order to align with the read requests we will align the value to
130 * the nearest 4K which represents our maximum read request size.
132 #define IAVF_MAX_READ_REQ_SIZE 4096
133 #define IAVF_MAX_DATA_PER_TXD (16 * 1024 - 1)
134 #define IAVF_MAX_DATA_PER_TXD_ALIGNED \
135 (IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1))
138 * iavf_txd_use_count - estimate the number of descriptors needed for Tx
139 * @size: transmit request size in bytes
141 * Due to hardware alignment restrictions (4K alignment), we need to
142 * assume that we can have no more than 12K of data per descriptor, even
143 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
144 * Thus, we need to divide by 12K. But division is slow! Instead,
145 * we decompose the operation into shifts and one relatively cheap
146 * multiply operation.
148 * To divide by 12K, we first divide by 4K, then divide by 3:
149 * To divide by 4K, shift right by 12 bits
150 * To divide by 3, multiply by 85, then divide by 256
151 * (Divide by 256 is done by shifting right by 8 bits)
152 * Finally, we add one to round up. Because 256 isn't an exact multiple of
153 * 3, we'll underestimate near each multiple of 12K. This is actually more
154 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
155 * segment. For our purposes this is accurate out to 1M which is orders of
156 * magnitude greater than our largest possible GSO size.
158 * This would then be implemented as:
159 * return (((size >> 12) * 85) >> 8) + 1;
161 * Since multiplication and division are commutative, we can reorder
163 * return ((size * 85) >> 20) + 1;
165 static inline unsigned int iavf_txd_use_count(unsigned int size
)
167 return ((size
* 85) >> 20) + 1;
170 /* Tx Descriptors needed, worst case */
171 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
172 #define IAVF_MIN_DESC_PENDING 4
174 #define IAVF_TX_FLAGS_HW_VLAN BIT(1)
175 #define IAVF_TX_FLAGS_SW_VLAN BIT(2)
176 #define IAVF_TX_FLAGS_TSO BIT(3)
177 #define IAVF_TX_FLAGS_IPV4 BIT(4)
178 #define IAVF_TX_FLAGS_IPV6 BIT(5)
179 #define IAVF_TX_FLAGS_FCCRC BIT(6)
180 #define IAVF_TX_FLAGS_FSO BIT(7)
181 #define IAVF_TX_FLAGS_FD_SB BIT(9)
182 #define IAVF_TX_FLAGS_VXLAN_TUNNEL BIT(10)
183 #define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(11)
184 #define IAVF_TX_FLAGS_VLAN_MASK 0xffff0000
185 #define IAVF_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
186 #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT 29
187 #define IAVF_TX_FLAGS_VLAN_SHIFT 16
189 struct iavf_tx_buffer
{
190 struct iavf_tx_desc
*next_to_watch
;
195 unsigned int bytecount
;
196 unsigned short gso_segs
;
198 DEFINE_DMA_UNMAP_ADDR(dma
);
199 DEFINE_DMA_UNMAP_LEN(len
);
203 struct iavf_queue_stats
{
208 struct iavf_tx_queue_stats
{
214 u64 tx_lost_interrupt
;
217 struct iavf_rx_queue_stats
{
219 u64 alloc_page_failed
;
220 u64 alloc_buff_failed
;
223 /* some useful defines for virtchannel interface, which
224 * is the only remaining user of header split
226 #define IAVF_RX_DTYPE_NO_SPLIT 0
227 #define IAVF_RX_DTYPE_HEADER_SPLIT 1
228 #define IAVF_RX_DTYPE_SPLIT_ALWAYS 2
229 #define IAVF_RX_SPLIT_L2 0x1
230 #define IAVF_RX_SPLIT_IP 0x2
231 #define IAVF_RX_SPLIT_TCP_UDP 0x4
232 #define IAVF_RX_SPLIT_SCTP 0x8
234 /* struct that defines a descriptor ring, associated with a VSI */
236 struct iavf_ring
*next
; /* pointer to next ring in q_vector */
237 void *desc
; /* Descriptor ring memory */
239 struct page_pool
*pp
; /* Used on Rx for buffer management */
240 struct device
*dev
; /* Used on Tx for DMA mapping */
242 struct net_device
*netdev
; /* netdev ring maps to */
244 struct libeth_fqe
*rx_fqes
;
245 struct iavf_tx_buffer
*tx_bi
;
250 u16 queue_index
; /* Queue number of ring */
252 /* high bit set means dynamic, use accessors routines to read/write.
253 * hardware only supports 2us resolution for the ITR registers.
254 * these values always store the USER setting, and must be converted
255 * before programming to a register.
259 u16 count
; /* Number of descriptors */
261 /* used in interrupt processing */
266 #define IAVF_TXR_FLAGS_WB_ON_ITR BIT(0)
267 #define IAVF_TXR_FLAGS_ARM_WB BIT(1)
269 #define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 BIT(3)
270 #define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2 BIT(4)
271 #define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2 BIT(5)
274 struct iavf_queue_stats stats
;
275 struct u64_stats_sync syncp
;
277 struct iavf_tx_queue_stats tx_stats
;
278 struct iavf_rx_queue_stats rx_stats
;
281 int prev_pkt_ctr
; /* For Tx stall detection */
282 unsigned int size
; /* length of descriptor ring in bytes */
283 dma_addr_t dma
; /* physical address of ring */
285 struct iavf_vsi
*vsi
; /* Backreference to associated VSI */
286 struct iavf_q_vector
*q_vector
; /* Backreference to associated vector */
288 struct rcu_head rcu
; /* to avoid race on free */
289 struct sk_buff
*skb
; /* When iavf_clean_rx_ring_irq() must
290 * return before it sees the EOP for
291 * the current packet, we save that skb
292 * here and resume receiving this
293 * packet the next time
294 * iavf_clean_rx_ring_irq() is called
299 struct net_shaper q_shaper
;
300 bool q_shaper_update
;
301 } ____cacheline_internodealigned_in_smp
;
303 #define IAVF_ITR_ADAPTIVE_MIN_INC 0x0002
304 #define IAVF_ITR_ADAPTIVE_MIN_USECS 0x0002
305 #define IAVF_ITR_ADAPTIVE_MAX_USECS 0x007e
306 #define IAVF_ITR_ADAPTIVE_LATENCY 0x8000
307 #define IAVF_ITR_ADAPTIVE_BULK 0x0000
308 #define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY))
310 struct iavf_ring_container
{
311 struct iavf_ring
*ring
; /* pointer to linked list of ring(s) */
312 unsigned long next_update
; /* jiffies value of next update */
313 unsigned int total_bytes
; /* total bytes processed this int */
314 unsigned int total_packets
; /* total packets processed this int */
316 u16 target_itr
; /* target ITR setting for ring(s) */
317 u16 current_itr
; /* current ITR setting for ring(s) */
320 /* iterator for handling rings in ring container */
321 #define iavf_for_each_ring(pos, head) \
322 for (pos = (head).ring; pos != NULL; pos = pos->next)
324 bool iavf_alloc_rx_buffers(struct iavf_ring
*rxr
, u16 cleaned_count
);
325 netdev_tx_t
iavf_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
326 int iavf_setup_tx_descriptors(struct iavf_ring
*tx_ring
);
327 int iavf_setup_rx_descriptors(struct iavf_ring
*rx_ring
);
328 void iavf_free_tx_resources(struct iavf_ring
*tx_ring
);
329 void iavf_free_rx_resources(struct iavf_ring
*rx_ring
);
330 int iavf_napi_poll(struct napi_struct
*napi
, int budget
);
331 void iavf_detect_recover_hung(struct iavf_vsi
*vsi
);
332 int __iavf_maybe_stop_tx(struct iavf_ring
*tx_ring
, int size
);
333 bool __iavf_chk_linearize(struct sk_buff
*skb
);
336 * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed
339 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
340 * there is not enough descriptors available in this ring since we need at least
343 static inline int iavf_xmit_descriptor_count(struct sk_buff
*skb
)
345 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[0];
346 unsigned int nr_frags
= skb_shinfo(skb
)->nr_frags
;
347 int count
= 0, size
= skb_headlen(skb
);
350 count
+= iavf_txd_use_count(size
);
355 size
= skb_frag_size(frag
++);
362 * iavf_maybe_stop_tx - 1st level check for Tx stop conditions
363 * @tx_ring: the ring to be checked
364 * @size: the size buffer we want to assure is available
366 * Returns 0 if stop is not needed
368 static inline int iavf_maybe_stop_tx(struct iavf_ring
*tx_ring
, int size
)
370 if (likely(IAVF_DESC_UNUSED(tx_ring
) >= size
))
372 return __iavf_maybe_stop_tx(tx_ring
, size
);
376 * iavf_chk_linearize - Check if there are more than 8 fragments per packet
378 * @count: number of buffers used
380 * Note: Our HW can't scatter-gather more than 8 fragments to build
381 * a packet on the wire and so we need to figure out the cases where we
382 * need to linearize the skb.
384 static inline bool iavf_chk_linearize(struct sk_buff
*skb
, int count
)
386 /* Both TSO and single send will work if count is less than 8 */
387 if (likely(count
< IAVF_MAX_BUFFER_TXD
))
391 return __iavf_chk_linearize(skb
);
393 /* we can support up to 8 data buffers for a single send */
394 return count
!= IAVF_MAX_BUFFER_TXD
;
397 * txring_txq - helper to convert from a ring to a queue
398 * @ring: Tx ring to find the netdev equivalent of
400 static inline struct netdev_queue
*txring_txq(const struct iavf_ring
*ring
)
402 return netdev_get_tx_queue(ring
->netdev
, ring
->queue_index
);
404 #endif /* _IAVF_TXRX_H_ */