drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / net / ethernet / qlogic / qed / qed_sriov.c
blobfa167b1aa01909a84719d3fe126d49648566a225
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
7 #include <linux/etherdevice.h>
8 #include <linux/crc32.h>
9 #include <linux/vmalloc.h>
10 #include <linux/crash_dump.h>
11 #include <linux/qed/qed_iov_if.h>
12 #include "qed_cxt.h"
13 #include "qed_hsi.h"
14 #include "qed_iro_hsi.h"
15 #include "qed_hw.h"
16 #include "qed_init_ops.h"
17 #include "qed_int.h"
18 #include "qed_mcp.h"
19 #include "qed_reg_addr.h"
20 #include "qed_sp.h"
21 #include "qed_sriov.h"
22 #include "qed_vf.h"
23 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid);
25 static u16 qed_vf_from_entity_id(__le16 entity_id)
27 return le16_to_cpu(entity_id) - MAX_NUM_PFS;
30 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
32 u8 legacy = 0;
34 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
35 ETH_HSI_VER_NO_PKT_LEN_TUNN)
36 legacy |= QED_QCID_LEGACY_VF_RX_PROD;
38 if (!(p_vf->acquire.vfdev_info.capabilities &
39 VFPF_ACQUIRE_CAP_QUEUE_QIDS))
40 legacy |= QED_QCID_LEGACY_VF_CID;
42 return legacy;
45 /* IOV ramrods */
46 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
48 struct vf_start_ramrod_data *p_ramrod = NULL;
49 struct qed_spq_entry *p_ent = NULL;
50 struct qed_sp_init_data init_data;
51 int rc = -EINVAL;
52 u8 fp_minor;
54 /* Get SPQ entry */
55 memset(&init_data, 0, sizeof(init_data));
56 init_data.cid = qed_spq_get_cid(p_hwfn);
57 init_data.opaque_fid = p_vf->opaque_fid;
58 init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
60 rc = qed_sp_init_request(p_hwfn, &p_ent,
61 COMMON_RAMROD_VF_START,
62 PROTOCOLID_COMMON, &init_data);
63 if (rc)
64 return rc;
66 p_ramrod = &p_ent->ramrod.vf_start;
68 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
69 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
71 switch (p_hwfn->hw_info.personality) {
72 case QED_PCI_ETH:
73 p_ramrod->personality = PERSONALITY_ETH;
74 break;
75 case QED_PCI_ETH_ROCE:
76 case QED_PCI_ETH_IWARP:
77 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
78 break;
79 default:
80 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
81 p_hwfn->hw_info.personality);
82 qed_sp_destroy_request(p_hwfn, p_ent);
83 return -EINVAL;
86 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
87 if (fp_minor > ETH_HSI_VER_MINOR &&
88 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
89 DP_VERBOSE(p_hwfn,
90 QED_MSG_IOV,
91 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
92 p_vf->abs_vf_id,
93 ETH_HSI_VER_MAJOR,
94 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
95 fp_minor = ETH_HSI_VER_MINOR;
98 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
99 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
101 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
102 "VF[%d] - Starting using HSI %02x.%02x\n",
103 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
105 return qed_spq_post(p_hwfn, p_ent, NULL);
108 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
109 u32 concrete_vfid, u16 opaque_vfid)
111 struct vf_stop_ramrod_data *p_ramrod = NULL;
112 struct qed_spq_entry *p_ent = NULL;
113 struct qed_sp_init_data init_data;
114 int rc = -EINVAL;
116 /* Get SPQ entry */
117 memset(&init_data, 0, sizeof(init_data));
118 init_data.cid = qed_spq_get_cid(p_hwfn);
119 init_data.opaque_fid = opaque_vfid;
120 init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
122 rc = qed_sp_init_request(p_hwfn, &p_ent,
123 COMMON_RAMROD_VF_STOP,
124 PROTOCOLID_COMMON, &init_data);
125 if (rc)
126 return rc;
128 p_ramrod = &p_ent->ramrod.vf_stop;
130 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
132 return qed_spq_post(p_hwfn, p_ent, NULL);
135 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
136 int rel_vf_id,
137 bool b_enabled_only, bool b_non_malicious)
139 if (!p_hwfn->pf_iov_info) {
140 DP_NOTICE(p_hwfn->cdev, "No iov info\n");
141 return false;
144 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
145 (rel_vf_id < 0))
146 return false;
148 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
149 b_enabled_only)
150 return false;
152 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
153 b_non_malicious)
154 return false;
156 return true;
159 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
160 u16 relative_vf_id,
161 bool b_enabled_only)
163 struct qed_vf_info *vf = NULL;
165 if (!p_hwfn->pf_iov_info) {
166 DP_NOTICE(p_hwfn->cdev, "No iov info\n");
167 return NULL;
170 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
171 b_enabled_only, false))
172 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
173 else
174 DP_ERR(p_hwfn, "%s: VF[%d] is not enabled\n",
175 __func__, relative_vf_id);
177 return vf;
180 static struct qed_queue_cid *
181 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
183 int i;
185 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
186 if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
187 return p_queue->cids[i].p_cid;
190 return NULL;
193 enum qed_iov_validate_q_mode {
194 QED_IOV_VALIDATE_Q_NA,
195 QED_IOV_VALIDATE_Q_ENABLE,
196 QED_IOV_VALIDATE_Q_DISABLE,
199 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
200 struct qed_vf_info *p_vf,
201 u16 qid,
202 enum qed_iov_validate_q_mode mode,
203 bool b_is_tx)
205 int i;
207 if (mode == QED_IOV_VALIDATE_Q_NA)
208 return true;
210 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
211 struct qed_vf_queue_cid *p_qcid;
213 p_qcid = &p_vf->vf_queues[qid].cids[i];
215 if (!p_qcid->p_cid)
216 continue;
218 if (p_qcid->b_is_tx != b_is_tx)
219 continue;
221 return mode == QED_IOV_VALIDATE_Q_ENABLE;
224 /* In case we haven't found any valid cid, then its disabled */
225 return mode == QED_IOV_VALIDATE_Q_DISABLE;
228 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
229 struct qed_vf_info *p_vf,
230 u16 rx_qid,
231 enum qed_iov_validate_q_mode mode)
233 if (rx_qid >= p_vf->num_rxqs) {
234 DP_VERBOSE(p_hwfn,
235 QED_MSG_IOV,
236 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
237 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
238 return false;
241 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
244 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
245 struct qed_vf_info *p_vf,
246 u16 tx_qid,
247 enum qed_iov_validate_q_mode mode)
249 if (tx_qid >= p_vf->num_txqs) {
250 DP_VERBOSE(p_hwfn,
251 QED_MSG_IOV,
252 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
253 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
254 return false;
257 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
260 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
261 struct qed_vf_info *p_vf, u16 sb_idx)
263 int i;
265 for (i = 0; i < p_vf->num_sbs; i++)
266 if (p_vf->igu_sbs[i] == sb_idx)
267 return true;
269 DP_VERBOSE(p_hwfn,
270 QED_MSG_IOV,
271 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
272 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
274 return false;
277 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
278 struct qed_vf_info *p_vf)
280 u8 i;
282 for (i = 0; i < p_vf->num_rxqs; i++)
283 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
284 QED_IOV_VALIDATE_Q_ENABLE,
285 false))
286 return true;
288 return false;
291 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
292 struct qed_vf_info *p_vf)
294 u8 i;
296 for (i = 0; i < p_vf->num_txqs; i++)
297 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
298 QED_IOV_VALIDATE_Q_ENABLE,
299 true))
300 return true;
302 return false;
305 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
306 int vfid, struct qed_ptt *p_ptt)
308 struct qed_bulletin_content *p_bulletin;
309 int crc_size = sizeof(p_bulletin->crc);
310 struct qed_dmae_params params;
311 struct qed_vf_info *p_vf;
313 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
314 if (!p_vf)
315 return -EINVAL;
317 if (!p_vf->vf_bulletin)
318 return -EINVAL;
320 p_bulletin = p_vf->bulletin.p_virt;
322 /* Increment bulletin board version and compute crc */
323 p_bulletin->version++;
324 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
325 p_vf->bulletin.size - crc_size);
327 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
328 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
329 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
331 /* propagate bulletin board via dmae to vm memory */
332 memset(&params, 0, sizeof(params));
333 SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1);
334 params.dst_vfid = p_vf->abs_vf_id;
335 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
336 p_vf->vf_bulletin, p_vf->bulletin.size / 4,
337 &params);
340 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
342 struct qed_hw_sriov_info *iov = cdev->p_iov_info;
343 int pos = iov->pos;
345 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
346 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
348 pci_read_config_word(cdev->pdev,
349 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
350 pci_read_config_word(cdev->pdev,
351 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
353 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
354 if (iov->num_vfs) {
355 DP_VERBOSE(cdev,
356 QED_MSG_IOV,
357 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
358 iov->num_vfs = 0;
361 pci_read_config_word(cdev->pdev,
362 pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
364 pci_read_config_word(cdev->pdev,
365 pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
367 pci_read_config_word(cdev->pdev,
368 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
370 pci_read_config_dword(cdev->pdev,
371 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
373 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
375 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
377 DP_VERBOSE(cdev,
378 QED_MSG_IOV,
379 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
380 iov->nres,
381 iov->cap,
382 iov->ctrl,
383 iov->total_vfs,
384 iov->initial_vfs,
385 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
387 /* Some sanity checks */
388 if (iov->num_vfs > NUM_OF_VFS(cdev) ||
389 iov->total_vfs > NUM_OF_VFS(cdev)) {
390 /* This can happen only due to a bug. In this case we set
391 * num_vfs to zero to avoid memory corruption in the code that
392 * assumes max number of vfs
394 DP_NOTICE(cdev,
395 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
396 iov->num_vfs);
398 iov->num_vfs = 0;
399 iov->total_vfs = 0;
402 return 0;
405 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
407 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
408 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
409 struct qed_bulletin_content *p_bulletin_virt;
410 dma_addr_t req_p, rply_p, bulletin_p;
411 union pfvf_tlvs *p_reply_virt_addr;
412 union vfpf_tlvs *p_req_virt_addr;
413 u8 idx = 0;
415 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
417 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
418 req_p = p_iov_info->mbx_msg_phys_addr;
419 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
420 rply_p = p_iov_info->mbx_reply_phys_addr;
421 p_bulletin_virt = p_iov_info->p_bulletins;
422 bulletin_p = p_iov_info->bulletins_phys;
423 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
424 DP_ERR(p_hwfn,
425 "%s called without allocating mem first\n", __func__);
426 return;
429 for (idx = 0; idx < p_iov->total_vfs; idx++) {
430 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
431 u32 concrete;
433 vf->vf_mbx.req_virt = p_req_virt_addr + idx;
434 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
435 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
436 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
438 vf->state = VF_STOPPED;
439 vf->b_init = false;
441 vf->bulletin.phys = idx *
442 sizeof(struct qed_bulletin_content) +
443 bulletin_p;
444 vf->bulletin.p_virt = p_bulletin_virt + idx;
445 vf->bulletin.size = sizeof(struct qed_bulletin_content);
447 vf->relative_vf_id = idx;
448 vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
449 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
450 vf->concrete_fid = concrete;
451 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
452 (vf->abs_vf_id << 8);
453 vf->vport_id = idx + 1;
455 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
456 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
460 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
462 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
463 void **p_v_addr;
464 u16 num_vfs = 0;
466 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
468 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
469 "%s for %d VFs\n", __func__, num_vfs);
471 /* Allocate PF Mailbox buffer (per-VF) */
472 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
473 p_v_addr = &p_iov_info->mbx_msg_virt_addr;
474 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
475 p_iov_info->mbx_msg_size,
476 &p_iov_info->mbx_msg_phys_addr,
477 GFP_KERNEL);
478 if (!*p_v_addr)
479 return -ENOMEM;
481 /* Allocate PF Mailbox Reply buffer (per-VF) */
482 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
483 p_v_addr = &p_iov_info->mbx_reply_virt_addr;
484 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
485 p_iov_info->mbx_reply_size,
486 &p_iov_info->mbx_reply_phys_addr,
487 GFP_KERNEL);
488 if (!*p_v_addr)
489 return -ENOMEM;
491 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
492 num_vfs;
493 p_v_addr = &p_iov_info->p_bulletins;
494 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
495 p_iov_info->bulletins_size,
496 &p_iov_info->bulletins_phys,
497 GFP_KERNEL);
498 if (!*p_v_addr)
499 return -ENOMEM;
501 DP_VERBOSE(p_hwfn,
502 QED_MSG_IOV,
503 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
504 p_iov_info->mbx_msg_virt_addr,
505 (u64)p_iov_info->mbx_msg_phys_addr,
506 p_iov_info->mbx_reply_virt_addr,
507 (u64)p_iov_info->mbx_reply_phys_addr,
508 p_iov_info->p_bulletins, (u64)p_iov_info->bulletins_phys);
510 return 0;
513 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
515 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
517 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
518 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
519 p_iov_info->mbx_msg_size,
520 p_iov_info->mbx_msg_virt_addr,
521 p_iov_info->mbx_msg_phys_addr);
523 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
524 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
525 p_iov_info->mbx_reply_size,
526 p_iov_info->mbx_reply_virt_addr,
527 p_iov_info->mbx_reply_phys_addr);
529 if (p_iov_info->p_bulletins)
530 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
531 p_iov_info->bulletins_size,
532 p_iov_info->p_bulletins,
533 p_iov_info->bulletins_phys);
536 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
538 struct qed_pf_iov *p_sriov;
540 if (!IS_PF_SRIOV(p_hwfn)) {
541 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
542 "No SR-IOV - no need for IOV db\n");
543 return 0;
546 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
547 if (!p_sriov)
548 return -ENOMEM;
550 p_hwfn->pf_iov_info = p_sriov;
552 qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
553 qed_sriov_eqe_event);
555 return qed_iov_allocate_vfdb(p_hwfn);
558 void qed_iov_setup(struct qed_hwfn *p_hwfn)
560 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
561 return;
563 qed_iov_setup_vfdb(p_hwfn);
566 void qed_iov_free(struct qed_hwfn *p_hwfn)
568 qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
570 if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
571 qed_iov_free_vfdb(p_hwfn);
572 kfree(p_hwfn->pf_iov_info);
576 void qed_iov_free_hw_info(struct qed_dev *cdev)
578 kfree(cdev->p_iov_info);
579 cdev->p_iov_info = NULL;
582 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
584 struct qed_dev *cdev = p_hwfn->cdev;
585 int pos;
586 int rc;
588 if (is_kdump_kernel())
589 return 0;
591 if (IS_VF(p_hwfn->cdev))
592 return 0;
594 /* Learn the PCI configuration */
595 pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
596 PCI_EXT_CAP_ID_SRIOV);
597 if (!pos) {
598 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
599 return 0;
602 /* Allocate a new struct for IOV information */
603 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
604 if (!cdev->p_iov_info)
605 return -ENOMEM;
607 cdev->p_iov_info->pos = pos;
609 rc = qed_iov_pci_cfg_info(cdev);
610 if (rc)
611 return rc;
613 /* We want PF IOV to be synonemous with the existence of p_iov_info;
614 * In case the capability is published but there are no VFs, simply
615 * de-allocate the struct.
617 if (!cdev->p_iov_info->total_vfs) {
618 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
619 "IOV capabilities, but no VFs are published\n");
620 kfree(cdev->p_iov_info);
621 cdev->p_iov_info = NULL;
622 return 0;
625 /* First VF index based on offset is tricky:
626 * - If ARI is supported [likely], offset - (16 - pf_id) would
627 * provide the number for eng0. 2nd engine Vfs would begin
628 * after the first engine's VFs.
629 * - If !ARI, VFs would start on next device.
630 * so offset - (256 - pf_id) would provide the number.
631 * Utilize the fact that (256 - pf_id) is achieved only by later
632 * to differentiate between the two.
635 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
636 u32 first = p_hwfn->cdev->p_iov_info->offset +
637 p_hwfn->abs_pf_id - 16;
639 cdev->p_iov_info->first_vf_in_pf = first;
641 if (QED_PATH_ID(p_hwfn))
642 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
643 } else {
644 u32 first = p_hwfn->cdev->p_iov_info->offset +
645 p_hwfn->abs_pf_id - 256;
647 cdev->p_iov_info->first_vf_in_pf = first;
650 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
651 "First VF in hwfn 0x%08x\n",
652 cdev->p_iov_info->first_vf_in_pf);
654 return 0;
657 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
658 int vfid, bool b_fail_malicious)
660 /* Check PF supports sriov */
661 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
662 !IS_PF_SRIOV_ALLOC(p_hwfn))
663 return false;
665 /* Check VF validity */
666 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
667 return false;
669 return true;
672 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
674 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
677 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
678 u16 rel_vf_id, u8 to_disable)
680 struct qed_vf_info *vf;
681 int i;
683 for_each_hwfn(cdev, i) {
684 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
686 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
687 if (!vf)
688 continue;
690 vf->to_disable = to_disable;
694 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
696 u16 i;
698 if (!IS_QED_SRIOV(cdev))
699 return;
701 for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
702 qed_iov_set_vf_to_disable(cdev, i, to_disable);
705 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
706 struct qed_ptt *p_ptt, u8 abs_vfid)
708 qed_wr(p_hwfn, p_ptt,
709 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
710 1 << (abs_vfid & 0x1f));
713 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
714 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
716 int i;
718 /* Set VF masks and configuration - pretend */
719 qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid);
721 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
723 /* unpretend */
724 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid);
726 /* iterate over all queues, clear sb consumer */
727 for (i = 0; i < vf->num_sbs; i++)
728 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
729 vf->igu_sbs[i],
730 vf->opaque_fid, true);
733 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
734 struct qed_ptt *p_ptt,
735 struct qed_vf_info *vf, bool enable)
737 u32 igu_vf_conf;
739 qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid);
741 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
743 if (enable)
744 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
745 else
746 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
748 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
750 /* unpretend */
751 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid);
754 static int
755 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
756 struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
758 u8 current_max = 0;
759 int i;
761 /* For AH onward, configuration is per-PF. Find maximum of all
762 * the currently enabled child VFs, and set the number to be that.
764 if (!QED_IS_BB(p_hwfn->cdev)) {
765 qed_for_each_vf(p_hwfn, i) {
766 struct qed_vf_info *p_vf;
768 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
769 if (!p_vf)
770 continue;
772 current_max = max_t(u8, current_max, p_vf->num_sbs);
776 if (num_sbs > current_max)
777 return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
778 abs_vf_id, num_sbs);
780 return 0;
783 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
784 struct qed_ptt *p_ptt,
785 struct qed_vf_info *vf)
787 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
788 int rc;
790 /* It's possible VF was previously considered malicious -
791 * clear the indication even if we're only going to disable VF.
793 vf->b_malicious = false;
795 if (vf->to_disable)
796 return 0;
798 DP_VERBOSE(p_hwfn,
799 QED_MSG_IOV,
800 "Enable internal access for vf %x [abs %x]\n",
801 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
803 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
805 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
807 rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
808 vf->abs_vf_id, vf->num_sbs);
809 if (rc)
810 return rc;
812 qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid);
814 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
815 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
817 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
818 p_hwfn->hw_info.hw_mode);
820 /* unpretend */
821 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid);
823 vf->state = VF_FREE;
825 return rc;
829 * qed_iov_config_perm_table() - Configure the permission zone table.
831 * @p_hwfn: HW device data.
832 * @p_ptt: PTT window for writing the registers.
833 * @vf: VF info data.
834 * @enable: The actual permission for this VF.
836 * In E4, queue zone permission table size is 320x9. There
837 * are 320 VF queues for single engine device (256 for dual
838 * engine device), and each entry has the following format:
839 * {Valid, VF[7:0]}
841 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
842 struct qed_ptt *p_ptt,
843 struct qed_vf_info *vf, u8 enable)
845 u32 reg_addr, val;
846 u16 qzone_id = 0;
847 int qid;
849 for (qid = 0; qid < vf->num_rxqs; qid++) {
850 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
851 &qzone_id);
853 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
854 val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
855 qed_wr(p_hwfn, p_ptt, reg_addr, val);
859 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
860 struct qed_ptt *p_ptt,
861 struct qed_vf_info *vf)
863 /* Reset vf in IGU - interrupts are still disabled */
864 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
866 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
868 /* Permission Table */
869 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
872 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
873 struct qed_ptt *p_ptt,
874 struct qed_vf_info *vf, u16 num_rx_queues)
876 struct qed_igu_block *p_block;
877 struct cau_sb_entry sb_entry;
878 int qid = 0;
879 u32 val = 0;
881 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
882 num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
883 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
885 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
886 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
887 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
889 for (qid = 0; qid < num_rx_queues; qid++) {
890 p_block = qed_get_igu_free_sb(p_hwfn, false);
891 vf->igu_sbs[qid] = p_block->igu_sb_id;
892 p_block->status &= ~QED_IGU_STATUS_FREE;
893 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
895 qed_wr(p_hwfn, p_ptt,
896 IGU_REG_MAPPING_MEMORY +
897 sizeof(u32) * p_block->igu_sb_id, val);
899 /* Configure igu sb in CAU which were marked valid */
900 qed_init_cau_sb_entry(p_hwfn, &sb_entry,
901 p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
903 qed_dmae_host2grc(p_hwfn, p_ptt,
904 (u64)(uintptr_t)&sb_entry,
905 CAU_REG_SB_VAR_MEMORY +
906 p_block->igu_sb_id * sizeof(u64), 2, NULL);
909 vf->num_sbs = (u8)num_rx_queues;
911 return vf->num_sbs;
914 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
915 struct qed_ptt *p_ptt,
916 struct qed_vf_info *vf)
918 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
919 int idx, igu_id;
920 u32 addr, val;
922 /* Invalidate igu CAM lines and mark them as free */
923 for (idx = 0; idx < vf->num_sbs; idx++) {
924 igu_id = vf->igu_sbs[idx];
925 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
927 val = qed_rd(p_hwfn, p_ptt, addr);
928 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
929 qed_wr(p_hwfn, p_ptt, addr, val);
931 p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
932 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
935 vf->num_sbs = 0;
938 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
939 u16 vfid,
940 struct qed_mcp_link_params *params,
941 struct qed_mcp_link_state *link,
942 struct qed_mcp_link_capabilities *p_caps)
944 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
945 vfid,
946 false);
947 struct qed_bulletin_content *p_bulletin;
949 if (!p_vf)
950 return;
952 p_bulletin = p_vf->bulletin.p_virt;
953 p_bulletin->req_autoneg = params->speed.autoneg;
954 p_bulletin->req_adv_speed = params->speed.advertised_speeds;
955 p_bulletin->req_forced_speed = params->speed.forced_speed;
956 p_bulletin->req_autoneg_pause = params->pause.autoneg;
957 p_bulletin->req_forced_rx = params->pause.forced_rx;
958 p_bulletin->req_forced_tx = params->pause.forced_tx;
959 p_bulletin->req_loopback = params->loopback_mode;
961 p_bulletin->link_up = link->link_up;
962 p_bulletin->speed = link->speed;
963 p_bulletin->full_duplex = link->full_duplex;
964 p_bulletin->autoneg = link->an;
965 p_bulletin->autoneg_complete = link->an_complete;
966 p_bulletin->parallel_detection = link->parallel_detection;
967 p_bulletin->pfc_enabled = link->pfc_enabled;
968 p_bulletin->partner_adv_speed = link->partner_adv_speed;
969 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
970 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
971 p_bulletin->partner_adv_pause = link->partner_adv_pause;
972 p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
974 p_bulletin->capability_speed = p_caps->speed_capabilities;
977 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
978 struct qed_ptt *p_ptt,
979 struct qed_iov_vf_init_params *p_params)
981 struct qed_mcp_link_capabilities link_caps;
982 struct qed_mcp_link_params link_params;
983 struct qed_mcp_link_state link_state;
984 u8 num_of_vf_avaiable_chains = 0;
985 struct qed_vf_info *vf = NULL;
986 u16 qid, num_irqs;
987 int rc = 0;
988 u32 cids;
989 u8 i;
991 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
992 if (!vf) {
993 DP_ERR(p_hwfn, "%s : vf is NULL\n", __func__);
994 return -EINVAL;
997 if (vf->b_init) {
998 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
999 p_params->rel_vf_id);
1000 return -EINVAL;
1003 /* Perform sanity checking on the requested queue_id */
1004 for (i = 0; i < p_params->num_queues; i++) {
1005 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1006 u16 max_vf_qzone = min_vf_qzone +
1007 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
1009 qid = p_params->req_rx_queue[i];
1010 if (qid < min_vf_qzone || qid > max_vf_qzone) {
1011 DP_NOTICE(p_hwfn,
1012 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
1013 qid,
1014 p_params->rel_vf_id,
1015 min_vf_qzone, max_vf_qzone);
1016 return -EINVAL;
1019 qid = p_params->req_tx_queue[i];
1020 if (qid > max_vf_qzone) {
1021 DP_NOTICE(p_hwfn,
1022 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
1023 qid, p_params->rel_vf_id, max_vf_qzone);
1024 return -EINVAL;
1027 /* If client *really* wants, Tx qid can be shared with PF */
1028 if (qid < min_vf_qzone)
1029 DP_VERBOSE(p_hwfn,
1030 QED_MSG_IOV,
1031 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1032 p_params->rel_vf_id, qid, i);
1035 /* Limit number of queues according to number of CIDs */
1036 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1037 DP_VERBOSE(p_hwfn,
1038 QED_MSG_IOV,
1039 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1040 vf->relative_vf_id, p_params->num_queues, (u16)cids);
1041 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1043 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1044 p_ptt,
1045 vf, num_irqs);
1046 if (!num_of_vf_avaiable_chains) {
1047 DP_ERR(p_hwfn, "no available igu sbs\n");
1048 return -ENOMEM;
1051 /* Choose queue number and index ranges */
1052 vf->num_rxqs = num_of_vf_avaiable_chains;
1053 vf->num_txqs = num_of_vf_avaiable_chains;
1055 for (i = 0; i < vf->num_rxqs; i++) {
1056 struct qed_vf_queue *p_queue = &vf->vf_queues[i];
1058 p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1059 p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1061 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1062 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
1063 vf->relative_vf_id, i, vf->igu_sbs[i],
1064 p_queue->fw_rx_qid, p_queue->fw_tx_qid);
1067 /* Update the link configuration in bulletin */
1068 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1069 sizeof(link_params));
1070 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1071 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1072 sizeof(link_caps));
1073 qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1074 &link_params, &link_state, &link_caps);
1076 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1077 if (!rc) {
1078 vf->b_init = true;
1080 if (IS_LEAD_HWFN(p_hwfn))
1081 p_hwfn->cdev->p_iov_info->num_vfs++;
1084 return rc;
1087 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1088 struct qed_ptt *p_ptt, u16 rel_vf_id)
1090 struct qed_mcp_link_capabilities caps;
1091 struct qed_mcp_link_params params;
1092 struct qed_mcp_link_state link;
1093 struct qed_vf_info *vf = NULL;
1095 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1096 if (!vf) {
1097 DP_ERR(p_hwfn, "%s : vf is NULL\n", __func__);
1098 return -EINVAL;
1101 if (vf->bulletin.p_virt)
1102 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1104 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1106 /* Get the link configuration back in bulletin so
1107 * that when VFs are re-enabled they get the actual
1108 * link configuration.
1110 memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1111 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1112 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1113 qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1115 /* Forget the VF's acquisition message */
1116 memset(&vf->acquire, 0, sizeof(vf->acquire));
1118 /* disablng interrupts and resetting permission table was done during
1119 * vf-close, however, we could get here without going through vf_close
1121 /* Disable Interrupts for VF */
1122 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1124 /* Reset Permission table */
1125 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1127 vf->num_rxqs = 0;
1128 vf->num_txqs = 0;
1129 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1131 if (vf->b_init) {
1132 vf->b_init = false;
1134 if (IS_LEAD_HWFN(p_hwfn))
1135 p_hwfn->cdev->p_iov_info->num_vfs--;
1138 return 0;
1141 static bool qed_iov_tlv_supported(u16 tlvtype)
1143 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1146 /* place a given tlv on the tlv buffer, continuing current tlv list */
1147 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1149 struct channel_tlv *tl = (struct channel_tlv *)*offset;
1151 tl->type = type;
1152 tl->length = length;
1154 /* Offset should keep pointing to next TLV (the end of the last) */
1155 *offset += length;
1157 /* Return a pointer to the start of the added tlv */
1158 return *offset - length;
1161 /* list the types and lengths of the tlvs on the buffer */
1162 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1164 u16 i = 1, total_length = 0;
1165 struct channel_tlv *tlv;
1167 do {
1168 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1170 /* output tlv */
1171 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1172 "TLV number %d: type %d, length %d\n",
1173 i, tlv->type, tlv->length);
1175 if (tlv->type == CHANNEL_TLV_LIST_END)
1176 return;
1178 /* Validate entry - protect against malicious VFs */
1179 if (!tlv->length) {
1180 DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1181 return;
1184 total_length += tlv->length;
1186 if (total_length >= sizeof(struct tlv_buffer_size)) {
1187 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1188 return;
1191 i++;
1192 } while (1);
1195 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1196 struct qed_ptt *p_ptt,
1197 struct qed_vf_info *p_vf,
1198 u16 length, u8 status)
1200 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1201 struct qed_dmae_params params;
1202 u8 eng_vf_id;
1204 mbx->reply_virt->default_resp.hdr.status = status;
1206 qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1208 eng_vf_id = p_vf->abs_vf_id;
1210 memset(&params, 0, sizeof(params));
1211 SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1);
1212 params.dst_vfid = eng_vf_id;
1214 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1215 mbx->req_virt->first_tlv.reply_address +
1216 sizeof(u64),
1217 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1218 &params);
1220 /* Once PF copies the rc to the VF, the latter can continue
1221 * and send an additional message. So we have to make sure the
1222 * channel would be re-set to ready prior to that.
1224 REG_WR(p_hwfn,
1225 GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM,
1226 USTORM_VF_PF_CHANNEL_READY, eng_vf_id), 1);
1228 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1229 mbx->req_virt->first_tlv.reply_address,
1230 sizeof(u64) / 4, &params);
1233 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1234 enum qed_iov_vport_update_flag flag)
1236 switch (flag) {
1237 case QED_IOV_VP_UPDATE_ACTIVATE:
1238 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1239 case QED_IOV_VP_UPDATE_VLAN_STRIP:
1240 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1241 case QED_IOV_VP_UPDATE_TX_SWITCH:
1242 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1243 case QED_IOV_VP_UPDATE_MCAST:
1244 return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1245 case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1246 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1247 case QED_IOV_VP_UPDATE_RSS:
1248 return CHANNEL_TLV_VPORT_UPDATE_RSS;
1249 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1250 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1251 case QED_IOV_VP_UPDATE_SGE_TPA:
1252 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1253 default:
1254 return 0;
1258 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1259 struct qed_vf_info *p_vf,
1260 struct qed_iov_vf_mbx *p_mbx,
1261 u8 status,
1262 u16 tlvs_mask, u16 tlvs_accepted)
1264 struct pfvf_def_resp_tlv *resp;
1265 u16 size, total_len, i;
1267 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1268 p_mbx->offset = (u8 *)p_mbx->reply_virt;
1269 size = sizeof(struct pfvf_def_resp_tlv);
1270 total_len = size;
1272 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1274 /* Prepare response for all extended tlvs if they are found by PF */
1275 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1276 if (!(tlvs_mask & BIT(i)))
1277 continue;
1279 resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1280 qed_iov_vport_to_tlv(p_hwfn, i), size);
1282 if (tlvs_accepted & BIT(i))
1283 resp->hdr.status = status;
1284 else
1285 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1287 DP_VERBOSE(p_hwfn,
1288 QED_MSG_IOV,
1289 "VF[%d] - vport_update response: TLV %d, status %02x\n",
1290 p_vf->relative_vf_id,
1291 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1293 total_len += size;
1296 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1297 sizeof(struct channel_list_end_tlv));
1299 return total_len;
1302 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1303 struct qed_ptt *p_ptt,
1304 struct qed_vf_info *vf_info,
1305 u16 type, u16 length, u8 status)
1307 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1309 mbx->offset = (u8 *)mbx->reply_virt;
1311 qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1312 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1313 sizeof(struct channel_list_end_tlv));
1315 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1318 static struct
1319 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1320 u16 relative_vf_id,
1321 bool b_enabled_only)
1323 struct qed_vf_info *vf = NULL;
1325 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1326 if (!vf)
1327 return NULL;
1329 return &vf->p_vf_info;
1332 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1334 struct qed_public_vf_info *vf_info;
1336 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1338 if (!vf_info)
1339 return;
1341 /* Clear the VF mac */
1342 eth_zero_addr(vf_info->mac);
1344 vf_info->rx_accept_mode = 0;
1345 vf_info->tx_accept_mode = 0;
1348 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1349 struct qed_vf_info *p_vf)
1351 u32 i, j;
1353 p_vf->vf_bulletin = 0;
1354 p_vf->vport_instance = 0;
1355 p_vf->configured_features = 0;
1357 /* If VF previously requested less resources, go back to default */
1358 p_vf->num_rxqs = p_vf->num_sbs;
1359 p_vf->num_txqs = p_vf->num_sbs;
1361 p_vf->num_active_rxqs = 0;
1363 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1364 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1366 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
1367 if (!p_queue->cids[j].p_cid)
1368 continue;
1370 qed_eth_queue_cid_release(p_hwfn,
1371 p_queue->cids[j].p_cid);
1372 p_queue->cids[j].p_cid = NULL;
1376 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1377 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1378 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1381 /* Returns either 0, or log(size) */
1382 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
1383 struct qed_ptt *p_ptt)
1385 u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
1387 if (val)
1388 return val + 11;
1389 return 0;
1392 static void
1393 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
1394 struct qed_ptt *p_ptt,
1395 struct qed_vf_info *p_vf,
1396 struct vf_pf_resc_request *p_req,
1397 struct pf_vf_resc *p_resp)
1399 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
1400 u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
1401 qed_db_addr_vf(0, DQ_DEMS_LEGACY);
1402 u32 bar_size;
1404 p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
1406 /* If VF didn't bother asking for QIDs than don't bother limiting
1407 * number of CIDs. The VF doesn't care about the number, and this
1408 * has the likely result of causing an additional acquisition.
1410 if (!(p_vf->acquire.vfdev_info.capabilities &
1411 VFPF_ACQUIRE_CAP_QUEUE_QIDS))
1412 return;
1414 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
1415 * that would make sure doorbells for all CIDs fall within the bar.
1416 * If it doesn't, make sure regview window is sufficient.
1418 if (p_vf->acquire.vfdev_info.capabilities &
1419 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
1420 bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1421 if (bar_size)
1422 bar_size = 1 << bar_size;
1424 if (p_hwfn->cdev->num_hwfns > 1)
1425 bar_size /= 2;
1426 } else {
1427 bar_size = PXP_VF_BAR0_DQ_LENGTH;
1430 if (bar_size / db_size < 256)
1431 p_resp->num_cids = min_t(u8, p_resp->num_cids,
1432 (u8)(bar_size / db_size));
1435 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1436 struct qed_ptt *p_ptt,
1437 struct qed_vf_info *p_vf,
1438 struct vf_pf_resc_request *p_req,
1439 struct pf_vf_resc *p_resp)
1441 u8 i;
1443 /* Queue related information */
1444 p_resp->num_rxqs = p_vf->num_rxqs;
1445 p_resp->num_txqs = p_vf->num_txqs;
1446 p_resp->num_sbs = p_vf->num_sbs;
1448 for (i = 0; i < p_resp->num_sbs; i++) {
1449 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1450 p_resp->hw_sbs[i].sb_qid = 0;
1453 /* These fields are filled for backward compatibility.
1454 * Unused by modern vfs.
1456 for (i = 0; i < p_resp->num_rxqs; i++) {
1457 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1458 (u16 *)&p_resp->hw_qid[i]);
1459 p_resp->cid[i] = i;
1462 /* Filter related information */
1463 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1464 p_req->num_mac_filters);
1465 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1466 p_req->num_vlan_filters);
1468 qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
1470 /* This isn't really needed/enforced, but some legacy VFs might depend
1471 * on the correct filling of this field.
1473 p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1475 /* Validate sufficient resources for VF */
1476 if (p_resp->num_rxqs < p_req->num_rxqs ||
1477 p_resp->num_txqs < p_req->num_txqs ||
1478 p_resp->num_sbs < p_req->num_sbs ||
1479 p_resp->num_mac_filters < p_req->num_mac_filters ||
1480 p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1481 p_resp->num_mc_filters < p_req->num_mc_filters ||
1482 p_resp->num_cids < p_req->num_cids) {
1483 DP_VERBOSE(p_hwfn,
1484 QED_MSG_IOV,
1485 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
1486 p_vf->abs_vf_id,
1487 p_req->num_rxqs,
1488 p_resp->num_rxqs,
1489 p_req->num_rxqs,
1490 p_resp->num_txqs,
1491 p_req->num_sbs,
1492 p_resp->num_sbs,
1493 p_req->num_mac_filters,
1494 p_resp->num_mac_filters,
1495 p_req->num_vlan_filters,
1496 p_resp->num_vlan_filters,
1497 p_req->num_mc_filters,
1498 p_resp->num_mc_filters,
1499 p_req->num_cids, p_resp->num_cids);
1501 /* Some legacy OSes are incapable of correctly handling this
1502 * failure.
1504 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1505 ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1506 (p_vf->acquire.vfdev_info.os_type ==
1507 VFPF_ACQUIRE_OS_WINDOWS))
1508 return PFVF_STATUS_SUCCESS;
1510 return PFVF_STATUS_NO_RESOURCE;
1513 return PFVF_STATUS_SUCCESS;
1516 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1517 struct pfvf_stats_info *p_stats)
1519 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1520 offsetof(struct mstorm_vf_zone,
1521 non_trigger.eth_queue_stat);
1522 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1523 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1524 offsetof(struct ustorm_vf_zone,
1525 non_trigger.eth_queue_stat);
1526 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1527 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1528 offsetof(struct pstorm_vf_zone,
1529 non_trigger.eth_queue_stat);
1530 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1531 p_stats->tstats.address = 0;
1532 p_stats->tstats.len = 0;
1535 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1536 struct qed_ptt *p_ptt,
1537 struct qed_vf_info *vf)
1539 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1540 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1541 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1542 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1543 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1544 struct pf_vf_resc *resc = &resp->resc;
1545 int rc;
1547 memset(resp, 0, sizeof(*resp));
1549 /* Write the PF version so that VF would know which version
1550 * is supported - might be later overridden. This guarantees that
1551 * VF could recognize legacy PF based on lack of versions in reply.
1553 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1554 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1556 if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1557 DP_VERBOSE(p_hwfn,
1558 QED_MSG_IOV,
1559 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1560 vf->abs_vf_id, vf->state);
1561 goto out;
1564 /* Validate FW compatibility */
1565 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1566 if (req->vfdev_info.capabilities &
1567 VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1568 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1570 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1571 "VF[%d] is pre-fastpath HSI\n",
1572 vf->abs_vf_id);
1573 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1574 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1575 } else {
1576 DP_INFO(p_hwfn,
1577 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's fastpath HSI %02x.%02x\n",
1578 vf->abs_vf_id,
1579 req->vfdev_info.eth_fp_hsi_major,
1580 req->vfdev_info.eth_fp_hsi_minor,
1581 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1583 goto out;
1587 /* On 100g PFs, prevent old VFs from loading */
1588 if ((p_hwfn->cdev->num_hwfns > 1) &&
1589 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1590 DP_INFO(p_hwfn,
1591 "VF[%d] is running an old driver that doesn't support 100g\n",
1592 vf->abs_vf_id);
1593 goto out;
1596 /* Store the acquire message */
1597 memcpy(&vf->acquire, req, sizeof(vf->acquire));
1599 vf->opaque_fid = req->vfdev_info.opaque_fid;
1601 vf->vf_bulletin = req->bulletin_addr;
1602 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1603 vf->bulletin.size : req->bulletin_size;
1605 /* fill in pfdev info */
1606 pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1607 pfdev_info->db_size = 0;
1608 pfdev_info->indices_per_sb = PIS_PER_SB;
1610 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1611 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1612 if (p_hwfn->cdev->num_hwfns > 1)
1613 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1615 /* Share our ability to use multiple queue-ids only with VFs
1616 * that request it.
1618 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
1619 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
1621 /* Share the sizes of the bars with VF */
1622 resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1624 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1626 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1628 pfdev_info->fw_major = FW_MAJOR_VERSION;
1629 pfdev_info->fw_minor = FW_MINOR_VERSION;
1630 pfdev_info->fw_rev = FW_REVISION_VERSION;
1631 pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1633 /* Incorrect when legacy, but doesn't matter as legacy isn't reading
1634 * this field.
1636 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1637 req->vfdev_info.eth_fp_hsi_minor);
1638 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1639 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1641 pfdev_info->dev_type = p_hwfn->cdev->type;
1642 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1644 /* Fill resources available to VF; Make sure there are enough to
1645 * satisfy the VF's request.
1647 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1648 &req->resc_request, resc);
1649 if (vfpf_status != PFVF_STATUS_SUCCESS)
1650 goto out;
1652 /* Start the VF in FW */
1653 rc = qed_sp_vf_start(p_hwfn, vf);
1654 if (rc) {
1655 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1656 vfpf_status = PFVF_STATUS_FAILURE;
1657 goto out;
1660 /* Fill agreed size of bulletin board in response */
1661 resp->bulletin_size = vf->bulletin.size;
1662 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1664 DP_VERBOSE(p_hwfn,
1665 QED_MSG_IOV,
1666 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1667 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1668 vf->abs_vf_id,
1669 resp->pfdev_info.chip_num,
1670 resp->pfdev_info.db_size,
1671 resp->pfdev_info.indices_per_sb,
1672 resp->pfdev_info.capabilities,
1673 resc->num_rxqs,
1674 resc->num_txqs,
1675 resc->num_sbs,
1676 resc->num_mac_filters,
1677 resc->num_vlan_filters);
1678 vf->state = VF_ACQUIRED;
1680 /* Prepare Response */
1681 out:
1682 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1683 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1686 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1687 struct qed_vf_info *p_vf, bool val)
1689 struct qed_sp_vport_update_params params;
1690 int rc;
1692 if (val == p_vf->spoof_chk) {
1693 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1694 "Spoofchk value[%d] is already configured\n", val);
1695 return 0;
1698 memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1699 params.opaque_fid = p_vf->opaque_fid;
1700 params.vport_id = p_vf->vport_id;
1701 params.update_anti_spoofing_en_flg = 1;
1702 params.anti_spoofing_en = val;
1704 rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1705 if (!rc) {
1706 p_vf->spoof_chk = val;
1707 p_vf->req_spoofchk_val = p_vf->spoof_chk;
1708 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1709 "Spoofchk val[%d] configured\n", val);
1710 } else {
1711 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1712 "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1713 val, p_vf->relative_vf_id);
1716 return rc;
1719 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1720 struct qed_vf_info *p_vf)
1722 struct qed_filter_ucast filter;
1723 int rc = 0;
1724 int i;
1726 memset(&filter, 0, sizeof(filter));
1727 filter.is_rx_filter = 1;
1728 filter.is_tx_filter = 1;
1729 filter.vport_to_add_to = p_vf->vport_id;
1730 filter.opcode = QED_FILTER_ADD;
1732 /* Reconfigure vlans */
1733 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1734 if (!p_vf->shadow_config.vlans[i].used)
1735 continue;
1737 filter.type = QED_FILTER_VLAN;
1738 filter.vlan = p_vf->shadow_config.vlans[i].vid;
1739 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1740 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1741 filter.vlan, p_vf->relative_vf_id);
1742 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1743 &filter, QED_SPQ_MODE_CB, NULL);
1744 if (rc) {
1745 DP_NOTICE(p_hwfn,
1746 "Failed to configure VLAN [%04x] to VF [%04x]\n",
1747 filter.vlan, p_vf->relative_vf_id);
1748 break;
1752 return rc;
1755 static int
1756 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1757 struct qed_vf_info *p_vf, u64 events)
1759 int rc = 0;
1761 if ((events & BIT(VLAN_ADDR_FORCED)) &&
1762 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1763 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1765 return rc;
1768 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1769 struct qed_vf_info *p_vf, u64 events)
1771 int rc = 0;
1772 struct qed_filter_ucast filter;
1774 if (!p_vf->vport_instance)
1775 return -EINVAL;
1777 if ((events & BIT(MAC_ADDR_FORCED)) ||
1778 p_vf->p_vf_info.is_trusted_configured) {
1779 /* Since there's no way [currently] of removing the MAC,
1780 * we can always assume this means we need to force it.
1782 memset(&filter, 0, sizeof(filter));
1783 filter.type = QED_FILTER_MAC;
1784 filter.opcode = QED_FILTER_REPLACE;
1785 filter.is_rx_filter = 1;
1786 filter.is_tx_filter = 1;
1787 filter.vport_to_add_to = p_vf->vport_id;
1788 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1790 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1791 &filter, QED_SPQ_MODE_CB, NULL);
1792 if (rc) {
1793 DP_NOTICE(p_hwfn,
1794 "PF failed to configure MAC for VF\n");
1795 return rc;
1797 if (p_vf->p_vf_info.is_trusted_configured)
1798 p_vf->configured_features |=
1799 BIT(VFPF_BULLETIN_MAC_ADDR);
1800 else
1801 p_vf->configured_features |=
1802 BIT(MAC_ADDR_FORCED);
1805 if (events & BIT(VLAN_ADDR_FORCED)) {
1806 struct qed_sp_vport_update_params vport_update;
1807 u8 removal;
1808 int i;
1810 memset(&filter, 0, sizeof(filter));
1811 filter.type = QED_FILTER_VLAN;
1812 filter.is_rx_filter = 1;
1813 filter.is_tx_filter = 1;
1814 filter.vport_to_add_to = p_vf->vport_id;
1815 filter.vlan = p_vf->bulletin.p_virt->pvid;
1816 filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1817 QED_FILTER_FLUSH;
1819 /* Send the ramrod */
1820 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1821 &filter, QED_SPQ_MODE_CB, NULL);
1822 if (rc) {
1823 DP_NOTICE(p_hwfn,
1824 "PF failed to configure VLAN for VF\n");
1825 return rc;
1828 /* Update the default-vlan & silent vlan stripping */
1829 memset(&vport_update, 0, sizeof(vport_update));
1830 vport_update.opaque_fid = p_vf->opaque_fid;
1831 vport_update.vport_id = p_vf->vport_id;
1832 vport_update.update_default_vlan_enable_flg = 1;
1833 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1834 vport_update.update_default_vlan_flg = 1;
1835 vport_update.default_vlan = filter.vlan;
1837 vport_update.update_inner_vlan_removal_flg = 1;
1838 removal = filter.vlan ? 1
1839 : p_vf->shadow_config.inner_vlan_removal;
1840 vport_update.inner_vlan_removal_flg = removal;
1841 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1842 rc = qed_sp_vport_update(p_hwfn,
1843 &vport_update,
1844 QED_SPQ_MODE_EBLOCK, NULL);
1845 if (rc) {
1846 DP_NOTICE(p_hwfn,
1847 "PF failed to configure VF vport for vlan\n");
1848 return rc;
1851 /* Update all the Rx queues */
1852 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1853 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1854 struct qed_queue_cid *p_cid = NULL;
1856 /* There can be at most 1 Rx queue on qzone. Find it */
1857 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
1858 if (!p_cid)
1859 continue;
1861 rc = qed_sp_eth_rx_queues_update(p_hwfn,
1862 (void **)&p_cid,
1863 1, 0, 1,
1864 QED_SPQ_MODE_EBLOCK,
1865 NULL);
1866 if (rc) {
1867 DP_NOTICE(p_hwfn,
1868 "Failed to send Rx update fo queue[0x%04x]\n",
1869 p_cid->rel.queue_id);
1870 return rc;
1874 if (filter.vlan)
1875 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1876 else
1877 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1880 /* If forced features are terminated, we need to configure the shadow
1881 * configuration back again.
1883 if (events)
1884 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1886 return rc;
1889 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1890 struct qed_ptt *p_ptt,
1891 struct qed_vf_info *vf)
1893 struct qed_sp_vport_start_params params = { 0 };
1894 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1895 struct vfpf_vport_start_tlv *start;
1896 u8 status = PFVF_STATUS_SUCCESS;
1897 struct qed_vf_info *vf_info;
1898 u64 *p_bitmap;
1899 int sb_id;
1900 int rc;
1902 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vf->relative_vf_id, true);
1903 if (!vf_info) {
1904 DP_NOTICE(p_hwfn->cdev,
1905 "Failed to get VF info, invalid vfid [%d]\n",
1906 vf->relative_vf_id);
1907 return;
1910 vf->state = VF_ENABLED;
1911 start = &mbx->req_virt->start_vport;
1913 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1915 /* Initialize Status block in CAU */
1916 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1917 if (!start->sb_addr[sb_id]) {
1918 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1919 "VF[%d] did not fill the address of SB %d\n",
1920 vf->relative_vf_id, sb_id);
1921 break;
1924 qed_int_cau_conf_sb(p_hwfn, p_ptt,
1925 start->sb_addr[sb_id],
1926 vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1929 vf->mtu = start->mtu;
1930 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1932 /* Take into consideration configuration forced by hypervisor;
1933 * If none is configured, use the supplied VF values [for old
1934 * vfs that would still be fine, since they passed '0' as padding].
1936 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1937 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1938 u8 vf_req = start->only_untagged;
1940 vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1941 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1944 params.tpa_mode = start->tpa_mode;
1945 params.remove_inner_vlan = start->inner_vlan_removal;
1946 params.tx_switching = true;
1948 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1949 params.drop_ttl0 = false;
1950 params.concrete_fid = vf->concrete_fid;
1951 params.opaque_fid = vf->opaque_fid;
1952 params.vport_id = vf->vport_id;
1953 params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1954 params.mtu = vf->mtu;
1956 /* Non trusted VFs should enable control frame filtering */
1957 params.check_mac = !vf->p_vf_info.is_trusted_configured;
1959 rc = qed_sp_eth_vport_start(p_hwfn, &params);
1960 if (rc) {
1961 DP_ERR(p_hwfn,
1962 "%s returned error %d\n", __func__, rc);
1963 status = PFVF_STATUS_FAILURE;
1964 } else {
1965 vf->vport_instance++;
1967 /* Force configuration if needed on the newly opened vport */
1968 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1970 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1972 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1973 sizeof(struct pfvf_def_resp_tlv), status);
1976 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1977 struct qed_ptt *p_ptt,
1978 struct qed_vf_info *vf)
1980 u8 status = PFVF_STATUS_SUCCESS;
1981 int rc;
1983 vf->vport_instance--;
1984 vf->spoof_chk = false;
1986 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
1987 (qed_iov_validate_active_txq(p_hwfn, vf))) {
1988 vf->b_malicious = true;
1989 DP_NOTICE(p_hwfn,
1990 "VF [%02x] - considered malicious; Unable to stop RX/TX queues\n",
1991 vf->abs_vf_id);
1992 status = PFVF_STATUS_MALICIOUS;
1993 goto out;
1996 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
1997 if (rc) {
1998 DP_ERR(p_hwfn, "%s returned error %d\n",
1999 __func__, rc);
2000 status = PFVF_STATUS_FAILURE;
2003 /* Forget the configuration on the vport */
2004 vf->configured_features = 0;
2005 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
2007 out:
2008 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
2009 sizeof(struct pfvf_def_resp_tlv), status);
2012 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
2013 struct qed_ptt *p_ptt,
2014 struct qed_vf_info *vf,
2015 u8 status, bool b_legacy)
2017 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2018 struct pfvf_start_queue_resp_tlv *p_tlv;
2019 struct vfpf_start_rxq_tlv *req;
2020 u16 length;
2022 mbx->offset = (u8 *)mbx->reply_virt;
2024 /* Taking a bigger struct instead of adding a TLV to list was a
2025 * mistake, but one which we're now stuck with, as some older
2026 * clients assume the size of the previous response.
2028 if (!b_legacy)
2029 length = sizeof(*p_tlv);
2030 else
2031 length = sizeof(struct pfvf_def_resp_tlv);
2033 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
2034 length);
2035 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2036 sizeof(struct channel_list_end_tlv));
2038 /* Update the TLV with the response */
2039 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2040 req = &mbx->req_virt->start_rxq;
2041 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
2042 offsetof(struct mstorm_vf_zone,
2043 non_trigger.eth_rx_queue_producers) +
2044 sizeof(struct eth_rx_prod_data) * req->rx_qid;
2047 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2050 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
2051 struct qed_vf_info *p_vf, bool b_is_tx)
2053 struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
2054 struct vfpf_qid_tlv *p_qid_tlv;
2056 /* Search for the qid if the VF published its going to provide it */
2057 if (!(p_vf->acquire.vfdev_info.capabilities &
2058 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
2059 if (b_is_tx)
2060 return QED_IOV_LEGACY_QID_TX;
2061 else
2062 return QED_IOV_LEGACY_QID_RX;
2065 p_qid_tlv = (struct vfpf_qid_tlv *)
2066 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2067 CHANNEL_TLV_QID);
2068 if (!p_qid_tlv) {
2069 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2070 "VF[%2x]: Failed to provide qid\n",
2071 p_vf->relative_vf_id);
2073 return QED_IOV_QID_INVALID;
2076 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
2077 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2078 "VF[%02x]: Provided qid out-of-bounds %02x\n",
2079 p_vf->relative_vf_id, p_qid_tlv->qid);
2080 return QED_IOV_QID_INVALID;
2083 return p_qid_tlv->qid;
2086 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
2087 struct qed_ptt *p_ptt,
2088 struct qed_vf_info *vf)
2090 struct qed_queue_start_common_params params;
2091 struct qed_queue_cid_vf_params vf_params;
2092 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2093 u8 status = PFVF_STATUS_NO_RESOURCE;
2094 u8 qid_usage_idx, vf_legacy = 0;
2095 struct vfpf_start_rxq_tlv *req;
2096 struct qed_vf_queue *p_queue;
2097 struct qed_queue_cid *p_cid;
2098 struct qed_sb_info sb_dummy;
2099 int rc;
2101 req = &mbx->req_virt->start_rxq;
2103 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
2104 QED_IOV_VALIDATE_Q_DISABLE) ||
2105 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2106 goto out;
2108 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2109 if (qid_usage_idx == QED_IOV_QID_INVALID)
2110 goto out;
2112 p_queue = &vf->vf_queues[req->rx_qid];
2113 if (p_queue->cids[qid_usage_idx].p_cid)
2114 goto out;
2116 vf_legacy = qed_vf_calculate_legacy(vf);
2118 /* Acquire a new queue-cid */
2119 memset(&params, 0, sizeof(params));
2120 params.queue_id = p_queue->fw_rx_qid;
2121 params.vport_id = vf->vport_id;
2122 params.stats_id = vf->abs_vf_id + 0x10;
2123 /* Since IGU index is passed via sb_info, construct a dummy one */
2124 memset(&sb_dummy, 0, sizeof(sb_dummy));
2125 sb_dummy.igu_sb_id = req->hw_sb;
2126 params.p_sb = &sb_dummy;
2127 params.sb_idx = req->sb_index;
2129 memset(&vf_params, 0, sizeof(vf_params));
2130 vf_params.vfid = vf->relative_vf_id;
2131 vf_params.vf_qid = (u8)req->rx_qid;
2132 vf_params.vf_legacy = vf_legacy;
2133 vf_params.qid_usage_idx = qid_usage_idx;
2134 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2135 &params, true, &vf_params);
2136 if (!p_cid)
2137 goto out;
2139 /* Legacy VFs have their Producers in a different location, which they
2140 * calculate on their own and clean the producer prior to this.
2142 if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
2143 qed_wr(p_hwfn, p_ptt, MSEM_REG_FAST_MEMORY +
2144 SEM_FAST_REG_INT_RAM +
2145 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id,
2146 req->rx_qid), 0);
2148 rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
2149 req->bd_max_bytes,
2150 req->rxq_addr,
2151 req->cqe_pbl_addr, req->cqe_pbl_size);
2152 if (rc) {
2153 status = PFVF_STATUS_FAILURE;
2154 qed_eth_queue_cid_release(p_hwfn, p_cid);
2155 } else {
2156 p_queue->cids[qid_usage_idx].p_cid = p_cid;
2157 p_queue->cids[qid_usage_idx].b_is_tx = false;
2158 status = PFVF_STATUS_SUCCESS;
2159 vf->num_active_rxqs++;
2162 out:
2163 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
2164 !!(vf_legacy &
2165 QED_QCID_LEGACY_VF_RX_PROD));
2168 static void
2169 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
2170 struct qed_tunnel_info *p_tun,
2171 u16 tunn_feature_mask)
2173 p_resp->tunn_feature_mask = tunn_feature_mask;
2174 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
2175 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
2176 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
2177 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
2178 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
2179 p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
2180 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
2181 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
2182 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
2183 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
2184 p_resp->geneve_udp_port = p_tun->geneve_port.port;
2185 p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
2188 static void
2189 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2190 struct qed_tunn_update_type *p_tun,
2191 enum qed_tunn_mode mask, u8 tun_cls)
2193 if (p_req->tun_mode_update_mask & BIT(mask)) {
2194 p_tun->b_update_mode = true;
2196 if (p_req->tunn_mode & BIT(mask))
2197 p_tun->b_mode_enabled = true;
2200 p_tun->tun_cls = tun_cls;
2203 static void
2204 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2205 struct qed_tunn_update_type *p_tun,
2206 struct qed_tunn_update_udp_port *p_port,
2207 enum qed_tunn_mode mask,
2208 u8 tun_cls, u8 update_port, u16 port)
2210 if (update_port) {
2211 p_port->b_update_port = true;
2212 p_port->port = port;
2215 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
2218 static bool
2219 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
2221 bool b_update_requested = false;
2223 if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
2224 p_req->update_geneve_port || p_req->update_vxlan_port)
2225 b_update_requested = true;
2227 return b_update_requested;
2230 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
2232 if (tun->b_update_mode && !tun->b_mode_enabled) {
2233 tun->b_update_mode = false;
2234 *rc = -EINVAL;
2238 static int
2239 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
2240 u16 *tun_features, bool *update,
2241 struct qed_tunnel_info *tun_src)
2243 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
2244 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
2245 u16 bultn_vxlan_port, bultn_geneve_port;
2246 void *cookie = p_hwfn->cdev->ops_cookie;
2247 int i, rc = 0;
2249 *tun_features = p_hwfn->cdev->tunn_feature_mask;
2250 bultn_vxlan_port = tun->vxlan_port.port;
2251 bultn_geneve_port = tun->geneve_port.port;
2252 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
2253 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
2254 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
2255 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
2256 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
2258 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
2259 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2260 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2261 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2262 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2263 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
2264 tun_src->b_update_rx_cls = false;
2265 tun_src->b_update_tx_cls = false;
2266 rc = -EINVAL;
2269 if (tun_src->vxlan_port.b_update_port) {
2270 if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
2271 tun_src->vxlan_port.b_update_port = false;
2272 } else {
2273 *update = true;
2274 bultn_vxlan_port = tun_src->vxlan_port.port;
2278 if (tun_src->geneve_port.b_update_port) {
2279 if (tun_src->geneve_port.port == tun->geneve_port.port) {
2280 tun_src->geneve_port.b_update_port = false;
2281 } else {
2282 *update = true;
2283 bultn_geneve_port = tun_src->geneve_port.port;
2287 qed_for_each_vf(p_hwfn, i) {
2288 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
2289 bultn_geneve_port);
2292 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
2293 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
2295 return rc;
2298 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
2299 struct qed_ptt *p_ptt,
2300 struct qed_vf_info *p_vf)
2302 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
2303 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2304 struct pfvf_update_tunn_param_tlv *p_resp;
2305 struct vfpf_update_tunn_param_tlv *p_req;
2306 u8 status = PFVF_STATUS_SUCCESS;
2307 bool b_update_required = false;
2308 struct qed_tunnel_info tunn;
2309 u16 tunn_feature_mask = 0;
2310 int i, rc = 0;
2312 mbx->offset = (u8 *)mbx->reply_virt;
2314 memset(&tunn, 0, sizeof(tunn));
2315 p_req = &mbx->req_virt->tunn_param_update;
2317 if (!qed_iov_pf_validate_tunn_param(p_req)) {
2318 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2319 "No tunnel update requested by VF\n");
2320 status = PFVF_STATUS_FAILURE;
2321 goto send_resp;
2324 tunn.b_update_rx_cls = p_req->update_tun_cls;
2325 tunn.b_update_tx_cls = p_req->update_tun_cls;
2327 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
2328 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
2329 p_req->update_vxlan_port,
2330 p_req->vxlan_port);
2331 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
2332 QED_MODE_L2GENEVE_TUNN,
2333 p_req->l2geneve_clss,
2334 p_req->update_geneve_port,
2335 p_req->geneve_port);
2336 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
2337 QED_MODE_IPGENEVE_TUNN,
2338 p_req->ipgeneve_clss);
2339 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
2340 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
2341 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
2342 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
2344 /* If PF modifies VF's req then it should
2345 * still return an error in case of partial configuration
2346 * or modified configuration as opposed to requested one.
2348 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
2349 &b_update_required, &tunn);
2351 if (rc)
2352 status = PFVF_STATUS_FAILURE;
2354 /* If QED client is willing to update anything ? */
2355 if (b_update_required) {
2356 u16 geneve_port;
2358 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
2359 QED_SPQ_MODE_EBLOCK, NULL);
2360 if (rc)
2361 status = PFVF_STATUS_FAILURE;
2363 geneve_port = p_tun->geneve_port.port;
2364 qed_for_each_vf(p_hwfn, i) {
2365 qed_iov_bulletin_set_udp_ports(p_hwfn, i,
2366 p_tun->vxlan_port.port,
2367 geneve_port);
2371 send_resp:
2372 p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
2373 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
2375 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
2376 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2377 sizeof(struct channel_list_end_tlv));
2379 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
2382 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2383 struct qed_ptt *p_ptt,
2384 struct qed_vf_info *p_vf,
2385 u32 cid, u8 status)
2387 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2388 struct pfvf_start_queue_resp_tlv *p_tlv;
2389 bool b_legacy = false;
2390 u16 length;
2392 mbx->offset = (u8 *)mbx->reply_virt;
2394 /* Taking a bigger struct instead of adding a TLV to list was a
2395 * mistake, but one which we're now stuck with, as some older
2396 * clients assume the size of the previous response.
2398 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2399 ETH_HSI_VER_NO_PKT_LEN_TUNN)
2400 b_legacy = true;
2402 if (!b_legacy)
2403 length = sizeof(*p_tlv);
2404 else
2405 length = sizeof(struct pfvf_def_resp_tlv);
2407 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2408 length);
2409 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2410 sizeof(struct channel_list_end_tlv));
2412 /* Update the TLV with the response */
2413 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
2414 p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
2416 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2419 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2420 struct qed_ptt *p_ptt,
2421 struct qed_vf_info *vf)
2423 struct qed_queue_start_common_params params;
2424 struct qed_queue_cid_vf_params vf_params;
2425 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2426 u8 status = PFVF_STATUS_NO_RESOURCE;
2427 struct vfpf_start_txq_tlv *req;
2428 struct qed_vf_queue *p_queue;
2429 struct qed_queue_cid *p_cid;
2430 struct qed_sb_info sb_dummy;
2431 u8 qid_usage_idx, vf_legacy;
2432 u32 cid = 0;
2433 int rc;
2434 u16 pq;
2436 memset(&params, 0, sizeof(params));
2437 req = &mbx->req_virt->start_txq;
2439 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2440 QED_IOV_VALIDATE_Q_NA) ||
2441 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2442 goto out;
2444 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2445 if (qid_usage_idx == QED_IOV_QID_INVALID)
2446 goto out;
2448 p_queue = &vf->vf_queues[req->tx_qid];
2449 if (p_queue->cids[qid_usage_idx].p_cid)
2450 goto out;
2452 vf_legacy = qed_vf_calculate_legacy(vf);
2454 /* Acquire a new queue-cid */
2455 params.queue_id = p_queue->fw_tx_qid;
2456 params.vport_id = vf->vport_id;
2457 params.stats_id = vf->abs_vf_id + 0x10;
2459 /* Since IGU index is passed via sb_info, construct a dummy one */
2460 memset(&sb_dummy, 0, sizeof(sb_dummy));
2461 sb_dummy.igu_sb_id = req->hw_sb;
2462 params.p_sb = &sb_dummy;
2463 params.sb_idx = req->sb_index;
2465 memset(&vf_params, 0, sizeof(vf_params));
2466 vf_params.vfid = vf->relative_vf_id;
2467 vf_params.vf_qid = (u8)req->tx_qid;
2468 vf_params.vf_legacy = vf_legacy;
2469 vf_params.qid_usage_idx = qid_usage_idx;
2471 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2472 &params, false, &vf_params);
2473 if (!p_cid)
2474 goto out;
2476 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2477 rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
2478 req->pbl_addr, req->pbl_size, pq);
2479 if (rc) {
2480 status = PFVF_STATUS_FAILURE;
2481 qed_eth_queue_cid_release(p_hwfn, p_cid);
2482 } else {
2483 status = PFVF_STATUS_SUCCESS;
2484 p_queue->cids[qid_usage_idx].p_cid = p_cid;
2485 p_queue->cids[qid_usage_idx].b_is_tx = true;
2486 cid = p_cid->cid;
2489 out:
2490 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
2493 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2494 struct qed_vf_info *vf,
2495 u16 rxq_id,
2496 u8 qid_usage_idx, bool cqe_completion)
2498 struct qed_vf_queue *p_queue;
2499 int rc = 0;
2501 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
2502 DP_VERBOSE(p_hwfn,
2503 QED_MSG_IOV,
2504 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
2505 vf->relative_vf_id, rxq_id, qid_usage_idx);
2506 return -EINVAL;
2509 p_queue = &vf->vf_queues[rxq_id];
2511 /* We've validated the index and the existence of the active RXQ -
2512 * now we need to make sure that it's using the correct qid.
2514 if (!p_queue->cids[qid_usage_idx].p_cid ||
2515 p_queue->cids[qid_usage_idx].b_is_tx) {
2516 struct qed_queue_cid *p_cid;
2518 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
2519 DP_VERBOSE(p_hwfn,
2520 QED_MSG_IOV,
2521 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
2522 vf->relative_vf_id,
2523 rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
2524 return -EINVAL;
2527 /* Now that we know we have a valid Rx-queue - close it */
2528 rc = qed_eth_rx_queue_stop(p_hwfn,
2529 p_queue->cids[qid_usage_idx].p_cid,
2530 false, cqe_completion);
2531 if (rc)
2532 return rc;
2534 p_queue->cids[qid_usage_idx].p_cid = NULL;
2535 vf->num_active_rxqs--;
2537 return 0;
2540 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2541 struct qed_vf_info *vf,
2542 u16 txq_id, u8 qid_usage_idx)
2544 struct qed_vf_queue *p_queue;
2545 int rc = 0;
2547 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
2548 return -EINVAL;
2550 p_queue = &vf->vf_queues[txq_id];
2551 if (!p_queue->cids[qid_usage_idx].p_cid ||
2552 !p_queue->cids[qid_usage_idx].b_is_tx)
2553 return -EINVAL;
2555 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
2556 if (rc)
2557 return rc;
2559 p_queue->cids[qid_usage_idx].p_cid = NULL;
2560 return 0;
2563 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2564 struct qed_ptt *p_ptt,
2565 struct qed_vf_info *vf)
2567 u16 length = sizeof(struct pfvf_def_resp_tlv);
2568 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2569 u8 status = PFVF_STATUS_FAILURE;
2570 struct vfpf_stop_rxqs_tlv *req;
2571 u8 qid_usage_idx;
2572 int rc;
2574 /* There has never been an official driver that used this interface
2575 * for stopping multiple queues, and it is now considered deprecated.
2576 * Validate this isn't used here.
2578 req = &mbx->req_virt->stop_rxqs;
2579 if (req->num_rxqs != 1) {
2580 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2581 "Odd; VF[%d] tried stopping multiple Rx queues\n",
2582 vf->relative_vf_id);
2583 status = PFVF_STATUS_NOT_SUPPORTED;
2584 goto out;
2587 /* Find which qid-index is associated with the queue */
2588 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2589 if (qid_usage_idx == QED_IOV_QID_INVALID)
2590 goto out;
2592 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2593 qid_usage_idx, req->cqe_completion);
2594 if (!rc)
2595 status = PFVF_STATUS_SUCCESS;
2596 out:
2597 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2598 length, status);
2601 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2602 struct qed_ptt *p_ptt,
2603 struct qed_vf_info *vf)
2605 u16 length = sizeof(struct pfvf_def_resp_tlv);
2606 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2607 u8 status = PFVF_STATUS_FAILURE;
2608 struct vfpf_stop_txqs_tlv *req;
2609 u8 qid_usage_idx;
2610 int rc;
2612 /* There has never been an official driver that used this interface
2613 * for stopping multiple queues, and it is now considered deprecated.
2614 * Validate this isn't used here.
2616 req = &mbx->req_virt->stop_txqs;
2617 if (req->num_txqs != 1) {
2618 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2619 "Odd; VF[%d] tried stopping multiple Tx queues\n",
2620 vf->relative_vf_id);
2621 status = PFVF_STATUS_NOT_SUPPORTED;
2622 goto out;
2625 /* Find which qid-index is associated with the queue */
2626 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2627 if (qid_usage_idx == QED_IOV_QID_INVALID)
2628 goto out;
2630 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
2631 if (!rc)
2632 status = PFVF_STATUS_SUCCESS;
2634 out:
2635 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2636 length, status);
2639 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2640 struct qed_ptt *p_ptt,
2641 struct qed_vf_info *vf)
2643 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2644 u16 length = sizeof(struct pfvf_def_resp_tlv);
2645 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2646 struct vfpf_update_rxq_tlv *req;
2647 u8 status = PFVF_STATUS_FAILURE;
2648 u8 complete_event_flg;
2649 u8 complete_cqe_flg;
2650 u8 qid_usage_idx;
2651 int rc;
2652 u8 i;
2654 req = &mbx->req_virt->update_rxq;
2655 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2656 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2658 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2659 if (qid_usage_idx == QED_IOV_QID_INVALID)
2660 goto out;
2662 /* There shouldn't exist a VF that uses queue-qids yet uses this
2663 * API with multiple Rx queues. Validate this.
2665 if ((vf->acquire.vfdev_info.capabilities &
2666 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
2667 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2668 "VF[%d] supports QIDs but sends multiple queues\n",
2669 vf->relative_vf_id);
2670 goto out;
2673 /* Validate inputs - for the legacy case this is still true since
2674 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
2676 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
2677 if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2678 QED_IOV_VALIDATE_Q_NA) ||
2679 !vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
2680 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
2681 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2682 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2683 vf->relative_vf_id, req->rx_qid,
2684 req->num_rxqs);
2685 goto out;
2689 /* Prepare the handlers */
2690 for (i = 0; i < req->num_rxqs; i++) {
2691 u16 qid = req->rx_qid + i;
2693 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
2696 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2697 req->num_rxqs,
2698 complete_cqe_flg,
2699 complete_event_flg,
2700 QED_SPQ_MODE_EBLOCK, NULL);
2701 if (rc)
2702 goto out;
2704 status = PFVF_STATUS_SUCCESS;
2705 out:
2706 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2707 length, status);
2710 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2711 void *p_tlvs_list, u16 req_type)
2713 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2714 int len = 0;
2716 do {
2717 if (!p_tlv->length) {
2718 DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2719 return NULL;
2722 if (p_tlv->type == req_type) {
2723 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2724 "Extended tlv type %d, length %d found\n",
2725 p_tlv->type, p_tlv->length);
2726 return p_tlv;
2729 len += p_tlv->length;
2730 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2732 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2733 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2734 return NULL;
2736 } while (p_tlv->type != CHANNEL_TLV_LIST_END);
2738 return NULL;
2741 static void
2742 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2743 struct qed_sp_vport_update_params *p_data,
2744 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2746 struct vfpf_vport_update_activate_tlv *p_act_tlv;
2747 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2749 p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2750 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2751 if (!p_act_tlv)
2752 return;
2754 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2755 p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2756 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2757 p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2758 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2761 static void
2762 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2763 struct qed_sp_vport_update_params *p_data,
2764 struct qed_vf_info *p_vf,
2765 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2767 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2768 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2770 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2771 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2772 if (!p_vlan_tlv)
2773 return;
2775 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2777 /* Ignore the VF request if we're forcing a vlan */
2778 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2779 p_data->update_inner_vlan_removal_flg = 1;
2780 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2783 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2786 static void
2787 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2788 struct qed_sp_vport_update_params *p_data,
2789 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2791 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2792 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2794 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2795 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2796 tlv);
2797 if (!p_tx_switch_tlv)
2798 return;
2800 p_data->update_tx_switching_flg = 1;
2801 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2802 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2805 static void
2806 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2807 struct qed_sp_vport_update_params *p_data,
2808 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2810 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2811 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2813 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2814 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2815 if (!p_mcast_tlv)
2816 return;
2818 p_data->update_approx_mcast_flg = 1;
2819 memcpy(p_data->bins, p_mcast_tlv->bins,
2820 sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2821 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2824 static void
2825 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2826 struct qed_sp_vport_update_params *p_data,
2827 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2829 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2830 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2831 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2833 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2834 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2835 if (!p_accept_tlv)
2836 return;
2838 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2839 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2840 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2841 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2842 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2845 static void
2846 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2847 struct qed_sp_vport_update_params *p_data,
2848 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2850 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2851 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2853 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2854 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2855 tlv);
2856 if (!p_accept_any_vlan)
2857 return;
2859 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2860 p_data->update_accept_any_vlan_flg =
2861 p_accept_any_vlan->update_accept_any_vlan_flg;
2862 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2865 static void
2866 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2867 struct qed_vf_info *vf,
2868 struct qed_sp_vport_update_params *p_data,
2869 struct qed_rss_params *p_rss,
2870 struct qed_iov_vf_mbx *p_mbx,
2871 u16 *tlvs_mask, u16 *tlvs_accepted)
2873 struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2874 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2875 bool b_reject = false;
2876 u16 table_size;
2877 u16 i, q_idx;
2879 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2880 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2881 if (!p_rss_tlv) {
2882 p_data->rss_params = NULL;
2883 return;
2886 memset(p_rss, 0, sizeof(struct qed_rss_params));
2888 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2889 VFPF_UPDATE_RSS_CONFIG_FLAG);
2890 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2891 VFPF_UPDATE_RSS_CAPS_FLAG);
2892 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2893 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2894 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2895 VFPF_UPDATE_RSS_KEY_FLAG);
2897 p_rss->rss_enable = p_rss_tlv->rss_enable;
2898 p_rss->rss_eng_id = vf->relative_vf_id + 1;
2899 p_rss->rss_caps = p_rss_tlv->rss_caps;
2900 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2901 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2903 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2904 (1 << p_rss_tlv->rss_table_size_log));
2906 for (i = 0; i < table_size; i++) {
2907 struct qed_queue_cid *p_cid;
2909 q_idx = p_rss_tlv->rss_ind_table[i];
2910 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2911 QED_IOV_VALIDATE_Q_ENABLE)) {
2912 DP_VERBOSE(p_hwfn,
2913 QED_MSG_IOV,
2914 "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2915 vf->relative_vf_id, q_idx);
2916 b_reject = true;
2917 goto out;
2920 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
2921 p_rss->rss_ind_table[i] = p_cid;
2924 p_data->rss_params = p_rss;
2925 out:
2926 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2927 if (!b_reject)
2928 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2931 static void
2932 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2933 struct qed_vf_info *vf,
2934 struct qed_sp_vport_update_params *p_data,
2935 struct qed_sge_tpa_params *p_sge_tpa,
2936 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2938 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2939 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2941 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2942 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2944 if (!p_sge_tpa_tlv) {
2945 p_data->sge_tpa_params = NULL;
2946 return;
2949 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2951 p_sge_tpa->update_tpa_en_flg =
2952 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2953 p_sge_tpa->update_tpa_param_flg =
2954 !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2955 VFPF_UPDATE_TPA_PARAM_FLAG);
2957 p_sge_tpa->tpa_ipv4_en_flg =
2958 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2959 p_sge_tpa->tpa_ipv6_en_flg =
2960 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2961 p_sge_tpa->tpa_pkt_split_flg =
2962 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2963 p_sge_tpa->tpa_hdr_data_split_flg =
2964 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2965 p_sge_tpa->tpa_gro_consistent_flg =
2966 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2968 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2969 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2970 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2971 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2972 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2974 p_data->sge_tpa_params = p_sge_tpa;
2976 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2979 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2980 u8 vfid,
2981 struct qed_sp_vport_update_params *params,
2982 u16 *tlvs)
2984 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
2985 struct qed_filter_accept_flags *flags = &params->accept_flags;
2986 struct qed_public_vf_info *vf_info;
2987 u16 tlv_mask;
2989 tlv_mask = BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM) |
2990 BIT(QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN);
2992 /* Untrusted VFs can't even be trusted to know that fact.
2993 * Simply indicate everything is configured fine, and trace
2994 * configuration 'behind their back'.
2996 if (!(*tlvs & tlv_mask))
2997 return 0;
2999 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3001 if (flags->update_rx_mode_config) {
3002 vf_info->rx_accept_mode = flags->rx_accept_filter;
3003 if (!vf_info->is_trusted_configured)
3004 flags->rx_accept_filter &= ~mask;
3007 if (flags->update_tx_mode_config) {
3008 vf_info->tx_accept_mode = flags->tx_accept_filter;
3009 if (!vf_info->is_trusted_configured)
3010 flags->tx_accept_filter &= ~mask;
3013 if (params->update_accept_any_vlan_flg) {
3014 vf_info->accept_any_vlan = params->accept_any_vlan;
3016 if (vf_info->forced_vlan && !vf_info->is_trusted_configured)
3017 params->accept_any_vlan = false;
3020 return 0;
3023 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
3024 struct qed_ptt *p_ptt,
3025 struct qed_vf_info *vf)
3027 struct qed_rss_params *p_rss_params = NULL;
3028 struct qed_sp_vport_update_params params;
3029 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3030 struct qed_sge_tpa_params sge_tpa_params;
3031 u16 tlvs_mask = 0, tlvs_accepted = 0;
3032 u8 status = PFVF_STATUS_SUCCESS;
3033 u16 length;
3034 int rc;
3036 /* Valiate PF can send such a request */
3037 if (!vf->vport_instance) {
3038 DP_VERBOSE(p_hwfn,
3039 QED_MSG_IOV,
3040 "No VPORT instance available for VF[%d], failing vport update\n",
3041 vf->abs_vf_id);
3042 status = PFVF_STATUS_FAILURE;
3043 goto out;
3045 p_rss_params = vzalloc(sizeof(*p_rss_params));
3046 if (!p_rss_params) {
3047 status = PFVF_STATUS_FAILURE;
3048 goto out;
3051 memset(&params, 0, sizeof(params));
3052 params.opaque_fid = vf->opaque_fid;
3053 params.vport_id = vf->vport_id;
3054 params.rss_params = NULL;
3056 /* Search for extended tlvs list and update values
3057 * from VF in struct qed_sp_vport_update_params.
3059 qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
3060 qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
3061 qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
3062 qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
3063 qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
3064 qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
3065 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
3066 &sge_tpa_params, mbx, &tlvs_mask);
3068 tlvs_accepted = tlvs_mask;
3070 /* Some of the extended TLVs need to be validated first; In that case,
3071 * they can update the mask without updating the accepted [so that
3072 * PF could communicate to VF it has rejected request].
3074 qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
3075 mbx, &tlvs_mask, &tlvs_accepted);
3077 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
3078 &params, &tlvs_accepted)) {
3079 tlvs_accepted = 0;
3080 status = PFVF_STATUS_NOT_SUPPORTED;
3081 goto out;
3084 if (!tlvs_accepted) {
3085 if (tlvs_mask)
3086 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3087 "Upper-layer prevents VF vport configuration\n");
3088 else
3089 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3090 "No feature tlvs found for vport update\n");
3091 status = PFVF_STATUS_NOT_SUPPORTED;
3092 goto out;
3095 rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
3097 if (rc)
3098 status = PFVF_STATUS_FAILURE;
3100 out:
3101 vfree(p_rss_params);
3102 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
3103 tlvs_mask, tlvs_accepted);
3104 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
3107 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
3108 struct qed_vf_info *p_vf,
3109 struct qed_filter_ucast *p_params)
3111 int i;
3113 /* First remove entries and then add new ones */
3114 if (p_params->opcode == QED_FILTER_REMOVE) {
3115 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3116 if (p_vf->shadow_config.vlans[i].used &&
3117 p_vf->shadow_config.vlans[i].vid ==
3118 p_params->vlan) {
3119 p_vf->shadow_config.vlans[i].used = false;
3120 break;
3122 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3123 DP_VERBOSE(p_hwfn,
3124 QED_MSG_IOV,
3125 "VF [%d] - Tries to remove a non-existing vlan\n",
3126 p_vf->relative_vf_id);
3127 return -EINVAL;
3129 } else if (p_params->opcode == QED_FILTER_REPLACE ||
3130 p_params->opcode == QED_FILTER_FLUSH) {
3131 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3132 p_vf->shadow_config.vlans[i].used = false;
3135 /* In forced mode, we're willing to remove entries - but we don't add
3136 * new ones.
3138 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
3139 return 0;
3141 if (p_params->opcode == QED_FILTER_ADD ||
3142 p_params->opcode == QED_FILTER_REPLACE) {
3143 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
3144 if (p_vf->shadow_config.vlans[i].used)
3145 continue;
3147 p_vf->shadow_config.vlans[i].used = true;
3148 p_vf->shadow_config.vlans[i].vid = p_params->vlan;
3149 break;
3152 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3153 DP_VERBOSE(p_hwfn,
3154 QED_MSG_IOV,
3155 "VF [%d] - Tries to configure more than %d vlan filters\n",
3156 p_vf->relative_vf_id,
3157 QED_ETH_VF_NUM_VLAN_FILTERS + 1);
3158 return -EINVAL;
3162 return 0;
3165 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
3166 struct qed_vf_info *p_vf,
3167 struct qed_filter_ucast *p_params)
3169 int i;
3171 /* If we're in forced-mode, we don't allow any change */
3172 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
3173 return 0;
3175 /* Don't keep track of shadow copy since we don't intend to restore. */
3176 if (p_vf->p_vf_info.is_trusted_configured)
3177 return 0;
3179 /* First remove entries and then add new ones */
3180 if (p_params->opcode == QED_FILTER_REMOVE) {
3181 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3182 if (ether_addr_equal(p_vf->shadow_config.macs[i],
3183 p_params->mac)) {
3184 eth_zero_addr(p_vf->shadow_config.macs[i]);
3185 break;
3189 if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3190 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3191 "MAC isn't configured\n");
3192 return -EINVAL;
3194 } else if (p_params->opcode == QED_FILTER_REPLACE ||
3195 p_params->opcode == QED_FILTER_FLUSH) {
3196 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
3197 eth_zero_addr(p_vf->shadow_config.macs[i]);
3200 /* List the new MAC address */
3201 if (p_params->opcode != QED_FILTER_ADD &&
3202 p_params->opcode != QED_FILTER_REPLACE)
3203 return 0;
3205 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3206 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
3207 ether_addr_copy(p_vf->shadow_config.macs[i],
3208 p_params->mac);
3209 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3210 "Added MAC at %d entry in shadow\n", i);
3211 break;
3215 if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3216 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
3217 return -EINVAL;
3220 return 0;
3223 static int
3224 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
3225 struct qed_vf_info *p_vf,
3226 struct qed_filter_ucast *p_params)
3228 int rc = 0;
3230 if (p_params->type == QED_FILTER_MAC) {
3231 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
3232 if (rc)
3233 return rc;
3236 if (p_params->type == QED_FILTER_VLAN)
3237 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
3239 return rc;
3242 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
3243 int vfid, struct qed_filter_ucast *params)
3245 struct qed_public_vf_info *vf;
3247 vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
3248 if (!vf)
3249 return -EINVAL;
3251 /* No real decision to make; Store the configured MAC */
3252 if (params->type == QED_FILTER_MAC ||
3253 params->type == QED_FILTER_MAC_VLAN) {
3254 ether_addr_copy(vf->mac, params->mac);
3256 if (vf->is_trusted_configured) {
3257 qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid);
3259 /* Update and post bulleitin again */
3260 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3264 return 0;
3267 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
3268 struct qed_ptt *p_ptt,
3269 struct qed_vf_info *vf)
3271 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
3272 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3273 struct vfpf_ucast_filter_tlv *req;
3274 u8 status = PFVF_STATUS_SUCCESS;
3275 struct qed_filter_ucast params;
3276 int rc;
3278 /* Prepare the unicast filter params */
3279 memset(&params, 0, sizeof(struct qed_filter_ucast));
3280 req = &mbx->req_virt->ucast_filter;
3281 params.opcode = (enum qed_filter_opcode)req->opcode;
3282 params.type = (enum qed_filter_ucast_type)req->type;
3284 params.is_rx_filter = 1;
3285 params.is_tx_filter = 1;
3286 params.vport_to_remove_from = vf->vport_id;
3287 params.vport_to_add_to = vf->vport_id;
3288 memcpy(params.mac, req->mac, ETH_ALEN);
3289 params.vlan = req->vlan;
3291 DP_VERBOSE(p_hwfn,
3292 QED_MSG_IOV,
3293 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %pM, vlan 0x%04x\n",
3294 vf->abs_vf_id, params.opcode, params.type,
3295 params.is_rx_filter ? "RX" : "",
3296 params.is_tx_filter ? "TX" : "",
3297 params.vport_to_add_to,
3298 params.mac, params.vlan);
3300 if (!vf->vport_instance) {
3301 DP_VERBOSE(p_hwfn,
3302 QED_MSG_IOV,
3303 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
3304 vf->abs_vf_id);
3305 status = PFVF_STATUS_FAILURE;
3306 goto out;
3309 /* Update shadow copy of the VF configuration */
3310 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
3311 status = PFVF_STATUS_FAILURE;
3312 goto out;
3315 /* Determine if the unicast filtering is acceptible by PF */
3316 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
3317 (params.type == QED_FILTER_VLAN ||
3318 params.type == QED_FILTER_MAC_VLAN)) {
3319 /* Once VLAN is forced or PVID is set, do not allow
3320 * to add/replace any further VLANs.
3322 if (params.opcode == QED_FILTER_ADD ||
3323 params.opcode == QED_FILTER_REPLACE)
3324 status = PFVF_STATUS_FORCED;
3325 goto out;
3328 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
3329 (params.type == QED_FILTER_MAC ||
3330 params.type == QED_FILTER_MAC_VLAN)) {
3331 if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
3332 (params.opcode != QED_FILTER_ADD &&
3333 params.opcode != QED_FILTER_REPLACE))
3334 status = PFVF_STATUS_FORCED;
3335 goto out;
3338 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
3339 if (rc) {
3340 status = PFVF_STATUS_FAILURE;
3341 goto out;
3344 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
3345 QED_SPQ_MODE_CB, NULL);
3346 if (rc)
3347 status = PFVF_STATUS_FAILURE;
3349 out:
3350 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
3351 sizeof(struct pfvf_def_resp_tlv), status);
3354 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
3355 struct qed_ptt *p_ptt,
3356 struct qed_vf_info *vf)
3358 int i;
3360 /* Reset the SBs */
3361 for (i = 0; i < vf->num_sbs; i++)
3362 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
3363 vf->igu_sbs[i],
3364 vf->opaque_fid, false);
3366 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
3367 sizeof(struct pfvf_def_resp_tlv),
3368 PFVF_STATUS_SUCCESS);
3371 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
3372 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
3374 u16 length = sizeof(struct pfvf_def_resp_tlv);
3375 u8 status = PFVF_STATUS_SUCCESS;
3377 /* Disable Interrupts for VF */
3378 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
3380 /* Reset Permission table */
3381 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
3383 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
3384 length, status);
3387 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
3388 struct qed_ptt *p_ptt,
3389 struct qed_vf_info *p_vf)
3391 u16 length = sizeof(struct pfvf_def_resp_tlv);
3392 u8 status = PFVF_STATUS_SUCCESS;
3393 int rc = 0;
3395 qed_iov_vf_cleanup(p_hwfn, p_vf);
3397 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
3398 /* Stopping the VF */
3399 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
3400 p_vf->opaque_fid);
3402 if (rc) {
3403 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
3404 rc);
3405 status = PFVF_STATUS_FAILURE;
3408 p_vf->state = VF_STOPPED;
3411 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
3412 length, status);
3415 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
3416 struct qed_ptt *p_ptt,
3417 struct qed_vf_info *p_vf)
3419 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3420 struct pfvf_read_coal_resp_tlv *p_resp;
3421 struct vfpf_read_coal_req_tlv *req;
3422 u8 status = PFVF_STATUS_FAILURE;
3423 struct qed_vf_queue *p_queue;
3424 struct qed_queue_cid *p_cid;
3425 u16 coal = 0, qid, i;
3426 bool b_is_rx;
3427 int rc = 0;
3429 mbx->offset = (u8 *)mbx->reply_virt;
3430 req = &mbx->req_virt->read_coal_req;
3432 qid = req->qid;
3433 b_is_rx = req->is_rx ? true : false;
3435 if (b_is_rx) {
3436 if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
3437 QED_IOV_VALIDATE_Q_ENABLE)) {
3438 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3439 "VF[%d]: Invalid Rx queue_id = %d\n",
3440 p_vf->abs_vf_id, qid);
3441 goto send_resp;
3444 p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
3445 rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3446 if (rc)
3447 goto send_resp;
3448 } else {
3449 if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
3450 QED_IOV_VALIDATE_Q_ENABLE)) {
3451 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3452 "VF[%d]: Invalid Tx queue_id = %d\n",
3453 p_vf->abs_vf_id, qid);
3454 goto send_resp;
3456 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3457 p_queue = &p_vf->vf_queues[qid];
3458 if ((!p_queue->cids[i].p_cid) ||
3459 (!p_queue->cids[i].b_is_tx))
3460 continue;
3462 p_cid = p_queue->cids[i].p_cid;
3464 rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3465 if (rc)
3466 goto send_resp;
3467 break;
3471 status = PFVF_STATUS_SUCCESS;
3473 send_resp:
3474 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
3475 sizeof(*p_resp));
3476 p_resp->coal = coal;
3478 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
3479 sizeof(struct channel_list_end_tlv));
3481 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
3484 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
3485 struct qed_ptt *p_ptt,
3486 struct qed_vf_info *vf)
3488 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3489 struct vfpf_update_coalesce *req;
3490 u8 status = PFVF_STATUS_FAILURE;
3491 struct qed_queue_cid *p_cid;
3492 u16 rx_coal, tx_coal;
3493 int rc = 0, i;
3494 u16 qid;
3496 req = &mbx->req_virt->update_coalesce;
3498 rx_coal = req->rx_coal;
3499 tx_coal = req->tx_coal;
3500 qid = req->qid;
3502 if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
3503 QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
3504 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3505 "VF[%d]: Invalid Rx queue_id = %d\n",
3506 vf->abs_vf_id, qid);
3507 goto out;
3510 if (!qed_iov_validate_txq(p_hwfn, vf, qid,
3511 QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
3512 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3513 "VF[%d]: Invalid Tx queue_id = %d\n",
3514 vf->abs_vf_id, qid);
3515 goto out;
3518 DP_VERBOSE(p_hwfn,
3519 QED_MSG_IOV,
3520 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
3521 vf->abs_vf_id, rx_coal, tx_coal, qid);
3523 if (rx_coal) {
3524 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
3526 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
3527 if (rc) {
3528 DP_VERBOSE(p_hwfn,
3529 QED_MSG_IOV,
3530 "VF[%d]: Unable to set rx queue = %d coalesce\n",
3531 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
3532 goto out;
3534 vf->rx_coal = rx_coal;
3537 if (tx_coal) {
3538 struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
3540 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3541 if (!p_queue->cids[i].p_cid)
3542 continue;
3544 if (!p_queue->cids[i].b_is_tx)
3545 continue;
3547 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
3548 p_queue->cids[i].p_cid);
3550 if (rc) {
3551 DP_VERBOSE(p_hwfn,
3552 QED_MSG_IOV,
3553 "VF[%d]: Unable to set tx queue coalesce\n",
3554 vf->abs_vf_id);
3555 goto out;
3558 vf->tx_coal = tx_coal;
3561 status = PFVF_STATUS_SUCCESS;
3562 out:
3563 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
3564 sizeof(struct pfvf_def_resp_tlv), status);
3567 static int
3568 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
3569 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3571 int cnt;
3572 u32 val;
3574 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_vf->concrete_fid);
3576 for (cnt = 0; cnt < 50; cnt++) {
3577 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
3578 if (!val)
3579 break;
3580 msleep(20);
3582 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid);
3584 if (cnt == 50) {
3585 DP_ERR(p_hwfn,
3586 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
3587 p_vf->abs_vf_id, val);
3588 return -EBUSY;
3591 return 0;
3594 #define MAX_NUM_EXT_VOQS (MAX_NUM_PORTS * NUM_OF_TCS)
3596 static int
3597 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
3598 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3600 u32 prod, cons[MAX_NUM_EXT_VOQS], distance[MAX_NUM_EXT_VOQS], tmp;
3601 u8 max_phys_tcs_per_port = p_hwfn->qm_info.max_phys_tcs_per_port;
3602 u8 max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
3603 u32 prod_voq0_addr = PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0;
3604 u32 cons_voq0_addr = PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0;
3605 u8 port_id, tc, tc_id = 0, voq = 0;
3606 int cnt;
3608 memset(cons, 0, MAX_NUM_EXT_VOQS * sizeof(u32));
3609 memset(distance, 0, MAX_NUM_EXT_VOQS * sizeof(u32));
3611 /* Read initial consumers & producers */
3612 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
3613 /* "max_phys_tcs_per_port" active TCs + 1 pure LB TC */
3614 for (tc = 0; tc < max_phys_tcs_per_port + 1; tc++) {
3615 tc_id = (tc < max_phys_tcs_per_port) ? tc : PURE_LB_TC;
3616 voq = VOQ(port_id, tc_id, max_phys_tcs_per_port);
3617 cons[voq] = qed_rd(p_hwfn, p_ptt,
3618 cons_voq0_addr + voq * 0x40);
3619 prod = qed_rd(p_hwfn, p_ptt,
3620 prod_voq0_addr + voq * 0x40);
3621 distance[voq] = prod - cons[voq];
3625 /* Wait for consumers to pass the producers */
3626 port_id = 0;
3627 tc = 0;
3628 for (cnt = 0; cnt < 50; cnt++) {
3629 for (; port_id < max_ports_per_engine; port_id++) {
3630 /* "max_phys_tcs_per_port" active TCs + 1 pure LB TC */
3631 for (; tc < max_phys_tcs_per_port + 1; tc++) {
3632 tc_id = (tc < max_phys_tcs_per_port) ?
3633 tc : PURE_LB_TC;
3634 voq = VOQ(port_id,
3635 tc_id, max_phys_tcs_per_port);
3636 tmp = qed_rd(p_hwfn, p_ptt,
3637 cons_voq0_addr + voq * 0x40);
3638 if (distance[voq] > tmp - cons[voq])
3639 break;
3642 if (tc == max_phys_tcs_per_port + 1)
3643 tc = 0;
3644 else
3645 break;
3648 if (port_id == max_ports_per_engine)
3649 break;
3651 msleep(20);
3654 if (cnt == 50) {
3655 DP_ERR(p_hwfn, "VF[%d]: pbf poll failed on VOQ%d\n",
3656 p_vf->abs_vf_id, (int)voq);
3658 DP_ERR(p_hwfn, "VOQ %d has port_id as %d and tc_id as %d]\n",
3659 (int)voq, (int)port_id, (int)tc_id);
3661 return -EBUSY;
3664 return 0;
3667 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3668 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3670 int rc;
3672 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3673 if (rc)
3674 return rc;
3676 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3677 if (rc)
3678 return rc;
3680 return 0;
3683 static int
3684 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3685 struct qed_ptt *p_ptt,
3686 u16 rel_vf_id, u32 *ack_vfs)
3688 struct qed_vf_info *p_vf;
3689 int rc = 0;
3691 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3692 if (!p_vf)
3693 return 0;
3695 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3696 (1ULL << (rel_vf_id % 64))) {
3697 u16 vfid = p_vf->abs_vf_id;
3699 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3700 "VF[%d] - Handling FLR\n", vfid);
3702 qed_iov_vf_cleanup(p_hwfn, p_vf);
3704 /* If VF isn't active, no need for anything but SW */
3705 if (!p_vf->b_init)
3706 goto cleanup;
3708 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3709 if (rc)
3710 goto cleanup;
3712 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3713 if (rc) {
3714 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3715 return rc;
3718 /* Workaround to make VF-PF channel ready, as FW
3719 * doesn't do that as a part of FLR.
3721 REG_WR(p_hwfn,
3722 GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM,
3723 USTORM_VF_PF_CHANNEL_READY, vfid), 1);
3725 /* VF_STOPPED has to be set only after final cleanup
3726 * but prior to re-enabling the VF.
3728 p_vf->state = VF_STOPPED;
3730 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3731 if (rc) {
3732 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3733 vfid);
3734 return rc;
3736 cleanup:
3737 /* Mark VF for ack and clean pending state */
3738 if (p_vf->state == VF_RESET)
3739 p_vf->state = VF_STOPPED;
3740 ack_vfs[vfid / 32] |= BIT((vfid % 32));
3741 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3742 ~(1ULL << (rel_vf_id % 64));
3743 p_vf->vf_mbx.b_pending_msg = false;
3746 return rc;
3749 static int
3750 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3752 u32 ack_vfs[VF_MAX_STATIC / 32];
3753 int rc = 0;
3754 u16 i;
3756 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3758 /* Since BRB <-> PRS interface can't be tested as part of the flr
3759 * polling due to HW limitations, simply sleep a bit. And since
3760 * there's no need to wait per-vf, do it before looping.
3762 msleep(100);
3764 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3765 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3767 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3768 return rc;
3771 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3773 bool found = false;
3774 u16 i;
3776 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3777 for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3778 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3779 "[%08x,...,%08x]: %08x\n",
3780 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3782 if (!p_hwfn->cdev->p_iov_info) {
3783 DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3784 return false;
3787 /* Mark VFs */
3788 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3789 struct qed_vf_info *p_vf;
3790 u8 vfid;
3792 p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3793 if (!p_vf)
3794 continue;
3796 vfid = p_vf->abs_vf_id;
3797 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3798 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3799 u16 rel_vf_id = p_vf->relative_vf_id;
3801 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3802 "VF[%d] [rel %d] got FLR-ed\n",
3803 vfid, rel_vf_id);
3805 p_vf->state = VF_RESET;
3807 /* No need to lock here, since pending_flr should
3808 * only change here and before ACKing MFw. Since
3809 * MFW will not trigger an additional attention for
3810 * VF flr until ACKs, we're safe.
3812 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3813 found = true;
3817 return found;
3820 static int qed_iov_get_link(struct qed_hwfn *p_hwfn,
3821 u16 vfid,
3822 struct qed_mcp_link_params *p_params,
3823 struct qed_mcp_link_state *p_link,
3824 struct qed_mcp_link_capabilities *p_caps)
3826 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3827 vfid,
3828 false);
3829 struct qed_bulletin_content *p_bulletin;
3831 if (!p_vf)
3832 return -EINVAL;
3834 p_bulletin = p_vf->bulletin.p_virt;
3836 if (p_params)
3837 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3838 if (p_link)
3839 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3840 if (p_caps)
3841 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3842 return 0;
3845 static int
3846 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn,
3847 struct qed_ptt *p_ptt,
3848 struct qed_vf_info *p_vf)
3850 struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt;
3851 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3852 struct vfpf_bulletin_update_mac_tlv *p_req;
3853 u8 status = PFVF_STATUS_SUCCESS;
3854 int rc = 0;
3856 if (!p_vf->p_vf_info.is_trusted_configured) {
3857 DP_VERBOSE(p_hwfn,
3858 QED_MSG_IOV,
3859 "Blocking bulletin update request from untrusted VF[%d]\n",
3860 p_vf->abs_vf_id);
3861 status = PFVF_STATUS_NOT_SUPPORTED;
3862 rc = -EINVAL;
3863 goto send_status;
3866 p_req = &mbx->req_virt->bulletin_update_mac;
3867 ether_addr_copy(p_bulletin->mac, p_req->mac);
3868 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3869 "Updated bulletin of VF[%d] with requested MAC[%pM]\n",
3870 p_vf->abs_vf_id, p_req->mac);
3872 send_status:
3873 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3874 CHANNEL_TLV_BULLETIN_UPDATE_MAC,
3875 sizeof(struct pfvf_def_resp_tlv), status);
3876 return rc;
3879 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3880 struct qed_ptt *p_ptt, int vfid)
3882 struct qed_iov_vf_mbx *mbx;
3883 struct qed_vf_info *p_vf;
3885 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3886 if (!p_vf)
3887 return;
3889 mbx = &p_vf->vf_mbx;
3891 /* qed_iov_process_mbx_request */
3892 if (!mbx->b_pending_msg) {
3893 DP_NOTICE(p_hwfn,
3894 "VF[%02x]: Trying to process mailbox message when none is pending\n",
3895 p_vf->abs_vf_id);
3896 return;
3898 mbx->b_pending_msg = false;
3900 mbx->first_tlv = mbx->req_virt->first_tlv;
3902 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3903 "VF[%02x]: Processing mailbox message [type %04x]\n",
3904 p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3906 /* check if tlv type is known */
3907 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3908 !p_vf->b_malicious) {
3909 switch (mbx->first_tlv.tl.type) {
3910 case CHANNEL_TLV_ACQUIRE:
3911 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3912 break;
3913 case CHANNEL_TLV_VPORT_START:
3914 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3915 break;
3916 case CHANNEL_TLV_VPORT_TEARDOWN:
3917 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3918 break;
3919 case CHANNEL_TLV_START_RXQ:
3920 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3921 break;
3922 case CHANNEL_TLV_START_TXQ:
3923 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3924 break;
3925 case CHANNEL_TLV_STOP_RXQS:
3926 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3927 break;
3928 case CHANNEL_TLV_STOP_TXQS:
3929 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3930 break;
3931 case CHANNEL_TLV_UPDATE_RXQ:
3932 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3933 break;
3934 case CHANNEL_TLV_VPORT_UPDATE:
3935 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3936 break;
3937 case CHANNEL_TLV_UCAST_FILTER:
3938 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3939 break;
3940 case CHANNEL_TLV_CLOSE:
3941 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3942 break;
3943 case CHANNEL_TLV_INT_CLEANUP:
3944 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3945 break;
3946 case CHANNEL_TLV_RELEASE:
3947 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3948 break;
3949 case CHANNEL_TLV_UPDATE_TUNN_PARAM:
3950 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
3951 break;
3952 case CHANNEL_TLV_COALESCE_UPDATE:
3953 qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
3954 break;
3955 case CHANNEL_TLV_COALESCE_READ:
3956 qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
3957 break;
3958 case CHANNEL_TLV_BULLETIN_UPDATE_MAC:
3959 qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf);
3960 break;
3962 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3963 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3964 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3965 p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3967 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3968 mbx->first_tlv.tl.type,
3969 sizeof(struct pfvf_def_resp_tlv),
3970 PFVF_STATUS_MALICIOUS);
3971 } else {
3972 /* unknown TLV - this may belong to a VF driver from the future
3973 * - a version written after this PF driver was written, which
3974 * supports features unknown as of yet. Too bad since we don't
3975 * support them. Or this may be because someone wrote a crappy
3976 * VF driver and is sending garbage over the channel.
3978 DP_NOTICE(p_hwfn,
3979 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3980 p_vf->abs_vf_id,
3981 mbx->first_tlv.tl.type,
3982 mbx->first_tlv.tl.length,
3983 mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3985 /* Try replying in case reply address matches the acquisition's
3986 * posted address.
3988 if (p_vf->acquire.first_tlv.reply_address &&
3989 (mbx->first_tlv.reply_address ==
3990 p_vf->acquire.first_tlv.reply_address)) {
3991 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3992 mbx->first_tlv.tl.type,
3993 sizeof(struct pfvf_def_resp_tlv),
3994 PFVF_STATUS_NOT_SUPPORTED);
3995 } else {
3996 DP_VERBOSE(p_hwfn,
3997 QED_MSG_IOV,
3998 "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3999 p_vf->abs_vf_id);
4004 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
4006 int i;
4008 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
4010 qed_for_each_vf(p_hwfn, i) {
4011 struct qed_vf_info *p_vf;
4013 p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
4014 if (p_vf->vf_mbx.b_pending_msg)
4015 events[i / 64] |= 1ULL << (i % 64);
4019 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
4020 u16 abs_vfid)
4022 u8 min = (u8)p_hwfn->cdev->p_iov_info->first_vf_in_pf;
4024 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
4025 DP_VERBOSE(p_hwfn,
4026 QED_MSG_IOV,
4027 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
4028 abs_vfid);
4029 return NULL;
4032 return &p_hwfn->pf_iov_info->vfs_array[(u8)abs_vfid - min];
4035 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
4036 u16 abs_vfid, struct regpair *vf_msg)
4038 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
4039 abs_vfid);
4041 if (!p_vf)
4042 return 0;
4044 /* List the physical address of the request so that handler
4045 * could later on copy the message from it.
4047 p_vf->vf_mbx.pending_req = HILO_64(vf_msg->hi, vf_msg->lo);
4049 /* Mark the event and schedule the workqueue */
4050 p_vf->vf_mbx.b_pending_msg = true;
4051 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
4053 return 0;
4056 void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
4057 struct fw_err_data *p_data)
4059 struct qed_vf_info *p_vf;
4061 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, qed_vf_from_entity_id
4062 (p_data->entity_id));
4063 if (!p_vf)
4064 return;
4066 if (!p_vf->b_malicious) {
4067 DP_NOTICE(p_hwfn,
4068 "VF [%d] - Malicious behavior [%02x]\n",
4069 p_vf->abs_vf_id, p_data->err_id);
4071 p_vf->b_malicious = true;
4072 } else {
4073 DP_INFO(p_hwfn,
4074 "VF [%d] - Malicious behavior [%02x]\n",
4075 p_vf->abs_vf_id, p_data->err_id);
4079 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, u8 opcode, __le16 echo,
4080 union event_ring_data *data, u8 fw_return_code)
4082 switch (opcode) {
4083 case COMMON_EVENT_VF_PF_CHANNEL:
4084 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
4085 &data->vf_pf_channel.msg_addr);
4086 default:
4087 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
4088 opcode);
4089 return -EINVAL;
4093 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4095 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
4096 u16 i;
4098 if (!p_iov)
4099 goto out;
4101 for (i = rel_vf_id; i < p_iov->total_vfs; i++)
4102 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
4103 return i;
4105 out:
4106 return MAX_NUM_VFS;
4109 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
4110 int vfid)
4112 struct qed_dmae_params params;
4113 struct qed_vf_info *vf_info;
4115 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4116 if (!vf_info)
4117 return -EINVAL;
4119 memset(&params, 0, sizeof(params));
4120 SET_FIELD(params.flags, QED_DMAE_PARAMS_SRC_VF_VALID, 0x1);
4121 SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 0x1);
4122 params.src_vfid = vf_info->abs_vf_id;
4124 if (qed_dmae_host2host(p_hwfn, ptt,
4125 vf_info->vf_mbx.pending_req,
4126 vf_info->vf_mbx.req_phys,
4127 sizeof(union vfpf_tlvs) / 4, &params)) {
4128 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4129 "Failed to copy message from VF 0x%02x\n", vfid);
4131 return -EIO;
4134 return 0;
4137 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
4138 u8 *mac, int vfid)
4140 struct qed_vf_info *vf_info;
4141 u64 feature;
4143 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4144 if (!vf_info) {
4145 DP_NOTICE(p_hwfn->cdev,
4146 "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4147 return;
4150 if (vf_info->b_malicious) {
4151 DP_NOTICE(p_hwfn->cdev,
4152 "Can't set forced MAC to malicious VF [%d]\n", vfid);
4153 return;
4156 if (vf_info->p_vf_info.is_trusted_configured) {
4157 feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4158 /* Trust mode will disable Forced MAC */
4159 vf_info->bulletin.p_virt->valid_bitmap &=
4160 ~BIT(MAC_ADDR_FORCED);
4161 } else {
4162 feature = BIT(MAC_ADDR_FORCED);
4163 /* Forced MAC will disable MAC_ADDR */
4164 vf_info->bulletin.p_virt->valid_bitmap &=
4165 ~BIT(VFPF_BULLETIN_MAC_ADDR);
4168 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
4170 vf_info->bulletin.p_virt->valid_bitmap |= feature;
4172 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4175 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid)
4177 struct qed_vf_info *vf_info;
4178 u64 feature;
4180 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4181 if (!vf_info) {
4182 DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n",
4183 vfid);
4184 return -EINVAL;
4187 if (vf_info->b_malicious) {
4188 DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n",
4189 vfid);
4190 return -EINVAL;
4193 if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) {
4194 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4195 "Can not set MAC, Forced MAC is configured\n");
4196 return -EINVAL;
4199 feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4200 ether_addr_copy(vf_info->bulletin.p_virt->mac, mac);
4202 vf_info->bulletin.p_virt->valid_bitmap |= feature;
4204 if (vf_info->p_vf_info.is_trusted_configured)
4205 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4207 return 0;
4210 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
4211 u16 pvid, int vfid)
4213 struct qed_vf_info *vf_info;
4214 u64 feature;
4216 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4217 if (!vf_info) {
4218 DP_NOTICE(p_hwfn->cdev,
4219 "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4220 return;
4223 if (vf_info->b_malicious) {
4224 DP_NOTICE(p_hwfn->cdev,
4225 "Can't set forced vlan to malicious VF [%d]\n", vfid);
4226 return;
4229 feature = 1 << VLAN_ADDR_FORCED;
4230 vf_info->bulletin.p_virt->pvid = pvid;
4231 if (pvid)
4232 vf_info->bulletin.p_virt->valid_bitmap |= feature;
4233 else
4234 vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
4236 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4239 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
4240 int vfid, u16 vxlan_port, u16 geneve_port)
4242 struct qed_vf_info *vf_info;
4244 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4245 if (!vf_info) {
4246 DP_NOTICE(p_hwfn->cdev,
4247 "Can not set udp ports, invalid vfid [%d]\n", vfid);
4248 return;
4251 if (vf_info->b_malicious) {
4252 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4253 "Can not set udp ports to malicious VF [%d]\n",
4254 vfid);
4255 return;
4258 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
4259 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
4262 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
4264 struct qed_vf_info *p_vf_info;
4266 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4267 if (!p_vf_info)
4268 return false;
4270 return !!p_vf_info->vport_instance;
4273 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
4275 struct qed_vf_info *p_vf_info;
4277 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4278 if (!p_vf_info)
4279 return true;
4281 return p_vf_info->state == VF_STOPPED;
4284 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
4286 struct qed_vf_info *vf_info;
4288 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4289 if (!vf_info)
4290 return false;
4292 return vf_info->spoof_chk;
4295 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
4297 struct qed_vf_info *vf;
4298 int rc = -EINVAL;
4300 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4301 DP_NOTICE(p_hwfn,
4302 "SR-IOV sanity check failed, can't set spoofchk\n");
4303 goto out;
4306 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4307 if (!vf)
4308 goto out;
4310 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
4311 /* After VF VPORT start PF will configure spoof check */
4312 vf->req_spoofchk_val = val;
4313 rc = 0;
4314 goto out;
4317 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
4319 out:
4320 return rc;
4323 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4325 struct qed_vf_info *p_vf;
4327 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4328 if (!p_vf || !p_vf->bulletin.p_virt)
4329 return NULL;
4331 if (!(p_vf->bulletin.p_virt->valid_bitmap &
4332 BIT(VFPF_BULLETIN_MAC_ADDR)))
4333 return NULL;
4335 return p_vf->bulletin.p_virt->mac;
4338 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
4339 u16 rel_vf_id)
4341 struct qed_vf_info *p_vf;
4343 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4344 if (!p_vf || !p_vf->bulletin.p_virt)
4345 return NULL;
4347 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
4348 return NULL;
4350 return p_vf->bulletin.p_virt->mac;
4353 static u16
4354 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4356 struct qed_vf_info *p_vf;
4358 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4359 if (!p_vf || !p_vf->bulletin.p_virt)
4360 return 0;
4362 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
4363 return 0;
4365 return p_vf->bulletin.p_virt->pvid;
4368 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
4369 struct qed_ptt *p_ptt, int vfid, int val)
4371 struct qed_vf_info *vf;
4372 u8 abs_vp_id = 0;
4373 u16 rl_id;
4374 int rc;
4376 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4377 if (!vf)
4378 return -EINVAL;
4380 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
4381 if (rc)
4382 return rc;
4384 rl_id = abs_vp_id; /* The "rl_id" is set as the "vport_id" */
4385 return qed_init_global_rl(p_hwfn, p_ptt, rl_id, (u32)val,
4386 QM_RL_TYPE_NORMAL);
4389 static int
4390 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
4392 struct qed_vf_info *vf;
4393 u8 vport_id;
4394 int i;
4396 for_each_hwfn(cdev, i) {
4397 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4399 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4400 DP_NOTICE(p_hwfn,
4401 "SR-IOV sanity check failed, can't set min rate\n");
4402 return -EINVAL;
4406 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
4407 if (!vf)
4408 return -EINVAL;
4410 vport_id = vf->vport_id;
4412 return qed_configure_vport_wfq(cdev, vport_id, rate);
4415 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
4417 struct qed_wfq_data *vf_vp_wfq;
4418 struct qed_vf_info *vf_info;
4420 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4421 if (!vf_info)
4422 return 0;
4424 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
4426 if (vf_vp_wfq->configured)
4427 return vf_vp_wfq->min_speed;
4428 else
4429 return 0;
4433 * qed_schedule_iov - schedules IOV task for VF and PF
4434 * @hwfn: hardware function pointer
4435 * @flag: IOV flag for VF/PF
4437 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
4439 /* Memory barrier for setting atomic bit */
4440 smp_mb__before_atomic();
4441 set_bit(flag, &hwfn->iov_task_flags);
4442 /* Memory barrier after setting atomic bit */
4443 smp_mb__after_atomic();
4444 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
4445 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
4448 void qed_vf_start_iov_wq(struct qed_dev *cdev)
4450 int i;
4452 for_each_hwfn(cdev, i)
4453 queue_delayed_work(cdev->hwfns[i].iov_wq,
4454 &cdev->hwfns[i].iov_task, 0);
4457 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
4459 int i, j;
4461 for_each_hwfn(cdev, i)
4462 if (cdev->hwfns[i].iov_wq)
4463 flush_workqueue(cdev->hwfns[i].iov_wq);
4465 /* Mark VFs for disablement */
4466 qed_iov_set_vfs_to_disable(cdev, true);
4468 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
4469 pci_disable_sriov(cdev->pdev);
4471 if (cdev->recov_in_prog) {
4472 DP_VERBOSE(cdev,
4473 QED_MSG_IOV,
4474 "Skip SRIOV disable operations in the device since a recovery is in progress\n");
4475 goto out;
4478 for_each_hwfn(cdev, i) {
4479 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4480 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4482 /* Failure to acquire the ptt in 100g creates an odd error
4483 * where the first engine has already relased IOV.
4485 if (!ptt) {
4486 DP_ERR(hwfn, "Failed to acquire ptt\n");
4487 return -EBUSY;
4490 /* Clean WFQ db and configure equal weight for all vports */
4491 qed_clean_wfq_db(hwfn, ptt);
4493 qed_for_each_vf(hwfn, j) {
4494 int k;
4496 if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
4497 continue;
4499 /* Wait until VF is disabled before releasing */
4500 for (k = 0; k < 100; k++) {
4501 if (!qed_iov_is_vf_stopped(hwfn, j))
4502 msleep(20);
4503 else
4504 break;
4507 if (k < 100)
4508 qed_iov_release_hw_for_vf(&cdev->hwfns[i],
4509 ptt, j);
4510 else
4511 DP_ERR(hwfn,
4512 "Timeout waiting for VF's FLR to end\n");
4515 qed_ptt_release(hwfn, ptt);
4517 out:
4518 qed_iov_set_vfs_to_disable(cdev, false);
4520 return 0;
4523 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
4524 u16 vfid,
4525 struct qed_iov_vf_init_params *params)
4527 u16 base, i;
4529 /* Since we have an equal resource distribution per-VF, and we assume
4530 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
4531 * sequentially from there.
4533 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
4535 params->rel_vf_id = vfid;
4536 for (i = 0; i < params->num_queues; i++) {
4537 params->req_rx_queue[i] = base + i;
4538 params->req_tx_queue[i] = base + i;
4542 static int qed_sriov_enable(struct qed_dev *cdev, int num)
4544 struct qed_iov_vf_init_params params;
4545 struct qed_hwfn *hwfn;
4546 struct qed_ptt *ptt;
4547 int i, j, rc;
4549 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
4550 DP_NOTICE(cdev, "Can start at most %d VFs\n",
4551 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
4552 return -EINVAL;
4555 memset(&params, 0, sizeof(params));
4557 /* Initialize HW for VF access */
4558 for_each_hwfn(cdev, j) {
4559 hwfn = &cdev->hwfns[j];
4560 ptt = qed_ptt_acquire(hwfn);
4562 /* Make sure not to use more than 16 queues per VF */
4563 params.num_queues = min_t(int,
4564 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
4565 16);
4567 if (!ptt) {
4568 DP_ERR(hwfn, "Failed to acquire ptt\n");
4569 rc = -EBUSY;
4570 goto err;
4573 for (i = 0; i < num; i++) {
4574 if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
4575 continue;
4577 qed_sriov_enable_qid_config(hwfn, i, &params);
4578 rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
4579 if (rc) {
4580 DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
4581 qed_ptt_release(hwfn, ptt);
4582 goto err;
4586 qed_ptt_release(hwfn, ptt);
4589 /* Enable SRIOV PCIe functions */
4590 rc = pci_enable_sriov(cdev->pdev, num);
4591 if (rc) {
4592 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
4593 goto err;
4596 hwfn = QED_LEADING_HWFN(cdev);
4597 ptt = qed_ptt_acquire(hwfn);
4598 if (!ptt) {
4599 DP_ERR(hwfn, "Failed to acquire ptt\n");
4600 rc = -EBUSY;
4601 goto err;
4604 rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
4605 if (rc)
4606 DP_INFO(cdev, "Failed to update eswitch mode\n");
4607 qed_ptt_release(hwfn, ptt);
4609 return num;
4611 err:
4612 qed_sriov_disable(cdev, false);
4613 return rc;
4616 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
4618 if (!IS_QED_SRIOV(cdev)) {
4619 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
4620 return -EOPNOTSUPP;
4623 if (num_vfs_param)
4624 return qed_sriov_enable(cdev, num_vfs_param);
4625 else
4626 return qed_sriov_disable(cdev, true);
4629 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
4631 int i;
4633 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4634 DP_VERBOSE(cdev, QED_MSG_IOV,
4635 "Cannot set a VF MAC; Sriov is not enabled\n");
4636 return -EINVAL;
4639 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4640 DP_VERBOSE(cdev, QED_MSG_IOV,
4641 "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4642 return -EINVAL;
4645 for_each_hwfn(cdev, i) {
4646 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4647 struct qed_public_vf_info *vf_info;
4649 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4650 if (!vf_info)
4651 continue;
4653 /* Set the MAC, and schedule the IOV task */
4654 if (vf_info->is_trusted_configured)
4655 ether_addr_copy(vf_info->mac, mac);
4656 else
4657 ether_addr_copy(vf_info->forced_mac, mac);
4659 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4662 return 0;
4665 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
4667 int i;
4669 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4670 DP_VERBOSE(cdev, QED_MSG_IOV,
4671 "Cannot set a VF MAC; Sriov is not enabled\n");
4672 return -EINVAL;
4675 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4676 DP_VERBOSE(cdev, QED_MSG_IOV,
4677 "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4678 return -EINVAL;
4681 for_each_hwfn(cdev, i) {
4682 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4683 struct qed_public_vf_info *vf_info;
4685 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4686 if (!vf_info)
4687 continue;
4689 /* Set the forced vlan, and schedule the IOV task */
4690 vf_info->forced_vlan = vid;
4691 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4694 return 0;
4697 static int qed_get_vf_config(struct qed_dev *cdev,
4698 int vf_id, struct ifla_vf_info *ivi)
4700 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
4701 struct qed_public_vf_info *vf_info;
4702 struct qed_mcp_link_state link;
4703 u32 tx_rate;
4704 int ret;
4706 /* Sanitize request */
4707 if (IS_VF(cdev))
4708 return -EINVAL;
4710 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
4711 DP_VERBOSE(cdev, QED_MSG_IOV,
4712 "VF index [%d] isn't active\n", vf_id);
4713 return -EINVAL;
4716 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4718 ret = qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
4719 if (ret)
4720 return ret;
4722 /* Fill information about VF */
4723 ivi->vf = vf_id;
4725 if (is_valid_ether_addr(vf_info->forced_mac))
4726 ether_addr_copy(ivi->mac, vf_info->forced_mac);
4727 else
4728 ether_addr_copy(ivi->mac, vf_info->mac);
4730 ivi->vlan = vf_info->forced_vlan;
4731 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
4732 ivi->linkstate = vf_info->link_state;
4733 tx_rate = vf_info->tx_rate;
4734 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
4735 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
4736 ivi->trusted = vf_info->is_trusted_request;
4738 return 0;
4741 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
4743 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
4744 struct qed_mcp_link_capabilities caps;
4745 struct qed_mcp_link_params params;
4746 struct qed_mcp_link_state link;
4747 int i;
4749 if (!hwfn->pf_iov_info)
4750 return;
4752 /* Update bulletin of all future possible VFs with link configuration */
4753 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
4754 struct qed_public_vf_info *vf_info;
4756 vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
4757 if (!vf_info)
4758 continue;
4760 /* Only hwfn0 is actually interested in the link speed.
4761 * But since only it would receive an MFW indication of link,
4762 * need to take configuration from it - otherwise things like
4763 * rate limiting for hwfn1 VF would not work.
4765 memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
4766 sizeof(params));
4767 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
4768 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
4769 sizeof(caps));
4771 /* Modify link according to the VF's configured link state */
4772 switch (vf_info->link_state) {
4773 case IFLA_VF_LINK_STATE_DISABLE:
4774 link.link_up = false;
4775 break;
4776 case IFLA_VF_LINK_STATE_ENABLE:
4777 link.link_up = true;
4778 /* Set speed according to maximum supported by HW.
4779 * that is 40G for regular devices and 100G for CMT
4780 * mode devices.
4782 link.speed = (hwfn->cdev->num_hwfns > 1) ?
4783 100000 : 40000;
4784 break;
4785 default:
4786 /* In auto mode pass PF link image to VF */
4787 break;
4790 if (link.link_up && vf_info->tx_rate) {
4791 struct qed_ptt *ptt;
4792 int rate;
4794 rate = min_t(int, vf_info->tx_rate, link.speed);
4796 ptt = qed_ptt_acquire(hwfn);
4797 if (!ptt) {
4798 DP_NOTICE(hwfn, "Failed to acquire PTT\n");
4799 return;
4802 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4803 vf_info->tx_rate = rate;
4804 link.speed = rate;
4807 qed_ptt_release(hwfn, ptt);
4810 qed_iov_set_link(hwfn, i, &params, &link, &caps);
4813 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4816 static int qed_set_vf_link_state(struct qed_dev *cdev,
4817 int vf_id, int link_state)
4819 int i;
4821 /* Sanitize request */
4822 if (IS_VF(cdev))
4823 return -EINVAL;
4825 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4826 DP_VERBOSE(cdev, QED_MSG_IOV,
4827 "VF index [%d] isn't active\n", vf_id);
4828 return -EINVAL;
4831 /* Handle configuration of link state */
4832 for_each_hwfn(cdev, i) {
4833 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4834 struct qed_public_vf_info *vf;
4836 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4837 if (!vf)
4838 continue;
4840 if (vf->link_state == link_state)
4841 continue;
4843 vf->link_state = link_state;
4844 qed_inform_vf_link_state(&cdev->hwfns[i]);
4847 return 0;
4850 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4852 int i, rc = -EINVAL;
4854 for_each_hwfn(cdev, i) {
4855 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4857 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4858 if (rc)
4859 break;
4862 return rc;
4865 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4867 int i;
4869 for_each_hwfn(cdev, i) {
4870 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4871 struct qed_public_vf_info *vf;
4873 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4874 DP_NOTICE(p_hwfn,
4875 "SR-IOV sanity check failed, can't set tx rate\n");
4876 return -EINVAL;
4879 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4881 vf->tx_rate = rate;
4883 qed_inform_vf_link_state(p_hwfn);
4886 return 0;
4889 static int qed_set_vf_rate(struct qed_dev *cdev,
4890 int vfid, u32 min_rate, u32 max_rate)
4892 int rc_min = 0, rc_max = 0;
4894 if (max_rate)
4895 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4897 if (min_rate)
4898 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4900 if (rc_max | rc_min)
4901 return -EINVAL;
4903 return 0;
4906 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4908 int i;
4910 for_each_hwfn(cdev, i) {
4911 struct qed_hwfn *hwfn = &cdev->hwfns[i];
4912 struct qed_public_vf_info *vf;
4914 if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4915 DP_NOTICE(hwfn,
4916 "SR-IOV sanity check failed, can't set trust\n");
4917 return -EINVAL;
4920 vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4922 if (vf->is_trusted_request == trust)
4923 return 0;
4924 vf->is_trusted_request = trust;
4926 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4929 return 0;
4932 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4934 u64 events[QED_VF_ARRAY_LENGTH];
4935 struct qed_ptt *ptt;
4936 int i;
4938 ptt = qed_ptt_acquire(hwfn);
4939 if (!ptt) {
4940 DP_VERBOSE(hwfn, QED_MSG_IOV,
4941 "Can't acquire PTT; re-scheduling\n");
4942 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4943 return;
4946 qed_iov_pf_get_pending_events(hwfn, events);
4948 DP_VERBOSE(hwfn, QED_MSG_IOV,
4949 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4950 events[0], events[1], events[2]);
4952 qed_for_each_vf(hwfn, i) {
4953 /* Skip VFs with no pending messages */
4954 if (!(events[i / 64] & (1ULL << (i % 64))))
4955 continue;
4957 DP_VERBOSE(hwfn, QED_MSG_IOV,
4958 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4959 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4961 /* Copy VF's message to PF's request buffer for that VF */
4962 if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4963 continue;
4965 qed_iov_process_mbx_req(hwfn, ptt, i);
4968 qed_ptt_release(hwfn, ptt);
4971 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn,
4972 u8 *mac,
4973 struct qed_public_vf_info *info)
4975 if (info->is_trusted_configured) {
4976 if (is_valid_ether_addr(info->mac) &&
4977 (!mac || !ether_addr_equal(mac, info->mac)))
4978 return true;
4979 } else {
4980 if (is_valid_ether_addr(info->forced_mac) &&
4981 (!mac || !ether_addr_equal(mac, info->forced_mac)))
4982 return true;
4985 return false;
4988 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn,
4989 struct qed_public_vf_info *info,
4990 int vfid)
4992 if (info->is_trusted_configured)
4993 qed_iov_bulletin_set_mac(hwfn, info->mac, vfid);
4994 else
4995 qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid);
4998 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
5000 int i;
5002 qed_for_each_vf(hwfn, i) {
5003 struct qed_public_vf_info *info;
5004 bool update = false;
5005 u8 *mac;
5007 info = qed_iov_get_public_vf_info(hwfn, i, true);
5008 if (!info)
5009 continue;
5011 /* Update data on bulletin board */
5012 if (info->is_trusted_configured)
5013 mac = qed_iov_bulletin_get_mac(hwfn, i);
5014 else
5015 mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
5017 if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) {
5018 DP_VERBOSE(hwfn,
5019 QED_MSG_IOV,
5020 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
5022 hwfn->cdev->p_iov_info->first_vf_in_pf + i);
5024 /* Update bulletin board with MAC */
5025 qed_set_bulletin_mac(hwfn, info, i);
5026 update = true;
5029 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
5030 info->forced_vlan) {
5031 DP_VERBOSE(hwfn,
5032 QED_MSG_IOV,
5033 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
5034 info->forced_vlan,
5036 hwfn->cdev->p_iov_info->first_vf_in_pf + i);
5037 qed_iov_bulletin_set_forced_vlan(hwfn,
5038 info->forced_vlan, i);
5039 update = true;
5042 if (update)
5043 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5047 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
5049 struct qed_ptt *ptt;
5050 int i;
5052 ptt = qed_ptt_acquire(hwfn);
5053 if (!ptt) {
5054 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
5055 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5056 return;
5059 qed_for_each_vf(hwfn, i)
5060 qed_iov_post_vf_bulletin(hwfn, i, ptt);
5062 qed_ptt_release(hwfn, ptt);
5065 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id)
5067 struct qed_public_vf_info *vf_info;
5068 struct qed_vf_info *vf;
5069 u8 *force_mac;
5070 int i;
5072 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
5073 vf = qed_iov_get_vf_info(hwfn, vf_id, true);
5075 if (!vf_info || !vf)
5076 return;
5078 /* Force MAC converted to generic MAC in case of VF trust on */
5079 if (vf_info->is_trusted_configured &&
5080 (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) {
5081 force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id);
5083 if (force_mac) {
5084 /* Clear existing shadow copy of MAC to have a clean
5085 * slate.
5087 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5088 if (ether_addr_equal(vf->shadow_config.macs[i],
5089 vf_info->mac)) {
5090 eth_zero_addr(vf->shadow_config.macs[i]);
5091 DP_VERBOSE(hwfn, QED_MSG_IOV,
5092 "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n",
5093 vf_info->mac, vf_id);
5094 break;
5098 ether_addr_copy(vf_info->mac, force_mac);
5099 eth_zero_addr(vf_info->forced_mac);
5100 vf->bulletin.p_virt->valid_bitmap &=
5101 ~BIT(MAC_ADDR_FORCED);
5102 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5106 /* Update shadow copy with VF MAC when trust mode is turned off */
5107 if (!vf_info->is_trusted_configured) {
5108 u8 empty_mac[ETH_ALEN];
5110 eth_zero_addr(empty_mac);
5111 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5112 if (ether_addr_equal(vf->shadow_config.macs[i],
5113 empty_mac)) {
5114 ether_addr_copy(vf->shadow_config.macs[i],
5115 vf_info->mac);
5116 DP_VERBOSE(hwfn, QED_MSG_IOV,
5117 "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n",
5118 vf_info->mac, vf_id);
5119 break;
5122 /* Clear bulletin when trust mode is turned off,
5123 * to have a clean slate for next (normal) operations.
5125 qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id);
5126 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5130 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
5132 struct qed_sp_vport_update_params params;
5133 struct qed_filter_accept_flags *flags;
5134 struct qed_public_vf_info *vf_info;
5135 struct qed_vf_info *vf;
5136 u8 mask;
5137 int i;
5139 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
5140 flags = &params.accept_flags;
5142 qed_for_each_vf(hwfn, i) {
5143 /* Need to make sure current requested configuration didn't
5144 * flip so that we'll end up configuring something that's not
5145 * needed.
5147 vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
5148 if (vf_info->is_trusted_configured ==
5149 vf_info->is_trusted_request)
5150 continue;
5151 vf_info->is_trusted_configured = vf_info->is_trusted_request;
5153 /* Handle forced MAC mode */
5154 qed_update_mac_for_vf_trust_change(hwfn, i);
5156 /* Validate that the VF has a configured vport */
5157 vf = qed_iov_get_vf_info(hwfn, i, true);
5158 if (!vf || !vf->vport_instance)
5159 continue;
5161 memset(&params, 0, sizeof(params));
5162 params.opaque_fid = vf->opaque_fid;
5163 params.vport_id = vf->vport_id;
5165 params.update_ctl_frame_check = 1;
5166 params.mac_chk_en = !vf_info->is_trusted_configured;
5167 params.update_accept_any_vlan_flg = 0;
5169 if (vf_info->accept_any_vlan && vf_info->forced_vlan) {
5170 params.update_accept_any_vlan_flg = 1;
5171 params.accept_any_vlan = vf_info->accept_any_vlan;
5174 if (vf_info->rx_accept_mode & mask) {
5175 flags->update_rx_mode_config = 1;
5176 flags->rx_accept_filter = vf_info->rx_accept_mode;
5179 if (vf_info->tx_accept_mode & mask) {
5180 flags->update_tx_mode_config = 1;
5181 flags->tx_accept_filter = vf_info->tx_accept_mode;
5184 /* Remove if needed; Otherwise this would set the mask */
5185 if (!vf_info->is_trusted_configured) {
5186 flags->rx_accept_filter &= ~mask;
5187 flags->tx_accept_filter &= ~mask;
5188 params.accept_any_vlan = false;
5191 if (flags->update_rx_mode_config ||
5192 flags->update_tx_mode_config ||
5193 params.update_ctl_frame_check ||
5194 params.update_accept_any_vlan_flg) {
5195 DP_VERBOSE(hwfn, QED_MSG_IOV,
5196 "vport update config for %s VF[abs 0x%x rel 0x%x]\n",
5197 vf_info->is_trusted_configured ? "trusted" : "untrusted",
5198 vf->abs_vf_id, vf->relative_vf_id);
5199 qed_sp_vport_update(hwfn, &params,
5200 QED_SPQ_MODE_EBLOCK, NULL);
5205 static void qed_iov_pf_task(struct work_struct *work)
5208 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
5209 iov_task.work);
5210 int rc;
5212 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
5213 return;
5215 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
5216 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
5218 if (!ptt) {
5219 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5220 return;
5223 rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
5224 if (rc)
5225 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5227 qed_ptt_release(hwfn, ptt);
5230 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
5231 qed_handle_vf_msg(hwfn);
5233 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
5234 &hwfn->iov_task_flags))
5235 qed_handle_pf_set_vf_unicast(hwfn);
5237 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
5238 &hwfn->iov_task_flags))
5239 qed_handle_bulletin_post(hwfn);
5241 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
5242 qed_iov_handle_trust_change(hwfn);
5245 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
5247 int i;
5249 for_each_hwfn(cdev, i) {
5250 if (!cdev->hwfns[i].iov_wq)
5251 continue;
5253 if (schedule_first) {
5254 qed_schedule_iov(&cdev->hwfns[i],
5255 QED_IOV_WQ_STOP_WQ_FLAG);
5256 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
5259 destroy_workqueue(cdev->hwfns[i].iov_wq);
5263 int qed_iov_wq_start(struct qed_dev *cdev)
5265 char name[NAME_SIZE];
5266 int i;
5268 for_each_hwfn(cdev, i) {
5269 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5271 /* PFs needs a dedicated workqueue only if they support IOV.
5272 * VFs always require one.
5274 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
5275 continue;
5277 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
5278 cdev->pdev->bus->number,
5279 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
5281 p_hwfn->iov_wq = create_singlethread_workqueue(name);
5282 if (!p_hwfn->iov_wq) {
5283 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
5284 return -ENOMEM;
5287 if (IS_PF(cdev))
5288 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
5289 else
5290 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
5293 return 0;
5296 const struct qed_iov_hv_ops qed_iov_ops_pass = {
5297 .configure = &qed_sriov_configure,
5298 .set_mac = &qed_sriov_pf_set_mac,
5299 .set_vlan = &qed_sriov_pf_set_vlan,
5300 .get_config = &qed_get_vf_config,
5301 .set_link_state = &qed_set_vf_link_state,
5302 .set_spoof = &qed_spoof_configure,
5303 .set_rate = &qed_set_vf_rate,
5304 .set_trust = &qed_set_vf_trust,