1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
13 static int ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
14 static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
16 static int ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
20 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
23 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
25 static int ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
26 static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
);
27 static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
28 u16 words
, u16
*data
);
29 static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
30 u16 words
, u16
*data
);
31 static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
33 static int ixgbe_disable_pcie_primary(struct ixgbe_hw
*hw
);
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X
[IXGBE_MVALS_IDX_LIMIT
] = {
37 IXGBE_MVALS_INIT(8259X
)
41 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
43 * @hw: pointer to hardware structure
45 * There are several phys that do not support autoneg flow control. This
46 * function check the device id to see if the associated phy supports
47 * autoneg flow control.
49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
)
51 bool supported
= false;
52 ixgbe_link_speed speed
;
55 switch (hw
->phy
.media_type
) {
56 case ixgbe_media_type_fiber
:
57 /* flow control autoneg black list */
58 switch (hw
->device_id
) {
59 case IXGBE_DEV_ID_X550EM_A_SFP
:
60 case IXGBE_DEV_ID_X550EM_A_SFP_N
:
64 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
65 /* if link is down, assume supported */
67 supported
= speed
== IXGBE_LINK_SPEED_1GB_FULL
;
73 case ixgbe_media_type_backplane
:
74 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_X_XFI
)
79 case ixgbe_media_type_copper
:
80 /* only some copper devices support flow control autoneg */
81 switch (hw
->device_id
) {
82 case IXGBE_DEV_ID_82599_T3_LOM
:
83 case IXGBE_DEV_ID_X540T
:
84 case IXGBE_DEV_ID_X540T1
:
85 case IXGBE_DEV_ID_X550T
:
86 case IXGBE_DEV_ID_X550T1
:
87 case IXGBE_DEV_ID_X550EM_X_10G_T
:
88 case IXGBE_DEV_ID_X550EM_A_10G_T
:
89 case IXGBE_DEV_ID_X550EM_A_1G_T
:
90 case IXGBE_DEV_ID_X550EM_A_1G_T_L
:
102 hw_dbg(hw
, "Device %x does not support flow control autoneg\n",
109 * ixgbe_setup_fc_generic - Set up flow control
110 * @hw: pointer to hardware structure
112 * Called at init time to set up flow control.
114 int ixgbe_setup_fc_generic(struct ixgbe_hw
*hw
)
116 u32 reg
= 0, reg_bp
= 0;
122 * Validate the requested mode. Strict IEEE mode does not allow
123 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
125 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
126 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
131 * 10gig parts do not have a word in the EEPROM to determine the
132 * default flow control setting, so we explicitly set it to full.
134 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
135 hw
->fc
.requested_mode
= ixgbe_fc_full
;
138 * Set up the 1G and 10G flow control advertisement registers so the
139 * HW will be able to do fc autoneg once the cable is plugged in. If
140 * we link at 10G, the 1G advertisement is harmless and vice versa.
142 switch (hw
->phy
.media_type
) {
143 case ixgbe_media_type_backplane
:
144 /* some MAC's need RMW protection on AUTOC */
145 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, ®_bp
);
149 fallthrough
; /* only backplane uses autoc */
150 case ixgbe_media_type_fiber
:
151 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
154 case ixgbe_media_type_copper
:
155 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
156 MDIO_MMD_AN
, ®_cu
);
163 * The possible values of fc.requested_mode are:
164 * 0: Flow control is completely disabled
165 * 1: Rx flow control is enabled (we can receive pause frames,
166 * but not send pause frames).
167 * 2: Tx flow control is enabled (we can send pause frames but
168 * we do not support receiving pause frames).
169 * 3: Both Rx and Tx flow control (symmetric) are enabled.
172 switch (hw
->fc
.requested_mode
) {
174 /* Flow control completely disabled by software override. */
175 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
176 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
177 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
|
178 IXGBE_AUTOC_ASM_PAUSE
);
179 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
180 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
182 case ixgbe_fc_tx_pause
:
184 * Tx Flow control is enabled, and Rx Flow control is
185 * disabled by software override.
187 reg
|= IXGBE_PCS1GANA_ASM_PAUSE
;
188 reg
&= ~IXGBE_PCS1GANA_SYM_PAUSE
;
189 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
190 reg_bp
|= IXGBE_AUTOC_ASM_PAUSE
;
191 reg_bp
&= ~IXGBE_AUTOC_SYM_PAUSE
;
192 } else if (hw
->phy
.media_type
== ixgbe_media_type_copper
) {
193 reg_cu
|= IXGBE_TAF_ASM_PAUSE
;
194 reg_cu
&= ~IXGBE_TAF_SYM_PAUSE
;
197 case ixgbe_fc_rx_pause
:
199 * Rx Flow control is enabled and Tx Flow control is
200 * disabled by software override. Since there really
201 * isn't a way to advertise that we are capable of RX
202 * Pause ONLY, we will advertise that we support both
203 * symmetric and asymmetric Rx PAUSE, as such we fall
204 * through to the fc_full statement. Later, we will
205 * disable the adapter's ability to send PAUSE frames.
208 /* Flow control (both Rx and Tx) is enabled by SW override. */
209 reg
|= IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
;
210 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
211 reg_bp
|= IXGBE_AUTOC_SYM_PAUSE
|
212 IXGBE_AUTOC_ASM_PAUSE
;
213 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
214 reg_cu
|= IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
;
217 hw_dbg(hw
, "Flow control param set incorrectly\n");
221 if (hw
->mac
.type
!= ixgbe_mac_X540
) {
223 * Enable auto-negotiation between the MAC & PHY;
224 * the MAC will advertise clause 37 flow control.
226 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
227 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
229 /* Disable AN timeout */
230 if (hw
->fc
.strict_ieee
)
231 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
233 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
234 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
238 * AUTOC restart handles negotiation of 1G and 10G on backplane
239 * and copper. There is no need to set the PCS1GCTL register.
242 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
243 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
244 * LESM is on, likewise reset_pipeline requries the lock as
245 * it also writes AUTOC.
247 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, reg_bp
, locked
);
251 } else if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) &&
252 ixgbe_device_supports_autoneg_fc(hw
)) {
253 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
,
254 MDIO_MMD_AN
, reg_cu
);
257 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
262 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263 * @hw: pointer to hardware structure
265 * Starts the hardware by filling the bus info structure and media type, clears
266 * all on chip counters, initializes receive address registers, multicast
267 * table, VLAN filter table, calls routine to set up link and flow control
268 * settings, and leaves transmit and receive units disabled and uninitialized
270 int ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
276 /* Set the media type */
277 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
279 /* Identify the PHY */
280 hw
->phy
.ops
.identify(hw
);
282 /* Clear the VLAN filter table */
283 hw
->mac
.ops
.clear_vfta(hw
);
285 /* Clear statistics registers */
286 hw
->mac
.ops
.clear_hw_cntrs(hw
);
288 /* Set No Snoop Disable */
289 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
290 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
291 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
292 IXGBE_WRITE_FLUSH(hw
);
294 /* Setup flow control if method for doing so */
295 if (hw
->mac
.ops
.setup_fc
) {
296 ret_val
= hw
->mac
.ops
.setup_fc(hw
);
301 /* Cashe bit indicating need for crosstalk fix */
302 switch (hw
->mac
.type
) {
303 case ixgbe_mac_82599EB
:
304 case ixgbe_mac_X550EM_x
:
305 case ixgbe_mac_x550em_a
:
306 hw
->mac
.ops
.get_device_caps(hw
, &device_caps
);
307 if (device_caps
& IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR
)
308 hw
->need_crosstalk_fix
= false;
310 hw
->need_crosstalk_fix
= true;
313 hw
->need_crosstalk_fix
= false;
317 /* Clear adapter stopped flag */
318 hw
->adapter_stopped
= false;
324 * ixgbe_start_hw_gen2 - Init sequence for common device family
325 * @hw: pointer to hw structure
327 * Performs the init sequence common to the second generation
329 * Devices in the second generation:
333 int ixgbe_start_hw_gen2(struct ixgbe_hw
*hw
)
337 /* Clear the rate limiters */
338 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
339 IXGBE_WRITE_REG(hw
, IXGBE_RTTDQSEL
, i
);
340 IXGBE_WRITE_REG(hw
, IXGBE_RTTBCNRC
, 0);
342 IXGBE_WRITE_FLUSH(hw
);
348 * ixgbe_init_hw_generic - Generic hardware initialization
349 * @hw: pointer to hardware structure
351 * Initialize the hardware by resetting the hardware, filling the bus info
352 * structure and media type, clears all on chip counters, initializes receive
353 * address registers, multicast table, VLAN filter table, calls routine to set
354 * up link and flow control settings, and leaves transmit and receive units
355 * disabled and uninitialized
357 int ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
361 /* Reset the hardware */
362 status
= hw
->mac
.ops
.reset_hw(hw
);
366 status
= hw
->mac
.ops
.start_hw(hw
);
369 /* Initialize the LED link active for LED blink support */
370 if (hw
->mac
.ops
.init_led_link_act
)
371 hw
->mac
.ops
.init_led_link_act(hw
);
377 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378 * @hw: pointer to hardware structure
380 * Clears all hardware statistics counters by reading them from the hardware
381 * Statistics counters are clear on read.
383 int ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
387 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
388 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
389 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
390 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
391 for (i
= 0; i
< 8; i
++)
392 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
394 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
395 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
396 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
397 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
398 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
399 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
400 IXGBE_READ_REG(hw
, IXGBE_LXONRXCNT
);
401 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXCNT
);
403 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
404 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
407 for (i
= 0; i
< 8; i
++) {
408 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
409 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
410 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
411 IXGBE_READ_REG(hw
, IXGBE_PXONRXCNT(i
));
412 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXCNT(i
));
414 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
415 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
418 if (hw
->mac
.type
>= ixgbe_mac_82599EB
)
419 for (i
= 0; i
< 8; i
++)
420 IXGBE_READ_REG(hw
, IXGBE_PXON2OFFCNT(i
));
421 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
422 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
423 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
424 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
425 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
426 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
427 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
428 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
429 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
430 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
431 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
432 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
433 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
434 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
435 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
436 for (i
= 0; i
< 8; i
++)
437 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
438 IXGBE_READ_REG(hw
, IXGBE_RUC
);
439 IXGBE_READ_REG(hw
, IXGBE_RFC
);
440 IXGBE_READ_REG(hw
, IXGBE_ROC
);
441 IXGBE_READ_REG(hw
, IXGBE_RJC
);
442 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
443 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
444 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
445 IXGBE_READ_REG(hw
, IXGBE_TORL
);
446 IXGBE_READ_REG(hw
, IXGBE_TORH
);
447 IXGBE_READ_REG(hw
, IXGBE_TPR
);
448 IXGBE_READ_REG(hw
, IXGBE_TPT
);
449 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
450 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
451 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
452 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
453 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
454 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
455 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
456 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
457 for (i
= 0; i
< 16; i
++) {
458 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
459 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
460 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
461 IXGBE_READ_REG(hw
, IXGBE_QBRC_L(i
));
462 IXGBE_READ_REG(hw
, IXGBE_QBRC_H(i
));
463 IXGBE_READ_REG(hw
, IXGBE_QBTC_L(i
));
464 IXGBE_READ_REG(hw
, IXGBE_QBTC_H(i
));
465 IXGBE_READ_REG(hw
, IXGBE_QPRDC(i
));
467 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
468 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
472 if (hw
->mac
.type
== ixgbe_mac_X550
|| hw
->mac
.type
== ixgbe_mac_X540
) {
474 hw
->phy
.ops
.identify(hw
);
475 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECL
, MDIO_MMD_PCS
, &i
);
476 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECH
, MDIO_MMD_PCS
, &i
);
477 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECL
, MDIO_MMD_PCS
, &i
);
478 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECH
, MDIO_MMD_PCS
, &i
);
485 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486 * @hw: pointer to hardware structure
487 * @pba_num: stores the part number string from the EEPROM
488 * @pba_num_size: part number string buffer length
490 * Reads the part number string from the EEPROM.
492 int ixgbe_read_pba_string_generic(struct ixgbe_hw
*hw
, u8
*pba_num
,
501 if (pba_num
== NULL
) {
502 hw_dbg(hw
, "PBA string buffer was null\n");
506 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
508 hw_dbg(hw
, "NVM Read Error\n");
512 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &pba_ptr
);
514 hw_dbg(hw
, "NVM Read Error\n");
519 * if data is not ptr guard the PBA must be in legacy format which
520 * means pba_ptr is actually our second data word for the PBA number
521 * and we can decode it into an ascii string
523 if (data
!= IXGBE_PBANUM_PTR_GUARD
) {
524 hw_dbg(hw
, "NVM PBA number is not stored as string\n");
526 /* we will need 11 characters to store the PBA */
527 if (pba_num_size
< 11) {
528 hw_dbg(hw
, "PBA string buffer too small\n");
532 /* extract hex string from data and pba_ptr */
533 pba_num
[0] = (data
>> 12) & 0xF;
534 pba_num
[1] = (data
>> 8) & 0xF;
535 pba_num
[2] = (data
>> 4) & 0xF;
536 pba_num
[3] = data
& 0xF;
537 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
538 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
541 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
542 pba_num
[9] = pba_ptr
& 0xF;
544 /* put a null character on the end of our string */
547 /* switch all the data but the '-' to hex char */
548 for (offset
= 0; offset
< 10; offset
++) {
549 if (pba_num
[offset
] < 0xA)
550 pba_num
[offset
] += '0';
551 else if (pba_num
[offset
] < 0x10)
552 pba_num
[offset
] += 'A' - 0xA;
558 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
, &length
);
560 hw_dbg(hw
, "NVM Read Error\n");
564 if (length
== 0xFFFF || length
== 0) {
565 hw_dbg(hw
, "NVM PBA number section invalid length\n");
569 /* check if pba_num buffer is big enough */
570 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
571 hw_dbg(hw
, "PBA string buffer too small\n");
575 /* trim pba length from start of string */
579 for (offset
= 0; offset
< length
; offset
++) {
580 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
+ offset
, &data
);
582 hw_dbg(hw
, "NVM Read Error\n");
585 pba_num
[offset
* 2] = (u8
)(data
>> 8);
586 pba_num
[(offset
* 2) + 1] = (u8
)(data
& 0xFF);
588 pba_num
[offset
* 2] = '\0';
594 * ixgbe_get_mac_addr_generic - Generic get MAC address
595 * @hw: pointer to hardware structure
596 * @mac_addr: Adapter MAC address
598 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
599 * A reset of the adapter must be performed prior to calling this function
600 * in order for the MAC address to have been loaded from the EEPROM into RAR0
602 int ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
608 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
609 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
611 for (i
= 0; i
< 4; i
++)
612 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
614 for (i
= 0; i
< 2; i
++)
615 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
620 enum ixgbe_bus_width
ixgbe_convert_bus_width(u16 link_status
)
622 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
623 case IXGBE_PCI_LINK_WIDTH_1
:
624 return ixgbe_bus_width_pcie_x1
;
625 case IXGBE_PCI_LINK_WIDTH_2
:
626 return ixgbe_bus_width_pcie_x2
;
627 case IXGBE_PCI_LINK_WIDTH_4
:
628 return ixgbe_bus_width_pcie_x4
;
629 case IXGBE_PCI_LINK_WIDTH_8
:
630 return ixgbe_bus_width_pcie_x8
;
632 return ixgbe_bus_width_unknown
;
636 enum ixgbe_bus_speed
ixgbe_convert_bus_speed(u16 link_status
)
638 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
639 case IXGBE_PCI_LINK_SPEED_2500
:
640 return ixgbe_bus_speed_2500
;
641 case IXGBE_PCI_LINK_SPEED_5000
:
642 return ixgbe_bus_speed_5000
;
643 case IXGBE_PCI_LINK_SPEED_8000
:
644 return ixgbe_bus_speed_8000
;
646 return ixgbe_bus_speed_unknown
;
651 * ixgbe_get_bus_info_generic - Generic set PCI bus info
652 * @hw: pointer to hardware structure
654 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
656 int ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
660 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
662 /* Get the negotiated link width and speed from PCI config space */
663 link_status
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_LINK_STATUS
);
665 hw
->bus
.width
= ixgbe_convert_bus_width(link_status
);
666 hw
->bus
.speed
= ixgbe_convert_bus_speed(link_status
);
668 hw
->mac
.ops
.set_lan_id(hw
);
674 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675 * @hw: pointer to the HW structure
677 * Determines the LAN function id by reading memory-mapped registers
678 * and swaps the port value if requested.
680 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
682 struct ixgbe_bus_info
*bus
= &hw
->bus
;
686 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
687 bus
->func
= FIELD_GET(IXGBE_STATUS_LAN_ID
, reg
);
688 bus
->lan_id
= bus
->func
;
690 /* check for a port swap */
691 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS(hw
));
692 if (reg
& IXGBE_FACTPS_LFS
)
695 /* Get MAC instance from EEPROM for configuring CS4227 */
696 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_A_SFP
) {
697 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CTRL_4
, &ee_ctrl_4
);
698 bus
->instance_id
= FIELD_GET(IXGBE_EE_CTRL_4_INST_ID
,
704 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705 * @hw: pointer to hardware structure
707 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708 * disables transmit and receive units. The adapter_stopped flag is used by
709 * the shared code and drivers to determine if the adapter is in a stopped
710 * state and should not touch the hardware.
712 int ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
718 * Set the adapter_stopped flag so other driver functions stop touching
721 hw
->adapter_stopped
= true;
723 /* Disable the receive unit */
724 hw
->mac
.ops
.disable_rx(hw
);
726 /* Clear interrupt mask to stop interrupts from being generated */
727 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
729 /* Clear any pending interrupts, flush previous writes */
730 IXGBE_READ_REG(hw
, IXGBE_EICR
);
732 /* Disable the transmit unit. Each queue must be disabled. */
733 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++)
734 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), IXGBE_TXDCTL_SWFLSH
);
736 /* Disable the receive unit by stopping each queue */
737 for (i
= 0; i
< hw
->mac
.max_rx_queues
; i
++) {
738 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
739 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
740 reg_val
|= IXGBE_RXDCTL_SWFLSH
;
741 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
744 /* flush all queues disables */
745 IXGBE_WRITE_FLUSH(hw
);
746 usleep_range(1000, 2000);
749 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
750 * access and verify no pending requests
752 return ixgbe_disable_pcie_primary(hw
);
756 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757 * @hw: pointer to hardware structure
759 * Store the index for the link active LED. This will be used to support
762 int ixgbe_init_led_link_act_generic(struct ixgbe_hw
*hw
)
764 struct ixgbe_mac_info
*mac
= &hw
->mac
;
765 u32 led_reg
, led_mode
;
768 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
770 /* Get LED link active from the LEDCTL register */
771 for (i
= 0; i
< 4; i
++) {
772 led_mode
= led_reg
>> IXGBE_LED_MODE_SHIFT(i
);
774 if ((led_mode
& IXGBE_LED_MODE_MASK_BASE
) ==
775 IXGBE_LED_LINK_ACTIVE
) {
776 mac
->led_link_act
= i
;
781 /* If LEDCTL register does not have the LED link active set, then use
782 * known MAC defaults.
784 switch (hw
->mac
.type
) {
785 case ixgbe_mac_x550em_a
:
786 mac
->led_link_act
= 0;
788 case ixgbe_mac_X550EM_x
:
789 mac
->led_link_act
= 1;
792 mac
->led_link_act
= 2;
799 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
800 * @hw: pointer to hardware structure
801 * @index: led number to turn on
803 int ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
805 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
810 /* To turn on the LED, set mode to ON. */
811 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
812 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
813 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
814 IXGBE_WRITE_FLUSH(hw
);
820 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
821 * @hw: pointer to hardware structure
822 * @index: led number to turn off
824 int ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
826 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
831 /* To turn off the LED, set mode to OFF. */
832 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
833 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
834 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
835 IXGBE_WRITE_FLUSH(hw
);
841 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842 * @hw: pointer to hardware structure
844 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
845 * ixgbe_hw struct in order to set up EEPROM access.
847 int ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
849 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
853 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
854 eeprom
->type
= ixgbe_eeprom_none
;
855 /* Set default semaphore delay to 10ms which is a well
857 eeprom
->semaphore_delay
= 10;
858 /* Clear EEPROM page size, it will be initialized as needed */
859 eeprom
->word_page_size
= 0;
862 * Check for EEPROM present first.
863 * If not present leave as none
865 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
866 if (eec
& IXGBE_EEC_PRES
) {
867 eeprom
->type
= ixgbe_eeprom_spi
;
870 * SPI EEPROM is assumed here. This code would need to
871 * change if a future EEPROM is not SPI.
873 eeprom_size
= FIELD_GET(IXGBE_EEC_SIZE
, eec
);
874 eeprom
->word_size
= BIT(eeprom_size
+
875 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
878 if (eec
& IXGBE_EEC_ADDR_SIZE
)
879 eeprom
->address_bits
= 16;
881 eeprom
->address_bits
= 8;
882 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: %d\n",
883 eeprom
->type
, eeprom
->word_size
, eeprom
->address_bits
);
890 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
891 * @hw: pointer to hardware structure
892 * @offset: offset within the EEPROM to write
893 * @words: number of words
894 * @data: 16 bit word(s) to write to EEPROM
896 * Reads 16 bit word(s) from EEPROM through bit-bang method
898 int ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
899 u16 words
, u16
*data
)
904 hw
->eeprom
.ops
.init_params(hw
);
906 if (words
== 0 || (offset
+ words
> hw
->eeprom
.word_size
))
910 * The EEPROM page size cannot be queried from the chip. We do lazy
911 * initialization. It is worth to do that when we write large buffer.
913 if ((hw
->eeprom
.word_page_size
== 0) &&
914 (words
> IXGBE_EEPROM_PAGE_SIZE_MAX
))
915 ixgbe_detect_eeprom_page_size_generic(hw
, offset
);
918 * We cannot hold synchronization semaphores for too long
919 * to avoid other entity starvation. However it is more efficient
920 * to read in bursts than synchronizing access for each word.
922 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
923 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
924 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
925 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
+ i
,
936 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
937 * @hw: pointer to hardware structure
938 * @offset: offset within the EEPROM to be written to
939 * @words: number of word(s)
940 * @data: 16 bit word(s) to be written to the EEPROM
942 * If ixgbe_eeprom_update_checksum is not called after this function, the
943 * EEPROM will most likely contain an invalid checksum.
945 static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
946 u16 words
, u16
*data
)
948 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
954 /* Prepare the EEPROM for writing */
955 status
= ixgbe_acquire_eeprom(hw
);
959 if (ixgbe_ready_eeprom(hw
) != 0) {
960 ixgbe_release_eeprom(hw
);
964 for (i
= 0; i
< words
; i
++) {
965 ixgbe_standby_eeprom(hw
);
967 /* Send the WRITE ENABLE command (8 bit opcode) */
968 ixgbe_shift_out_eeprom_bits(hw
,
969 IXGBE_EEPROM_WREN_OPCODE_SPI
,
970 IXGBE_EEPROM_OPCODE_BITS
);
972 ixgbe_standby_eeprom(hw
);
974 /* Some SPI eeproms use the 8th address bit embedded
977 if ((hw
->eeprom
.address_bits
== 8) &&
978 ((offset
+ i
) >= 128))
979 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
981 /* Send the Write command (8-bit opcode + addr) */
982 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
983 IXGBE_EEPROM_OPCODE_BITS
);
984 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
985 hw
->eeprom
.address_bits
);
987 page_size
= hw
->eeprom
.word_page_size
;
989 /* Send the data in burst via SPI */
992 word
= (word
>> 8) | (word
<< 8);
993 ixgbe_shift_out_eeprom_bits(hw
, word
, 16);
998 /* do not wrap around page */
999 if (((offset
+ i
) & (page_size
- 1)) ==
1002 } while (++i
< words
);
1004 ixgbe_standby_eeprom(hw
);
1005 usleep_range(10000, 20000);
1007 /* Done with writing - release the EEPROM */
1008 ixgbe_release_eeprom(hw
);
1014 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1015 * @hw: pointer to hardware structure
1016 * @offset: offset within the EEPROM to be written to
1017 * @data: 16 bit word to be written to the EEPROM
1019 * If ixgbe_eeprom_update_checksum is not called after this function, the
1020 * EEPROM will most likely contain an invalid checksum.
1022 int ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1024 hw
->eeprom
.ops
.init_params(hw
);
1026 if (offset
>= hw
->eeprom
.word_size
)
1029 return ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
, 1, &data
);
1033 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1034 * @hw: pointer to hardware structure
1035 * @offset: offset within the EEPROM to be read
1036 * @words: number of word(s)
1037 * @data: read 16 bit words(s) from EEPROM
1039 * Reads 16 bit word(s) from EEPROM through bit-bang method
1041 int ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
1042 u16 words
, u16
*data
)
1047 hw
->eeprom
.ops
.init_params(hw
);
1049 if (words
== 0 || (offset
+ words
> hw
->eeprom
.word_size
))
1053 * We cannot hold synchronization semaphores for too long
1054 * to avoid other entity starvation. However it is more efficient
1055 * to read in bursts than synchronizing access for each word.
1057 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
1058 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
1059 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
1061 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
+ i
,
1072 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1073 * @hw: pointer to hardware structure
1074 * @offset: offset within the EEPROM to be read
1075 * @words: number of word(s)
1076 * @data: read 16 bit word(s) from EEPROM
1078 * Reads 16 bit word(s) from EEPROM through bit-bang method
1080 static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
1081 u16 words
, u16
*data
)
1083 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
1088 /* Prepare the EEPROM for reading */
1089 status
= ixgbe_acquire_eeprom(hw
);
1093 if (ixgbe_ready_eeprom(hw
) != 0) {
1094 ixgbe_release_eeprom(hw
);
1098 for (i
= 0; i
< words
; i
++) {
1099 ixgbe_standby_eeprom(hw
);
1100 /* Some SPI eeproms use the 8th address bit embedded
1103 if ((hw
->eeprom
.address_bits
== 8) &&
1104 ((offset
+ i
) >= 128))
1105 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
1107 /* Send the READ command (opcode + addr) */
1108 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
1109 IXGBE_EEPROM_OPCODE_BITS
);
1110 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
1111 hw
->eeprom
.address_bits
);
1113 /* Read the data. */
1114 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
1115 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
1118 /* End this read operation */
1119 ixgbe_release_eeprom(hw
);
1125 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1126 * @hw: pointer to hardware structure
1127 * @offset: offset within the EEPROM to be read
1128 * @data: read 16 bit value from EEPROM
1130 * Reads 16 bit value from EEPROM through bit-bang method
1132 int ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
1135 hw
->eeprom
.ops
.init_params(hw
);
1137 if (offset
>= hw
->eeprom
.word_size
)
1140 return ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1144 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1145 * @hw: pointer to hardware structure
1146 * @offset: offset of word in the EEPROM to read
1147 * @words: number of word(s)
1148 * @data: 16 bit word(s) from the EEPROM
1150 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1152 int ixgbe_read_eerd_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1153 u16 words
, u16
*data
)
1159 hw
->eeprom
.ops
.init_params(hw
);
1161 if (words
== 0 || offset
>= hw
->eeprom
.word_size
)
1164 for (i
= 0; i
< words
; i
++) {
1165 eerd
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1166 IXGBE_EEPROM_RW_REG_START
;
1168 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
1169 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
1172 data
[i
] = (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
1173 IXGBE_EEPROM_RW_REG_DATA
);
1175 hw_dbg(hw
, "Eeprom read timed out\n");
1184 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1185 * @hw: pointer to hardware structure
1186 * @offset: offset within the EEPROM to be used as a scratch pad
1188 * Discover EEPROM page size by writing marching data at given offset.
1189 * This function is called only when we are writing a new large buffer
1190 * at given offset so the data would be overwritten anyway.
1192 static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
1195 u16 data
[IXGBE_EEPROM_PAGE_SIZE_MAX
];
1199 for (i
= 0; i
< IXGBE_EEPROM_PAGE_SIZE_MAX
; i
++)
1202 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
;
1203 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
,
1204 IXGBE_EEPROM_PAGE_SIZE_MAX
, data
);
1205 hw
->eeprom
.word_page_size
= 0;
1209 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1214 * When writing in burst more than the actual page size
1215 * EEPROM address wraps around current page.
1217 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
- data
[0];
1219 hw_dbg(hw
, "Detected EEPROM page size = %d words.\n",
1220 hw
->eeprom
.word_page_size
);
1225 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1226 * @hw: pointer to hardware structure
1227 * @offset: offset of word in the EEPROM to read
1228 * @data: word read from the EEPROM
1230 * Reads a 16 bit word from the EEPROM using the EERD register.
1232 int ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
1234 return ixgbe_read_eerd_buffer_generic(hw
, offset
, 1, data
);
1238 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1239 * @hw: pointer to hardware structure
1240 * @offset: offset of word in the EEPROM to write
1241 * @words: number of words
1242 * @data: word(s) write to the EEPROM
1244 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1246 int ixgbe_write_eewr_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1247 u16 words
, u16
*data
)
1253 hw
->eeprom
.ops
.init_params(hw
);
1255 if (words
== 0 || offset
>= hw
->eeprom
.word_size
)
1258 for (i
= 0; i
< words
; i
++) {
1259 eewr
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1260 (data
[i
] << IXGBE_EEPROM_RW_REG_DATA
) |
1261 IXGBE_EEPROM_RW_REG_START
;
1263 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1265 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1269 IXGBE_WRITE_REG(hw
, IXGBE_EEWR
, eewr
);
1271 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1273 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1282 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1283 * @hw: pointer to hardware structure
1284 * @offset: offset of word in the EEPROM to write
1285 * @data: word write to the EEPROM
1287 * Write a 16 bit word to the EEPROM using the EEWR register.
1289 int ixgbe_write_eewr_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1291 return ixgbe_write_eewr_buffer_generic(hw
, offset
, 1, &data
);
1295 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1296 * @hw: pointer to hardware structure
1297 * @ee_reg: EEPROM flag for polling
1299 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1300 * read or write is done respectively.
1302 static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
1307 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
1308 if (ee_reg
== IXGBE_NVM_POLL_READ
)
1309 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
1311 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
1313 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
1322 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1323 * @hw: pointer to hardware structure
1325 * Prepares EEPROM for access using bit-bang method. This function should
1326 * be called before issuing a command to the EEPROM.
1328 static int ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
1333 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
1336 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1338 /* Request EEPROM Access */
1339 eec
|= IXGBE_EEC_REQ
;
1340 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1342 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
1343 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1344 if (eec
& IXGBE_EEC_GNT
)
1349 /* Release if grant not acquired */
1350 if (!(eec
& IXGBE_EEC_GNT
)) {
1351 eec
&= ~IXGBE_EEC_REQ
;
1352 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1353 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
1355 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1359 /* Setup EEPROM for Read/Write */
1360 /* Clear CS and SK */
1361 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
1362 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1363 IXGBE_WRITE_FLUSH(hw
);
1369 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1370 * @hw: pointer to hardware structure
1372 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1374 static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
1380 /* Get SMBI software semaphore between device drivers first */
1381 for (i
= 0; i
< timeout
; i
++) {
1383 * If the SMBI bit is 0 when we read it, then the bit will be
1384 * set and we have the semaphore
1386 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1387 if (!(swsm
& IXGBE_SWSM_SMBI
))
1389 usleep_range(50, 100);
1393 hw_dbg(hw
, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1394 /* this release is particularly important because our attempts
1395 * above to get the semaphore may have succeeded, and if there
1396 * was a timeout, we should unconditionally clear the semaphore
1397 * bits to free the driver to make progress
1399 ixgbe_release_eeprom_semaphore(hw
);
1401 usleep_range(50, 100);
1403 * If the SMBI bit is 0 when we read it, then the bit will be
1404 * set and we have the semaphore
1406 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1407 if (swsm
& IXGBE_SWSM_SMBI
) {
1408 hw_dbg(hw
, "Software semaphore SMBI between device drivers not granted.\n");
1413 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1414 for (i
= 0; i
< timeout
; i
++) {
1415 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1417 /* Set the SW EEPROM semaphore bit to request access */
1418 swsm
|= IXGBE_SWSM_SWESMBI
;
1419 IXGBE_WRITE_REG(hw
, IXGBE_SWSM(hw
), swsm
);
1421 /* If we set the bit successfully then we got the
1424 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1425 if (swsm
& IXGBE_SWSM_SWESMBI
)
1428 usleep_range(50, 100);
1431 /* Release semaphores and return error if SW EEPROM semaphore
1432 * was not granted because we don't have access to the EEPROM
1435 hw_dbg(hw
, "SWESMBI Software EEPROM semaphore not granted.\n");
1436 ixgbe_release_eeprom_semaphore(hw
);
1444 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1445 * @hw: pointer to hardware structure
1447 * This function clears hardware semaphore bits.
1449 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
1453 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM(hw
));
1455 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1456 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
1457 IXGBE_WRITE_REG(hw
, IXGBE_SWSM(hw
), swsm
);
1458 IXGBE_WRITE_FLUSH(hw
);
1462 * ixgbe_ready_eeprom - Polls for EEPROM ready
1463 * @hw: pointer to hardware structure
1465 static int ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
1471 * Read "Status Register" repeatedly until the LSB is cleared. The
1472 * EEPROM will signal that the command has been completed by clearing
1473 * bit 0 of the internal status register. If it's not cleared within
1474 * 5 milliseconds, then error out.
1476 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
1477 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
1478 IXGBE_EEPROM_OPCODE_BITS
);
1479 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
1480 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
1484 ixgbe_standby_eeprom(hw
);
1488 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1489 * devices (and only 0-5mSec on 5V devices)
1491 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
1492 hw_dbg(hw
, "SPI EEPROM Status error\n");
1500 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1501 * @hw: pointer to hardware structure
1503 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
1507 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1509 /* Toggle CS to flush commands */
1510 eec
|= IXGBE_EEC_CS
;
1511 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1512 IXGBE_WRITE_FLUSH(hw
);
1514 eec
&= ~IXGBE_EEC_CS
;
1515 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1516 IXGBE_WRITE_FLUSH(hw
);
1521 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1522 * @hw: pointer to hardware structure
1523 * @data: data to send to the EEPROM
1524 * @count: number of bits to shift out
1526 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
1533 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1536 * Mask is used to shift "count" bits of "data" out to the EEPROM
1537 * one bit at a time. Determine the starting bit based on count
1539 mask
= BIT(count
- 1);
1541 for (i
= 0; i
< count
; i
++) {
1543 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1544 * "1", and then raising and then lowering the clock (the SK
1545 * bit controls the clock input to the EEPROM). A "0" is
1546 * shifted out to the EEPROM by setting "DI" to "0" and then
1547 * raising and then lowering the clock.
1550 eec
|= IXGBE_EEC_DI
;
1552 eec
&= ~IXGBE_EEC_DI
;
1554 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1555 IXGBE_WRITE_FLUSH(hw
);
1559 ixgbe_raise_eeprom_clk(hw
, &eec
);
1560 ixgbe_lower_eeprom_clk(hw
, &eec
);
1563 * Shift mask to signify next bit of data to shift in to the
1569 /* We leave the "DI" bit set to "0" when we leave this routine. */
1570 eec
&= ~IXGBE_EEC_DI
;
1571 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1572 IXGBE_WRITE_FLUSH(hw
);
1576 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1577 * @hw: pointer to hardware structure
1578 * @count: number of bits to shift
1580 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
1587 * In order to read a register from the EEPROM, we need to shift
1588 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1589 * the clock input to the EEPROM (setting the SK bit), and then reading
1590 * the value of the "DO" bit. During this "shifting in" process the
1591 * "DI" bit should always be clear.
1593 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1595 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
1597 for (i
= 0; i
< count
; i
++) {
1599 ixgbe_raise_eeprom_clk(hw
, &eec
);
1601 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1603 eec
&= ~(IXGBE_EEC_DI
);
1604 if (eec
& IXGBE_EEC_DO
)
1607 ixgbe_lower_eeprom_clk(hw
, &eec
);
1614 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1615 * @hw: pointer to hardware structure
1616 * @eec: EEC register's current value
1618 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1621 * Raise the clock input to the EEPROM
1622 * (setting the SK bit), then delay
1624 *eec
= *eec
| IXGBE_EEC_SK
;
1625 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), *eec
);
1626 IXGBE_WRITE_FLUSH(hw
);
1631 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1632 * @hw: pointer to hardware structure
1633 * @eec: EEC's current value
1635 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1638 * Lower the clock input to the EEPROM (clearing the SK bit), then
1641 *eec
= *eec
& ~IXGBE_EEC_SK
;
1642 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), *eec
);
1643 IXGBE_WRITE_FLUSH(hw
);
1648 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1649 * @hw: pointer to hardware structure
1651 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
1655 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC(hw
));
1657 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
1658 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
1660 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1661 IXGBE_WRITE_FLUSH(hw
);
1665 /* Stop requesting EEPROM access */
1666 eec
&= ~IXGBE_EEC_REQ
;
1667 IXGBE_WRITE_REG(hw
, IXGBE_EEC(hw
), eec
);
1669 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1672 * Delay before attempt to obtain semaphore again to allow FW
1673 * access. semaphore_delay is in ms we need us for usleep_range
1675 usleep_range(hw
->eeprom
.semaphore_delay
* 1000,
1676 hw
->eeprom
.semaphore_delay
* 2000);
1680 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1681 * @hw: pointer to hardware structure
1683 int ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1692 /* Include 0x0-0x3F in the checksum */
1693 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1694 if (hw
->eeprom
.ops
.read(hw
, i
, &word
)) {
1695 hw_dbg(hw
, "EEPROM read failed\n");
1701 /* Include all data from pointers except for the fw pointer */
1702 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1703 if (hw
->eeprom
.ops
.read(hw
, i
, &pointer
)) {
1704 hw_dbg(hw
, "EEPROM read failed\n");
1708 /* If the pointer seems invalid */
1709 if (pointer
== 0xFFFF || pointer
== 0)
1712 if (hw
->eeprom
.ops
.read(hw
, pointer
, &length
)) {
1713 hw_dbg(hw
, "EEPROM read failed\n");
1717 if (length
== 0xFFFF || length
== 0)
1720 for (j
= pointer
+ 1; j
<= pointer
+ length
; j
++) {
1721 if (hw
->eeprom
.ops
.read(hw
, j
, &word
)) {
1722 hw_dbg(hw
, "EEPROM read failed\n");
1729 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1731 return (int)checksum
;
1735 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1736 * @hw: pointer to hardware structure
1737 * @checksum_val: calculated checksum
1739 * Performs checksum calculation and validates the EEPROM checksum. If the
1740 * caller does not need checksum_val, the value can be NULL.
1742 int ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1745 u16 read_checksum
= 0;
1750 * Read the first word from the EEPROM. If this times out or fails, do
1751 * not continue or we could be in for a very long wait while every
1754 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1756 hw_dbg(hw
, "EEPROM read failed\n");
1760 status
= hw
->eeprom
.ops
.calc_checksum(hw
);
1764 checksum
= (u16
)(status
& 0xffff);
1766 status
= hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1768 hw_dbg(hw
, "EEPROM read failed\n");
1772 /* Verify read checksum from EEPROM is the same as
1773 * calculated checksum
1775 if (read_checksum
!= checksum
)
1778 /* If the user cares, return the calculated checksum */
1780 *checksum_val
= checksum
;
1786 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1787 * @hw: pointer to hardware structure
1789 int ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1795 * Read the first word from the EEPROM. If this times out or fails, do
1796 * not continue or we could be in for a very long wait while every
1799 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1801 hw_dbg(hw
, "EEPROM read failed\n");
1805 status
= hw
->eeprom
.ops
.calc_checksum(hw
);
1809 checksum
= (u16
)(status
& 0xffff);
1811 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
, checksum
);
1817 * ixgbe_set_rar_generic - Set Rx address register
1818 * @hw: pointer to hardware structure
1819 * @index: Receive address register to write
1820 * @addr: Address to put into receive address register
1821 * @vmdq: VMDq "set" or "pool" index
1822 * @enable_addr: set flag that address is active
1824 * Puts an ethernet address into a receive address register.
1826 int ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1829 u32 rar_low
, rar_high
;
1830 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1832 /* Make sure we are using a valid rar index range */
1833 if (index
>= rar_entries
) {
1834 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1838 /* setup VMDq pool selection before this RAR gets enabled */
1839 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1842 * HW expects these in little endian so we reverse the byte
1843 * order from network order (big endian) to little endian
1845 rar_low
= ((u32
)addr
[0] |
1846 ((u32
)addr
[1] << 8) |
1847 ((u32
)addr
[2] << 16) |
1848 ((u32
)addr
[3] << 24));
1850 * Some parts put the VMDq setting in the extra RAH bits,
1851 * so save everything except the lower 16 bits that hold part
1852 * of the address and the address valid bit.
1854 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1855 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1856 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1858 if (enable_addr
!= 0)
1859 rar_high
|= IXGBE_RAH_AV
;
1861 /* Record lower 32 bits of MAC address and then make
1862 * sure that write is flushed to hardware before writing
1863 * the upper 16 bits and setting the valid bit.
1865 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1866 IXGBE_WRITE_FLUSH(hw
);
1867 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1873 * ixgbe_clear_rar_generic - Remove Rx address register
1874 * @hw: pointer to hardware structure
1875 * @index: Receive address register to write
1877 * Clears an ethernet address from a receive address register.
1879 int ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1882 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1884 /* Make sure we are using a valid rar index range */
1885 if (index
>= rar_entries
) {
1886 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1891 * Some parts put the VMDq setting in the extra RAH bits,
1892 * so save everything except the lower 16 bits that hold part
1893 * of the address and the address valid bit.
1895 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1896 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1898 /* Clear the address valid bit and upper 16 bits of the address
1899 * before clearing the lower bits. This way we aren't updating
1902 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1903 IXGBE_WRITE_FLUSH(hw
);
1904 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1906 /* clear VMDq pool/queue selection for this RAR */
1907 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1913 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1914 * @hw: pointer to hardware structure
1916 * Places the MAC address in receive address register 0 and clears the rest
1917 * of the receive address registers. Clears the multicast table. Assumes
1918 * the receiver is in reset when the routine is called.
1920 int ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1923 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1926 * If the current mac address is valid, assume it is a software override
1927 * to the permanent address.
1928 * Otherwise, use the permanent address from the eeprom.
1930 if (!is_valid_ether_addr(hw
->mac
.addr
)) {
1931 /* Get the MAC address from the RAR0 for later reference */
1932 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1934 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1936 /* Setup the receive address. */
1937 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1938 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1940 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1943 /* clear VMDq pool/queue selection for RAR 0 */
1944 hw
->mac
.ops
.clear_vmdq(hw
, 0, IXGBE_CLEAR_VMDQ_ALL
);
1946 hw
->addr_ctrl
.overflow_promisc
= 0;
1948 hw
->addr_ctrl
.rar_used_count
= 1;
1950 /* Zero out the other receive addresses. */
1951 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1952 for (i
= 1; i
< rar_entries
; i
++) {
1953 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1954 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1958 hw
->addr_ctrl
.mta_in_use
= 0;
1959 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1961 hw_dbg(hw
, " Clearing MTA\n");
1962 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1963 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1965 if (hw
->mac
.ops
.init_uta_tables
)
1966 hw
->mac
.ops
.init_uta_tables(hw
);
1972 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1973 * @hw: pointer to hardware structure
1974 * @mc_addr: the multicast address
1976 * Extracts the 12 bits, from a multicast address, to determine which
1977 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1978 * incoming rx multicast addresses, to determine the bit-vector to check in
1979 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1980 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1981 * to mc_filter_type.
1983 static int ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1987 switch (hw
->mac
.mc_filter_type
) {
1988 case 0: /* use bits [47:36] of the address */
1989 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
1991 case 1: /* use bits [46:35] of the address */
1992 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
1994 case 2: /* use bits [45:34] of the address */
1995 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
1997 case 3: /* use bits [43:32] of the address */
1998 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
2000 default: /* Invalid mc_filter_type */
2001 hw_dbg(hw
, "MC filter type param set incorrectly\n");
2005 /* vector can only be 12-bits or boundary will be exceeded */
2011 * ixgbe_set_mta - Set bit-vector in multicast table
2012 * @hw: pointer to hardware structure
2013 * @mc_addr: Multicast address
2015 * Sets the bit-vector in the multicast table.
2017 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
2023 hw
->addr_ctrl
.mta_in_use
++;
2025 vector
= ixgbe_mta_vector(hw
, mc_addr
);
2026 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
2029 * The MTA is a register array of 128 32-bit registers. It is treated
2030 * like an array of 4096 bits. We want to set bit
2031 * BitArray[vector_value]. So we figure out what register the bit is
2032 * in, read it, OR in the new bit, then write back the new value. The
2033 * register is determined by the upper 7 bits of the vector value and
2034 * the bit within that register are determined by the lower 5 bits of
2037 vector_reg
= (vector
>> 5) & 0x7F;
2038 vector_bit
= vector
& 0x1F;
2039 hw
->mac
.mta_shadow
[vector_reg
] |= BIT(vector_bit
);
2043 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2044 * @hw: pointer to hardware structure
2045 * @netdev: pointer to net device structure
2047 * The given list replaces any existing list. Clears the MC addrs from receive
2048 * address registers and the multicast table. Uses unused receive address
2049 * registers for the first multicast addresses, and hashes the rest into the
2052 int ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
2053 struct net_device
*netdev
)
2055 struct netdev_hw_addr
*ha
;
2059 * Set the new number of MC addresses that we are being requested to
2062 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
2063 hw
->addr_ctrl
.mta_in_use
= 0;
2065 /* Clear mta_shadow */
2066 hw_dbg(hw
, " Clearing MTA\n");
2067 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
2069 /* Update mta shadow */
2070 netdev_for_each_mc_addr(ha
, netdev
) {
2071 hw_dbg(hw
, " Adding the multicast addresses:\n");
2072 ixgbe_set_mta(hw
, ha
->addr
);
2076 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
2077 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_MTA(0), i
,
2078 hw
->mac
.mta_shadow
[i
]);
2080 if (hw
->addr_ctrl
.mta_in_use
> 0)
2081 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
2082 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
2084 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
2089 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2090 * @hw: pointer to hardware structure
2092 * Enables multicast address in RAR and the use of the multicast hash table.
2094 int ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
2096 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2098 if (a
->mta_in_use
> 0)
2099 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
2100 hw
->mac
.mc_filter_type
);
2106 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2107 * @hw: pointer to hardware structure
2109 * Disables multicast address in RAR and the use of the multicast hash table.
2111 int ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
2113 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2115 if (a
->mta_in_use
> 0)
2116 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
2122 * ixgbe_fc_enable_generic - Enable flow control
2123 * @hw: pointer to hardware structure
2125 * Enable flow control according to the current settings.
2127 int ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
)
2129 u32 mflcn_reg
, fccfg_reg
;
2134 /* Validate the water mark configuration. */
2135 if (!hw
->fc
.pause_time
)
2138 /* Low water mark of zero causes XOFF floods */
2139 for (i
= 0; i
< MAX_TRAFFIC_CLASS
; i
++) {
2140 if ((hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) &&
2141 hw
->fc
.high_water
[i
]) {
2142 if (!hw
->fc
.low_water
[i
] ||
2143 hw
->fc
.low_water
[i
] >= hw
->fc
.high_water
[i
]) {
2144 hw_dbg(hw
, "Invalid water mark configuration\n");
2150 /* Negotiate the fc mode to use */
2151 hw
->mac
.ops
.fc_autoneg(hw
);
2153 /* Disable any previous flow control settings */
2154 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
2155 mflcn_reg
&= ~(IXGBE_MFLCN_RPFCE_MASK
| IXGBE_MFLCN_RFCE
);
2157 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
2158 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
2161 * The possible values of fc.current_mode are:
2162 * 0: Flow control is completely disabled
2163 * 1: Rx flow control is enabled (we can receive pause frames,
2164 * but not send pause frames).
2165 * 2: Tx flow control is enabled (we can send pause frames but
2166 * we do not support receiving pause frames).
2167 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2170 switch (hw
->fc
.current_mode
) {
2173 * Flow control is disabled by software override or autoneg.
2174 * The code below will actually disable it in the HW.
2177 case ixgbe_fc_rx_pause
:
2179 * Rx Flow control is enabled and Tx Flow control is
2180 * disabled by software override. Since there really
2181 * isn't a way to advertise that we are capable of RX
2182 * Pause ONLY, we will advertise that we support both
2183 * symmetric and asymmetric Rx PAUSE. Later, we will
2184 * disable the adapter's ability to send PAUSE frames.
2186 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2188 case ixgbe_fc_tx_pause
:
2190 * Tx Flow control is enabled, and Rx Flow control is
2191 * disabled by software override.
2193 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2196 /* Flow control (both Rx and Tx) is enabled by SW override. */
2197 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2198 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2201 hw_dbg(hw
, "Flow control param set incorrectly\n");
2205 /* Set 802.3x based flow control settings. */
2206 mflcn_reg
|= IXGBE_MFLCN_DPF
;
2207 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
2208 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
2210 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2211 for (i
= 0; i
< MAX_TRAFFIC_CLASS
; i
++) {
2212 if ((hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) &&
2213 hw
->fc
.high_water
[i
]) {
2214 fcrtl
= (hw
->fc
.low_water
[i
] << 10) | IXGBE_FCRTL_XONE
;
2215 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), fcrtl
);
2216 fcrth
= (hw
->fc
.high_water
[i
] << 10) | IXGBE_FCRTH_FCEN
;
2218 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), 0);
2220 * In order to prevent Tx hangs when the internal Tx
2221 * switch is enabled we must set the high water mark
2222 * to the Rx packet buffer size - 24KB. This allows
2223 * the Tx switch to function even under heavy Rx
2226 fcrth
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(i
)) - 24576;
2229 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(i
), fcrth
);
2232 /* Configure pause time (2 TCs per register) */
2233 reg
= hw
->fc
.pause_time
* 0x00010001U
;
2234 for (i
= 0; i
< (MAX_TRAFFIC_CLASS
/ 2); i
++)
2235 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(i
), reg
);
2237 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, hw
->fc
.pause_time
/ 2);
2243 * ixgbe_negotiate_fc - Negotiate flow control
2244 * @hw: pointer to hardware structure
2245 * @adv_reg: flow control advertised settings
2246 * @lp_reg: link partner's flow control settings
2247 * @adv_sym: symmetric pause bit in advertisement
2248 * @adv_asm: asymmetric pause bit in advertisement
2249 * @lp_sym: symmetric pause bit in link partner advertisement
2250 * @lp_asm: asymmetric pause bit in link partner advertisement
2252 * Find the intersection between advertised settings and link partner's
2253 * advertised settings
2255 int ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
2256 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
)
2258 if ((!(adv_reg
)) || (!(lp_reg
)))
2261 if ((adv_reg
& adv_sym
) && (lp_reg
& lp_sym
)) {
2263 * Now we need to check if the user selected Rx ONLY
2264 * of pause frames. In this case, we had to advertise
2265 * FULL flow control because we could not advertise RX
2266 * ONLY. Hence, we must now check to see if we need to
2267 * turn OFF the TRANSMISSION of PAUSE frames.
2269 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
2270 hw
->fc
.current_mode
= ixgbe_fc_full
;
2271 hw_dbg(hw
, "Flow Control = FULL.\n");
2273 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2274 hw_dbg(hw
, "Flow Control=RX PAUSE frames only\n");
2276 } else if (!(adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2277 (lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2278 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
2279 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
2280 } else if ((adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2281 !(lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2282 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2283 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
2285 hw
->fc
.current_mode
= ixgbe_fc_none
;
2286 hw_dbg(hw
, "Flow Control = NONE.\n");
2292 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2293 * @hw: pointer to hardware structure
2295 * Enable flow control according on 1 gig fiber.
2297 static int ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
)
2299 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
2303 * On multispeed fiber at 1g, bail out if
2304 * - link is up but AN did not complete, or if
2305 * - link is up and AN completed but timed out
2308 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
2309 if ((!!(linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
2310 (!!(linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1))
2313 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
2314 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
2316 ret_val
= ixgbe_negotiate_fc(hw
, pcs_anadv_reg
,
2317 pcs_lpab_reg
, IXGBE_PCS1GANA_SYM_PAUSE
,
2318 IXGBE_PCS1GANA_ASM_PAUSE
,
2319 IXGBE_PCS1GANA_SYM_PAUSE
,
2320 IXGBE_PCS1GANA_ASM_PAUSE
);
2326 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2327 * @hw: pointer to hardware structure
2329 * Enable flow control according to IEEE clause 37.
2331 static int ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
)
2333 u32 links2
, anlp1_reg
, autoc_reg
, links
;
2337 * On backplane, bail out if
2338 * - backplane autoneg was not completed, or if
2339 * - we are 82599 and link partner is not AN enabled
2341 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2342 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0)
2345 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
2346 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
2347 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0)
2351 * Read the 10g AN autoc and LP ability registers and resolve
2352 * local flow control settings accordingly
2354 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2355 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
2357 ret_val
= ixgbe_negotiate_fc(hw
, autoc_reg
,
2358 anlp1_reg
, IXGBE_AUTOC_SYM_PAUSE
, IXGBE_AUTOC_ASM_PAUSE
,
2359 IXGBE_ANLP1_SYM_PAUSE
, IXGBE_ANLP1_ASM_PAUSE
);
2365 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2366 * @hw: pointer to hardware structure
2368 * Enable flow control according to IEEE clause 37.
2370 static int ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
)
2372 u16 technology_ability_reg
= 0;
2373 u16 lp_technology_ability_reg
= 0;
2375 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
2377 &technology_ability_reg
);
2378 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_LPA
,
2380 &lp_technology_ability_reg
);
2382 return ixgbe_negotiate_fc(hw
, (u32
)technology_ability_reg
,
2383 (u32
)lp_technology_ability_reg
,
2384 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
,
2385 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
);
2389 * ixgbe_fc_autoneg - Configure flow control
2390 * @hw: pointer to hardware structure
2392 * Compares our advertised flow control capabilities to those advertised by
2393 * our link partner, and determines the proper flow control mode to use.
2395 void ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
2397 ixgbe_link_speed speed
;
2402 * AN should have completed when the cable was plugged in.
2403 * Look for reasons to bail out. Bail out if:
2404 * - FC autoneg is disabled, or if
2407 * Since we're being called from an LSC, link is already known to be up.
2408 * So use link_up_wait_to_complete=false.
2410 if (hw
->fc
.disable_fc_autoneg
)
2413 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2417 switch (hw
->phy
.media_type
) {
2418 /* Autoneg flow control on fiber adapters */
2419 case ixgbe_media_type_fiber
:
2420 if (speed
== IXGBE_LINK_SPEED_1GB_FULL
)
2421 ret_val
= ixgbe_fc_autoneg_fiber(hw
);
2424 /* Autoneg flow control on backplane adapters */
2425 case ixgbe_media_type_backplane
:
2426 ret_val
= ixgbe_fc_autoneg_backplane(hw
);
2429 /* Autoneg flow control on copper adapters */
2430 case ixgbe_media_type_copper
:
2431 if (ixgbe_device_supports_autoneg_fc(hw
))
2432 ret_val
= ixgbe_fc_autoneg_copper(hw
);
2441 hw
->fc
.fc_was_autonegged
= true;
2443 hw
->fc
.fc_was_autonegged
= false;
2444 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2449 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2450 * @hw: pointer to hardware structure
2452 * System-wide timeout range is encoded in PCIe Device Control2 register.
2454 * Add 10% to specified maximum and return the number of times to poll for
2455 * completion timeout, in units of 100 microsec. Never return less than
2456 * 800 = 80 millisec.
2458 static u32
ixgbe_pcie_timeout_poll(struct ixgbe_hw
*hw
)
2463 devctl2
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_CONTROL2
);
2464 devctl2
&= IXGBE_PCIDEVCTRL2_TIMEO_MASK
;
2467 case IXGBE_PCIDEVCTRL2_65_130ms
:
2468 pollcnt
= 1300; /* 130 millisec */
2470 case IXGBE_PCIDEVCTRL2_260_520ms
:
2471 pollcnt
= 5200; /* 520 millisec */
2473 case IXGBE_PCIDEVCTRL2_1_2s
:
2474 pollcnt
= 20000; /* 2 sec */
2476 case IXGBE_PCIDEVCTRL2_4_8s
:
2477 pollcnt
= 80000; /* 8 sec */
2479 case IXGBE_PCIDEVCTRL2_17_34s
:
2480 pollcnt
= 34000; /* 34 sec */
2482 case IXGBE_PCIDEVCTRL2_50_100us
: /* 100 microsecs */
2483 case IXGBE_PCIDEVCTRL2_1_2ms
: /* 2 millisecs */
2484 case IXGBE_PCIDEVCTRL2_16_32ms
: /* 32 millisec */
2485 case IXGBE_PCIDEVCTRL2_16_32ms_def
: /* 32 millisec default */
2487 pollcnt
= 800; /* 80 millisec minimum */
2491 /* add 10% to spec maximum */
2492 return (pollcnt
* 11) / 10;
2496 * ixgbe_disable_pcie_primary - Disable PCI-express primary access
2497 * @hw: pointer to hardware structure
2499 * Disables PCI-Express primary access and verifies there are no pending
2500 * requests. -EALREADY is returned if primary disable
2501 * bit hasn't caused the primary requests to be disabled, else 0
2502 * is returned signifying primary requests disabled.
2504 static int ixgbe_disable_pcie_primary(struct ixgbe_hw
*hw
)
2509 /* Always set this bit to ensure any future transactions are blocked */
2510 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, IXGBE_CTRL_GIO_DIS
);
2512 /* Poll for bit to read as set */
2513 for (i
= 0; i
< IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT
; i
++) {
2514 if (IXGBE_READ_REG(hw
, IXGBE_CTRL
) & IXGBE_CTRL_GIO_DIS
)
2516 usleep_range(100, 120);
2518 if (i
>= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT
) {
2519 hw_dbg(hw
, "GIO disable did not set - requesting resets\n");
2520 goto gio_disable_fail
;
2523 /* Exit if primary requests are blocked */
2524 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
) ||
2525 ixgbe_removed(hw
->hw_addr
))
2528 /* Poll for primary request bit to clear */
2529 for (i
= 0; i
< IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT
; i
++) {
2531 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2536 * Two consecutive resets are required via CTRL.RST per datasheet
2537 * 5.2.5.3.2 Primary Disable. We set a flag to inform the reset routine
2538 * of this need. The first reset prevents new primary requests from
2539 * being issued by our device. We then must wait 1usec or more for any
2540 * remaining completions from the PCIe bus to trickle in, and then reset
2541 * again to clear out any effects they may have had on our device.
2543 hw_dbg(hw
, "GIO Primary Disable bit didn't clear - requesting resets\n");
2545 hw
->mac
.flags
|= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
;
2547 if (hw
->mac
.type
>= ixgbe_mac_X550
)
2551 * Before proceeding, make sure that the PCIe block does not have
2552 * transactions pending.
2554 poll
= ixgbe_pcie_timeout_poll(hw
);
2555 for (i
= 0; i
< poll
; i
++) {
2557 value
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_STATUS
);
2558 if (ixgbe_removed(hw
->hw_addr
))
2560 if (!(value
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
2564 hw_dbg(hw
, "PCIe transaction pending bit also did not clear.\n");
2569 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2570 * @hw: pointer to hardware structure
2571 * @mask: Mask to specify which semaphore to acquire
2573 * Acquires the SWFW semaphore through the GSSR register for the specified
2574 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2576 int ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u32 mask
)
2580 u32 fwmask
= mask
<< 5;
2584 for (i
= 0; i
< timeout
; i
++) {
2586 * SW NVM semaphore bit is used for access to all
2587 * SW_FW_SYNC bits (not just NVM)
2589 if (ixgbe_get_eeprom_semaphore(hw
))
2592 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2593 if (!(gssr
& (fwmask
| swmask
))) {
2595 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2596 ixgbe_release_eeprom_semaphore(hw
);
2599 /* Resource is currently in use by FW or SW */
2600 ixgbe_release_eeprom_semaphore(hw
);
2601 usleep_range(5000, 10000);
2605 /* If time expired clear the bits holding the lock and retry */
2606 if (gssr
& (fwmask
| swmask
))
2607 ixgbe_release_swfw_sync(hw
, gssr
& (fwmask
| swmask
));
2609 usleep_range(5000, 10000);
2614 * ixgbe_release_swfw_sync - Release SWFW semaphore
2615 * @hw: pointer to hardware structure
2616 * @mask: Mask to specify which semaphore to release
2618 * Releases the SWFW semaphore through the GSSR register for the specified
2619 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2621 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u32 mask
)
2626 ixgbe_get_eeprom_semaphore(hw
);
2628 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2630 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2632 ixgbe_release_eeprom_semaphore(hw
);
2636 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2637 * @hw: pointer to hardware structure
2638 * @reg_val: Value we read from AUTOC
2639 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2640 * true in this the generic case.
2642 * The default case requires no protection so just to the register read.
2644 int prot_autoc_read_generic(struct ixgbe_hw
*hw
, bool *locked
, u32
*reg_val
)
2647 *reg_val
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2652 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2653 * @hw: pointer to hardware structure
2654 * @reg_val: value to write to AUTOC
2655 * @locked: bool to indicate whether the SW/FW lock was already taken by
2658 int prot_autoc_write_generic(struct ixgbe_hw
*hw
, u32 reg_val
, bool locked
)
2660 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg_val
);
2665 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2666 * @hw: pointer to hardware structure
2668 * Stops the receive data path and waits for the HW to internally
2669 * empty the Rx security block.
2671 int ixgbe_disable_rx_buff_generic(struct ixgbe_hw
*hw
)
2673 #define IXGBE_MAX_SECRX_POLL 40
2677 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2678 secrxreg
|= IXGBE_SECRXCTRL_RX_DIS
;
2679 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2680 for (i
= 0; i
< IXGBE_MAX_SECRX_POLL
; i
++) {
2681 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXSTAT
);
2682 if (secrxreg
& IXGBE_SECRXSTAT_SECRX_RDY
)
2685 /* Use interrupt-safe sleep just in case */
2689 /* For informational purposes only */
2690 if (i
>= IXGBE_MAX_SECRX_POLL
)
2691 hw_dbg(hw
, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2698 * ixgbe_enable_rx_buff_generic - Enables the receive data path
2699 * @hw: pointer to hardware structure
2701 * Enables the receive data path
2703 int ixgbe_enable_rx_buff_generic(struct ixgbe_hw
*hw
)
2707 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2708 secrxreg
&= ~IXGBE_SECRXCTRL_RX_DIS
;
2709 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2710 IXGBE_WRITE_FLUSH(hw
);
2716 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2717 * @hw: pointer to hardware structure
2718 * @regval: register value to write to RXCTRL
2720 * Enables the Rx DMA unit
2722 int ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2724 if (regval
& IXGBE_RXCTRL_RXEN
)
2725 hw
->mac
.ops
.enable_rx(hw
);
2727 hw
->mac
.ops
.disable_rx(hw
);
2733 * ixgbe_blink_led_start_generic - Blink LED based on index.
2734 * @hw: pointer to hardware structure
2735 * @index: led number to blink
2737 int ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2739 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2740 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2741 ixgbe_link_speed speed
= 0;
2742 bool link_up
= false;
2743 bool locked
= false;
2750 * Link must be up to auto-blink the LEDs;
2751 * Force it if link is down.
2753 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2756 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, &autoc_reg
);
2760 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2761 autoc_reg
|= IXGBE_AUTOC_FLU
;
2763 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, autoc_reg
, locked
);
2767 IXGBE_WRITE_FLUSH(hw
);
2769 usleep_range(10000, 20000);
2772 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2773 led_reg
|= IXGBE_LED_BLINK(index
);
2774 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2775 IXGBE_WRITE_FLUSH(hw
);
2781 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2782 * @hw: pointer to hardware structure
2783 * @index: led number to stop blinking
2785 int ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2787 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2788 bool locked
= false;
2795 ret_val
= hw
->mac
.ops
.prot_autoc_read(hw
, &locked
, &autoc_reg
);
2799 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2800 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2802 ret_val
= hw
->mac
.ops
.prot_autoc_write(hw
, autoc_reg
, locked
);
2806 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2807 led_reg
&= ~IXGBE_LED_BLINK(index
);
2808 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2809 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2810 IXGBE_WRITE_FLUSH(hw
);
2816 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2817 * @hw: pointer to hardware structure
2818 * @san_mac_offset: SAN MAC address offset
2820 * This function will read the EEPROM location for the SAN MAC address
2821 * pointer, and returns the value at that location. This is used in both
2822 * get and set mac_addr routines.
2824 static int ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2825 u16
*san_mac_offset
)
2830 * First read the EEPROM pointer to see if the MAC addresses are
2833 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
,
2836 hw_err(hw
, "eeprom read at offset %d failed\n",
2837 IXGBE_SAN_MAC_ADDR_PTR
);
2843 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2844 * @hw: pointer to hardware structure
2845 * @san_mac_addr: SAN MAC address
2847 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2848 * per-port, so set_lan_id() must be called before reading the addresses.
2849 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2850 * upon for non-SFP connections, so we must call it here.
2852 int ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2854 u16 san_mac_data
, san_mac_offset
;
2859 * First read the EEPROM pointer to see if the MAC addresses are
2860 * available. If they're not, no point in calling set_lan_id() here.
2862 ret_val
= ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2863 if (ret_val
|| san_mac_offset
== 0 || san_mac_offset
== 0xFFFF)
2865 goto san_mac_addr_clr
;
2867 /* make sure we know which port we need to program */
2868 hw
->mac
.ops
.set_lan_id(hw
);
2869 /* apply the port offset to the address offset */
2870 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2871 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2872 for (i
= 0; i
< 3; i
++) {
2873 ret_val
= hw
->eeprom
.ops
.read(hw
, san_mac_offset
,
2876 hw_err(hw
, "eeprom read at offset %d failed\n",
2878 goto san_mac_addr_clr
;
2880 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2881 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2887 /* No addresses available in this EEPROM. It's not necessarily an
2888 * error though, so just wipe the local address and return.
2890 for (i
= 0; i
< 6; i
++)
2891 san_mac_addr
[i
] = 0xFF;
2896 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2897 * @hw: pointer to hardware structure
2899 * Read PCIe configuration space, and get the MSI-X vector count from
2900 * the capabilities table.
2902 u16
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2908 switch (hw
->mac
.type
) {
2909 case ixgbe_mac_82598EB
:
2910 pcie_offset
= IXGBE_PCIE_MSIX_82598_CAPS
;
2911 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82598
;
2913 case ixgbe_mac_82599EB
:
2914 case ixgbe_mac_X540
:
2915 case ixgbe_mac_X550
:
2916 case ixgbe_mac_X550EM_x
:
2917 case ixgbe_mac_x550em_a
:
2918 pcie_offset
= IXGBE_PCIE_MSIX_82599_CAPS
;
2919 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82599
;
2925 msix_count
= ixgbe_read_pci_cfg_word(hw
, pcie_offset
);
2926 if (ixgbe_removed(hw
->hw_addr
))
2928 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2930 /* MSI-X count is zero-based in HW */
2933 if (msix_count
> max_msix_count
)
2934 msix_count
= max_msix_count
;
2940 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2941 * @hw: pointer to hardware struct
2942 * @rar: receive address register index to disassociate
2943 * @vmdq: VMDq pool index to remove from the rar
2945 int ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2947 u32 mpsar_lo
, mpsar_hi
;
2948 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2950 /* Make sure we are using a valid rar index range */
2951 if (rar
>= rar_entries
) {
2952 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2956 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2957 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2959 if (ixgbe_removed(hw
->hw_addr
))
2962 if (!mpsar_lo
&& !mpsar_hi
)
2965 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2967 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2971 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
2974 } else if (vmdq
< 32) {
2975 mpsar_lo
&= ~BIT(vmdq
);
2976 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
2978 mpsar_hi
&= ~BIT(vmdq
- 32);
2979 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
2982 /* was that the last pool using this rar? */
2983 if (mpsar_lo
== 0 && mpsar_hi
== 0 &&
2984 rar
!= 0 && rar
!= hw
->mac
.san_mac_rar_index
)
2985 hw
->mac
.ops
.clear_rar(hw
, rar
);
2991 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2992 * @hw: pointer to hardware struct
2993 * @rar: receive address register index to associate with a VMDq index
2994 * @vmdq: VMDq pool index
2996 int ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2999 u32 rar_entries
= hw
->mac
.num_rar_entries
;
3001 /* Make sure we are using a valid rar index range */
3002 if (rar
>= rar_entries
) {
3003 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
3008 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
3010 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
3012 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
3013 mpsar
|= BIT(vmdq
- 32);
3014 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
3020 * ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3021 * @hw: pointer to hardware struct
3022 * @vmdq: VMDq pool index
3024 * This function should only be involved in the IOV mode.
3025 * In IOV mode, Default pool is next pool after the number of
3026 * VFs advertized and not 0.
3027 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3029 int ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw
*hw
, u32 vmdq
)
3031 u32 rar
= hw
->mac
.san_mac_rar_index
;
3034 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), BIT(vmdq
));
3035 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
3037 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
3038 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), BIT(vmdq
- 32));
3045 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3046 * @hw: pointer to hardware structure
3048 int ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
3052 for (i
= 0; i
< 128; i
++)
3053 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
3059 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3060 * @hw: pointer to hardware structure
3061 * @vlan: VLAN id to write to VLAN filter
3062 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3065 * return the VLVF index where this VLAN id should be placed
3068 static int ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
, bool vlvf_bypass
)
3070 int regindex
, first_empty_slot
;
3073 /* short cut the special case */
3077 /* if vlvf_bypass is set we don't want to use an empty slot, we
3078 * will simply bypass the VLVF if there are no entries present in the
3079 * VLVF that contain our VLAN
3081 first_empty_slot
= vlvf_bypass
? -ENOSPC
: 0;
3083 /* add VLAN enable bit for comparison */
3084 vlan
|= IXGBE_VLVF_VIEN
;
3086 /* Search for the vlan id in the VLVF entries. Save off the first empty
3087 * slot found along the way.
3089 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3091 for (regindex
= IXGBE_VLVF_ENTRIES
; --regindex
;) {
3092 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
3095 if (!first_empty_slot
&& !bits
)
3096 first_empty_slot
= regindex
;
3099 /* If we are here then we didn't find the VLAN. Return first empty
3100 * slot we found during our search, else error.
3102 if (!first_empty_slot
)
3103 hw_dbg(hw
, "No space in VLVF.\n");
3105 return first_empty_slot
? : -ENOSPC
;
3109 * ixgbe_set_vfta_generic - Set VLAN filter table
3110 * @hw: pointer to hardware structure
3111 * @vlan: VLAN id to write to VLAN filter
3112 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3113 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3114 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3116 * Turn on/off specified VLAN in the VLAN filter table.
3118 int ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
3119 bool vlan_on
, bool vlvf_bypass
)
3121 u32 regidx
, vfta_delta
, vfta
, bits
;
3124 if ((vlan
> 4095) || (vind
> 63))
3128 * this is a 2 part operation - first the VFTA, then the
3129 * VLVF and VLVFB if VT Mode is set
3130 * We don't write the VFTA until we know the VLVF part succeeded.
3134 * The VFTA is a bitstring made up of 128 32-bit registers
3135 * that enable the particular VLAN id, much like the MTA:
3136 * bits[11-5]: which register
3137 * bits[4-0]: which bit in the register
3140 vfta_delta
= BIT(vlan
% 32);
3141 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regidx
));
3143 /* vfta_delta represents the difference between the current value
3144 * of vfta and the value we want in the register. Since the diff
3145 * is an XOR mask we can just update vfta using an XOR.
3147 vfta_delta
&= vlan_on
? ~vfta
: vfta
;
3153 * make sure the vlan is in VLVF
3154 * set the vind bit in the matching VLVFB
3156 * clear the pool bit and possibly the vind
3158 if (!(IXGBE_READ_REG(hw
, IXGBE_VT_CTL
) & IXGBE_VT_CTL_VT_ENABLE
))
3161 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
, vlvf_bypass
);
3162 if (vlvf_index
< 0) {
3168 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32));
3170 /* set the pool bit */
3171 bits
|= BIT(vind
% 32);
3175 /* clear the pool bit */
3176 bits
^= BIT(vind
% 32);
3179 !IXGBE_READ_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + 1 - vind
/ 32))) {
3180 /* Clear VFTA first, then disable VLVF. Otherwise
3181 * we run the risk of stray packets leaking into
3182 * the PF via the default pool
3185 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regidx
), vfta
);
3187 /* disable VLVF and clear remaining bit from pool */
3188 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
3189 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32), 0);
3194 /* If there are still bits set in the VLVFB registers
3195 * for the VLAN ID indicated we need to see if the
3196 * caller is requesting that we clear the VFTA entry bit.
3197 * If the caller has requested that we clear the VFTA
3198 * entry bit but there are still pools/VFs using this VLAN
3199 * ID entry then ignore the request. We're not worried
3200 * about the case where we're turning the VFTA VLAN ID
3201 * entry bit on, only when requested to turn it off as
3202 * there may be multiple pools and/or VFs using the
3203 * VLAN ID entry. In that case we cannot clear the
3204 * VFTA bit until all pools/VFs using that VLAN ID have also
3205 * been cleared. This will be indicated by "bits" being
3211 /* record pool change and enable VLAN ID if not already enabled */
3212 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(vlvf_index
* 2 + vind
/ 32), bits
);
3213 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), IXGBE_VLVF_VIEN
| vlan
);
3216 /* Update VFTA now that we are ready for traffic */
3218 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regidx
), vfta
);
3224 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3225 * @hw: pointer to hardware structure
3227 * Clears the VLAN filter table, and the VMDq index associated with the filter
3229 int ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
3233 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
3234 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
3236 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
3237 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
3238 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
* 2), 0);
3239 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
* 2 + 1), 0);
3246 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3247 * @hw: pointer to hardware structure
3249 * Contains the logic to identify if we need to verify link for the
3252 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw
*hw
)
3254 /* Does FW say we need the fix */
3255 if (!hw
->need_crosstalk_fix
)
3258 /* Only consider SFP+ PHYs i.e. media type fiber */
3259 switch (hw
->mac
.ops
.get_media_type(hw
)) {
3260 case ixgbe_media_type_fiber
:
3261 case ixgbe_media_type_fiber_qsfp
:
3271 * ixgbe_check_mac_link_generic - Determine link and speed status
3272 * @hw: pointer to hardware structure
3273 * @speed: pointer to link speed
3274 * @link_up: true when link is up
3275 * @link_up_wait_to_complete: bool used to wait for link up or not
3277 * Reads the links register to determine if link is up and the current speed
3279 int ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
3280 bool *link_up
, bool link_up_wait_to_complete
)
3282 bool crosstalk_fix_active
= ixgbe_need_crosstalk_fix(hw
);
3283 u32 links_reg
, links_orig
;
3286 /* If Crosstalk fix enabled do the sanity check of making sure
3287 * the SFP+ cage is full.
3289 if (crosstalk_fix_active
) {
3292 switch (hw
->mac
.type
) {
3293 case ixgbe_mac_82599EB
:
3294 sfp_cage_full
= IXGBE_READ_REG(hw
, IXGBE_ESDP
) &
3297 case ixgbe_mac_X550EM_x
:
3298 case ixgbe_mac_x550em_a
:
3299 sfp_cage_full
= IXGBE_READ_REG(hw
, IXGBE_ESDP
) &
3303 /* sanity check - No SFP+ devices here */
3304 sfp_cage_full
= false;
3308 if (!sfp_cage_full
) {
3310 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3315 /* clear the old state */
3316 links_orig
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3318 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3320 if (links_orig
!= links_reg
) {
3321 hw_dbg(hw
, "LINKS changed from %08X to %08X\n",
3322 links_orig
, links_reg
);
3325 if (link_up_wait_to_complete
) {
3326 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
3327 if (links_reg
& IXGBE_LINKS_UP
) {
3334 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3337 if (links_reg
& IXGBE_LINKS_UP
) {
3338 if (crosstalk_fix_active
) {
3339 /* Check the link state again after a delay
3340 * to filter out spurious link up
3344 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3345 if (!(links_reg
& IXGBE_LINKS_UP
)) {
3347 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3357 switch (links_reg
& IXGBE_LINKS_SPEED_82599
) {
3358 case IXGBE_LINKS_SPEED_10G_82599
:
3359 if ((hw
->mac
.type
>= ixgbe_mac_X550
) &&
3360 (links_reg
& IXGBE_LINKS_SPEED_NON_STD
))
3361 *speed
= IXGBE_LINK_SPEED_2_5GB_FULL
;
3363 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
3365 case IXGBE_LINKS_SPEED_1G_82599
:
3366 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
3368 case IXGBE_LINKS_SPEED_100_82599
:
3369 if ((hw
->mac
.type
>= ixgbe_mac_X550
) &&
3370 (links_reg
& IXGBE_LINKS_SPEED_NON_STD
))
3371 *speed
= IXGBE_LINK_SPEED_5GB_FULL
;
3373 *speed
= IXGBE_LINK_SPEED_100_FULL
;
3375 case IXGBE_LINKS_SPEED_10_X550EM_A
:
3376 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3377 if (hw
->device_id
== IXGBE_DEV_ID_X550EM_A_1G_T
||
3378 hw
->device_id
== IXGBE_DEV_ID_X550EM_A_1G_T_L
) {
3379 *speed
= IXGBE_LINK_SPEED_10_FULL
;
3383 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3390 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3392 * @hw: pointer to hardware structure
3393 * @wwnn_prefix: the alternative WWNN prefix
3394 * @wwpn_prefix: the alternative WWPN prefix
3396 * This function will read the EEPROM from the alternative SAN MAC address
3397 * block to check the support for the alternative WWNN/WWPN prefix support.
3399 int ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
3403 u16 alt_san_mac_blk_offset
;
3405 /* clear output first */
3406 *wwnn_prefix
= 0xFFFF;
3407 *wwpn_prefix
= 0xFFFF;
3409 /* check if alternative SAN MAC is supported */
3410 offset
= IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
;
3411 if (hw
->eeprom
.ops
.read(hw
, offset
, &alt_san_mac_blk_offset
))
3412 goto wwn_prefix_err
;
3414 if ((alt_san_mac_blk_offset
== 0) ||
3415 (alt_san_mac_blk_offset
== 0xFFFF))
3418 /* check capability in alternative san mac address block */
3419 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
3420 if (hw
->eeprom
.ops
.read(hw
, offset
, &caps
))
3421 goto wwn_prefix_err
;
3422 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
3425 /* get the corresponding prefix for WWNN/WWPN */
3426 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
3427 if (hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
))
3428 hw_err(hw
, "eeprom read at offset %d failed\n", offset
);
3430 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
3431 if (hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
))
3432 goto wwn_prefix_err
;
3437 hw_err(hw
, "eeprom read at offset %d failed\n", offset
);
3442 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3443 * @hw: pointer to hardware structure
3444 * @enable: enable or disable switch for MAC anti-spoofing
3445 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3448 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3450 int vf_target_reg
= vf
>> 3;
3451 int vf_target_shift
= vf
% 8;
3454 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3457 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3459 pfvfspoof
|= BIT(vf_target_shift
);
3461 pfvfspoof
&= ~BIT(vf_target_shift
);
3462 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3466 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3467 * @hw: pointer to hardware structure
3468 * @enable: enable or disable switch for VLAN anti-spoofing
3469 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3472 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3474 int vf_target_reg
= vf
>> 3;
3475 int vf_target_shift
= vf
% 8 + IXGBE_SPOOF_VLANAS_SHIFT
;
3478 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3481 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3483 pfvfspoof
|= BIT(vf_target_shift
);
3485 pfvfspoof
&= ~BIT(vf_target_shift
);
3486 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3490 * ixgbe_get_device_caps_generic - Get additional device capabilities
3491 * @hw: pointer to hardware structure
3492 * @device_caps: the EEPROM word with the extra device capabilities
3494 * This function will read the EEPROM location for the device capabilities,
3495 * and return the word through device_caps.
3497 int ixgbe_get_device_caps_generic(struct ixgbe_hw
*hw
, u16
*device_caps
)
3499 hw
->eeprom
.ops
.read(hw
, IXGBE_DEVICE_CAPS
, device_caps
);
3505 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3506 * @hw: pointer to hardware structure
3507 * @num_pb: number of packet buffers to allocate
3508 * @headroom: reserve n KB of headroom
3509 * @strategy: packet buffer allocation strategy
3511 void ixgbe_set_rxpba_generic(struct ixgbe_hw
*hw
,
3516 u32 pbsize
= hw
->mac
.rx_pb_size
;
3518 u32 rxpktsize
, txpktsize
, txpbthresh
;
3520 /* Reserve headroom */
3526 /* Divide remaining packet buffer space amongst the number
3527 * of packet buffers requested using supplied strategy.
3530 case (PBA_STRATEGY_WEIGHTED
):
3531 /* pba_80_48 strategy weight first half of packet buffer with
3532 * 5/8 of the packet buffer space.
3534 rxpktsize
= ((pbsize
* 5 * 2) / (num_pb
* 8));
3535 pbsize
-= rxpktsize
* (num_pb
/ 2);
3536 rxpktsize
<<= IXGBE_RXPBSIZE_SHIFT
;
3537 for (; i
< (num_pb
/ 2); i
++)
3538 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3539 fallthrough
; /* configure remaining packet buffers */
3540 case (PBA_STRATEGY_EQUAL
):
3541 /* Divide the remaining Rx packet buffer evenly among the TCs */
3542 rxpktsize
= (pbsize
/ (num_pb
- i
)) << IXGBE_RXPBSIZE_SHIFT
;
3543 for (; i
< num_pb
; i
++)
3544 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3551 * Setup Tx packet buffer and threshold equally for all TCs
3552 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3553 * 10 since the largest packet we support is just over 9K.
3555 txpktsize
= IXGBE_TXPBSIZE_MAX
/ num_pb
;
3556 txpbthresh
= (txpktsize
/ 1024) - IXGBE_TXPKT_SIZE_MAX
;
3557 for (i
= 0; i
< num_pb
; i
++) {
3558 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), txpktsize
);
3559 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), txpbthresh
);
3562 /* Clear unused TCs, if any, to zero buffer size*/
3563 for (; i
< IXGBE_MAX_PB
; i
++) {
3564 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), 0);
3565 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), 0);
3566 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), 0);
3571 * ixgbe_calculate_checksum - Calculate checksum for buffer
3572 * @buffer: pointer to EEPROM
3573 * @length: size of EEPROM to calculate a checksum for
3575 * Calculates the checksum for some buffer on a specified length. The
3576 * checksum calculated is returned.
3578 u8
ixgbe_calculate_checksum(u8
*buffer
, u32 length
)
3586 for (i
= 0; i
< length
; i
++)
3589 return (u8
) (0 - sum
);
3593 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3594 * @hw: pointer to the HW structure
3595 * @buffer: command to write and where the return status will be placed
3596 * @length: length of buffer, must be multiple of 4 bytes
3597 * @timeout: time in ms to wait for command completion
3599 * Communicates with the manageability block. On success return 0
3600 * else returns semaphore error when encountering an error acquiring
3601 * semaphore, -EINVAL when incorrect parameters passed or -EIO when
3604 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3607 int ixgbe_hic_unlocked(struct ixgbe_hw
*hw
, u32
*buffer
, u32 length
,
3613 if (!length
|| length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3614 hw_dbg(hw
, "Buffer length failure buffersize-%d.\n", length
);
3618 /* Set bit 9 of FWSTS clearing FW reset indication */
3619 fwsts
= IXGBE_READ_REG(hw
, IXGBE_FWSTS
);
3620 IXGBE_WRITE_REG(hw
, IXGBE_FWSTS
, fwsts
| IXGBE_FWSTS_FWRI
);
3622 /* Check that the host interface is enabled. */
3623 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3624 if (!(hicr
& IXGBE_HICR_EN
)) {
3625 hw_dbg(hw
, "IXGBE_HOST_EN bit disabled.\n");
3629 /* Calculate length in DWORDs. We must be DWORD aligned */
3630 if (length
% sizeof(u32
)) {
3631 hw_dbg(hw
, "Buffer length failure, not aligned to dword");
3635 dword_len
= length
>> 2;
3637 /* The device driver writes the relevant command block
3638 * into the ram area.
3640 for (i
= 0; i
< dword_len
; i
++)
3641 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_FLEX_MNG
,
3642 i
, (__force u32
)cpu_to_le32(buffer
[i
]));
3644 /* Setting this bit tells the ARC that a new command is pending. */
3645 IXGBE_WRITE_REG(hw
, IXGBE_HICR
, hicr
| IXGBE_HICR_C
);
3647 for (i
= 0; i
< timeout
; i
++) {
3648 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3649 if (!(hicr
& IXGBE_HICR_C
))
3651 usleep_range(1000, 2000);
3654 /* Check command successful completion. */
3655 if ((timeout
&& i
== timeout
) ||
3656 !(IXGBE_READ_REG(hw
, IXGBE_HICR
) & IXGBE_HICR_SV
))
3663 * ixgbe_host_interface_command - Issue command to manageability block
3664 * @hw: pointer to the HW structure
3665 * @buffer: contains the command to write and where the return status will
3667 * @length: length of buffer, must be multiple of 4 bytes
3668 * @timeout: time in ms to wait for command completion
3669 * @return_data: read and return data from the buffer (true) or not (false)
3670 * Needed because FW structures are big endian and decoding of
3671 * these fields can be 8 bit or 16 bit based on command. Decoding
3672 * is not easily understood without making a table of commands.
3673 * So we will leave this up to the caller to read back the data
3676 * Communicates with the manageability block. On success return 0
3677 * else return -EIO or -EINVAL.
3679 int ixgbe_host_interface_command(struct ixgbe_hw
*hw
, void *buffer
,
3680 u32 length
, u32 timeout
,
3683 u32 hdr_size
= sizeof(struct ixgbe_hic_hdr
);
3684 struct ixgbe_hic_hdr
*hdr
= buffer
;
3685 u16 buf_len
, dword_len
;
3686 u32
*u32arr
= buffer
;
3690 if (!length
|| length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3691 hw_dbg(hw
, "Buffer length failure buffersize-%d.\n", length
);
3694 /* Take management host interface semaphore */
3695 status
= hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);
3699 status
= ixgbe_hic_unlocked(hw
, buffer
, length
, timeout
);
3706 /* Calculate length in DWORDs */
3707 dword_len
= hdr_size
>> 2;
3709 /* first pull in the header so we know the buffer length */
3710 for (bi
= 0; bi
< dword_len
; bi
++) {
3711 u32arr
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3712 le32_to_cpus(&u32arr
[bi
]);
3715 /* If there is any thing in data position pull it in */
3716 buf_len
= hdr
->buf_len
;
3720 if (length
< round_up(buf_len
, 4) + hdr_size
) {
3721 hw_dbg(hw
, "Buffer not large enough for reply message.\n");
3726 /* Calculate length in DWORDs, add 3 for odd lengths */
3727 dword_len
= (buf_len
+ 3) >> 2;
3729 /* Pull in the rest of the buffer (bi is where we left off) */
3730 for (; bi
<= dword_len
; bi
++) {
3731 u32arr
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3732 le32_to_cpus(&u32arr
[bi
]);
3736 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);
3742 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3743 * @hw: pointer to the HW structure
3744 * @maj: driver version major number
3745 * @min: driver version minor number
3746 * @build: driver version build number
3747 * @sub: driver version sub build number
3748 * @len: length of driver_ver string
3749 * @driver_ver: driver string
3751 * Sends driver version number to firmware through the manageability
3752 * block. On success return 0
3753 * else returns -EBUSY when encountering an error acquiring
3754 * semaphore or -EIO when command fails.
3756 int ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw
*hw
, u8 maj
, u8 min
,
3757 u8 build
, u8 sub
, __always_unused u16 len
,
3758 __always_unused
const char *driver_ver
)
3760 struct ixgbe_hic_drv_info fw_cmd
;
3764 fw_cmd
.hdr
.cmd
= FW_CEM_CMD_DRIVER_INFO
;
3765 fw_cmd
.hdr
.buf_len
= FW_CEM_CMD_DRIVER_INFO_LEN
;
3766 fw_cmd
.hdr
.cmd_or_resp
.cmd_resv
= FW_CEM_CMD_RESERVED
;
3767 fw_cmd
.port_num
= hw
->bus
.func
;
3768 fw_cmd
.ver_maj
= maj
;
3769 fw_cmd
.ver_min
= min
;
3770 fw_cmd
.ver_build
= build
;
3771 fw_cmd
.ver_sub
= sub
;
3772 fw_cmd
.hdr
.checksum
= 0;
3775 fw_cmd
.hdr
.checksum
= ixgbe_calculate_checksum((u8
*)&fw_cmd
,
3776 (FW_CEM_HDR_LEN
+ fw_cmd
.hdr
.buf_len
));
3778 for (i
= 0; i
<= FW_CEM_MAX_RETRIES
; i
++) {
3779 ret_val
= ixgbe_host_interface_command(hw
, &fw_cmd
,
3781 IXGBE_HI_COMMAND_TIMEOUT
,
3786 if (fw_cmd
.hdr
.cmd_or_resp
.ret_status
==
3787 FW_CEM_RESP_STATUS_SUCCESS
)
3799 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3800 * @hw: pointer to the hardware structure
3802 * The 82599 and x540 MACs can experience issues if TX work is still pending
3803 * when a reset occurs. This function prevents this by flushing the PCIe
3804 * buffers on the system.
3806 void ixgbe_clear_tx_pending(struct ixgbe_hw
*hw
)
3808 u32 gcr_ext
, hlreg0
, i
, poll
;
3812 * If double reset is not requested then all transactions should
3813 * already be clear and as such there is no work to do
3815 if (!(hw
->mac
.flags
& IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
))
3819 * Set loopback enable to prevent any transmits from being sent
3820 * should the link come up. This assumes that the RXCTRL.RXEN bit
3821 * has already been cleared.
3823 hlreg0
= IXGBE_READ_REG(hw
, IXGBE_HLREG0
);
3824 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
| IXGBE_HLREG0_LPBK
);
3826 /* wait for a last completion before clearing buffers */
3827 IXGBE_WRITE_FLUSH(hw
);
3828 usleep_range(3000, 6000);
3830 /* Before proceeding, make sure that the PCIe block does not have
3831 * transactions pending.
3833 poll
= ixgbe_pcie_timeout_poll(hw
);
3834 for (i
= 0; i
< poll
; i
++) {
3835 usleep_range(100, 200);
3836 value
= ixgbe_read_pci_cfg_word(hw
, IXGBE_PCI_DEVICE_STATUS
);
3837 if (ixgbe_removed(hw
->hw_addr
))
3839 if (!(value
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
3843 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3844 gcr_ext
= IXGBE_READ_REG(hw
, IXGBE_GCR_EXT
);
3845 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
,
3846 gcr_ext
| IXGBE_GCR_EXT_BUFFERS_CLEAR
);
3848 /* Flush all writes and allow 20usec for all transactions to clear */
3849 IXGBE_WRITE_FLUSH(hw
);
3852 /* restore previous register values */
3853 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
, gcr_ext
);
3854 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
);
3857 static const u8 ixgbe_emc_temp_data
[4] = {
3858 IXGBE_EMC_INTERNAL_DATA
,
3859 IXGBE_EMC_DIODE1_DATA
,
3860 IXGBE_EMC_DIODE2_DATA
,
3861 IXGBE_EMC_DIODE3_DATA
3863 static const u8 ixgbe_emc_therm_limit
[4] = {
3864 IXGBE_EMC_INTERNAL_THERM_LIMIT
,
3865 IXGBE_EMC_DIODE1_THERM_LIMIT
,
3866 IXGBE_EMC_DIODE2_THERM_LIMIT
,
3867 IXGBE_EMC_DIODE3_THERM_LIMIT
3871 * ixgbe_get_ets_data - Extracts the ETS bit data
3872 * @hw: pointer to hardware structure
3873 * @ets_cfg: extected ETS data
3874 * @ets_offset: offset of ETS data
3876 * Returns error code.
3878 static int ixgbe_get_ets_data(struct ixgbe_hw
*hw
, u16
*ets_cfg
,
3883 status
= hw
->eeprom
.ops
.read(hw
, IXGBE_ETS_CFG
, ets_offset
);
3887 if ((*ets_offset
== 0x0000) || (*ets_offset
== 0xFFFF))
3890 status
= hw
->eeprom
.ops
.read(hw
, *ets_offset
, ets_cfg
);
3894 if ((*ets_cfg
& IXGBE_ETS_TYPE_MASK
) != IXGBE_ETS_TYPE_EMC_SHIFTED
)
3901 * ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3902 * @hw: pointer to hardware structure
3904 * Returns the thermal sensor data structure
3906 int ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw
*hw
)
3914 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3916 /* Only support thermal sensors attached to physical port 0 */
3917 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
))
3920 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3924 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
3925 if (num_sensors
> IXGBE_MAX_SENSORS
)
3926 num_sensors
= IXGBE_MAX_SENSORS
;
3928 for (i
= 0; i
< num_sensors
; i
++) {
3932 status
= hw
->eeprom
.ops
.read(hw
, (ets_offset
+ 1 + i
),
3937 sensor_index
= FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK
,
3939 sensor_location
= FIELD_GET(IXGBE_ETS_DATA_LOC_MASK
,
3942 if (sensor_location
!= 0) {
3943 status
= hw
->phy
.ops
.read_i2c_byte(hw
,
3944 ixgbe_emc_temp_data
[sensor_index
],
3945 IXGBE_I2C_THERMAL_SENSOR_ADDR
,
3946 &data
->sensor
[i
].temp
);
3956 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3957 * @hw: pointer to hardware structure
3959 * Inits the thermal sensor thresholds according to the NVM map
3960 * and save off the threshold and location values into mac.thermal_sensor_data
3962 int ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw
*hw
)
3964 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3965 u8 low_thresh_delta
;
3974 memset(data
, 0, sizeof(struct ixgbe_thermal_sensor_data
));
3976 /* Only support thermal sensors attached to physical port 0 */
3977 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
))
3980 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3984 low_thresh_delta
= FIELD_GET(IXGBE_ETS_LTHRES_DELTA_MASK
, ets_cfg
);
3985 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
3986 if (num_sensors
> IXGBE_MAX_SENSORS
)
3987 num_sensors
= IXGBE_MAX_SENSORS
;
3989 for (i
= 0; i
< num_sensors
; i
++) {
3993 if (hw
->eeprom
.ops
.read(hw
, ets_offset
+ 1 + i
, &ets_sensor
)) {
3994 hw_err(hw
, "eeprom read at offset %d failed\n",
3995 ets_offset
+ 1 + i
);
3998 sensor_index
= FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK
,
4000 sensor_location
= FIELD_GET(IXGBE_ETS_DATA_LOC_MASK
,
4002 therm_limit
= ets_sensor
& IXGBE_ETS_DATA_HTHRESH_MASK
;
4004 hw
->phy
.ops
.write_i2c_byte(hw
,
4005 ixgbe_emc_therm_limit
[sensor_index
],
4006 IXGBE_I2C_THERMAL_SENSOR_ADDR
, therm_limit
);
4008 if (sensor_location
== 0)
4011 data
->sensor
[i
].location
= sensor_location
;
4012 data
->sensor
[i
].caution_thresh
= therm_limit
;
4013 data
->sensor
[i
].max_op_thresh
= therm_limit
- low_thresh_delta
;
4020 * ixgbe_get_orom_version - Return option ROM from EEPROM
4022 * @hw: pointer to hardware structure
4023 * @nvm_ver: pointer to output structure
4025 * if valid option ROM version, nvm_ver->or_valid set to true
4026 * else nvm_ver->or_valid is false.
4028 void ixgbe_get_orom_version(struct ixgbe_hw
*hw
,
4029 struct ixgbe_nvm_version
*nvm_ver
)
4031 u16 offset
, eeprom_cfg_blkh
, eeprom_cfg_blkl
;
4033 nvm_ver
->or_valid
= false;
4034 /* Option Rom may or may not be present. Start with pointer */
4035 hw
->eeprom
.ops
.read(hw
, NVM_OROM_OFFSET
, &offset
);
4037 /* make sure offset is valid */
4038 if (offset
== 0x0 || offset
== NVM_INVALID_PTR
)
4041 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OROM_BLK_HI
, &eeprom_cfg_blkh
);
4042 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OROM_BLK_LOW
, &eeprom_cfg_blkl
);
4044 /* option rom exists and is valid */
4045 if ((eeprom_cfg_blkl
| eeprom_cfg_blkh
) == 0x0 ||
4046 eeprom_cfg_blkl
== NVM_VER_INVALID
||
4047 eeprom_cfg_blkh
== NVM_VER_INVALID
)
4050 nvm_ver
->or_valid
= true;
4051 nvm_ver
->or_major
= eeprom_cfg_blkl
>> NVM_OROM_SHIFT
;
4052 nvm_ver
->or_build
= (eeprom_cfg_blkl
<< NVM_OROM_SHIFT
) |
4053 (eeprom_cfg_blkh
>> NVM_OROM_SHIFT
);
4054 nvm_ver
->or_patch
= eeprom_cfg_blkh
& NVM_OROM_PATCH_MASK
;
4058 * ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4059 * @hw: pointer to hardware structure
4060 * @nvm_ver: pointer to output structure
4062 * if valid OEM product version, nvm_ver->oem_valid set to true
4063 * else nvm_ver->oem_valid is false.
4065 void ixgbe_get_oem_prod_version(struct ixgbe_hw
*hw
,
4066 struct ixgbe_nvm_version
*nvm_ver
)
4068 u16 rel_num
, prod_ver
, mod_len
, cap
, offset
;
4070 nvm_ver
->oem_valid
= false;
4071 hw
->eeprom
.ops
.read(hw
, NVM_OEM_PROD_VER_PTR
, &offset
);
4073 /* Return is offset to OEM Product Version block is invalid */
4074 if (offset
== 0x0 || offset
== NVM_INVALID_PTR
)
4077 /* Read product version block */
4078 hw
->eeprom
.ops
.read(hw
, offset
, &mod_len
);
4079 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OEM_PROD_VER_CAP_OFF
, &cap
);
4081 /* Return if OEM product version block is invalid */
4082 if (mod_len
!= NVM_OEM_PROD_VER_MOD_LEN
||
4083 (cap
& NVM_OEM_PROD_VER_CAP_MASK
) != 0x0)
4086 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OEM_PROD_VER_OFF_L
, &prod_ver
);
4087 hw
->eeprom
.ops
.read(hw
, offset
+ NVM_OEM_PROD_VER_OFF_H
, &rel_num
);
4089 /* Return if version is invalid */
4090 if ((rel_num
| prod_ver
) == 0x0 ||
4091 rel_num
== NVM_VER_INVALID
|| prod_ver
== NVM_VER_INVALID
)
4094 nvm_ver
->oem_major
= prod_ver
>> NVM_VER_SHIFT
;
4095 nvm_ver
->oem_minor
= prod_ver
& NVM_VER_MASK
;
4096 nvm_ver
->oem_release
= rel_num
;
4097 nvm_ver
->oem_valid
= true;
4101 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
4103 * @hw: pointer to hardware structure
4104 * @nvm_ver: pointer to output structure
4106 * word read errors will return 0xFFFF
4108 void ixgbe_get_etk_id(struct ixgbe_hw
*hw
,
4109 struct ixgbe_nvm_version
*nvm_ver
)
4111 u16 etk_id_l
, etk_id_h
;
4113 if (hw
->eeprom
.ops
.read(hw
, NVM_ETK_OFF_LOW
, &etk_id_l
))
4114 etk_id_l
= NVM_VER_INVALID
;
4115 if (hw
->eeprom
.ops
.read(hw
, NVM_ETK_OFF_HI
, &etk_id_h
))
4116 etk_id_h
= NVM_VER_INVALID
;
4118 /* The word order for the version format is determined by high order
4121 if ((etk_id_h
& NVM_ETK_VALID
) == 0) {
4122 nvm_ver
->etk_id
= etk_id_h
;
4123 nvm_ver
->etk_id
|= (etk_id_l
<< NVM_ETK_SHIFT
);
4125 nvm_ver
->etk_id
= etk_id_l
;
4126 nvm_ver
->etk_id
|= (etk_id_h
<< NVM_ETK_SHIFT
);
4130 void ixgbe_disable_rx_generic(struct ixgbe_hw
*hw
)
4134 rxctrl
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
4135 if (rxctrl
& IXGBE_RXCTRL_RXEN
) {
4136 if (hw
->mac
.type
!= ixgbe_mac_82598EB
) {
4139 pfdtxgswc
= IXGBE_READ_REG(hw
, IXGBE_PFDTXGSWC
);
4140 if (pfdtxgswc
& IXGBE_PFDTXGSWC_VT_LBEN
) {
4141 pfdtxgswc
&= ~IXGBE_PFDTXGSWC_VT_LBEN
;
4142 IXGBE_WRITE_REG(hw
, IXGBE_PFDTXGSWC
, pfdtxgswc
);
4143 hw
->mac
.set_lben
= true;
4145 hw
->mac
.set_lben
= false;
4148 rxctrl
&= ~IXGBE_RXCTRL_RXEN
;
4149 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, rxctrl
);
4153 void ixgbe_enable_rx_generic(struct ixgbe_hw
*hw
)
4157 rxctrl
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
4158 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, (rxctrl
| IXGBE_RXCTRL_RXEN
));
4160 if (hw
->mac
.type
!= ixgbe_mac_82598EB
) {
4161 if (hw
->mac
.set_lben
) {
4164 pfdtxgswc
= IXGBE_READ_REG(hw
, IXGBE_PFDTXGSWC
);
4165 pfdtxgswc
|= IXGBE_PFDTXGSWC_VT_LBEN
;
4166 IXGBE_WRITE_REG(hw
, IXGBE_PFDTXGSWC
, pfdtxgswc
);
4167 hw
->mac
.set_lben
= false;
4172 /** ixgbe_mng_present - returns true when management capability is present
4173 * @hw: pointer to hardware structure
4175 bool ixgbe_mng_present(struct ixgbe_hw
*hw
)
4179 if (hw
->mac
.type
< ixgbe_mac_82599EB
)
4182 fwsm
= IXGBE_READ_REG(hw
, IXGBE_FWSM(hw
));
4184 return !!(fwsm
& IXGBE_FWSM_FW_MODE_PT
);
4188 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4189 * @hw: pointer to hardware structure
4190 * @speed: new link speed
4191 * @autoneg_wait_to_complete: true when waiting for completion is needed
4193 * Set the link speed in the MAC and/or PHY register and restarts link.
4195 int ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw
*hw
,
4196 ixgbe_link_speed speed
,
4197 bool autoneg_wait_to_complete
)
4199 ixgbe_link_speed highest_link_speed
= IXGBE_LINK_SPEED_UNKNOWN
;
4200 ixgbe_link_speed link_speed
= IXGBE_LINK_SPEED_UNKNOWN
;
4201 bool autoneg
, link_up
= false;
4206 /* Mask off requested but non-supported speeds */
4207 status
= hw
->mac
.ops
.get_link_capabilities(hw
, &link_speed
, &autoneg
);
4211 speed
&= link_speed
;
4213 /* Try each speed one by one, highest priority first. We do this in
4214 * software because 10Gb fiber doesn't support speed autonegotiation.
4216 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
) {
4218 highest_link_speed
= IXGBE_LINK_SPEED_10GB_FULL
;
4220 /* Set the module link speed */
4221 switch (hw
->phy
.media_type
) {
4222 case ixgbe_media_type_fiber
:
4223 hw
->mac
.ops
.set_rate_select_speed(hw
,
4224 IXGBE_LINK_SPEED_10GB_FULL
);
4226 case ixgbe_media_type_fiber_qsfp
:
4227 /* QSFP module automatically detects MAC link speed */
4230 hw_dbg(hw
, "Unexpected media type\n");
4234 /* Allow module to change analog characteristics (1G->10G) */
4237 status
= hw
->mac
.ops
.setup_mac_link(hw
,
4238 IXGBE_LINK_SPEED_10GB_FULL
,
4239 autoneg_wait_to_complete
);
4243 /* Flap the Tx laser if it has not already been done */
4244 if (hw
->mac
.ops
.flap_tx_laser
)
4245 hw
->mac
.ops
.flap_tx_laser(hw
);
4247 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4248 * Section 73.10.2, we may have to wait up to 500ms if KR is
4249 * attempted. 82599 uses the same timing for 10g SFI.
4251 for (i
= 0; i
< 5; i
++) {
4252 /* Wait for the link partner to also set speed */
4255 /* If we have link, just jump out */
4256 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
,
4266 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
) {
4268 if (highest_link_speed
== IXGBE_LINK_SPEED_UNKNOWN
)
4269 highest_link_speed
= IXGBE_LINK_SPEED_1GB_FULL
;
4271 /* Set the module link speed */
4272 switch (hw
->phy
.media_type
) {
4273 case ixgbe_media_type_fiber
:
4274 hw
->mac
.ops
.set_rate_select_speed(hw
,
4275 IXGBE_LINK_SPEED_1GB_FULL
);
4277 case ixgbe_media_type_fiber_qsfp
:
4278 /* QSFP module automatically detects link speed */
4281 hw_dbg(hw
, "Unexpected media type\n");
4285 /* Allow module to change analog characteristics (10G->1G) */
4288 status
= hw
->mac
.ops
.setup_mac_link(hw
,
4289 IXGBE_LINK_SPEED_1GB_FULL
,
4290 autoneg_wait_to_complete
);
4294 /* Flap the Tx laser if it has not already been done */
4295 if (hw
->mac
.ops
.flap_tx_laser
)
4296 hw
->mac
.ops
.flap_tx_laser(hw
);
4298 /* Wait for the link partner to also set speed */
4301 /* If we have link, just jump out */
4302 status
= hw
->mac
.ops
.check_link(hw
, &link_speed
, &link_up
,
4311 /* We didn't get link. Configure back to the highest speed we tried,
4312 * (if there was more than one). We call ourselves back with just the
4313 * single highest speed that the user requested.
4316 status
= ixgbe_setup_mac_link_multispeed_fiber(hw
,
4318 autoneg_wait_to_complete
);
4321 /* Set autoneg_advertised value based on input link speed */
4322 hw
->phy
.autoneg_advertised
= 0;
4324 if (speed
& IXGBE_LINK_SPEED_10GB_FULL
)
4325 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_10GB_FULL
;
4327 if (speed
& IXGBE_LINK_SPEED_1GB_FULL
)
4328 hw
->phy
.autoneg_advertised
|= IXGBE_LINK_SPEED_1GB_FULL
;
4334 * ixgbe_set_soft_rate_select_speed - Set module link speed
4335 * @hw: pointer to hardware structure
4336 * @speed: link speed to set
4338 * Set module link speed via the soft rate select.
4340 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw
*hw
,
4341 ixgbe_link_speed speed
)
4347 case IXGBE_LINK_SPEED_10GB_FULL
:
4348 /* one bit mask same as setting on */
4349 rs
= IXGBE_SFF_SOFT_RS_SELECT_10G
;
4351 case IXGBE_LINK_SPEED_1GB_FULL
:
4352 rs
= IXGBE_SFF_SOFT_RS_SELECT_1G
;
4355 hw_dbg(hw
, "Invalid fixed module speed\n");
4360 status
= hw
->phy
.ops
.read_i2c_byte(hw
, IXGBE_SFF_SFF_8472_OSCB
,
4361 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4364 hw_dbg(hw
, "Failed to read Rx Rate Select RS0\n");
4368 eeprom_data
= (eeprom_data
& ~IXGBE_SFF_SOFT_RS_SELECT_MASK
) | rs
;
4370 status
= hw
->phy
.ops
.write_i2c_byte(hw
, IXGBE_SFF_SFF_8472_OSCB
,
4371 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4374 hw_dbg(hw
, "Failed to write Rx Rate Select RS0\n");
4379 status
= hw
->phy
.ops
.read_i2c_byte(hw
, IXGBE_SFF_SFF_8472_ESCB
,
4380 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4383 hw_dbg(hw
, "Failed to read Rx Rate Select RS1\n");
4387 eeprom_data
= (eeprom_data
& ~IXGBE_SFF_SOFT_RS_SELECT_MASK
) | rs
;
4389 status
= hw
->phy
.ops
.write_i2c_byte(hw
, IXGBE_SFF_SFF_8472_ESCB
,
4390 IXGBE_I2C_EEPROM_DEV_ADDR2
,
4393 hw_dbg(hw
, "Failed to write Rx Rate Select RS1\n");