1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
7 #include "net_driver.h"
10 #include "ef10_regs.h"
13 #include "mcdi_pcol.h"
14 #include "mcdi_port.h"
15 #include "mcdi_port_common.h"
16 #include "mcdi_functions.h"
18 #include "mcdi_filters.h"
19 #include "workarounds.h"
21 #include "ef10_sriov.h"
23 #include <linux/jhash.h>
24 #include <linux/wait.h>
25 #include <linux/workqueue.h>
26 #include <net/udp_tunnel.h>
28 /* Hardware control for EF10 architecture including 'Huntington'. */
30 #define EFX_EF10_DRVGEN_EV 7
37 struct efx_ef10_vlan
{
38 struct list_head list
;
42 static int efx_ef10_set_udp_tnl_ports(struct efx_nic
*efx
, bool unloading
);
43 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels
;
45 static int efx_ef10_get_warm_boot_count(struct efx_nic
*efx
)
49 efx_readd(efx
, ®
, ER_DZ_BIU_MC_SFT_STATUS
);
50 return EFX_DWORD_FIELD(reg
, EFX_WORD_1
) == 0xb007 ?
51 EFX_DWORD_FIELD(reg
, EFX_WORD_0
) : -EIO
;
54 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
55 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
56 * bar; PFs use BAR 0/1 for memory.
58 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic
*efx
)
60 switch (efx
->pci_dev
->device
) {
61 case 0x0b03: /* SFC9250 PF */
68 /* All VFs use BAR 0/1 for memory */
69 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic
*efx
)
74 static unsigned int efx_ef10_mem_map_size(struct efx_nic
*efx
)
78 bar
= efx
->type
->mem_bar(efx
);
79 return resource_size(&efx
->pci_dev
->resource
[bar
]);
82 static bool efx_ef10_is_vf(struct efx_nic
*efx
)
84 return efx
->type
->is_vf
;
87 #ifdef CONFIG_SFC_SRIOV
88 static int efx_ef10_get_vf_index(struct efx_nic
*efx
)
90 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
);
91 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
95 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_FUNCTION_INFO
, NULL
, 0, outbuf
,
96 sizeof(outbuf
), &outlen
);
99 if (outlen
< sizeof(outbuf
))
102 nic_data
->vf_index
= MCDI_DWORD(outbuf
, GET_FUNCTION_INFO_OUT_VF
);
107 static int efx_ef10_init_datapath_caps(struct efx_nic
*efx
)
109 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN
);
110 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
114 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN
!= 0);
116 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CAPABILITIES
, NULL
, 0,
117 outbuf
, sizeof(outbuf
), &outlen
);
120 if (outlen
< MC_CMD_GET_CAPABILITIES_OUT_LEN
) {
121 netif_err(efx
, drv
, efx
->net_dev
,
122 "unable to read datapath firmware capabilities\n");
126 nic_data
->datapath_caps
=
127 MCDI_DWORD(outbuf
, GET_CAPABILITIES_OUT_FLAGS1
);
129 if (outlen
>= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN
) {
130 nic_data
->datapath_caps2
= MCDI_DWORD(outbuf
,
131 GET_CAPABILITIES_V2_OUT_FLAGS2
);
132 nic_data
->piobuf_size
= MCDI_WORD(outbuf
,
133 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF
);
135 nic_data
->datapath_caps2
= 0;
136 nic_data
->piobuf_size
= ER_DZ_TX_PIOBUF_SIZE
;
139 /* record the DPCPU firmware IDs to determine VEB vswitching support.
141 nic_data
->rx_dpcpu_fw_id
=
142 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID
);
143 nic_data
->tx_dpcpu_fw_id
=
144 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID
);
146 if (!(nic_data
->datapath_caps
&
147 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN
))) {
148 netif_err(efx
, probe
, efx
->net_dev
,
149 "current firmware does not support an RX prefix\n");
153 if (outlen
>= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN
) {
154 u8 vi_window_mode
= MCDI_BYTE(outbuf
,
155 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE
);
157 rc
= efx_mcdi_window_mode_to_stride(efx
, vi_window_mode
);
161 /* keep default VI stride */
162 netif_dbg(efx
, probe
, efx
->net_dev
,
163 "firmware did not report VI window mode, assuming vi_stride = %u\n",
167 if (outlen
>= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN
) {
168 efx
->num_mac_stats
= MCDI_WORD(outbuf
,
169 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS
);
170 netif_dbg(efx
, probe
, efx
->net_dev
,
171 "firmware reports num_mac_stats = %u\n",
174 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
175 netif_dbg(efx
, probe
, efx
->net_dev
,
176 "firmware did not report num_mac_stats, assuming %u\n",
183 static void efx_ef10_read_licensed_features(struct efx_nic
*efx
)
185 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LICENSING_V3_IN_LEN
);
186 MCDI_DECLARE_BUF(outbuf
, MC_CMD_LICENSING_V3_OUT_LEN
);
187 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
191 MCDI_SET_DWORD(inbuf
, LICENSING_V3_IN_OP
,
192 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE
);
193 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_LICENSING_V3
, inbuf
, sizeof(inbuf
),
194 outbuf
, sizeof(outbuf
), &outlen
);
195 if (rc
|| (outlen
< MC_CMD_LICENSING_V3_OUT_LEN
))
198 nic_data
->licensed_features
= MCDI_QWORD(outbuf
,
199 LICENSING_V3_OUT_LICENSED_FEATURES
);
202 static int efx_ef10_get_sysclk_freq(struct efx_nic
*efx
)
204 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CLOCK_OUT_LEN
);
207 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CLOCK
, NULL
, 0,
208 outbuf
, sizeof(outbuf
), NULL
);
211 rc
= MCDI_DWORD(outbuf
, GET_CLOCK_OUT_SYS_FREQ
);
212 return rc
> 0 ? rc
: -ERANGE
;
215 static int efx_ef10_get_timer_workarounds(struct efx_nic
*efx
)
217 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
218 unsigned int implemented
;
219 unsigned int enabled
;
222 nic_data
->workaround_35388
= false;
223 nic_data
->workaround_61265
= false;
225 rc
= efx_mcdi_get_workarounds(efx
, &implemented
, &enabled
);
228 /* Firmware without GET_WORKAROUNDS - not a problem. */
230 } else if (rc
== 0) {
231 /* Bug61265 workaround is always enabled if implemented. */
232 if (enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG61265
)
233 nic_data
->workaround_61265
= true;
235 if (enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG35388
) {
236 nic_data
->workaround_35388
= true;
237 } else if (implemented
& MC_CMD_GET_WORKAROUNDS_OUT_BUG35388
) {
238 /* Workaround is implemented but not enabled.
241 rc
= efx_mcdi_set_workaround(efx
,
242 MC_CMD_WORKAROUND_BUG35388
,
245 nic_data
->workaround_35388
= true;
246 /* If we failed to set the workaround just carry on. */
251 netif_dbg(efx
, probe
, efx
->net_dev
,
252 "workaround for bug 35388 is %sabled\n",
253 nic_data
->workaround_35388
? "en" : "dis");
254 netif_dbg(efx
, probe
, efx
->net_dev
,
255 "workaround for bug 61265 is %sabled\n",
256 nic_data
->workaround_61265
? "en" : "dis");
261 static void efx_ef10_process_timer_config(struct efx_nic
*efx
,
262 const efx_dword_t
*data
)
264 unsigned int max_count
;
266 if (EFX_EF10_WORKAROUND_61265(efx
)) {
267 efx
->timer_quantum_ns
= MCDI_DWORD(data
,
268 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS
);
269 efx
->timer_max_ns
= MCDI_DWORD(data
,
270 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS
);
271 } else if (EFX_EF10_WORKAROUND_35388(efx
)) {
272 efx
->timer_quantum_ns
= MCDI_DWORD(data
,
273 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT
);
274 max_count
= MCDI_DWORD(data
,
275 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT
);
276 efx
->timer_max_ns
= max_count
* efx
->timer_quantum_ns
;
278 efx
->timer_quantum_ns
= MCDI_DWORD(data
,
279 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT
);
280 max_count
= MCDI_DWORD(data
,
281 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT
);
282 efx
->timer_max_ns
= max_count
* efx
->timer_quantum_ns
;
285 netif_dbg(efx
, probe
, efx
->net_dev
,
286 "got timer properties from MC: quantum %u ns; max %u ns\n",
287 efx
->timer_quantum_ns
, efx
->timer_max_ns
);
290 static int efx_ef10_get_timer_config(struct efx_nic
*efx
)
292 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN
);
295 rc
= efx_ef10_get_timer_workarounds(efx
);
299 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_EVQ_TMR_PROPERTIES
, NULL
, 0,
300 outbuf
, sizeof(outbuf
), NULL
);
303 efx_ef10_process_timer_config(efx
, outbuf
);
304 } else if (rc
== -ENOSYS
|| rc
== -EPERM
) {
305 /* Not available - fall back to Huntington defaults. */
306 unsigned int quantum
;
308 rc
= efx_ef10_get_sysclk_freq(efx
);
312 quantum
= 1536000 / rc
; /* 1536 cycles */
313 efx
->timer_quantum_ns
= quantum
;
314 efx
->timer_max_ns
= efx
->type
->timer_period_max
* quantum
;
317 efx_mcdi_display_error(efx
, MC_CMD_GET_EVQ_TMR_PROPERTIES
,
318 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN
,
325 static int efx_ef10_get_mac_address_pf(struct efx_nic
*efx
, u8
*mac_address
)
327 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
);
331 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN
!= 0);
333 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_MAC_ADDRESSES
, NULL
, 0,
334 outbuf
, sizeof(outbuf
), &outlen
);
337 if (outlen
< MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
)
340 ether_addr_copy(mac_address
,
341 MCDI_PTR(outbuf
, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE
));
345 static int efx_ef10_get_mac_address_vf(struct efx_nic
*efx
, u8
*mac_address
)
347 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN
);
348 MCDI_DECLARE_BUF(outbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX
);
352 MCDI_SET_DWORD(inbuf
, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID
,
353 EVB_PORT_ID_ASSIGNED
);
354 rc
= efx_mcdi_rpc(efx
, MC_CMD_VPORT_GET_MAC_ADDRESSES
, inbuf
,
355 sizeof(inbuf
), outbuf
, sizeof(outbuf
), &outlen
);
359 if (outlen
< MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN
)
362 num_addrs
= MCDI_DWORD(outbuf
,
363 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT
);
365 WARN_ON(num_addrs
!= 1);
367 ether_addr_copy(mac_address
,
368 MCDI_PTR(outbuf
, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR
));
373 static ssize_t
link_control_flag_show(struct device
*dev
,
374 struct device_attribute
*attr
,
377 struct efx_nic
*efx
= dev_get_drvdata(dev
);
379 return sprintf(buf
, "%d\n",
380 ((efx
->mcdi
->fn_flags
) &
381 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
385 static ssize_t
primary_flag_show(struct device
*dev
,
386 struct device_attribute
*attr
,
389 struct efx_nic
*efx
= dev_get_drvdata(dev
);
391 return sprintf(buf
, "%d\n",
392 ((efx
->mcdi
->fn_flags
) &
393 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
397 static struct efx_ef10_vlan
*efx_ef10_find_vlan(struct efx_nic
*efx
, u16 vid
)
399 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
400 struct efx_ef10_vlan
*vlan
;
402 WARN_ON(!mutex_is_locked(&nic_data
->vlan_lock
));
404 list_for_each_entry(vlan
, &nic_data
->vlan_list
, list
) {
405 if (vlan
->vid
== vid
)
412 static int efx_ef10_add_vlan(struct efx_nic
*efx
, u16 vid
)
414 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
415 struct efx_ef10_vlan
*vlan
;
418 mutex_lock(&nic_data
->vlan_lock
);
420 vlan
= efx_ef10_find_vlan(efx
, vid
);
422 /* We add VID 0 on init. 8021q adds it on module init
423 * for all interfaces with VLAN filtring feature.
427 netif_warn(efx
, drv
, efx
->net_dev
,
428 "VLAN %u already added\n", vid
);
434 vlan
= kzalloc(sizeof(*vlan
), GFP_KERNEL
);
440 list_add_tail(&vlan
->list
, &nic_data
->vlan_list
);
442 if (efx
->filter_state
) {
443 mutex_lock(&efx
->mac_lock
);
444 down_write(&efx
->filter_sem
);
445 rc
= efx_mcdi_filter_add_vlan(efx
, vlan
->vid
);
446 up_write(&efx
->filter_sem
);
447 mutex_unlock(&efx
->mac_lock
);
449 goto fail_filter_add_vlan
;
453 mutex_unlock(&nic_data
->vlan_lock
);
456 fail_filter_add_vlan
:
457 list_del(&vlan
->list
);
461 mutex_unlock(&nic_data
->vlan_lock
);
465 static void efx_ef10_del_vlan_internal(struct efx_nic
*efx
,
466 struct efx_ef10_vlan
*vlan
)
468 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
470 WARN_ON(!mutex_is_locked(&nic_data
->vlan_lock
));
472 if (efx
->filter_state
) {
473 down_write(&efx
->filter_sem
);
474 efx_mcdi_filter_del_vlan(efx
, vlan
->vid
);
475 up_write(&efx
->filter_sem
);
478 list_del(&vlan
->list
);
482 static int efx_ef10_del_vlan(struct efx_nic
*efx
, u16 vid
)
484 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
485 struct efx_ef10_vlan
*vlan
;
488 /* 8021q removes VID 0 on module unload for all interfaces
489 * with VLAN filtering feature. We need to keep it to receive
495 mutex_lock(&nic_data
->vlan_lock
);
497 vlan
= efx_ef10_find_vlan(efx
, vid
);
499 netif_err(efx
, drv
, efx
->net_dev
,
500 "VLAN %u to be deleted not found\n", vid
);
503 efx_ef10_del_vlan_internal(efx
, vlan
);
506 mutex_unlock(&nic_data
->vlan_lock
);
511 static void efx_ef10_cleanup_vlans(struct efx_nic
*efx
)
513 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
514 struct efx_ef10_vlan
*vlan
, *next_vlan
;
516 mutex_lock(&nic_data
->vlan_lock
);
517 list_for_each_entry_safe(vlan
, next_vlan
, &nic_data
->vlan_list
, list
)
518 efx_ef10_del_vlan_internal(efx
, vlan
);
519 mutex_unlock(&nic_data
->vlan_lock
);
522 static DEVICE_ATTR_RO(link_control_flag
);
523 static DEVICE_ATTR_RO(primary_flag
);
525 static int efx_ef10_probe(struct efx_nic
*efx
)
527 struct efx_ef10_nic_data
*nic_data
;
530 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
533 efx
->nic_data
= nic_data
;
535 /* we assume later that we can copy from this buffer in dwords */
536 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2
% 4);
538 rc
= efx_nic_alloc_buffer(efx
, &nic_data
->mcdi_buf
,
539 8 + MCDI_CTL_SDU_LEN_MAX_V2
, GFP_KERNEL
);
543 /* Get the MC's warm boot count. In case it's rebooting right
544 * now, be prepared to retry.
548 rc
= efx_ef10_get_warm_boot_count(efx
);
555 nic_data
->warm_boot_count
= rc
;
557 /* In case we're recovering from a crash (kexec), we want to
558 * cancel any outstanding request by the previous user of this
559 * function. We send a special message using the least
560 * significant bits of the 'high' (doorbell) register.
562 _efx_writed(efx
, cpu_to_le32(1), ER_DZ_MC_DB_HWRD
);
564 rc
= efx_mcdi_init(efx
);
568 mutex_init(&nic_data
->udp_tunnels_lock
);
569 for (i
= 0; i
< ARRAY_SIZE(nic_data
->udp_tunnels
); ++i
)
570 nic_data
->udp_tunnels
[i
].type
=
571 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID
;
573 /* Reset (most) configuration for this function */
574 rc
= efx_mcdi_reset(efx
, RESET_TYPE_ALL
);
578 /* Enable event logging */
579 rc
= efx_mcdi_log_ctrl(efx
, true, false, 0);
583 rc
= device_create_file(&efx
->pci_dev
->dev
,
584 &dev_attr_link_control_flag
);
588 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
592 rc
= efx_get_pf_index(efx
, &nic_data
->pf_index
);
596 rc
= efx_ef10_init_datapath_caps(efx
);
600 efx_ef10_read_licensed_features(efx
);
602 /* We can have one VI for each vi_stride-byte region.
603 * However, until we use TX option descriptors we need up to four
604 * TX queues per channel for different checksumming combinations.
606 if (nic_data
->datapath_caps
&
607 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
))
608 efx
->tx_queues_per_channel
= 4;
610 efx
->tx_queues_per_channel
= 2;
611 efx
->max_vis
= efx_ef10_mem_map_size(efx
) / efx
->vi_stride
;
613 netif_err(efx
, drv
, efx
->net_dev
, "error determining max VIs\n");
617 efx
->max_channels
= min_t(unsigned int, EFX_MAX_CHANNELS
,
618 efx
->max_vis
/ efx
->tx_queues_per_channel
);
619 efx
->max_tx_channels
= efx
->max_channels
;
620 if (WARN_ON(efx
->max_channels
== 0)) {
625 efx
->rx_packet_len_offset
=
626 ES_DZ_RX_PREFIX_PKTLEN_OFST
- ES_DZ_RX_PREFIX_SIZE
;
628 if (nic_data
->datapath_caps
&
629 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN
))
630 efx
->net_dev
->hw_features
|= NETIF_F_RXFCS
;
632 rc
= efx_mcdi_port_get_number(efx
);
637 rc
= efx
->type
->get_mac_address(efx
, efx
->net_dev
->perm_addr
);
641 rc
= efx_ef10_get_timer_config(efx
);
645 rc
= efx_mcdi_mon_probe(efx
);
646 if (rc
&& rc
!= -EPERM
)
649 efx_ptp_defer_probe_with_channel(efx
);
651 #ifdef CONFIG_SFC_SRIOV
652 if ((efx
->pci_dev
->physfn
) && (!efx
->pci_dev
->is_physfn
)) {
653 struct pci_dev
*pci_dev_pf
= efx
->pci_dev
->physfn
;
654 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
656 efx_pf
->type
->get_mac_address(efx_pf
, nic_data
->port_id
);
659 ether_addr_copy(nic_data
->port_id
, efx
->net_dev
->perm_addr
);
661 INIT_LIST_HEAD(&nic_data
->vlan_list
);
662 mutex_init(&nic_data
->vlan_lock
);
664 /* Add unspecified VID to support VLAN filtering being disabled */
665 rc
= efx_ef10_add_vlan(efx
, EFX_FILTER_VID_UNSPEC
);
667 goto fail_add_vid_unspec
;
669 /* If VLAN filtering is enabled, we need VID 0 to get untagged
670 * traffic. It is added automatically if 8021q module is loaded,
671 * but we can't rely on it since module may be not loaded.
673 rc
= efx_ef10_add_vlan(efx
, 0);
677 if (nic_data
->datapath_caps
&
678 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
) &&
679 efx
->mcdi
->fn_flags
&
680 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
))
681 efx
->net_dev
->udp_tunnel_nic_info
= &efx_ef10_udp_tunnels
;
686 efx_ef10_cleanup_vlans(efx
);
688 mutex_destroy(&nic_data
->vlan_lock
);
690 efx_mcdi_mon_remove(efx
);
692 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
694 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
696 efx_mcdi_detach(efx
);
698 mutex_lock(&nic_data
->udp_tunnels_lock
);
699 memset(nic_data
->udp_tunnels
, 0, sizeof(nic_data
->udp_tunnels
));
700 (void)efx_ef10_set_udp_tnl_ports(efx
, true);
701 mutex_unlock(&nic_data
->udp_tunnels_lock
);
702 mutex_destroy(&nic_data
->udp_tunnels_lock
);
706 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
709 efx
->nic_data
= NULL
;
715 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
717 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
718 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FREE_PIOBUF_IN_LEN
);
722 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN
!= 0);
724 for (i
= 0; i
< nic_data
->n_piobufs
; i
++) {
725 MCDI_SET_DWORD(inbuf
, FREE_PIOBUF_IN_PIOBUF_HANDLE
,
726 nic_data
->piobuf_handle
[i
]);
727 rc
= efx_mcdi_rpc(efx
, MC_CMD_FREE_PIOBUF
, inbuf
, sizeof(inbuf
),
732 nic_data
->n_piobufs
= 0;
735 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
737 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
738 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_PIOBUF_OUT_LEN
);
743 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN
!= 0);
745 for (i
= 0; i
< n
; i
++) {
746 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_ALLOC_PIOBUF
, NULL
, 0,
747 outbuf
, sizeof(outbuf
), &outlen
);
749 /* Don't display the MC error if we didn't have space
752 if (!(efx_ef10_is_vf(efx
) && rc
== -ENOSPC
))
753 efx_mcdi_display_error(efx
, MC_CMD_ALLOC_PIOBUF
,
754 0, outbuf
, outlen
, rc
);
757 if (outlen
< MC_CMD_ALLOC_PIOBUF_OUT_LEN
) {
761 nic_data
->piobuf_handle
[i
] =
762 MCDI_DWORD(outbuf
, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE
);
763 netif_dbg(efx
, probe
, efx
->net_dev
,
764 "allocated PIO buffer %u handle %x\n", i
,
765 nic_data
->piobuf_handle
[i
]);
768 nic_data
->n_piobufs
= i
;
770 efx_ef10_free_piobufs(efx
);
774 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
776 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
777 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
);
778 struct efx_channel
*channel
;
779 struct efx_tx_queue
*tx_queue
;
780 unsigned int offset
, index
;
783 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN
!= 0);
784 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN
!= 0);
786 /* Link a buffer to each VI in the write-combining mapping */
787 for (index
= 0; index
< nic_data
->n_piobufs
; ++index
) {
788 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_PIOBUF_HANDLE
,
789 nic_data
->piobuf_handle
[index
]);
790 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_TXQ_INSTANCE
,
791 nic_data
->pio_write_vi_base
+ index
);
792 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
793 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
796 netif_err(efx
, drv
, efx
->net_dev
,
797 "failed to link VI %u to PIO buffer %u (%d)\n",
798 nic_data
->pio_write_vi_base
+ index
, index
,
802 netif_dbg(efx
, probe
, efx
->net_dev
,
803 "linked VI %u to PIO buffer %u\n",
804 nic_data
->pio_write_vi_base
+ index
, index
);
807 /* Link a buffer to each TX queue */
808 efx_for_each_channel(channel
, efx
) {
809 /* Extra channels, even those with TXQs (PTP), do not require
812 if (!channel
->type
->want_pio
||
813 channel
->channel
>= efx
->xdp_channel_offset
)
816 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
817 /* We assign the PIO buffers to queues in
818 * reverse order to allow for the following
821 offset
= ((efx
->tx_channel_offset
+ efx
->n_tx_channels
-
822 tx_queue
->channel
->channel
- 1) *
824 index
= offset
/ nic_data
->piobuf_size
;
825 offset
= offset
% nic_data
->piobuf_size
;
827 /* When the host page size is 4K, the first
828 * host page in the WC mapping may be within
829 * the same VI page as the last TX queue. We
830 * can only link one buffer to each VI.
832 if (tx_queue
->queue
== nic_data
->pio_write_vi_base
) {
836 MCDI_SET_DWORD(inbuf
,
837 LINK_PIOBUF_IN_PIOBUF_HANDLE
,
838 nic_data
->piobuf_handle
[index
]);
839 MCDI_SET_DWORD(inbuf
,
840 LINK_PIOBUF_IN_TXQ_INSTANCE
,
842 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
843 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
848 /* This is non-fatal; the TX path just
849 * won't use PIO for this queue
851 netif_err(efx
, drv
, efx
->net_dev
,
852 "failed to link VI %u to PIO buffer %u (%d)\n",
853 tx_queue
->queue
, index
, rc
);
854 tx_queue
->piobuf
= NULL
;
857 nic_data
->pio_write_base
+
858 index
* efx
->vi_stride
+ offset
;
859 tx_queue
->piobuf_offset
= offset
;
860 netif_dbg(efx
, probe
, efx
->net_dev
,
861 "linked VI %u to PIO buffer %u offset %x addr %p\n",
862 tx_queue
->queue
, index
,
863 tx_queue
->piobuf_offset
,
872 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
873 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
875 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN
< MC_CMD_UNLINK_PIOBUF_IN_LEN
);
877 MCDI_SET_DWORD(inbuf
, UNLINK_PIOBUF_IN_TXQ_INSTANCE
,
878 nic_data
->pio_write_vi_base
+ index
);
879 efx_mcdi_rpc(efx
, MC_CMD_UNLINK_PIOBUF
,
880 inbuf
, MC_CMD_UNLINK_PIOBUF_IN_LEN
,
886 static void efx_ef10_forget_old_piobufs(struct efx_nic
*efx
)
888 struct efx_channel
*channel
;
889 struct efx_tx_queue
*tx_queue
;
891 /* All our existing PIO buffers went away */
892 efx_for_each_channel(channel
, efx
)
893 efx_for_each_channel_tx_queue(tx_queue
, channel
)
894 tx_queue
->piobuf
= NULL
;
897 #else /* !EFX_USE_PIO */
899 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
901 return n
== 0 ? 0 : -ENOBUFS
;
904 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
909 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
913 static void efx_ef10_forget_old_piobufs(struct efx_nic
*efx
)
917 #endif /* EFX_USE_PIO */
919 static void efx_ef10_remove(struct efx_nic
*efx
)
921 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
924 #ifdef CONFIG_SFC_SRIOV
925 struct efx_ef10_nic_data
*nic_data_pf
;
926 struct pci_dev
*pci_dev_pf
;
927 struct efx_nic
*efx_pf
;
930 if (efx
->pci_dev
->is_virtfn
) {
931 pci_dev_pf
= efx
->pci_dev
->physfn
;
933 efx_pf
= pci_get_drvdata(pci_dev_pf
);
934 nic_data_pf
= efx_pf
->nic_data
;
935 vf
= nic_data_pf
->vf
+ nic_data
->vf_index
;
938 netif_info(efx
, drv
, efx
->net_dev
,
939 "Could not get the PF id from VF\n");
943 efx_ef10_cleanup_vlans(efx
);
944 mutex_destroy(&nic_data
->vlan_lock
);
948 efx_mcdi_mon_remove(efx
);
950 efx_mcdi_rx_free_indir_table(efx
);
952 if (nic_data
->wc_membase
)
953 iounmap(nic_data
->wc_membase
);
955 rc
= efx_mcdi_free_vis(efx
);
958 if (!nic_data
->must_restore_piobufs
)
959 efx_ef10_free_piobufs(efx
);
961 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
962 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
964 efx_mcdi_detach(efx
);
966 memset(nic_data
->udp_tunnels
, 0, sizeof(nic_data
->udp_tunnels
));
967 mutex_lock(&nic_data
->udp_tunnels_lock
);
968 (void)efx_ef10_set_udp_tnl_ports(efx
, true);
969 mutex_unlock(&nic_data
->udp_tunnels_lock
);
971 mutex_destroy(&nic_data
->udp_tunnels_lock
);
974 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
978 static int efx_ef10_probe_pf(struct efx_nic
*efx
)
980 return efx_ef10_probe(efx
);
983 int efx_ef10_vadaptor_query(struct efx_nic
*efx
, unsigned int port_id
,
984 u32
*port_flags
, u32
*vadaptor_flags
,
985 unsigned int *vlan_tags
)
987 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
988 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_QUERY_IN_LEN
);
989 MCDI_DECLARE_BUF(outbuf
, MC_CMD_VADAPTOR_QUERY_OUT_LEN
);
993 if (nic_data
->datapath_caps
&
994 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN
)) {
995 MCDI_SET_DWORD(inbuf
, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID
,
998 rc
= efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_QUERY
, inbuf
, sizeof(inbuf
),
999 outbuf
, sizeof(outbuf
), &outlen
);
1003 if (outlen
< sizeof(outbuf
)) {
1010 *port_flags
= MCDI_DWORD(outbuf
, VADAPTOR_QUERY_OUT_PORT_FLAGS
);
1013 MCDI_DWORD(outbuf
, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS
);
1017 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS
);
1022 int efx_ef10_vadaptor_alloc(struct efx_nic
*efx
, unsigned int port_id
)
1024 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_ALLOC_IN_LEN
);
1026 MCDI_SET_DWORD(inbuf
, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID
, port_id
);
1027 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_ALLOC
, inbuf
, sizeof(inbuf
),
1031 int efx_ef10_vadaptor_free(struct efx_nic
*efx
, unsigned int port_id
)
1033 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_FREE_IN_LEN
);
1035 MCDI_SET_DWORD(inbuf
, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID
, port_id
);
1036 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_FREE
, inbuf
, sizeof(inbuf
),
1040 int efx_ef10_vport_add_mac(struct efx_nic
*efx
,
1041 unsigned int port_id
, const u8
*mac
)
1043 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN
);
1045 MCDI_SET_DWORD(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
1046 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_MACADDR
), mac
);
1048 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_ADD_MAC_ADDRESS
, inbuf
,
1049 sizeof(inbuf
), NULL
, 0, NULL
);
1052 int efx_ef10_vport_del_mac(struct efx_nic
*efx
,
1053 unsigned int port_id
, const u8
*mac
)
1055 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN
);
1057 MCDI_SET_DWORD(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
1058 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_MACADDR
), mac
);
1060 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_DEL_MAC_ADDRESS
, inbuf
,
1061 sizeof(inbuf
), NULL
, 0, NULL
);
1064 #ifdef CONFIG_SFC_SRIOV
1065 static int efx_ef10_probe_vf(struct efx_nic
*efx
)
1068 struct pci_dev
*pci_dev_pf
;
1070 /* If the parent PF has no VF data structure, it doesn't know about this
1071 * VF so fail probe. The VF needs to be re-created. This can happen
1072 * if the PF driver was unloaded while any VF was assigned to a guest
1073 * (using Xen, only).
1075 pci_dev_pf
= efx
->pci_dev
->physfn
;
1077 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
1078 struct efx_ef10_nic_data
*nic_data_pf
= efx_pf
->nic_data
;
1080 if (!nic_data_pf
->vf
) {
1081 netif_info(efx
, drv
, efx
->net_dev
,
1082 "The VF cannot link to its parent PF; "
1083 "please destroy and re-create the VF\n");
1088 rc
= efx_ef10_probe(efx
);
1092 rc
= efx_ef10_get_vf_index(efx
);
1096 if (efx
->pci_dev
->is_virtfn
) {
1097 if (efx
->pci_dev
->physfn
) {
1098 struct efx_nic
*efx_pf
=
1099 pci_get_drvdata(efx
->pci_dev
->physfn
);
1100 struct efx_ef10_nic_data
*nic_data_p
= efx_pf
->nic_data
;
1101 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1103 nic_data_p
->vf
[nic_data
->vf_index
].efx
= efx
;
1104 nic_data_p
->vf
[nic_data
->vf_index
].pci_dev
=
1107 netif_info(efx
, drv
, efx
->net_dev
,
1108 "Could not get the PF id from VF\n");
1114 efx_ef10_remove(efx
);
1118 static int efx_ef10_probe_vf(struct efx_nic
*efx
__attribute__ ((unused
)))
1124 static int efx_ef10_alloc_vis(struct efx_nic
*efx
,
1125 unsigned int min_vis
, unsigned int max_vis
)
1127 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1129 return efx_mcdi_alloc_vis(efx
, min_vis
, max_vis
, &nic_data
->vi_base
,
1130 &nic_data
->n_allocated_vis
);
1133 /* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1136 static int efx_ef10_dimension_resources(struct efx_nic
*efx
)
1138 unsigned int min_vis
= max_t(unsigned int, efx
->tx_queues_per_channel
,
1139 efx_separate_tx_channels
? 2 : 1);
1140 unsigned int channel_vis
, pio_write_vi_base
, max_vis
;
1141 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1142 unsigned int uc_mem_map_size
, wc_mem_map_size
;
1143 void __iomem
*membase
;
1146 channel_vis
= max(efx
->n_channels
,
1147 ((efx
->n_tx_channels
+ efx
->n_extra_tx_channels
) *
1148 efx
->tx_queues_per_channel
) +
1149 efx
->n_xdp_channels
* efx
->xdp_tx_per_channel
);
1150 if (efx
->max_vis
&& efx
->max_vis
< channel_vis
) {
1151 netif_dbg(efx
, drv
, efx
->net_dev
,
1152 "Reducing channel VIs from %u to %u\n",
1153 channel_vis
, efx
->max_vis
);
1154 channel_vis
= efx
->max_vis
;
1158 /* Try to allocate PIO buffers if wanted and if the full
1159 * number of PIO buffers would be sufficient to allocate one
1160 * copy-buffer per TX channel. Failure is non-fatal, as there
1161 * are only a small number of PIO buffers shared between all
1162 * functions of the controller.
1164 if (efx_piobuf_size
!= 0 &&
1165 nic_data
->piobuf_size
/ efx_piobuf_size
* EF10_TX_PIOBUF_COUNT
>=
1166 efx
->n_tx_channels
) {
1167 unsigned int n_piobufs
=
1168 DIV_ROUND_UP(efx
->n_tx_channels
,
1169 nic_data
->piobuf_size
/ efx_piobuf_size
);
1171 rc
= efx_ef10_alloc_piobufs(efx
, n_piobufs
);
1173 netif_dbg(efx
, probe
, efx
->net_dev
,
1174 "out of PIO buffers; cannot allocate more\n");
1175 else if (rc
== -EPERM
)
1176 netif_dbg(efx
, probe
, efx
->net_dev
,
1177 "not permitted to allocate PIO buffers\n");
1179 netif_err(efx
, probe
, efx
->net_dev
,
1180 "failed to allocate PIO buffers (%d)\n", rc
);
1182 netif_dbg(efx
, probe
, efx
->net_dev
,
1183 "allocated %u PIO buffers\n", n_piobufs
);
1186 nic_data
->n_piobufs
= 0;
1189 /* PIO buffers should be mapped with write-combining enabled,
1190 * and we want to make single UC and WC mappings rather than
1191 * several of each (in fact that's the only option if host
1192 * page size is >4K). So we may allocate some extra VIs just
1193 * for writing PIO buffers through.
1195 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196 * first 4K of the next VI. Then the WC mapping begins with
1197 * the remainder of this last VI.
1199 uc_mem_map_size
= PAGE_ALIGN((channel_vis
- 1) * efx
->vi_stride
+
1201 if (nic_data
->n_piobufs
) {
1202 /* pio_write_vi_base rounds down to give the number of complete
1203 * VIs inside the UC mapping.
1205 pio_write_vi_base
= uc_mem_map_size
/ efx
->vi_stride
;
1206 wc_mem_map_size
= (PAGE_ALIGN((pio_write_vi_base
+
1207 nic_data
->n_piobufs
) *
1210 max_vis
= pio_write_vi_base
+ nic_data
->n_piobufs
;
1212 pio_write_vi_base
= 0;
1213 wc_mem_map_size
= 0;
1214 max_vis
= channel_vis
;
1217 /* In case the last attached driver failed to free VIs, do it now */
1218 rc
= efx_mcdi_free_vis(efx
);
1222 rc
= efx_ef10_alloc_vis(efx
, min_vis
, max_vis
);
1226 if (nic_data
->n_allocated_vis
< channel_vis
) {
1227 netif_info(efx
, drv
, efx
->net_dev
,
1228 "Could not allocate enough VIs to satisfy RSS"
1229 " requirements. Performance may not be optimal.\n");
1230 /* We didn't get the VIs to populate our channels.
1231 * We could keep what we got but then we'd have more
1232 * interrupts than we need.
1233 * Instead calculate new max_channels and restart
1235 efx
->max_channels
= nic_data
->n_allocated_vis
;
1236 efx
->max_tx_channels
=
1237 nic_data
->n_allocated_vis
/ efx
->tx_queues_per_channel
;
1239 efx_mcdi_free_vis(efx
);
1243 /* If we didn't get enough VIs to map all the PIO buffers, free the
1246 if (nic_data
->n_piobufs
&&
1247 nic_data
->n_allocated_vis
<
1248 pio_write_vi_base
+ nic_data
->n_piobufs
) {
1249 netif_dbg(efx
, probe
, efx
->net_dev
,
1250 "%u VIs are not sufficient to map %u PIO buffers\n",
1251 nic_data
->n_allocated_vis
, nic_data
->n_piobufs
);
1252 efx_ef10_free_piobufs(efx
);
1255 /* Shrink the original UC mapping of the memory BAR */
1256 membase
= ioremap(efx
->membase_phys
, uc_mem_map_size
);
1258 netif_err(efx
, probe
, efx
->net_dev
,
1259 "could not shrink memory BAR to %x\n",
1263 iounmap(efx
->membase
);
1264 efx
->membase
= membase
;
1266 /* Set up the WC mapping if needed */
1267 if (wc_mem_map_size
) {
1268 nic_data
->wc_membase
= ioremap_wc(efx
->membase_phys
+
1271 if (!nic_data
->wc_membase
) {
1272 netif_err(efx
, probe
, efx
->net_dev
,
1273 "could not allocate WC mapping of size %x\n",
1277 nic_data
->pio_write_vi_base
= pio_write_vi_base
;
1278 nic_data
->pio_write_base
=
1279 nic_data
->wc_membase
+
1280 (pio_write_vi_base
* efx
->vi_stride
+ ER_DZ_TX_PIOBUF
-
1283 rc
= efx_ef10_link_piobufs(efx
);
1285 efx_ef10_free_piobufs(efx
);
1288 netif_dbg(efx
, probe
, efx
->net_dev
,
1289 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290 &efx
->membase_phys
, efx
->membase
, uc_mem_map_size
,
1291 nic_data
->wc_membase
, wc_mem_map_size
);
1296 static void efx_ef10_fini_nic(struct efx_nic
*efx
)
1298 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1300 spin_lock_bh(&efx
->stats_lock
);
1301 kfree(nic_data
->mc_stats
);
1302 nic_data
->mc_stats
= NULL
;
1303 spin_unlock_bh(&efx
->stats_lock
);
1306 static int efx_ef10_init_nic(struct efx_nic
*efx
)
1308 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1309 struct net_device
*net_dev
= efx
->net_dev
;
1310 netdev_features_t tun_feats
, tso_feats
;
1313 if (nic_data
->must_check_datapath_caps
) {
1314 rc
= efx_ef10_init_datapath_caps(efx
);
1317 nic_data
->must_check_datapath_caps
= false;
1320 if (efx
->must_realloc_vis
) {
1321 /* We cannot let the number of VIs change now */
1322 rc
= efx_ef10_alloc_vis(efx
, nic_data
->n_allocated_vis
,
1323 nic_data
->n_allocated_vis
);
1326 efx
->must_realloc_vis
= false;
1329 nic_data
->mc_stats
= kmalloc(efx
->num_mac_stats
* sizeof(__le64
),
1331 if (!nic_data
->mc_stats
)
1334 if (nic_data
->must_restore_piobufs
&& nic_data
->n_piobufs
) {
1335 rc
= efx_ef10_alloc_piobufs(efx
, nic_data
->n_piobufs
);
1337 rc
= efx_ef10_link_piobufs(efx
);
1339 efx_ef10_free_piobufs(efx
);
1342 /* Log an error on failure, but this is non-fatal.
1343 * Permission errors are less important - we've presumably
1344 * had the PIO buffer licence removed.
1347 netif_dbg(efx
, drv
, efx
->net_dev
,
1348 "not permitted to restore PIO buffers\n");
1350 netif_err(efx
, drv
, efx
->net_dev
,
1351 "failed to restore PIO buffers (%d)\n", rc
);
1352 nic_data
->must_restore_piobufs
= false;
1355 /* encap features might change during reset if fw variant changed */
1356 if (efx_has_cap(efx
, VXLAN_NVGRE
) && !efx_ef10_is_vf(efx
))
1357 net_dev
->hw_enc_features
|= NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
;
1359 net_dev
->hw_enc_features
&= ~(NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
);
1361 tun_feats
= NETIF_F_GSO_UDP_TUNNEL
| NETIF_F_GSO_GRE
|
1362 NETIF_F_GSO_UDP_TUNNEL_CSUM
| NETIF_F_GSO_GRE_CSUM
;
1363 tso_feats
= NETIF_F_TSO
| NETIF_F_TSO6
;
1365 if (efx_has_cap(efx
, TX_TSO_V2_ENCAP
)) {
1366 /* If this is first nic_init, or if it is a reset and a new fw
1367 * variant has added new features, enable them by default.
1368 * If the features are not new, maintain their current value.
1370 if (!(net_dev
->hw_features
& tun_feats
))
1371 net_dev
->features
|= tun_feats
;
1372 net_dev
->hw_enc_features
|= tun_feats
| tso_feats
;
1373 net_dev
->hw_features
|= tun_feats
;
1375 net_dev
->hw_enc_features
&= ~(tun_feats
| tso_feats
);
1376 net_dev
->hw_features
&= ~tun_feats
;
1377 net_dev
->features
&= ~tun_feats
;
1380 /* don't fail init if RSS setup doesn't work */
1381 rc
= efx
->type
->rx_push_rss_config(efx
, false,
1382 efx
->rss_context
.rx_indir_table
, NULL
);
1387 static void efx_ef10_table_reset_mc_allocations(struct efx_nic
*efx
)
1389 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1390 #ifdef CONFIG_SFC_SRIOV
1394 /* All our allocations have been reset */
1395 efx
->must_realloc_vis
= true;
1396 efx_mcdi_filter_table_reset_mc_allocations(efx
);
1397 nic_data
->must_restore_piobufs
= true;
1398 efx_ef10_forget_old_piobufs(efx
);
1399 efx
->rss_context
.priv
.context_id
= EFX_MCDI_RSS_CONTEXT_INVALID
;
1401 /* Driver-created vswitches and vports must be re-created */
1402 nic_data
->must_probe_vswitching
= true;
1403 efx
->vport_id
= EVB_PORT_ID_ASSIGNED
;
1404 #ifdef CONFIG_SFC_SRIOV
1406 for (i
= 0; i
< efx
->vf_count
; i
++)
1407 nic_data
->vf
[i
].vport_id
= 0;
1411 static enum reset_type
efx_ef10_map_reset_reason(enum reset_type reason
)
1413 if (reason
== RESET_TYPE_MC_FAILURE
)
1414 return RESET_TYPE_DATAPATH
;
1416 return efx_mcdi_map_reset_reason(reason
);
1419 static int efx_ef10_map_reset_flags(u32
*flags
)
1422 EF10_RESET_PORT
= ((ETH_RESET_MAC
| ETH_RESET_PHY
) <<
1423 ETH_RESET_SHARED_SHIFT
),
1424 EF10_RESET_MC
= ((ETH_RESET_DMA
| ETH_RESET_FILTER
|
1425 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
|
1426 ETH_RESET_PHY
| ETH_RESET_MGMT
) <<
1427 ETH_RESET_SHARED_SHIFT
)
1430 /* We assume for now that our PCI function is permitted to
1434 if ((*flags
& EF10_RESET_MC
) == EF10_RESET_MC
) {
1435 *flags
&= ~EF10_RESET_MC
;
1436 return RESET_TYPE_WORLD
;
1439 if ((*flags
& EF10_RESET_PORT
) == EF10_RESET_PORT
) {
1440 *flags
&= ~EF10_RESET_PORT
;
1441 return RESET_TYPE_ALL
;
1444 /* no invisible reset implemented */
1449 static int efx_ef10_reset(struct efx_nic
*efx
, enum reset_type reset_type
)
1451 int rc
= efx_mcdi_reset(efx
, reset_type
);
1453 /* Unprivileged functions return -EPERM, but need to return success
1454 * here so that the datapath is brought back up.
1456 if (reset_type
== RESET_TYPE_WORLD
&& rc
== -EPERM
)
1459 /* If it was a port reset, trigger reallocation of MC resources.
1460 * Note that on an MC reset nothing needs to be done now because we'll
1461 * detect the MC reset later and handle it then.
1462 * For an FLR, we never get an MC reset event, but the MC has reset all
1463 * resources assigned to us, so we have to trigger reallocation now.
1465 if ((reset_type
== RESET_TYPE_ALL
||
1466 reset_type
== RESET_TYPE_MCDI_TIMEOUT
) && !rc
)
1467 efx_ef10_table_reset_mc_allocations(efx
);
1471 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1472 [EF10_STAT_ ## ext_name] = \
1473 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1475 [EF10_STAT_ ## int_name] = \
1476 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477 #define EF10_OTHER_STAT(ext_name) \
1478 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1480 static const struct efx_hw_stat_desc efx_ef10_stat_desc
[EF10_STAT_COUNT
] = {
1481 EF10_DMA_STAT(port_tx_bytes
, TX_BYTES
),
1482 EF10_DMA_STAT(port_tx_packets
, TX_PKTS
),
1483 EF10_DMA_STAT(port_tx_pause
, TX_PAUSE_PKTS
),
1484 EF10_DMA_STAT(port_tx_control
, TX_CONTROL_PKTS
),
1485 EF10_DMA_STAT(port_tx_unicast
, TX_UNICAST_PKTS
),
1486 EF10_DMA_STAT(port_tx_multicast
, TX_MULTICAST_PKTS
),
1487 EF10_DMA_STAT(port_tx_broadcast
, TX_BROADCAST_PKTS
),
1488 EF10_DMA_STAT(port_tx_lt64
, TX_LT64_PKTS
),
1489 EF10_DMA_STAT(port_tx_64
, TX_64_PKTS
),
1490 EF10_DMA_STAT(port_tx_65_to_127
, TX_65_TO_127_PKTS
),
1491 EF10_DMA_STAT(port_tx_128_to_255
, TX_128_TO_255_PKTS
),
1492 EF10_DMA_STAT(port_tx_256_to_511
, TX_256_TO_511_PKTS
),
1493 EF10_DMA_STAT(port_tx_512_to_1023
, TX_512_TO_1023_PKTS
),
1494 EF10_DMA_STAT(port_tx_1024_to_15xx
, TX_1024_TO_15XX_PKTS
),
1495 EF10_DMA_STAT(port_tx_15xx_to_jumbo
, TX_15XX_TO_JUMBO_PKTS
),
1496 EF10_DMA_STAT(port_rx_bytes
, RX_BYTES
),
1497 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes
, RX_BAD_BYTES
),
1498 EF10_OTHER_STAT(port_rx_good_bytes
),
1499 EF10_OTHER_STAT(port_rx_bad_bytes
),
1500 EF10_DMA_STAT(port_rx_packets
, RX_PKTS
),
1501 EF10_DMA_STAT(port_rx_good
, RX_GOOD_PKTS
),
1502 EF10_DMA_STAT(port_rx_bad
, RX_BAD_FCS_PKTS
),
1503 EF10_DMA_STAT(port_rx_pause
, RX_PAUSE_PKTS
),
1504 EF10_DMA_STAT(port_rx_control
, RX_CONTROL_PKTS
),
1505 EF10_DMA_STAT(port_rx_unicast
, RX_UNICAST_PKTS
),
1506 EF10_DMA_STAT(port_rx_multicast
, RX_MULTICAST_PKTS
),
1507 EF10_DMA_STAT(port_rx_broadcast
, RX_BROADCAST_PKTS
),
1508 EF10_DMA_STAT(port_rx_lt64
, RX_UNDERSIZE_PKTS
),
1509 EF10_DMA_STAT(port_rx_64
, RX_64_PKTS
),
1510 EF10_DMA_STAT(port_rx_65_to_127
, RX_65_TO_127_PKTS
),
1511 EF10_DMA_STAT(port_rx_128_to_255
, RX_128_TO_255_PKTS
),
1512 EF10_DMA_STAT(port_rx_256_to_511
, RX_256_TO_511_PKTS
),
1513 EF10_DMA_STAT(port_rx_512_to_1023
, RX_512_TO_1023_PKTS
),
1514 EF10_DMA_STAT(port_rx_1024_to_15xx
, RX_1024_TO_15XX_PKTS
),
1515 EF10_DMA_STAT(port_rx_15xx_to_jumbo
, RX_15XX_TO_JUMBO_PKTS
),
1516 EF10_DMA_STAT(port_rx_gtjumbo
, RX_GTJUMBO_PKTS
),
1517 EF10_DMA_STAT(port_rx_bad_gtjumbo
, RX_JABBER_PKTS
),
1518 EF10_DMA_STAT(port_rx_overflow
, RX_OVERFLOW_PKTS
),
1519 EF10_DMA_STAT(port_rx_align_error
, RX_ALIGN_ERROR_PKTS
),
1520 EF10_DMA_STAT(port_rx_length_error
, RX_LENGTH_ERROR_PKTS
),
1521 EF10_DMA_STAT(port_rx_nodesc_drops
, RX_NODESC_DROPS
),
1522 EFX_GENERIC_SW_STAT(rx_nodesc_trunc
),
1523 EFX_GENERIC_SW_STAT(rx_noskb_drops
),
1524 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow
, PM_TRUNC_BB_OVERFLOW
),
1525 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow
, PM_DISCARD_BB_OVERFLOW
),
1526 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full
, PM_TRUNC_VFIFO_FULL
),
1527 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full
, PM_DISCARD_VFIFO_FULL
),
1528 EF10_DMA_STAT(port_rx_pm_trunc_qbb
, PM_TRUNC_QBB
),
1529 EF10_DMA_STAT(port_rx_pm_discard_qbb
, PM_DISCARD_QBB
),
1530 EF10_DMA_STAT(port_rx_pm_discard_mapping
, PM_DISCARD_MAPPING
),
1531 EF10_DMA_STAT(port_rx_dp_q_disabled_packets
, RXDP_Q_DISABLED_PKTS
),
1532 EF10_DMA_STAT(port_rx_dp_di_dropped_packets
, RXDP_DI_DROPPED_PKTS
),
1533 EF10_DMA_STAT(port_rx_dp_streaming_packets
, RXDP_STREAMING_PKTS
),
1534 EF10_DMA_STAT(port_rx_dp_hlb_fetch
, RXDP_HLB_FETCH_CONDITIONS
),
1535 EF10_DMA_STAT(port_rx_dp_hlb_wait
, RXDP_HLB_WAIT_CONDITIONS
),
1536 EF10_DMA_STAT(rx_unicast
, VADAPTER_RX_UNICAST_PACKETS
),
1537 EF10_DMA_STAT(rx_unicast_bytes
, VADAPTER_RX_UNICAST_BYTES
),
1538 EF10_DMA_STAT(rx_multicast
, VADAPTER_RX_MULTICAST_PACKETS
),
1539 EF10_DMA_STAT(rx_multicast_bytes
, VADAPTER_RX_MULTICAST_BYTES
),
1540 EF10_DMA_STAT(rx_broadcast
, VADAPTER_RX_BROADCAST_PACKETS
),
1541 EF10_DMA_STAT(rx_broadcast_bytes
, VADAPTER_RX_BROADCAST_BYTES
),
1542 EF10_DMA_STAT(rx_bad
, VADAPTER_RX_BAD_PACKETS
),
1543 EF10_DMA_STAT(rx_bad_bytes
, VADAPTER_RX_BAD_BYTES
),
1544 EF10_DMA_STAT(rx_overflow
, VADAPTER_RX_OVERFLOW
),
1545 EF10_DMA_STAT(tx_unicast
, VADAPTER_TX_UNICAST_PACKETS
),
1546 EF10_DMA_STAT(tx_unicast_bytes
, VADAPTER_TX_UNICAST_BYTES
),
1547 EF10_DMA_STAT(tx_multicast
, VADAPTER_TX_MULTICAST_PACKETS
),
1548 EF10_DMA_STAT(tx_multicast_bytes
, VADAPTER_TX_MULTICAST_BYTES
),
1549 EF10_DMA_STAT(tx_broadcast
, VADAPTER_TX_BROADCAST_PACKETS
),
1550 EF10_DMA_STAT(tx_broadcast_bytes
, VADAPTER_TX_BROADCAST_BYTES
),
1551 EF10_DMA_STAT(tx_bad
, VADAPTER_TX_BAD_PACKETS
),
1552 EF10_DMA_STAT(tx_bad_bytes
, VADAPTER_TX_BAD_BYTES
),
1553 EF10_DMA_STAT(tx_overflow
, VADAPTER_TX_OVERFLOW
),
1554 EF10_DMA_STAT(fec_uncorrected_errors
, FEC_UNCORRECTED_ERRORS
),
1555 EF10_DMA_STAT(fec_corrected_errors
, FEC_CORRECTED_ERRORS
),
1556 EF10_DMA_STAT(fec_corrected_symbols_lane0
, FEC_CORRECTED_SYMBOLS_LANE0
),
1557 EF10_DMA_STAT(fec_corrected_symbols_lane1
, FEC_CORRECTED_SYMBOLS_LANE1
),
1558 EF10_DMA_STAT(fec_corrected_symbols_lane2
, FEC_CORRECTED_SYMBOLS_LANE2
),
1559 EF10_DMA_STAT(fec_corrected_symbols_lane3
, FEC_CORRECTED_SYMBOLS_LANE3
),
1560 EF10_DMA_STAT(ctpio_vi_busy_fallback
, CTPIO_VI_BUSY_FALLBACK
),
1561 EF10_DMA_STAT(ctpio_long_write_success
, CTPIO_LONG_WRITE_SUCCESS
),
1562 EF10_DMA_STAT(ctpio_missing_dbell_fail
, CTPIO_MISSING_DBELL_FAIL
),
1563 EF10_DMA_STAT(ctpio_overflow_fail
, CTPIO_OVERFLOW_FAIL
),
1564 EF10_DMA_STAT(ctpio_underflow_fail
, CTPIO_UNDERFLOW_FAIL
),
1565 EF10_DMA_STAT(ctpio_timeout_fail
, CTPIO_TIMEOUT_FAIL
),
1566 EF10_DMA_STAT(ctpio_noncontig_wr_fail
, CTPIO_NONCONTIG_WR_FAIL
),
1567 EF10_DMA_STAT(ctpio_frm_clobber_fail
, CTPIO_FRM_CLOBBER_FAIL
),
1568 EF10_DMA_STAT(ctpio_invalid_wr_fail
, CTPIO_INVALID_WR_FAIL
),
1569 EF10_DMA_STAT(ctpio_vi_clobber_fallback
, CTPIO_VI_CLOBBER_FALLBACK
),
1570 EF10_DMA_STAT(ctpio_unqualified_fallback
, CTPIO_UNQUALIFIED_FALLBACK
),
1571 EF10_DMA_STAT(ctpio_runt_fallback
, CTPIO_RUNT_FALLBACK
),
1572 EF10_DMA_STAT(ctpio_success
, CTPIO_SUCCESS
),
1573 EF10_DMA_STAT(ctpio_fallback
, CTPIO_FALLBACK
),
1574 EF10_DMA_STAT(ctpio_poison
, CTPIO_POISON
),
1575 EF10_DMA_STAT(ctpio_erase
, CTPIO_ERASE
),
1578 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1579 (1ULL << EF10_STAT_port_tx_packets) | \
1580 (1ULL << EF10_STAT_port_tx_pause) | \
1581 (1ULL << EF10_STAT_port_tx_unicast) | \
1582 (1ULL << EF10_STAT_port_tx_multicast) | \
1583 (1ULL << EF10_STAT_port_tx_broadcast) | \
1584 (1ULL << EF10_STAT_port_rx_bytes) | \
1586 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1588 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1589 (1ULL << EF10_STAT_port_rx_packets) | \
1590 (1ULL << EF10_STAT_port_rx_good) | \
1591 (1ULL << EF10_STAT_port_rx_bad) | \
1592 (1ULL << EF10_STAT_port_rx_pause) | \
1593 (1ULL << EF10_STAT_port_rx_control) | \
1594 (1ULL << EF10_STAT_port_rx_unicast) | \
1595 (1ULL << EF10_STAT_port_rx_multicast) | \
1596 (1ULL << EF10_STAT_port_rx_broadcast) | \
1597 (1ULL << EF10_STAT_port_rx_lt64) | \
1598 (1ULL << EF10_STAT_port_rx_64) | \
1599 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1600 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1601 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1602 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1606 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607 (1ULL << EF10_STAT_port_rx_overflow) | \
1608 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1610 (1ULL << GENERIC_STAT_rx_noskb_drops))
1612 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1617 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1618 (1ULL << EF10_STAT_port_tx_lt64) | \
1619 (1ULL << EF10_STAT_port_tx_64) | \
1620 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1627 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1631 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632 (1ULL << EF10_STAT_port_rx_length_error))
1634 /* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1637 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1638 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1639 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1640 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1641 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1642 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1643 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1644 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1645 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1646 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1647 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1648 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1649 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1651 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1656 #define EF10_FEC_STAT_MASK ( \
1657 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1658 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1659 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1660 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1661 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1662 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1664 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1669 #define EF10_CTPIO_STAT_MASK ( \
1670 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1671 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1672 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1673 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1674 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1675 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1676 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1677 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1678 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1679 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1680 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1681 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1682 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1683 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1684 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1685 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1687 static u64
efx_ef10_raw_stat_mask(struct efx_nic
*efx
)
1689 u64 raw_mask
= HUNT_COMMON_STAT_MASK
;
1690 u32 port_caps
= efx_mcdi_phy_get_caps(efx
);
1691 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1693 if (!(efx
->mcdi
->fn_flags
&
1694 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
1697 if (port_caps
& (1 << MC_CMD_PHY_CAP_40000FDX_LBN
)) {
1698 raw_mask
|= HUNT_40G_EXTRA_STAT_MASK
;
1699 /* 8000 series have everything even at 40G */
1700 if (nic_data
->datapath_caps2
&
1701 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN
))
1702 raw_mask
|= HUNT_10G_ONLY_STAT_MASK
;
1704 raw_mask
|= HUNT_10G_ONLY_STAT_MASK
;
1707 if (nic_data
->datapath_caps
&
1708 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN
))
1709 raw_mask
|= HUNT_PM_AND_RXDP_STAT_MASK
;
1714 static void efx_ef10_get_stat_mask(struct efx_nic
*efx
, unsigned long *mask
)
1716 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1719 raw_mask
[0] = efx_ef10_raw_stat_mask(efx
);
1721 /* Only show vadaptor stats when EVB capability is present */
1722 if (nic_data
->datapath_caps
&
1723 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
)) {
1724 raw_mask
[0] |= ~((1ULL << EF10_STAT_rx_unicast
) - 1);
1725 raw_mask
[1] = (1ULL << (EF10_STAT_V1_COUNT
- 64)) - 1;
1729 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730 if (efx
->num_mac_stats
>= MC_CMD_MAC_NSTATS_V2
)
1731 raw_mask
[1] |= EF10_FEC_STAT_MASK
;
1733 /* CTPIO stats appear in V3. Only show them on devices that actually
1734 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735 * and we may be reporting the stats for the underlying port.
1737 if (efx
->num_mac_stats
>= MC_CMD_MAC_NSTATS_V3
&&
1738 (nic_data
->datapath_caps2
&
1739 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN
)))
1740 raw_mask
[1] |= EF10_CTPIO_STAT_MASK
;
1742 #if BITS_PER_LONG == 64
1743 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT
) != 2);
1744 mask
[0] = raw_mask
[0];
1745 mask
[1] = raw_mask
[1];
1747 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT
) != 3);
1748 mask
[0] = raw_mask
[0] & 0xffffffff;
1749 mask
[1] = raw_mask
[0] >> 32;
1750 mask
[2] = raw_mask
[1] & 0xffffffff;
1754 static size_t efx_ef10_describe_stats(struct efx_nic
*efx
, u8
**names
)
1756 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1758 efx_ef10_get_stat_mask(efx
, mask
);
1759 return efx_nic_describe_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
,
1763 static void efx_ef10_get_fec_stats(struct efx_nic
*efx
,
1764 struct ethtool_fec_stats
*fec_stats
)
1766 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1767 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1768 u64
*stats
= nic_data
->stats
;
1770 efx_ef10_get_stat_mask(efx
, mask
);
1771 if (test_bit(EF10_STAT_fec_corrected_errors
, mask
))
1772 fec_stats
->corrected_blocks
.total
=
1773 stats
[EF10_STAT_fec_corrected_errors
];
1774 if (test_bit(EF10_STAT_fec_uncorrected_errors
, mask
))
1775 fec_stats
->uncorrectable_blocks
.total
=
1776 stats
[EF10_STAT_fec_uncorrected_errors
];
1779 static size_t efx_ef10_update_stats_common(struct efx_nic
*efx
, u64
*full_stats
,
1780 struct rtnl_link_stats64
*core_stats
)
1782 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1783 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1784 u64
*stats
= nic_data
->stats
;
1785 size_t stats_count
= 0, index
;
1787 efx_ef10_get_stat_mask(efx
, mask
);
1790 for_each_set_bit(index
, mask
, EF10_STAT_COUNT
) {
1791 if (efx_ef10_stat_desc
[index
].name
) {
1792 *full_stats
++ = stats
[index
];
1801 if (nic_data
->datapath_caps
&
1802 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
) {
1803 /* Use vadaptor stats. */
1804 core_stats
->rx_packets
= stats
[EF10_STAT_rx_unicast
] +
1805 stats
[EF10_STAT_rx_multicast
] +
1806 stats
[EF10_STAT_rx_broadcast
];
1807 core_stats
->tx_packets
= stats
[EF10_STAT_tx_unicast
] +
1808 stats
[EF10_STAT_tx_multicast
] +
1809 stats
[EF10_STAT_tx_broadcast
];
1810 core_stats
->rx_bytes
= stats
[EF10_STAT_rx_unicast_bytes
] +
1811 stats
[EF10_STAT_rx_multicast_bytes
] +
1812 stats
[EF10_STAT_rx_broadcast_bytes
];
1813 core_stats
->tx_bytes
= stats
[EF10_STAT_tx_unicast_bytes
] +
1814 stats
[EF10_STAT_tx_multicast_bytes
] +
1815 stats
[EF10_STAT_tx_broadcast_bytes
];
1816 core_stats
->rx_dropped
= stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1817 stats
[GENERIC_STAT_rx_noskb_drops
];
1818 core_stats
->multicast
= stats
[EF10_STAT_rx_multicast
];
1819 core_stats
->rx_crc_errors
= stats
[EF10_STAT_rx_bad
];
1820 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_rx_overflow
];
1821 core_stats
->rx_errors
= core_stats
->rx_crc_errors
;
1822 core_stats
->tx_errors
= stats
[EF10_STAT_tx_bad
];
1824 /* Use port stats. */
1825 core_stats
->rx_packets
= stats
[EF10_STAT_port_rx_packets
];
1826 core_stats
->tx_packets
= stats
[EF10_STAT_port_tx_packets
];
1827 core_stats
->rx_bytes
= stats
[EF10_STAT_port_rx_bytes
];
1828 core_stats
->tx_bytes
= stats
[EF10_STAT_port_tx_bytes
];
1829 core_stats
->rx_dropped
= stats
[EF10_STAT_port_rx_nodesc_drops
] +
1830 stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1831 stats
[GENERIC_STAT_rx_noskb_drops
];
1832 core_stats
->multicast
= stats
[EF10_STAT_port_rx_multicast
];
1833 core_stats
->rx_length_errors
=
1834 stats
[EF10_STAT_port_rx_gtjumbo
] +
1835 stats
[EF10_STAT_port_rx_length_error
];
1836 core_stats
->rx_crc_errors
= stats
[EF10_STAT_port_rx_bad
];
1837 core_stats
->rx_frame_errors
=
1838 stats
[EF10_STAT_port_rx_align_error
];
1839 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_port_rx_overflow
];
1840 core_stats
->rx_errors
= (core_stats
->rx_length_errors
+
1841 core_stats
->rx_crc_errors
+
1842 core_stats
->rx_frame_errors
);
1848 static size_t efx_ef10_update_stats_pf(struct efx_nic
*efx
, u64
*full_stats
,
1849 struct rtnl_link_stats64
*core_stats
)
1851 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1852 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1853 u64
*stats
= nic_data
->stats
;
1855 efx_ef10_get_stat_mask(efx
, mask
);
1857 /* If NIC was fini'd (probably resetting), then we can't read
1858 * updated stats right now.
1860 if (nic_data
->mc_stats
) {
1861 efx_nic_copy_stats(efx
, nic_data
->mc_stats
);
1862 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
,
1863 mask
, stats
, nic_data
->mc_stats
, false);
1866 /* Update derived statistics */
1867 efx_nic_fix_nodesc_drop_stat(efx
,
1868 &stats
[EF10_STAT_port_rx_nodesc_drops
]);
1869 /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1870 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1871 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1872 * Here we calculate port_rx_good_bytes.
1874 stats
[EF10_STAT_port_rx_good_bytes
] =
1875 stats
[EF10_STAT_port_rx_bytes
] -
1876 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
];
1878 /* The asynchronous reads used to calculate RX_BAD_BYTES in
1879 * MC Firmware are done such that we should not see an increase in
1880 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1881 * does mean that the stat can decrease at times. Here we do not
1882 * update the stat unless it has increased or has gone to zero
1883 * (In the case of the NIC rebooting).
1884 * Please see Bug 33781 for a discussion of why things work this way.
1886 efx_update_diff_stat(&stats
[EF10_STAT_port_rx_bad_bytes
],
1887 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
]);
1888 efx_update_sw_stats(efx
, stats
);
1890 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1893 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic
*efx
)
1894 __must_hold(&efx
->stats_lock
)
1896 MCDI_DECLARE_BUF(inbuf
, MC_CMD_MAC_STATS_IN_LEN
);
1897 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1898 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1899 __le64 generation_start
, generation_end
;
1900 u64
*stats
= nic_data
->stats
;
1901 u32 dma_len
= efx
->num_mac_stats
* sizeof(u64
);
1902 struct efx_buffer stats_buf
;
1906 spin_unlock_bh(&efx
->stats_lock
);
1908 efx_ef10_get_stat_mask(efx
, mask
);
1910 rc
= efx_nic_alloc_buffer(efx
, &stats_buf
, dma_len
, GFP_KERNEL
);
1912 spin_lock_bh(&efx
->stats_lock
);
1916 dma_stats
= stats_buf
.addr
;
1917 dma_stats
[efx
->num_mac_stats
- 1] = EFX_MC_STATS_GENERATION_INVALID
;
1919 MCDI_SET_QWORD(inbuf
, MAC_STATS_IN_DMA_ADDR
, stats_buf
.dma_addr
);
1920 MCDI_POPULATE_DWORD_1(inbuf
, MAC_STATS_IN_CMD
,
1921 MAC_STATS_IN_DMA
, 1);
1922 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_DMA_LEN
, dma_len
);
1923 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_PORT_ID
, EVB_PORT_ID_ASSIGNED
);
1925 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_MAC_STATS
, inbuf
, sizeof(inbuf
),
1927 spin_lock_bh(&efx
->stats_lock
);
1929 /* Expect ENOENT if DMA queues have not been set up */
1930 if (rc
!= -ENOENT
|| atomic_read(&efx
->active_queues
))
1931 efx_mcdi_display_error(efx
, MC_CMD_MAC_STATS
,
1932 sizeof(inbuf
), NULL
, 0, rc
);
1936 generation_end
= dma_stats
[efx
->num_mac_stats
- 1];
1937 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
) {
1942 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
1943 stats
, stats_buf
.addr
, false);
1945 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
1946 if (generation_end
!= generation_start
) {
1951 efx_update_sw_stats(efx
, stats
);
1953 /* releasing a DMA coherent buffer with BH disabled can panic */
1954 spin_unlock_bh(&efx
->stats_lock
);
1955 efx_nic_free_buffer(efx
, &stats_buf
);
1956 spin_lock_bh(&efx
->stats_lock
);
1960 static size_t efx_ef10_update_stats_vf(struct efx_nic
*efx
, u64
*full_stats
,
1961 struct rtnl_link_stats64
*core_stats
)
1963 if (efx_ef10_try_update_nic_stats_vf(efx
))
1966 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1969 static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic
*efx
, u64
*full_stats
,
1970 struct rtnl_link_stats64
*core_stats
)
1972 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1974 /* In atomic context, cannot update HW stats. Just update the
1975 * software stats and return so the caller can continue.
1977 efx_update_sw_stats(efx
, nic_data
->stats
);
1978 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1981 static void efx_ef10_push_irq_moderation(struct efx_channel
*channel
)
1983 struct efx_nic
*efx
= channel
->efx
;
1984 unsigned int mode
, usecs
;
1985 efx_dword_t timer_cmd
;
1987 if (channel
->irq_moderation_us
) {
1989 usecs
= channel
->irq_moderation_us
;
1995 if (EFX_EF10_WORKAROUND_61265(efx
)) {
1996 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_EVQ_TMR_IN_LEN
);
1997 unsigned int ns
= usecs
* 1000;
1999 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_INSTANCE
,
2001 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS
, ns
);
2002 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS
, ns
);
2003 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_TMR_MODE
, mode
);
2005 efx_mcdi_rpc_async(efx
, MC_CMD_SET_EVQ_TMR
,
2006 inbuf
, sizeof(inbuf
), 0, NULL
, 0);
2007 } else if (EFX_EF10_WORKAROUND_35388(efx
)) {
2008 unsigned int ticks
= efx_usecs_to_ticks(efx
, usecs
);
2010 EFX_POPULATE_DWORD_3(timer_cmd
, ERF_DD_EVQ_IND_TIMER_FLAGS
,
2011 EFE_DD_EVQ_IND_TIMER_FLAGS
,
2012 ERF_DD_EVQ_IND_TIMER_MODE
, mode
,
2013 ERF_DD_EVQ_IND_TIMER_VAL
, ticks
);
2014 efx_writed_page(efx
, &timer_cmd
, ER_DD_EVQ_INDIRECT
,
2017 unsigned int ticks
= efx_usecs_to_ticks(efx
, usecs
);
2019 EFX_POPULATE_DWORD_3(timer_cmd
, ERF_DZ_TC_TIMER_MODE
, mode
,
2020 ERF_DZ_TC_TIMER_VAL
, ticks
,
2021 ERF_FZ_TC_TMR_REL_VAL
, ticks
);
2022 efx_writed_page(efx
, &timer_cmd
, ER_DZ_EVQ_TMR
,
2027 static void efx_ef10_get_wol_vf(struct efx_nic
*efx
,
2028 struct ethtool_wolinfo
*wol
) {}
2030 static int efx_ef10_set_wol_vf(struct efx_nic
*efx
, u32 type
)
2035 static void efx_ef10_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
2039 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
2042 static int efx_ef10_set_wol(struct efx_nic
*efx
, u32 type
)
2049 static void efx_ef10_mcdi_request(struct efx_nic
*efx
,
2050 const efx_dword_t
*hdr
, size_t hdr_len
,
2051 const efx_dword_t
*sdu
, size_t sdu_len
)
2053 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2054 u8
*pdu
= nic_data
->mcdi_buf
.addr
;
2056 memcpy(pdu
, hdr
, hdr_len
);
2057 memcpy(pdu
+ hdr_len
, sdu
, sdu_len
);
2060 /* The hardware provides 'low' and 'high' (doorbell) registers
2061 * for passing the 64-bit address of an MCDI request to
2062 * firmware. However the dwords are swapped by firmware. The
2063 * least significant bits of the doorbell are then 0 for all
2064 * MCDI requests due to alignment.
2066 _efx_writed(efx
, cpu_to_le32((u64
)nic_data
->mcdi_buf
.dma_addr
>> 32),
2068 _efx_writed(efx
, cpu_to_le32((u32
)nic_data
->mcdi_buf
.dma_addr
),
2072 static bool efx_ef10_mcdi_poll_response(struct efx_nic
*efx
)
2074 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2075 const efx_dword_t hdr
= *(const efx_dword_t
*)nic_data
->mcdi_buf
.addr
;
2078 return EFX_DWORD_FIELD(hdr
, MCDI_HEADER_RESPONSE
);
2082 efx_ef10_mcdi_read_response(struct efx_nic
*efx
, efx_dword_t
*outbuf
,
2083 size_t offset
, size_t outlen
)
2085 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2086 const u8
*pdu
= nic_data
->mcdi_buf
.addr
;
2088 memcpy(outbuf
, pdu
+ offset
, outlen
);
2091 static void efx_ef10_mcdi_reboot_detected(struct efx_nic
*efx
)
2093 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2095 /* All our allocations have been reset */
2096 efx_ef10_table_reset_mc_allocations(efx
);
2098 /* The datapath firmware might have been changed */
2099 nic_data
->must_check_datapath_caps
= true;
2101 /* MAC statistics have been cleared on the NIC; clear the local
2102 * statistic that we update with efx_update_diff_stat().
2104 nic_data
->stats
[EF10_STAT_port_rx_bad_bytes
] = 0;
2107 static int efx_ef10_mcdi_poll_reboot(struct efx_nic
*efx
)
2109 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2112 rc
= efx_ef10_get_warm_boot_count(efx
);
2114 /* The firmware is presumably in the process of
2115 * rebooting. However, we are supposed to report each
2116 * reboot just once, so we must only do that once we
2117 * can read and store the updated warm boot count.
2122 if (rc
== nic_data
->warm_boot_count
)
2125 nic_data
->warm_boot_count
= rc
;
2126 efx_ef10_mcdi_reboot_detected(efx
);
2131 /* Handle an MSI interrupt
2133 * Handle an MSI hardware interrupt. This routine schedules event
2134 * queue processing. No interrupt acknowledgement cycle is necessary.
2135 * Also, we never need to check that the interrupt is for us, since
2136 * MSI interrupts cannot be shared.
2138 static irqreturn_t
efx_ef10_msi_interrupt(int irq
, void *dev_id
)
2140 struct efx_msi_context
*context
= dev_id
;
2141 struct efx_nic
*efx
= context
->efx
;
2143 netif_vdbg(efx
, intr
, efx
->net_dev
,
2144 "IRQ %d on CPU %d\n", irq
, raw_smp_processor_id());
2146 if (likely(READ_ONCE(efx
->irq_soft_enabled
))) {
2147 /* Note test interrupts */
2148 if (context
->index
== efx
->irq_level
)
2149 efx
->last_irq_cpu
= raw_smp_processor_id();
2151 /* Schedule processing of the channel */
2152 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
2158 static irqreturn_t
efx_ef10_legacy_interrupt(int irq
, void *dev_id
)
2160 struct efx_nic
*efx
= dev_id
;
2161 bool soft_enabled
= READ_ONCE(efx
->irq_soft_enabled
);
2162 struct efx_channel
*channel
;
2166 /* Read the ISR which also ACKs the interrupts */
2167 efx_readd(efx
, ®
, ER_DZ_BIU_INT_ISR
);
2168 queues
= EFX_DWORD_FIELD(reg
, ERF_DZ_ISR_REG
);
2173 if (likely(soft_enabled
)) {
2174 /* Note test interrupts */
2175 if (queues
& (1U << efx
->irq_level
))
2176 efx
->last_irq_cpu
= raw_smp_processor_id();
2178 efx_for_each_channel(channel
, efx
) {
2180 efx_schedule_channel_irq(channel
);
2185 netif_vdbg(efx
, intr
, efx
->net_dev
,
2186 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
2187 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
2192 static int efx_ef10_irq_test_generate(struct efx_nic
*efx
)
2194 MCDI_DECLARE_BUF(inbuf
, MC_CMD_TRIGGER_INTERRUPT_IN_LEN
);
2196 if (efx_mcdi_set_workaround(efx
, MC_CMD_WORKAROUND_BUG41750
, true,
2200 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN
!= 0);
2202 MCDI_SET_DWORD(inbuf
, TRIGGER_INTERRUPT_IN_INTR_LEVEL
, efx
->irq_level
);
2203 return efx_mcdi_rpc(efx
, MC_CMD_TRIGGER_INTERRUPT
,
2204 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
2207 static int efx_ef10_tx_probe(struct efx_tx_queue
*tx_queue
)
2209 /* low two bits of label are what we want for type */
2210 BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM
| EFX_TXQ_TYPE_INNER_CSUM
) != 3);
2211 tx_queue
->type
= tx_queue
->label
& 3;
2212 return efx_nic_alloc_buffer(tx_queue
->efx
, &tx_queue
->txd
,
2213 (tx_queue
->ptr_mask
+ 1) *
2214 sizeof(efx_qword_t
),
2218 /* This writes to the TX_DESC_WPTR and also pushes data */
2219 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue
*tx_queue
,
2220 const efx_qword_t
*txd
)
2222 unsigned int write_ptr
;
2225 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
2226 EFX_POPULATE_OWORD_1(reg
, ERF_DZ_TX_DESC_WPTR
, write_ptr
);
2227 reg
.qword
[0] = *txd
;
2228 efx_writeo_page(tx_queue
->efx
, ®
,
2229 ER_DZ_TX_DESC_UPD
, tx_queue
->queue
);
2232 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2234 int efx_ef10_tx_tso_desc(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
,
2237 struct efx_tx_buffer
*buffer
;
2238 u16 inner_ipv4_id
= 0;
2239 u16 outer_ipv4_id
= 0;
2246 EFX_WARN_ON_ONCE_PARANOID(tx_queue
->tso_version
!= 2);
2248 mss
= skb_shinfo(skb
)->gso_size
;
2250 if (unlikely(mss
< 4)) {
2251 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss
);
2255 if (skb
->encapsulation
) {
2256 if (!tx_queue
->tso_encap
)
2259 if (ip
->version
== 4)
2260 outer_ipv4_id
= ntohs(ip
->id
);
2262 ip
= inner_ip_hdr(skb
);
2263 tcp
= inner_tcp_hdr(skb
);
2269 /* 8000-series EF10 hardware requires that IP Total Length be
2270 * greater than or equal to the value it will have in each segment
2271 * (which is at most mss + 208 + TCP header length), but also less
2272 * than (0x10000 - inner_network_header). Otherwise the TCP
2273 * checksum calculation will be broken for encapsulated packets.
2274 * We fill in ip->tot_len with 0xff30, which should satisfy the
2275 * first requirement unless the MSS is ridiculously large (which
2276 * should be impossible as the driver max MTU is 9216); it is
2277 * guaranteed to satisfy the second as we only attempt TSO if
2278 * inner_network_header <= 208.
2280 ip_tot_len
= 0x10000 - EFX_TSO2_MAX_HDRLEN
;
2281 EFX_WARN_ON_ONCE_PARANOID(mss
+ EFX_TSO2_MAX_HDRLEN
+
2282 (tcp
->doff
<< 2u) > ip_tot_len
);
2284 if (ip
->version
== 4) {
2285 ip
->tot_len
= htons(ip_tot_len
);
2287 inner_ipv4_id
= ntohs(ip
->id
);
2289 ((struct ipv6hdr
*)ip
)->payload_len
= htons(ip_tot_len
);
2292 seqnum
= ntohl(tcp
->seq
);
2294 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
2296 buffer
->flags
= EFX_TX_BUF_OPTION
;
2298 buffer
->unmap_len
= 0;
2299 EFX_POPULATE_QWORD_5(buffer
->option
,
2300 ESF_DZ_TX_DESC_IS_OPT
, 1,
2301 ESF_DZ_TX_OPTION_TYPE
, ESE_DZ_TX_OPTION_DESC_TSO
,
2302 ESF_DZ_TX_TSO_OPTION_TYPE
,
2303 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A
,
2304 ESF_DZ_TX_TSO_IP_ID
, inner_ipv4_id
,
2305 ESF_DZ_TX_TSO_TCP_SEQNO
, seqnum
2307 ++tx_queue
->insert_count
;
2309 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
2311 buffer
->flags
= EFX_TX_BUF_OPTION
;
2313 buffer
->unmap_len
= 0;
2314 EFX_POPULATE_QWORD_5(buffer
->option
,
2315 ESF_DZ_TX_DESC_IS_OPT
, 1,
2316 ESF_DZ_TX_OPTION_TYPE
, ESE_DZ_TX_OPTION_DESC_TSO
,
2317 ESF_DZ_TX_TSO_OPTION_TYPE
,
2318 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B
,
2319 ESF_DZ_TX_TSO_OUTER_IPID
, outer_ipv4_id
,
2320 ESF_DZ_TX_TSO_TCP_MSS
, mss
2322 ++tx_queue
->insert_count
;
2327 static u32
efx_ef10_tso_versions(struct efx_nic
*efx
)
2329 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2330 u32 tso_versions
= 0;
2332 if (nic_data
->datapath_caps
&
2333 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN
))
2334 tso_versions
|= BIT(1);
2335 if (nic_data
->datapath_caps2
&
2336 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN
))
2337 tso_versions
|= BIT(2);
2338 return tso_versions
;
2341 static void efx_ef10_tx_init(struct efx_tx_queue
*tx_queue
)
2343 bool csum_offload
= tx_queue
->type
& EFX_TXQ_TYPE_OUTER_CSUM
;
2344 bool inner_csum
= tx_queue
->type
& EFX_TXQ_TYPE_INNER_CSUM
;
2345 struct efx_channel
*channel
= tx_queue
->channel
;
2346 struct efx_nic
*efx
= tx_queue
->efx
;
2347 struct efx_ef10_nic_data
*nic_data
;
2351 nic_data
= efx
->nic_data
;
2353 /* Only attempt to enable TX timestamping if we have the license for it,
2354 * otherwise TXQ init will fail
2356 if (!(nic_data
->licensed_features
&
2357 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN
))) {
2358 tx_queue
->timestamping
= false;
2359 /* Disable sync events on this channel. */
2360 if (efx
->type
->ptp_set_ts_sync_events
)
2361 efx
->type
->ptp_set_ts_sync_events(efx
, false, false);
2364 /* TSOv2 is a limited resource that can only be configured on a limited
2365 * number of queues. TSO without checksum offload is not really a thing,
2366 * so we only enable it for those queues.
2367 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2370 if (efx_has_cap(efx
, TX_TSO_V2
)) {
2371 if ((csum_offload
|| inner_csum
) &&
2372 !tx_queue
->timestamping
&& !tx_queue
->xdp_tx
) {
2373 tx_queue
->tso_version
= 2;
2374 netif_dbg(efx
, hw
, efx
->net_dev
, "Using TSOv2 for channel %u\n",
2377 } else if (efx_has_cap(efx
, TX_TSO
)) {
2378 tx_queue
->tso_version
= 1;
2381 rc
= efx_mcdi_tx_init(tx_queue
);
2385 /* A previous user of this TX queue might have set us up the
2386 * bomb by writing a descriptor to the TX push collector but
2387 * not the doorbell. (Each collector belongs to a port, not a
2388 * queue or function, so cannot easily be reset.) We must
2389 * attempt to push a no-op descriptor in its place.
2391 tx_queue
->buffer
[0].flags
= EFX_TX_BUF_OPTION
;
2392 tx_queue
->insert_count
= 1;
2393 txd
= efx_tx_desc(tx_queue
, 0);
2394 EFX_POPULATE_QWORD_7(*txd
,
2395 ESF_DZ_TX_DESC_IS_OPT
, true,
2396 ESF_DZ_TX_OPTION_TYPE
,
2397 ESE_DZ_TX_OPTION_DESC_CRC_CSUM
,
2398 ESF_DZ_TX_OPTION_UDP_TCP_CSUM
, csum_offload
,
2399 ESF_DZ_TX_OPTION_IP_CSUM
, csum_offload
&& tx_queue
->tso_version
!= 2,
2400 ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM
, inner_csum
,
2401 ESF_DZ_TX_OPTION_INNER_IP_CSUM
, inner_csum
&& tx_queue
->tso_version
!= 2,
2402 ESF_DZ_TX_TIMESTAMP
, tx_queue
->timestamping
);
2403 tx_queue
->write_count
= 1;
2405 if (tx_queue
->tso_version
== 2 && efx_has_cap(efx
, TX_TSO_V2_ENCAP
))
2406 tx_queue
->tso_encap
= true;
2409 efx_ef10_push_tx_desc(tx_queue
, txd
);
2414 netdev_WARN(efx
->net_dev
, "failed to initialise TXQ %d\n",
2418 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2419 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
2421 unsigned int write_ptr
;
2424 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
2425 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_TX_DESC_WPTR_DWORD
, write_ptr
);
2426 efx_writed_page(tx_queue
->efx
, ®
,
2427 ER_DZ_TX_DESC_UPD_DWORD
, tx_queue
->queue
);
2430 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2432 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue
*tx_queue
,
2433 dma_addr_t dma_addr
, unsigned int len
)
2435 if (len
> EFX_EF10_MAX_TX_DESCRIPTOR_LEN
) {
2436 /* If we need to break across multiple descriptors we should
2437 * stop at a page boundary. This assumes the length limit is
2438 * greater than the page size.
2440 dma_addr_t end
= dma_addr
+ EFX_EF10_MAX_TX_DESCRIPTOR_LEN
;
2442 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN
< EFX_PAGE_SIZE
);
2443 len
= (end
& (~(EFX_PAGE_SIZE
- 1))) - dma_addr
;
2449 static void efx_ef10_tx_write(struct efx_tx_queue
*tx_queue
)
2451 unsigned int old_write_count
= tx_queue
->write_count
;
2452 struct efx_tx_buffer
*buffer
;
2453 unsigned int write_ptr
;
2456 tx_queue
->xmit_pending
= false;
2457 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
2461 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
2462 buffer
= &tx_queue
->buffer
[write_ptr
];
2463 txd
= efx_tx_desc(tx_queue
, write_ptr
);
2464 ++tx_queue
->write_count
;
2466 /* Create TX descriptor ring entry */
2467 if (buffer
->flags
& EFX_TX_BUF_OPTION
) {
2468 *txd
= buffer
->option
;
2469 if (EFX_QWORD_FIELD(*txd
, ESF_DZ_TX_OPTION_TYPE
) == 1)
2470 /* PIO descriptor */
2471 tx_queue
->packet_write_count
= tx_queue
->write_count
;
2473 tx_queue
->packet_write_count
= tx_queue
->write_count
;
2474 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
2475 EFX_POPULATE_QWORD_3(
2478 buffer
->flags
& EFX_TX_BUF_CONT
,
2479 ESF_DZ_TX_KER_BYTE_CNT
, buffer
->len
,
2480 ESF_DZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
2482 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
2484 wmb(); /* Ensure descriptors are written before they are fetched */
2486 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
2487 txd
= efx_tx_desc(tx_queue
,
2488 old_write_count
& tx_queue
->ptr_mask
);
2489 efx_ef10_push_tx_desc(tx_queue
, txd
);
2492 efx_ef10_notify_tx_desc(tx_queue
);
2496 static int efx_ef10_probe_multicast_chaining(struct efx_nic
*efx
)
2498 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2499 unsigned int enabled
, implemented
;
2500 bool want_workaround_26807
;
2503 rc
= efx_mcdi_get_workarounds(efx
, &implemented
, &enabled
);
2504 if (rc
== -ENOSYS
) {
2505 /* GET_WORKAROUNDS was implemented before this workaround,
2506 * thus it must be unavailable in this firmware.
2508 nic_data
->workaround_26807
= false;
2513 want_workaround_26807
=
2514 implemented
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
;
2515 nic_data
->workaround_26807
=
2516 !!(enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
);
2518 if (want_workaround_26807
&& !nic_data
->workaround_26807
) {
2521 rc
= efx_mcdi_set_workaround(efx
,
2522 MC_CMD_WORKAROUND_BUG26807
,
2526 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN
) {
2527 netif_info(efx
, drv
, efx
->net_dev
,
2528 "other functions on NIC have been reset\n");
2530 /* With MCFW v4.6.x and earlier, the
2531 * boot count will have incremented,
2532 * so re-read the warm_boot_count
2533 * value now to ensure this function
2534 * doesn't think it has changed next
2537 rc
= efx_ef10_get_warm_boot_count(efx
);
2539 nic_data
->warm_boot_count
= rc
;
2543 nic_data
->workaround_26807
= true;
2544 } else if (rc
== -EPERM
) {
2551 static int efx_ef10_filter_table_probe(struct efx_nic
*efx
)
2553 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2554 int rc
= efx_ef10_probe_multicast_chaining(efx
);
2555 struct efx_mcdi_filter_vlan
*vlan
;
2559 down_write(&efx
->filter_sem
);
2560 rc
= efx_mcdi_filter_table_probe(efx
, nic_data
->workaround_26807
);
2565 list_for_each_entry(vlan
, &nic_data
->vlan_list
, list
) {
2566 rc
= efx_mcdi_filter_add_vlan(efx
, vlan
->vid
);
2573 efx_mcdi_filter_table_remove(efx
);
2575 up_write(&efx
->filter_sem
);
2579 static void efx_ef10_filter_table_remove(struct efx_nic
*efx
)
2581 down_write(&efx
->filter_sem
);
2582 efx_mcdi_filter_table_remove(efx
);
2583 up_write(&efx
->filter_sem
);
2586 /* This creates an entry in the RX descriptor queue */
2588 efx_ef10_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
2590 struct efx_rx_buffer
*rx_buf
;
2593 rxd
= efx_rx_desc(rx_queue
, index
);
2594 rx_buf
= efx_rx_buffer(rx_queue
, index
);
2595 EFX_POPULATE_QWORD_2(*rxd
,
2596 ESF_DZ_RX_KER_BYTE_CNT
, rx_buf
->len
,
2597 ESF_DZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
2600 static void efx_ef10_rx_write(struct efx_rx_queue
*rx_queue
)
2602 struct efx_nic
*efx
= rx_queue
->efx
;
2603 unsigned int write_count
;
2606 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2607 write_count
= rx_queue
->added_count
& ~7;
2608 if (rx_queue
->notified_count
== write_count
)
2612 efx_ef10_build_rx_desc(
2614 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
2615 while (++rx_queue
->notified_count
!= write_count
);
2618 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_RX_DESC_WPTR
,
2619 write_count
& rx_queue
->ptr_mask
);
2620 efx_writed_page(efx
, ®
, ER_DZ_RX_DESC_UPD
,
2621 efx_rx_queue_index(rx_queue
));
2624 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete
;
2626 static void efx_ef10_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
2628 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
2629 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
2632 EFX_POPULATE_QWORD_2(event
,
2633 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
2634 ESF_DZ_EV_DATA
, EFX_EF10_REFILL
);
2636 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
2638 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2639 * already swapped the data to little-endian order.
2641 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
2642 sizeof(efx_qword_t
));
2644 efx_mcdi_rpc_async(channel
->efx
, MC_CMD_DRIVER_EVENT
,
2645 inbuf
, sizeof(inbuf
), 0,
2646 efx_ef10_rx_defer_refill_complete
, 0);
2650 efx_ef10_rx_defer_refill_complete(struct efx_nic
*efx
, unsigned long cookie
,
2651 int rc
, efx_dword_t
*outbuf
,
2652 size_t outlen_actual
)
2657 static int efx_ef10_ev_init(struct efx_channel
*channel
)
2659 struct efx_nic
*efx
= channel
->efx
;
2660 struct efx_ef10_nic_data
*nic_data
;
2661 bool use_v2
, cut_thru
;
2663 nic_data
= efx
->nic_data
;
2664 use_v2
= nic_data
->datapath_caps2
&
2665 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN
;
2666 cut_thru
= !(nic_data
->datapath_caps
&
2667 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
);
2668 return efx_mcdi_ev_init(channel
, cut_thru
, use_v2
);
2671 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue
*rx_queue
,
2672 unsigned int rx_queue_label
)
2674 struct efx_nic
*efx
= rx_queue
->efx
;
2676 netif_info(efx
, hw
, efx
->net_dev
,
2677 "rx event arrived on queue %d labeled as queue %u\n",
2678 efx_rx_queue_index(rx_queue
), rx_queue_label
);
2680 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
2684 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue
*rx_queue
,
2685 unsigned int actual
, unsigned int expected
)
2687 unsigned int dropped
= (actual
- expected
) & rx_queue
->ptr_mask
;
2688 struct efx_nic
*efx
= rx_queue
->efx
;
2690 netif_info(efx
, hw
, efx
->net_dev
,
2691 "dropped %d events (index=%d expected=%d)\n",
2692 dropped
, actual
, expected
);
2694 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
2697 /* partially received RX was aborted. clean up. */
2698 static void efx_ef10_handle_rx_abort(struct efx_rx_queue
*rx_queue
)
2700 unsigned int rx_desc_ptr
;
2702 netif_dbg(rx_queue
->efx
, hw
, rx_queue
->efx
->net_dev
,
2703 "scattered RX aborted (dropping %u buffers)\n",
2704 rx_queue
->scatter_n
);
2706 rx_desc_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
2708 efx_rx_packet(rx_queue
, rx_desc_ptr
, rx_queue
->scatter_n
,
2709 0, EFX_RX_PKT_DISCARD
);
2711 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
2712 rx_queue
->scatter_n
= 0;
2713 rx_queue
->scatter_len
= 0;
2714 ++efx_rx_queue_channel(rx_queue
)->n_rx_nodesc_trunc
;
2717 static u16
efx_ef10_handle_rx_event_errors(struct efx_channel
*channel
,
2718 unsigned int n_packets
,
2719 unsigned int rx_encap_hdr
,
2720 unsigned int rx_l3_class
,
2721 unsigned int rx_l4_class
,
2722 const efx_qword_t
*event
)
2724 struct efx_nic
*efx
= channel
->efx
;
2725 bool handled
= false;
2727 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_ECRC_ERR
)) {
2728 if (!(efx
->net_dev
->features
& NETIF_F_RXALL
)) {
2729 if (!efx
->loopback_selftest
)
2730 channel
->n_rx_eth_crc_err
+= n_packets
;
2731 return EFX_RX_PKT_DISCARD
;
2735 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_IPCKSUM_ERR
)) {
2736 if (unlikely(rx_encap_hdr
!= ESE_EZ_ENCAP_HDR_VXLAN
&&
2737 rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
2738 rx_l3_class
!= ESE_DZ_L3_CLASS_IP4_FRAG
&&
2739 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
&&
2740 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6_FRAG
))
2741 netdev_WARN(efx
->net_dev
,
2742 "invalid class for RX_IPCKSUM_ERR: event="
2744 EFX_QWORD_VAL(*event
));
2745 if (!efx
->loopback_selftest
)
2747 &channel
->n_rx_outer_ip_hdr_chksum_err
:
2748 &channel
->n_rx_ip_hdr_chksum_err
) += n_packets
;
2751 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_TCPUDP_CKSUM_ERR
)) {
2752 if (unlikely(rx_encap_hdr
!= ESE_EZ_ENCAP_HDR_VXLAN
&&
2753 ((rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
2754 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
) ||
2755 (rx_l4_class
!= ESE_FZ_L4_CLASS_TCP
&&
2756 rx_l4_class
!= ESE_FZ_L4_CLASS_UDP
))))
2757 netdev_WARN(efx
->net_dev
,
2758 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2760 EFX_QWORD_VAL(*event
));
2761 if (!efx
->loopback_selftest
)
2763 &channel
->n_rx_outer_tcp_udp_chksum_err
:
2764 &channel
->n_rx_tcp_udp_chksum_err
) += n_packets
;
2767 if (EFX_QWORD_FIELD(*event
, ESF_EZ_RX_IP_INNER_CHKSUM_ERR
)) {
2768 if (unlikely(!rx_encap_hdr
))
2769 netdev_WARN(efx
->net_dev
,
2770 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2772 EFX_QWORD_VAL(*event
));
2773 else if (unlikely(rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
2774 rx_l3_class
!= ESE_DZ_L3_CLASS_IP4_FRAG
&&
2775 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
&&
2776 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6_FRAG
))
2777 netdev_WARN(efx
->net_dev
,
2778 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2780 EFX_QWORD_VAL(*event
));
2781 if (!efx
->loopback_selftest
)
2782 channel
->n_rx_inner_ip_hdr_chksum_err
+= n_packets
;
2785 if (EFX_QWORD_FIELD(*event
, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR
)) {
2786 if (unlikely(!rx_encap_hdr
))
2787 netdev_WARN(efx
->net_dev
,
2788 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2790 EFX_QWORD_VAL(*event
));
2791 else if (unlikely((rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
2792 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
) ||
2793 (rx_l4_class
!= ESE_FZ_L4_CLASS_TCP
&&
2794 rx_l4_class
!= ESE_FZ_L4_CLASS_UDP
)))
2795 netdev_WARN(efx
->net_dev
,
2796 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2798 EFX_QWORD_VAL(*event
));
2799 if (!efx
->loopback_selftest
)
2800 channel
->n_rx_inner_tcp_udp_chksum_err
+= n_packets
;
2804 WARN_ON(!handled
); /* No error bits were recognised */
2808 static int efx_ef10_handle_rx_event(struct efx_channel
*channel
,
2809 const efx_qword_t
*event
)
2811 unsigned int rx_bytes
, next_ptr_lbits
, rx_queue_label
;
2812 unsigned int rx_l3_class
, rx_l4_class
, rx_encap_hdr
;
2813 unsigned int n_descs
, n_packets
, i
;
2814 struct efx_nic
*efx
= channel
->efx
;
2815 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2816 struct efx_rx_queue
*rx_queue
;
2821 if (unlikely(READ_ONCE(efx
->reset_pending
)))
2824 /* Basic packet information */
2825 rx_bytes
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_BYTES
);
2826 next_ptr_lbits
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DSC_PTR_LBITS
);
2827 rx_queue_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_QLABEL
);
2828 rx_l3_class
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_L3_CLASS
);
2829 rx_l4_class
= EFX_QWORD_FIELD(*event
, ESF_FZ_RX_L4_CLASS
);
2830 rx_cont
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_CONT
);
2832 nic_data
->datapath_caps
&
2833 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
) ?
2834 EFX_QWORD_FIELD(*event
, ESF_EZ_RX_ENCAP_HDR
) :
2835 ESE_EZ_ENCAP_HDR_NONE
;
2837 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DROP_EVENT
))
2838 netdev_WARN(efx
->net_dev
, "saw RX_DROP_EVENT: event="
2840 EFX_QWORD_VAL(*event
));
2842 rx_queue
= efx_channel_get_rx_queue(channel
);
2844 if (unlikely(rx_queue_label
!= efx_rx_queue_index(rx_queue
)))
2845 efx_ef10_handle_rx_wrong_queue(rx_queue
, rx_queue_label
);
2847 n_descs
= ((next_ptr_lbits
- rx_queue
->removed_count
) &
2848 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
2850 if (n_descs
!= rx_queue
->scatter_n
+ 1) {
2851 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2853 /* detect rx abort */
2854 if (unlikely(n_descs
== rx_queue
->scatter_n
)) {
2855 if (rx_queue
->scatter_n
== 0 || rx_bytes
!= 0)
2856 netdev_WARN(efx
->net_dev
,
2857 "invalid RX abort: scatter_n=%u event="
2859 rx_queue
->scatter_n
,
2860 EFX_QWORD_VAL(*event
));
2861 efx_ef10_handle_rx_abort(rx_queue
);
2865 /* Check that RX completion merging is valid, i.e.
2866 * the current firmware supports it and this is a
2867 * non-scattered packet.
2869 if (!(nic_data
->datapath_caps
&
2870 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
)) ||
2871 rx_queue
->scatter_n
!= 0 || rx_cont
) {
2872 efx_ef10_handle_rx_bad_lbits(
2873 rx_queue
, next_ptr_lbits
,
2874 (rx_queue
->removed_count
+
2875 rx_queue
->scatter_n
+ 1) &
2876 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
2880 /* Merged completion for multiple non-scattered packets */
2881 rx_queue
->scatter_n
= 1;
2882 rx_queue
->scatter_len
= 0;
2883 n_packets
= n_descs
;
2884 ++channel
->n_rx_merge_events
;
2885 channel
->n_rx_merge_packets
+= n_packets
;
2886 flags
|= EFX_RX_PKT_PREFIX_LEN
;
2888 ++rx_queue
->scatter_n
;
2889 rx_queue
->scatter_len
+= rx_bytes
;
2895 EFX_POPULATE_QWORD_5(errors
, ESF_DZ_RX_ECRC_ERR
, 1,
2896 ESF_DZ_RX_IPCKSUM_ERR
, 1,
2897 ESF_DZ_RX_TCPUDP_CKSUM_ERR
, 1,
2898 ESF_EZ_RX_IP_INNER_CHKSUM_ERR
, 1,
2899 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR
, 1);
2900 EFX_AND_QWORD(errors
, *event
, errors
);
2901 if (unlikely(!EFX_QWORD_IS_ZERO(errors
))) {
2902 flags
|= efx_ef10_handle_rx_event_errors(channel
, n_packets
,
2904 rx_l3_class
, rx_l4_class
,
2907 bool tcpudp
= rx_l4_class
== ESE_FZ_L4_CLASS_TCP
||
2908 rx_l4_class
== ESE_FZ_L4_CLASS_UDP
;
2910 switch (rx_encap_hdr
) {
2911 case ESE_EZ_ENCAP_HDR_VXLAN
: /* VxLAN or GENEVE */
2912 flags
|= EFX_RX_PKT_CSUMMED
; /* outer UDP csum */
2914 flags
|= EFX_RX_PKT_CSUM_LEVEL
; /* inner L4 */
2916 case ESE_EZ_ENCAP_HDR_GRE
:
2917 case ESE_EZ_ENCAP_HDR_NONE
:
2919 flags
|= EFX_RX_PKT_CSUMMED
;
2922 netdev_WARN(efx
->net_dev
,
2923 "unknown encapsulation type: event="
2925 EFX_QWORD_VAL(*event
));
2929 if (rx_l4_class
== ESE_FZ_L4_CLASS_TCP
)
2930 flags
|= EFX_RX_PKT_TCP
;
2932 channel
->irq_mod_score
+= 2 * n_packets
;
2934 /* Handle received packet(s) */
2935 for (i
= 0; i
< n_packets
; i
++) {
2936 efx_rx_packet(rx_queue
,
2937 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
2938 rx_queue
->scatter_n
, rx_queue
->scatter_len
,
2940 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
2943 rx_queue
->scatter_n
= 0;
2944 rx_queue
->scatter_len
= 0;
2949 static u32
efx_ef10_extract_event_ts(efx_qword_t
*event
)
2953 tstamp
= EFX_QWORD_FIELD(*event
, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI
);
2955 tstamp
|= EFX_QWORD_FIELD(*event
, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO
);
2961 efx_ef10_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
2963 struct efx_nic
*efx
= channel
->efx
;
2964 struct efx_tx_queue
*tx_queue
;
2965 unsigned int tx_ev_desc_ptr
;
2966 unsigned int tx_ev_q_label
;
2967 unsigned int tx_ev_type
;
2971 if (unlikely(READ_ONCE(efx
->reset_pending
)))
2974 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DROP_EVENT
)))
2977 /* Get the transmit queue */
2978 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_QLABEL
);
2979 tx_queue
= channel
->tx_queue
+ (tx_ev_q_label
% EFX_MAX_TXQ_PER_CHANNEL
);
2981 if (!tx_queue
->timestamping
) {
2982 /* Transmit completion */
2983 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DESCR_INDX
);
2984 return efx_xmit_done(tx_queue
, tx_ev_desc_ptr
& tx_queue
->ptr_mask
);
2987 /* Transmit timestamps are only available for 8XXX series. They result
2988 * in up to three events per packet. These occur in order, and are:
2989 * - the normal completion event (may be omitted)
2990 * - the low part of the timestamp
2991 * - the high part of the timestamp
2993 * It's possible for multiple completion events to appear before the
2994 * corresponding timestamps. So we can for example get:
3002 * In addition it's also possible for the adjacent completions to be
3003 * merged, so we may not see COMP N above. As such, the completion
3004 * events are not very useful here.
3006 * Each part of the timestamp is itself split across two 16 bit
3007 * fields in the event.
3009 tx_ev_type
= EFX_QWORD_FIELD(*event
, ESF_EZ_TX_SOFT1
);
3012 switch (tx_ev_type
) {
3013 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION
:
3014 /* Ignore this event - see above. */
3017 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO
:
3018 ts_part
= efx_ef10_extract_event_ts(event
);
3019 tx_queue
->completed_timestamp_minor
= ts_part
;
3022 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI
:
3023 ts_part
= efx_ef10_extract_event_ts(event
);
3024 tx_queue
->completed_timestamp_major
= ts_part
;
3026 efx_xmit_done_single(tx_queue
);
3031 netif_err(efx
, hw
, efx
->net_dev
,
3032 "channel %d unknown tx event type %d (data "
3033 EFX_QWORD_FMT
")\n",
3034 channel
->channel
, tx_ev_type
,
3035 EFX_QWORD_VAL(*event
));
3043 efx_ef10_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
3045 struct efx_nic
*efx
= channel
->efx
;
3048 subcode
= EFX_QWORD_FIELD(*event
, ESF_DZ_DRV_SUB_CODE
);
3051 case ESE_DZ_DRV_TIMER_EV
:
3052 case ESE_DZ_DRV_WAKE_UP_EV
:
3054 case ESE_DZ_DRV_START_UP_EV
:
3055 /* event queue init complete. ok. */
3058 netif_err(efx
, hw
, efx
->net_dev
,
3059 "channel %d unknown driver event type %d"
3060 " (data " EFX_QWORD_FMT
")\n",
3061 channel
->channel
, subcode
,
3062 EFX_QWORD_VAL(*event
));
3067 static void efx_ef10_handle_driver_generated_event(struct efx_channel
*channel
,
3070 struct efx_nic
*efx
= channel
->efx
;
3073 subcode
= EFX_QWORD_FIELD(*event
, EFX_DWORD_0
);
3077 channel
->event_test_cpu
= raw_smp_processor_id();
3079 case EFX_EF10_REFILL
:
3080 /* The queue must be empty, so we won't receive any rx
3081 * events, so efx_process_channel() won't refill the
3082 * queue. Refill it here
3084 efx_fast_push_rx_descriptors(&channel
->rx_queue
, true);
3087 netif_err(efx
, hw
, efx
->net_dev
,
3088 "channel %d unknown driver event type %u"
3089 " (data " EFX_QWORD_FMT
")\n",
3090 channel
->channel
, (unsigned) subcode
,
3091 EFX_QWORD_VAL(*event
));
3095 #define EFX_NAPI_MAX_TX 512
3097 static int efx_ef10_ev_process(struct efx_channel
*channel
, int quota
)
3099 struct efx_nic
*efx
= channel
->efx
;
3100 efx_qword_t event
, *p_event
;
3101 unsigned int read_ptr
;
3109 read_ptr
= channel
->eventq_read_ptr
;
3112 p_event
= efx_event(channel
, read_ptr
);
3115 if (!efx_event_present(&event
))
3118 EFX_SET_QWORD(*p_event
);
3122 ev_code
= EFX_QWORD_FIELD(event
, ESF_DZ_EV_CODE
);
3124 netif_vdbg(efx
, drv
, efx
->net_dev
,
3125 "processing event on %d " EFX_QWORD_FMT
"\n",
3126 channel
->channel
, EFX_QWORD_VAL(event
));
3129 case ESE_DZ_EV_CODE_MCDI_EV
:
3130 efx_mcdi_process_event(channel
, &event
);
3132 case ESE_DZ_EV_CODE_RX_EV
:
3133 spent
+= efx_ef10_handle_rx_event(channel
, &event
);
3134 if (spent
>= quota
) {
3135 /* XXX can we split a merged event to
3136 * avoid going over-quota?
3142 case ESE_DZ_EV_CODE_TX_EV
:
3143 spent_tx
+= efx_ef10_handle_tx_event(channel
, &event
);
3144 if (spent_tx
>= EFX_NAPI_MAX_TX
) {
3149 case ESE_DZ_EV_CODE_DRIVER_EV
:
3150 efx_ef10_handle_driver_event(channel
, &event
);
3151 if (++spent
== quota
)
3154 case EFX_EF10_DRVGEN_EV
:
3155 efx_ef10_handle_driver_generated_event(channel
, &event
);
3158 netif_err(efx
, hw
, efx
->net_dev
,
3159 "channel %d unknown event type %d"
3160 " (data " EFX_QWORD_FMT
")\n",
3161 channel
->channel
, ev_code
,
3162 EFX_QWORD_VAL(event
));
3167 channel
->eventq_read_ptr
= read_ptr
;
3171 static void efx_ef10_ev_read_ack(struct efx_channel
*channel
)
3173 struct efx_nic
*efx
= channel
->efx
;
3176 if (EFX_EF10_WORKAROUND_35388(efx
)) {
3177 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE
<
3178 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH
));
3179 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE
>
3180 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH
));
3182 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
3183 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH
,
3184 ERF_DD_EVQ_IND_RPTR
,
3185 (channel
->eventq_read_ptr
&
3186 channel
->eventq_mask
) >>
3187 ERF_DD_EVQ_IND_RPTR_WIDTH
);
3188 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
3190 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
3191 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW
,
3192 ERF_DD_EVQ_IND_RPTR
,
3193 channel
->eventq_read_ptr
&
3194 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH
) - 1));
3195 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
3198 EFX_POPULATE_DWORD_1(rptr
, ERF_DZ_EVQ_RPTR
,
3199 channel
->eventq_read_ptr
&
3200 channel
->eventq_mask
);
3201 efx_writed_page(efx
, &rptr
, ER_DZ_EVQ_RPTR
, channel
->channel
);
3205 static void efx_ef10_ev_test_generate(struct efx_channel
*channel
)
3207 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
3208 struct efx_nic
*efx
= channel
->efx
;
3212 EFX_POPULATE_QWORD_2(event
,
3213 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
3214 ESF_DZ_EV_DATA
, EFX_EF10_TEST
);
3216 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
3218 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3219 * already swapped the data to little-endian order.
3221 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
3222 sizeof(efx_qword_t
));
3224 rc
= efx_mcdi_rpc(efx
, MC_CMD_DRIVER_EVENT
, inbuf
, sizeof(inbuf
),
3233 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
3236 static void efx_ef10_prepare_flr(struct efx_nic
*efx
)
3238 atomic_set(&efx
->active_queues
, 0);
3241 static int efx_ef10_vport_set_mac_address(struct efx_nic
*efx
)
3243 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3244 u8 mac_old
[ETH_ALEN
];
3247 /* Only reconfigure a PF-created vport */
3248 if (is_zero_ether_addr(nic_data
->vport_mac
))
3251 efx_device_detach_sync(efx
);
3252 efx_net_stop(efx
->net_dev
);
3253 efx_ef10_filter_table_remove(efx
);
3255 rc
= efx_ef10_vadaptor_free(efx
, efx
->vport_id
);
3257 goto restore_filters
;
3259 ether_addr_copy(mac_old
, nic_data
->vport_mac
);
3260 rc
= efx_ef10_vport_del_mac(efx
, efx
->vport_id
,
3261 nic_data
->vport_mac
);
3263 goto restore_vadaptor
;
3265 rc
= efx_ef10_vport_add_mac(efx
, efx
->vport_id
,
3266 efx
->net_dev
->dev_addr
);
3268 ether_addr_copy(nic_data
->vport_mac
, efx
->net_dev
->dev_addr
);
3270 rc2
= efx_ef10_vport_add_mac(efx
, efx
->vport_id
, mac_old
);
3272 /* Failed to add original MAC, so clear vport_mac */
3273 eth_zero_addr(nic_data
->vport_mac
);
3279 rc2
= efx_ef10_vadaptor_alloc(efx
, efx
->vport_id
);
3283 rc2
= efx_ef10_filter_table_probe(efx
);
3287 rc2
= efx_net_open(efx
->net_dev
);
3291 efx_device_attach_if_not_resetting(efx
);
3296 netif_err(efx
, drv
, efx
->net_dev
,
3297 "Failed to restore when changing MAC address - scheduling reset\n");
3298 efx_schedule_reset(efx
, RESET_TYPE_DATAPATH
);
3300 return rc
? rc
: rc2
;
3303 static int efx_ef10_set_mac_address(struct efx_nic
*efx
)
3305 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_SET_MAC_IN_LEN
);
3306 bool was_enabled
= efx
->port_enabled
;
3309 #ifdef CONFIG_SFC_SRIOV
3310 /* If this function is a VF and we have access to the parent PF,
3311 * then use the PF control path to attempt to change the VF MAC address.
3313 if (efx
->pci_dev
->is_virtfn
&& efx
->pci_dev
->physfn
) {
3314 struct efx_nic
*efx_pf
= pci_get_drvdata(efx
->pci_dev
->physfn
);
3315 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3318 /* net_dev->dev_addr can be zeroed by efx_net_stop in
3319 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
3321 ether_addr_copy(mac
, efx
->net_dev
->dev_addr
);
3323 rc
= efx_ef10_sriov_set_vf_mac(efx_pf
, nic_data
->vf_index
, mac
);
3327 netif_dbg(efx
, drv
, efx
->net_dev
,
3328 "Updating VF mac via PF failed (%d), setting directly\n",
3333 efx_device_detach_sync(efx
);
3334 efx_net_stop(efx
->net_dev
);
3336 mutex_lock(&efx
->mac_lock
);
3337 efx_ef10_filter_table_remove(efx
);
3339 ether_addr_copy(MCDI_PTR(inbuf
, VADAPTOR_SET_MAC_IN_MACADDR
),
3340 efx
->net_dev
->dev_addr
);
3341 MCDI_SET_DWORD(inbuf
, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID
,
3343 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_VADAPTOR_SET_MAC
, inbuf
,
3344 sizeof(inbuf
), NULL
, 0, NULL
);
3346 efx_ef10_filter_table_probe(efx
);
3347 mutex_unlock(&efx
->mac_lock
);
3350 efx_net_open(efx
->net_dev
);
3351 efx_device_attach_if_not_resetting(efx
);
3354 netif_err(efx
, drv
, efx
->net_dev
,
3355 "Cannot change MAC address; use sfboot to enable"
3356 " mac-spoofing on this interface\n");
3357 } else if (rc
== -ENOSYS
&& !efx_ef10_is_vf(efx
)) {
3358 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3359 * fall-back to the method of changing the MAC address on the
3360 * vport. This only applies to PFs because such versions of
3361 * MCFW do not support VFs.
3363 rc
= efx_ef10_vport_set_mac_address(efx
);
3365 efx_mcdi_display_error(efx
, MC_CMD_VADAPTOR_SET_MAC
,
3366 sizeof(inbuf
), NULL
, 0, rc
);
3372 static int efx_ef10_mac_reconfigure(struct efx_nic
*efx
, bool mtu_only
)
3374 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
3376 efx_mcdi_filter_sync_rx_mode(efx
);
3378 if (mtu_only
&& efx_has_cap(efx
, SET_MAC_ENHANCED
))
3379 return efx_mcdi_set_mtu(efx
);
3380 return efx_mcdi_set_mac(efx
);
3383 static int efx_ef10_start_bist(struct efx_nic
*efx
, u32 bist_type
)
3385 MCDI_DECLARE_BUF(inbuf
, MC_CMD_START_BIST_IN_LEN
);
3387 MCDI_SET_DWORD(inbuf
, START_BIST_IN_TYPE
, bist_type
);
3388 return efx_mcdi_rpc(efx
, MC_CMD_START_BIST
, inbuf
, sizeof(inbuf
),
3392 /* MC BISTs follow a different poll mechanism to phy BISTs.
3393 * The BIST is done in the poll handler on the MC, and the MCDI command
3394 * will block until the BIST is done.
3396 static int efx_ef10_poll_bist(struct efx_nic
*efx
)
3399 MCDI_DECLARE_BUF(outbuf
, MC_CMD_POLL_BIST_OUT_LEN
);
3403 rc
= efx_mcdi_rpc(efx
, MC_CMD_POLL_BIST
, NULL
, 0,
3404 outbuf
, sizeof(outbuf
), &outlen
);
3408 if (outlen
< MC_CMD_POLL_BIST_OUT_LEN
)
3411 result
= MCDI_DWORD(outbuf
, POLL_BIST_OUT_RESULT
);
3413 case MC_CMD_POLL_BIST_PASSED
:
3414 netif_dbg(efx
, hw
, efx
->net_dev
, "BIST passed.\n");
3416 case MC_CMD_POLL_BIST_TIMEOUT
:
3417 netif_err(efx
, hw
, efx
->net_dev
, "BIST timed out\n");
3419 case MC_CMD_POLL_BIST_FAILED
:
3420 netif_err(efx
, hw
, efx
->net_dev
, "BIST failed.\n");
3423 netif_err(efx
, hw
, efx
->net_dev
,
3424 "BIST returned unknown result %u", result
);
3429 static int efx_ef10_run_bist(struct efx_nic
*efx
, u32 bist_type
)
3433 netif_dbg(efx
, drv
, efx
->net_dev
, "starting BIST type %u\n", bist_type
);
3435 rc
= efx_ef10_start_bist(efx
, bist_type
);
3439 return efx_ef10_poll_bist(efx
);
3443 efx_ef10_test_chip(struct efx_nic
*efx
, struct efx_self_tests
*tests
)
3447 efx_reset_down(efx
, RESET_TYPE_WORLD
);
3449 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENABLE_OFFLINE_BIST
,
3450 NULL
, 0, NULL
, 0, NULL
);
3454 tests
->memory
= efx_ef10_run_bist(efx
, MC_CMD_MC_MEM_BIST
) ? -1 : 1;
3455 tests
->registers
= efx_ef10_run_bist(efx
, MC_CMD_REG_BIST
) ? -1 : 1;
3457 rc
= efx_mcdi_reset(efx
, RESET_TYPE_WORLD
);
3462 rc2
= efx_reset_up(efx
, RESET_TYPE_WORLD
, rc
== 0);
3463 return rc
? rc
: rc2
;
3466 #ifdef CONFIG_SFC_MTD
3468 struct efx_ef10_nvram_type_info
{
3469 u16 type
, type_mask
;
3474 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types
[] = {
3475 { NVRAM_PARTITION_TYPE_MC_FIRMWARE
, 0, 0, "sfc_mcfw" },
3476 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP
, 0, 0, "sfc_mcfw_backup" },
3477 { NVRAM_PARTITION_TYPE_EXPANSION_ROM
, 0, 0, "sfc_exp_rom" },
3478 { NVRAM_PARTITION_TYPE_STATIC_CONFIG
, 0, 0, "sfc_static_cfg" },
3479 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG
, 0, 0, "sfc_dynamic_cfg" },
3480 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0
, 0, 0, "sfc_exp_rom_cfg" },
3481 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1
, 0, 1, "sfc_exp_rom_cfg" },
3482 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2
, 0, 2, "sfc_exp_rom_cfg" },
3483 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3
, 0, 3, "sfc_exp_rom_cfg" },
3484 { NVRAM_PARTITION_TYPE_LICENSE
, 0, 0, "sfc_license" },
3485 { NVRAM_PARTITION_TYPE_PHY_MIN
, 0xff, 0, "sfc_phy_fw" },
3486 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE
, 0, 0, "sfc_mumfw" },
3487 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI
, 0, 0, "sfc_uefi" },
3488 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS
, 0, 0, "sfc_dynamic_cfg_dflt" },
3489 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS
, 0, 0, "sfc_exp_rom_cfg_dflt" },
3490 { NVRAM_PARTITION_TYPE_STATUS
, 0, 0, "sfc_status" },
3491 { NVRAM_PARTITION_TYPE_BUNDLE
, 0, 0, "sfc_bundle" },
3492 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA
, 0, 0, "sfc_bundle_metadata" },
3494 #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
3496 static int efx_ef10_mtd_probe_partition(struct efx_nic
*efx
,
3497 struct efx_mcdi_mtd_partition
*part
,
3499 unsigned long *found
)
3501 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_METADATA_IN_LEN
);
3502 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_METADATA_OUT_LENMAX
);
3503 const struct efx_ef10_nvram_type_info
*info
;
3504 size_t size
, erase_size
, outlen
;
3509 for (type_idx
= 0; ; type_idx
++) {
3510 if (type_idx
== EF10_NVRAM_PARTITION_COUNT
)
3512 info
= efx_ef10_nvram_types
+ type_idx
;
3513 if ((type
& ~info
->type_mask
) == info
->type
)
3516 if (info
->port
!= efx_port_num(efx
))
3519 rc
= efx_mcdi_nvram_info(efx
, type
, &size
, &erase_size
, &protected);
3523 (type
!= NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS
&&
3524 type
!= NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS
))
3525 /* Hide protected partitions that don't provide defaults. */
3529 /* Protected partitions are read only. */
3532 /* If we've already exposed a partition of this type, hide this
3533 * duplicate. All operations on MTDs are keyed by the type anyway,
3534 * so we can't act on the duplicate.
3536 if (__test_and_set_bit(type_idx
, found
))
3539 part
->nvram_type
= type
;
3541 MCDI_SET_DWORD(inbuf
, NVRAM_METADATA_IN_TYPE
, type
);
3542 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_METADATA
, inbuf
, sizeof(inbuf
),
3543 outbuf
, sizeof(outbuf
), &outlen
);
3546 if (outlen
< MC_CMD_NVRAM_METADATA_OUT_LENMIN
)
3548 if (MCDI_DWORD(outbuf
, NVRAM_METADATA_OUT_FLAGS
) &
3549 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN
))
3550 part
->fw_subtype
= MCDI_DWORD(outbuf
,
3551 NVRAM_METADATA_OUT_SUBTYPE
);
3553 part
->common
.dev_type_name
= "EF10 NVRAM manager";
3554 part
->common
.type_name
= info
->name
;
3556 part
->common
.mtd
.type
= MTD_NORFLASH
;
3557 part
->common
.mtd
.flags
= MTD_CAP_NORFLASH
;
3558 part
->common
.mtd
.size
= size
;
3559 part
->common
.mtd
.erasesize
= erase_size
;
3560 /* sfc_status is read-only */
3562 part
->common
.mtd
.flags
|= MTD_NO_ERASE
;
3567 static int efx_ef10_mtd_probe(struct efx_nic
*efx
)
3569 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX
);
3570 DECLARE_BITMAP(found
, EF10_NVRAM_PARTITION_COUNT
) = { 0 };
3571 struct efx_mcdi_mtd_partition
*parts
;
3572 size_t outlen
, n_parts_total
, i
, n_parts
;
3578 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN
!= 0);
3579 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_PARTITIONS
, NULL
, 0,
3580 outbuf
, sizeof(outbuf
), &outlen
);
3583 if (outlen
< MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN
)
3586 n_parts_total
= MCDI_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS
);
3588 MCDI_VAR_ARRAY_LEN(outlen
, NVRAM_PARTITIONS_OUT_TYPE_ID
))
3591 parts
= kcalloc(n_parts_total
, sizeof(*parts
), GFP_KERNEL
);
3596 for (i
= 0; i
< n_parts_total
; i
++) {
3597 type
= MCDI_ARRAY_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_TYPE_ID
,
3599 rc
= efx_ef10_mtd_probe_partition(efx
, &parts
[n_parts
], type
,
3601 if (rc
== -EEXIST
|| rc
== -ENODEV
)
3613 rc
= efx_mtd_add(efx
, &parts
[0].common
, n_parts
, sizeof(*parts
));
3620 #endif /* CONFIG_SFC_MTD */
3622 static void efx_ef10_ptp_write_host_time(struct efx_nic
*efx
, u32 host_time
)
3624 _efx_writed(efx
, cpu_to_le32(host_time
), ER_DZ_MC_DB_LWRD
);
3627 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic
*efx
,
3630 static int efx_ef10_rx_enable_timestamping(struct efx_channel
*channel
,
3633 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN
);
3636 if (channel
->sync_events_state
== SYNC_EVENTS_REQUESTED
||
3637 channel
->sync_events_state
== SYNC_EVENTS_VALID
||
3638 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_DISABLED
))
3640 channel
->sync_events_state
= SYNC_EVENTS_REQUESTED
;
3642 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE
);
3643 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
3644 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE
,
3647 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
3648 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
3651 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
3652 SYNC_EVENTS_DISABLED
;
3657 static int efx_ef10_rx_disable_timestamping(struct efx_channel
*channel
,
3660 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN
);
3663 if (channel
->sync_events_state
== SYNC_EVENTS_DISABLED
||
3664 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
))
3666 if (channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
) {
3667 channel
->sync_events_state
= SYNC_EVENTS_DISABLED
;
3670 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
3671 SYNC_EVENTS_DISABLED
;
3673 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE
);
3674 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
3675 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL
,
3676 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE
);
3677 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE
,
3680 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
3681 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
3686 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic
*efx
, bool en
,
3689 int (*set
)(struct efx_channel
*channel
, bool temp
);
3690 struct efx_channel
*channel
;
3693 efx_ef10_rx_enable_timestamping
:
3694 efx_ef10_rx_disable_timestamping
;
3696 channel
= efx_ptp_channel(efx
);
3698 int rc
= set(channel
, temp
);
3699 if (en
&& rc
!= 0) {
3700 efx_ef10_ptp_set_ts_sync_events(efx
, false, temp
);
3708 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic
*efx
,
3709 struct kernel_hwtstamp_config
*init
)
3714 static int efx_ef10_ptp_set_ts_config(struct efx_nic
*efx
,
3715 struct kernel_hwtstamp_config
*init
)
3719 switch (init
->rx_filter
) {
3720 case HWTSTAMP_FILTER_NONE
:
3721 efx_ef10_ptp_set_ts_sync_events(efx
, false, false);
3722 /* if TX timestamping is still requested then leave PTP on */
3723 return efx_ptp_change_mode(efx
,
3724 init
->tx_type
!= HWTSTAMP_TX_OFF
, 0);
3725 case HWTSTAMP_FILTER_ALL
:
3726 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3727 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3728 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3729 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3730 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3731 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3732 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3733 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3734 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3735 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3736 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3737 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3738 case HWTSTAMP_FILTER_NTP_ALL
:
3739 init
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3740 rc
= efx_ptp_change_mode(efx
, true, 0);
3742 rc
= efx_ef10_ptp_set_ts_sync_events(efx
, true, false);
3744 efx_ptp_change_mode(efx
, false, 0);
3751 static int efx_ef10_get_phys_port_id(struct efx_nic
*efx
,
3752 struct netdev_phys_item_id
*ppid
)
3754 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3756 if (!is_valid_ether_addr(nic_data
->port_id
))
3759 ppid
->id_len
= ETH_ALEN
;
3760 memcpy(ppid
->id
, nic_data
->port_id
, ppid
->id_len
);
3765 static int efx_ef10_vlan_rx_add_vid(struct efx_nic
*efx
, __be16 proto
, u16 vid
)
3767 if (proto
!= htons(ETH_P_8021Q
))
3770 return efx_ef10_add_vlan(efx
, vid
);
3773 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic
*efx
, __be16 proto
, u16 vid
)
3775 if (proto
!= htons(ETH_P_8021Q
))
3778 return efx_ef10_del_vlan(efx
, vid
);
3781 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3782 * ports table, ensuring that any TSO descriptors that were made on a now-
3783 * removed tunnel port will be blown away and won't break things when we try
3784 * to transmit them using the new ports table.
3786 static int efx_ef10_set_udp_tnl_ports(struct efx_nic
*efx
, bool unloading
)
3788 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3789 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX
);
3790 MCDI_DECLARE_BUF(outbuf
, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN
);
3791 bool will_reset
= false;
3792 size_t num_entries
= 0;
3793 size_t inlen
, outlen
;
3796 efx_dword_t flags_and_num_entries
;
3798 WARN_ON(!mutex_is_locked(&nic_data
->udp_tunnels_lock
));
3800 nic_data
->udp_tunnels_dirty
= false;
3802 if (!(nic_data
->datapath_caps
&
3803 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
))) {
3804 efx_device_attach_if_not_resetting(efx
);
3808 BUILD_BUG_ON(ARRAY_SIZE(nic_data
->udp_tunnels
) >
3809 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM
);
3811 for (i
= 0; i
< ARRAY_SIZE(nic_data
->udp_tunnels
); ++i
) {
3812 if (nic_data
->udp_tunnels
[i
].type
!=
3813 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID
) {
3816 EFX_POPULATE_DWORD_2(entry
,
3817 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT
,
3818 ntohs(nic_data
->udp_tunnels
[i
].port
),
3819 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL
,
3820 nic_data
->udp_tunnels
[i
].type
);
3821 *_MCDI_ARRAY_DWORD(inbuf
,
3822 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES
,
3823 num_entries
++) = entry
;
3827 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST
-
3828 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST
) * 8 !=
3830 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN
* 8 !=
3832 EFX_POPULATE_DWORD_2(flags_and_num_entries
,
3833 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING
,
3835 EFX_WORD_1
, num_entries
);
3836 *_MCDI_DWORD(inbuf
, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS
) =
3837 flags_and_num_entries
;
3839 inlen
= MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries
);
3841 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS
,
3842 inbuf
, inlen
, outbuf
, sizeof(outbuf
), &outlen
);
3844 /* Most likely the MC rebooted due to another function also
3845 * setting its tunnel port list. Mark the tunnel port list as
3846 * dirty, so it will be pushed upon coming up from the reboot.
3848 nic_data
->udp_tunnels_dirty
= true;
3853 /* expected not available on unprivileged functions */
3855 netif_warn(efx
, drv
, efx
->net_dev
,
3856 "Unable to set UDP tunnel ports; rc=%d.\n", rc
);
3857 } else if (MCDI_DWORD(outbuf
, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS
) &
3858 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN
)) {
3859 netif_info(efx
, drv
, efx
->net_dev
,
3860 "Rebooting MC due to UDP tunnel port list change\n");
3863 /* Delay for the MC reset to complete. This will make
3864 * unloading other functions a bit smoother. This is a
3865 * race, but the other unload will work whichever way
3866 * it goes, this just avoids an unnecessary error
3871 if (!will_reset
&& !unloading
) {
3872 /* The caller will have detached, relying on the MC reset to
3873 * trigger a re-attach. Since there won't be an MC reset, we
3874 * have to do the attach ourselves.
3876 efx_device_attach_if_not_resetting(efx
);
3882 static int efx_ef10_udp_tnl_push_ports(struct efx_nic
*efx
)
3884 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3887 mutex_lock(&nic_data
->udp_tunnels_lock
);
3888 if (nic_data
->udp_tunnels_dirty
) {
3889 /* Make sure all TX are stopped while we modify the table, else
3890 * we might race against an efx_features_check().
3892 efx_device_detach_sync(efx
);
3893 rc
= efx_ef10_set_udp_tnl_ports(efx
, false);
3895 mutex_unlock(&nic_data
->udp_tunnels_lock
);
3899 static int efx_ef10_udp_tnl_set_port(struct net_device
*dev
,
3900 unsigned int table
, unsigned int entry
,
3901 struct udp_tunnel_info
*ti
)
3903 struct efx_nic
*efx
= efx_netdev_priv(dev
);
3904 struct efx_ef10_nic_data
*nic_data
;
3905 int efx_tunnel_type
, rc
;
3907 if (ti
->type
== UDP_TUNNEL_TYPE_VXLAN
)
3908 efx_tunnel_type
= TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN
;
3910 efx_tunnel_type
= TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE
;
3912 nic_data
= efx
->nic_data
;
3913 if (!(nic_data
->datapath_caps
&
3914 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
)))
3917 mutex_lock(&nic_data
->udp_tunnels_lock
);
3918 /* Make sure all TX are stopped while we add to the table, else we
3919 * might race against an efx_features_check().
3921 efx_device_detach_sync(efx
);
3922 nic_data
->udp_tunnels
[entry
].type
= efx_tunnel_type
;
3923 nic_data
->udp_tunnels
[entry
].port
= ti
->port
;
3924 rc
= efx_ef10_set_udp_tnl_ports(efx
, false);
3925 mutex_unlock(&nic_data
->udp_tunnels_lock
);
3930 /* Called under the TX lock with the TX queue running, hence no-one can be
3931 * in the middle of updating the UDP tunnels table. However, they could
3932 * have tried and failed the MCDI, in which case they'll have set the dirty
3933 * flag before dropping their locks.
3935 static bool efx_ef10_udp_tnl_has_port(struct efx_nic
*efx
, __be16 port
)
3937 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3940 if (!(nic_data
->datapath_caps
&
3941 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
)))
3944 if (nic_data
->udp_tunnels_dirty
)
3945 /* SW table may not match HW state, so just assume we can't
3946 * use any UDP tunnel offloads.
3950 for (i
= 0; i
< ARRAY_SIZE(nic_data
->udp_tunnels
); ++i
)
3951 if (nic_data
->udp_tunnels
[i
].type
!=
3952 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID
&&
3953 nic_data
->udp_tunnels
[i
].port
== port
)
3959 static int efx_ef10_udp_tnl_unset_port(struct net_device
*dev
,
3960 unsigned int table
, unsigned int entry
,
3961 struct udp_tunnel_info
*ti
)
3963 struct efx_nic
*efx
= efx_netdev_priv(dev
);
3964 struct efx_ef10_nic_data
*nic_data
;
3967 nic_data
= efx
->nic_data
;
3969 mutex_lock(&nic_data
->udp_tunnels_lock
);
3970 /* Make sure all TX are stopped while we remove from the table, else we
3971 * might race against an efx_features_check().
3973 efx_device_detach_sync(efx
);
3974 nic_data
->udp_tunnels
[entry
].type
= TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID
;
3975 nic_data
->udp_tunnels
[entry
].port
= 0;
3976 rc
= efx_ef10_set_udp_tnl_ports(efx
, false);
3977 mutex_unlock(&nic_data
->udp_tunnels_lock
);
3982 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels
= {
3983 .set_port
= efx_ef10_udp_tnl_set_port
,
3984 .unset_port
= efx_ef10_udp_tnl_unset_port
,
3985 .flags
= UDP_TUNNEL_NIC_INFO_MAY_SLEEP
,
3989 .tunnel_types
= UDP_TUNNEL_TYPE_VXLAN
|
3990 UDP_TUNNEL_TYPE_GENEVE
,
3995 /* EF10 may have multiple datapath firmware variants within a
3996 * single version. Report which variants are running.
3998 static size_t efx_ef10_print_additional_fwver(struct efx_nic
*efx
, char *buf
,
4001 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4003 return scnprintf(buf
, len
, " rx%x tx%x",
4004 nic_data
->rx_dpcpu_fw_id
,
4005 nic_data
->tx_dpcpu_fw_id
);
4008 static unsigned int ef10_check_caps(const struct efx_nic
*efx
,
4012 const struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4015 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST
):
4016 return nic_data
->datapath_caps
& BIT_ULL(flag
);
4017 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST
):
4018 return nic_data
->datapath_caps2
& BIT_ULL(flag
);
4024 static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic
*efx
)
4026 unsigned int ret
= EFX_RECYCLE_RING_SIZE_10G
;
4028 /* There is no difference between PFs and VFs. The side is based on
4029 * the maximum link speed of a given NIC.
4031 switch (efx
->pci_dev
->device
& 0xfff) {
4032 case 0x0903: /* Farmingdale can do up to 10G */
4034 case 0x0923: /* Greenport can do up to 40G */
4035 case 0x0a03: /* Medford can do up to 40G */
4038 default: /* Medford2 can do up to 100G */
4042 if (IS_ENABLED(CONFIG_PPC64
))
4048 #define EF10_OFFLOAD_FEATURES \
4049 (NETIF_F_IP_CSUM | \
4050 NETIF_F_HW_VLAN_CTAG_FILTER | \
4051 NETIF_F_IPV6_CSUM | \
4058 const struct efx_nic_type efx_hunt_a0_vf_nic_type
= {
4060 .mem_bar
= efx_ef10_vf_mem_bar
,
4061 .mem_map_size
= efx_ef10_mem_map_size
,
4062 .probe
= efx_ef10_probe_vf
,
4063 .remove
= efx_ef10_remove
,
4064 .dimension_resources
= efx_ef10_dimension_resources
,
4065 .init
= efx_ef10_init_nic
,
4066 .fini
= efx_ef10_fini_nic
,
4067 .map_reset_reason
= efx_ef10_map_reset_reason
,
4068 .map_reset_flags
= efx_ef10_map_reset_flags
,
4069 .reset
= efx_ef10_reset
,
4070 .probe_port
= efx_mcdi_port_probe
,
4071 .remove_port
= efx_mcdi_port_remove
,
4072 .fini_dmaq
= efx_fini_dmaq
,
4073 .prepare_flr
= efx_ef10_prepare_flr
,
4074 .finish_flr
= efx_port_dummy_op_void
,
4075 .describe_stats
= efx_ef10_describe_stats
,
4076 .update_stats
= efx_ef10_update_stats_vf
,
4077 .update_stats_atomic
= efx_ef10_update_stats_atomic_vf
,
4078 .start_stats
= efx_port_dummy_op_void
,
4079 .pull_stats
= efx_port_dummy_op_void
,
4080 .stop_stats
= efx_port_dummy_op_void
,
4081 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
4082 .reconfigure_mac
= efx_ef10_mac_reconfigure
,
4083 .check_mac_fault
= efx_mcdi_mac_check_fault
,
4084 .reconfigure_port
= efx_mcdi_port_reconfigure
,
4085 .get_wol
= efx_ef10_get_wol_vf
,
4086 .set_wol
= efx_ef10_set_wol_vf
,
4087 .resume_wol
= efx_port_dummy_op_void
,
4088 .mcdi_request
= efx_ef10_mcdi_request
,
4089 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
4090 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
4091 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
4092 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
4093 .irq_enable_master
= efx_port_dummy_op_void
,
4094 .irq_test_generate
= efx_ef10_irq_test_generate
,
4095 .irq_disable_non_ev
= efx_port_dummy_op_void
,
4096 .irq_handle_msi
= efx_ef10_msi_interrupt
,
4097 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
4098 .tx_probe
= efx_ef10_tx_probe
,
4099 .tx_init
= efx_ef10_tx_init
,
4100 .tx_remove
= efx_mcdi_tx_remove
,
4101 .tx_write
= efx_ef10_tx_write
,
4102 .tx_limit_len
= efx_ef10_tx_limit_len
,
4103 .tx_enqueue
= __efx_enqueue_skb
,
4104 .rx_push_rss_config
= efx_mcdi_vf_rx_push_rss_config
,
4105 .rx_pull_rss_config
= efx_mcdi_rx_pull_rss_config
,
4106 .rx_probe
= efx_mcdi_rx_probe
,
4107 .rx_init
= efx_mcdi_rx_init
,
4108 .rx_remove
= efx_mcdi_rx_remove
,
4109 .rx_write
= efx_ef10_rx_write
,
4110 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
4111 .rx_packet
= __efx_rx_packet
,
4112 .ev_probe
= efx_mcdi_ev_probe
,
4113 .ev_init
= efx_ef10_ev_init
,
4114 .ev_fini
= efx_mcdi_ev_fini
,
4115 .ev_remove
= efx_mcdi_ev_remove
,
4116 .ev_process
= efx_ef10_ev_process
,
4117 .ev_read_ack
= efx_ef10_ev_read_ack
,
4118 .ev_test_generate
= efx_ef10_ev_test_generate
,
4119 .filter_table_probe
= efx_ef10_filter_table_probe
,
4120 .filter_table_restore
= efx_mcdi_filter_table_restore
,
4121 .filter_table_remove
= efx_ef10_filter_table_remove
,
4122 .filter_update_rx_scatter
= efx_mcdi_update_rx_scatter
,
4123 .filter_insert
= efx_mcdi_filter_insert
,
4124 .filter_remove_safe
= efx_mcdi_filter_remove_safe
,
4125 .filter_get_safe
= efx_mcdi_filter_get_safe
,
4126 .filter_clear_rx
= efx_mcdi_filter_clear_rx
,
4127 .filter_count_rx_used
= efx_mcdi_filter_count_rx_used
,
4128 .filter_get_rx_id_limit
= efx_mcdi_filter_get_rx_id_limit
,
4129 .filter_get_rx_ids
= efx_mcdi_filter_get_rx_ids
,
4130 #ifdef CONFIG_RFS_ACCEL
4131 .filter_rfs_expire_one
= efx_mcdi_filter_rfs_expire_one
,
4133 #ifdef CONFIG_SFC_MTD
4134 .mtd_probe
= efx_port_dummy_op_int
,
4136 .ptp_write_host_time
= efx_ef10_ptp_write_host_time_vf
,
4137 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config_vf
,
4138 .vlan_rx_add_vid
= efx_ef10_vlan_rx_add_vid
,
4139 .vlan_rx_kill_vid
= efx_ef10_vlan_rx_kill_vid
,
4140 #ifdef CONFIG_SFC_SRIOV
4141 .vswitching_probe
= efx_ef10_vswitching_probe_vf
,
4142 .vswitching_restore
= efx_ef10_vswitching_restore_vf
,
4143 .vswitching_remove
= efx_ef10_vswitching_remove_vf
,
4145 .get_mac_address
= efx_ef10_get_mac_address_vf
,
4146 .set_mac_address
= efx_ef10_set_mac_address
,
4148 .get_phys_port_id
= efx_ef10_get_phys_port_id
,
4149 .revision
= EFX_REV_HUNT_A0
,
4150 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
4151 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
4152 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
4153 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
4154 .can_rx_scatter
= true,
4155 .always_rx_scatter
= true,
4156 .min_interrupt_mode
= EFX_INT_MODE_MSIX
,
4157 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
4158 .offload_features
= EF10_OFFLOAD_FEATURES
,
4160 .max_rx_ip_filters
= EFX_MCDI_FILTER_TBL_ROWS
,
4161 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
4162 1 << HWTSTAMP_FILTER_ALL
,
4163 .rx_hash_key_size
= 40,
4164 .check_caps
= ef10_check_caps
,
4165 .print_additional_fwver
= efx_ef10_print_additional_fwver
,
4166 .sensor_event
= efx_mcdi_sensor_event
,
4167 .rx_recycle_ring_size
= efx_ef10_recycle_ring_size
,
4170 const struct efx_nic_type efx_hunt_a0_nic_type
= {
4172 .mem_bar
= efx_ef10_pf_mem_bar
,
4173 .mem_map_size
= efx_ef10_mem_map_size
,
4174 .probe
= efx_ef10_probe_pf
,
4175 .remove
= efx_ef10_remove
,
4176 .dimension_resources
= efx_ef10_dimension_resources
,
4177 .init
= efx_ef10_init_nic
,
4178 .fini
= efx_ef10_fini_nic
,
4179 .map_reset_reason
= efx_ef10_map_reset_reason
,
4180 .map_reset_flags
= efx_ef10_map_reset_flags
,
4181 .reset
= efx_ef10_reset
,
4182 .probe_port
= efx_mcdi_port_probe
,
4183 .remove_port
= efx_mcdi_port_remove
,
4184 .fini_dmaq
= efx_fini_dmaq
,
4185 .prepare_flr
= efx_ef10_prepare_flr
,
4186 .finish_flr
= efx_port_dummy_op_void
,
4187 .describe_stats
= efx_ef10_describe_stats
,
4188 .update_stats
= efx_ef10_update_stats_pf
,
4189 .start_stats
= efx_mcdi_mac_start_stats
,
4190 .pull_stats
= efx_mcdi_mac_pull_stats
,
4191 .stop_stats
= efx_mcdi_mac_stop_stats
,
4192 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
4193 .reconfigure_mac
= efx_ef10_mac_reconfigure
,
4194 .check_mac_fault
= efx_mcdi_mac_check_fault
,
4195 .reconfigure_port
= efx_mcdi_port_reconfigure
,
4196 .get_wol
= efx_ef10_get_wol
,
4197 .set_wol
= efx_ef10_set_wol
,
4198 .resume_wol
= efx_port_dummy_op_void
,
4199 .get_fec_stats
= efx_ef10_get_fec_stats
,
4200 .test_chip
= efx_ef10_test_chip
,
4201 .test_nvram
= efx_mcdi_nvram_test_all
,
4202 .mcdi_request
= efx_ef10_mcdi_request
,
4203 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
4204 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
4205 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
4206 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
4207 .irq_enable_master
= efx_port_dummy_op_void
,
4208 .irq_test_generate
= efx_ef10_irq_test_generate
,
4209 .irq_disable_non_ev
= efx_port_dummy_op_void
,
4210 .irq_handle_msi
= efx_ef10_msi_interrupt
,
4211 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
4212 .tx_probe
= efx_ef10_tx_probe
,
4213 .tx_init
= efx_ef10_tx_init
,
4214 .tx_remove
= efx_mcdi_tx_remove
,
4215 .tx_write
= efx_ef10_tx_write
,
4216 .tx_limit_len
= efx_ef10_tx_limit_len
,
4217 .tx_enqueue
= __efx_enqueue_skb
,
4218 .rx_push_rss_config
= efx_mcdi_pf_rx_push_rss_config
,
4219 .rx_pull_rss_config
= efx_mcdi_rx_pull_rss_config
,
4220 .rx_push_rss_context_config
= efx_mcdi_rx_push_rss_context_config
,
4221 .rx_pull_rss_context_config
= efx_mcdi_rx_pull_rss_context_config
,
4222 .rx_restore_rss_contexts
= efx_mcdi_rx_restore_rss_contexts
,
4223 .rx_probe
= efx_mcdi_rx_probe
,
4224 .rx_init
= efx_mcdi_rx_init
,
4225 .rx_remove
= efx_mcdi_rx_remove
,
4226 .rx_write
= efx_ef10_rx_write
,
4227 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
4228 .rx_packet
= __efx_rx_packet
,
4229 .ev_probe
= efx_mcdi_ev_probe
,
4230 .ev_init
= efx_ef10_ev_init
,
4231 .ev_fini
= efx_mcdi_ev_fini
,
4232 .ev_remove
= efx_mcdi_ev_remove
,
4233 .ev_process
= efx_ef10_ev_process
,
4234 .ev_read_ack
= efx_ef10_ev_read_ack
,
4235 .ev_test_generate
= efx_ef10_ev_test_generate
,
4236 .filter_table_probe
= efx_ef10_filter_table_probe
,
4237 .filter_table_restore
= efx_mcdi_filter_table_restore
,
4238 .filter_table_remove
= efx_ef10_filter_table_remove
,
4239 .filter_update_rx_scatter
= efx_mcdi_update_rx_scatter
,
4240 .filter_insert
= efx_mcdi_filter_insert
,
4241 .filter_remove_safe
= efx_mcdi_filter_remove_safe
,
4242 .filter_get_safe
= efx_mcdi_filter_get_safe
,
4243 .filter_clear_rx
= efx_mcdi_filter_clear_rx
,
4244 .filter_count_rx_used
= efx_mcdi_filter_count_rx_used
,
4245 .filter_get_rx_id_limit
= efx_mcdi_filter_get_rx_id_limit
,
4246 .filter_get_rx_ids
= efx_mcdi_filter_get_rx_ids
,
4247 #ifdef CONFIG_RFS_ACCEL
4248 .filter_rfs_expire_one
= efx_mcdi_filter_rfs_expire_one
,
4250 #ifdef CONFIG_SFC_MTD
4251 .mtd_probe
= efx_ef10_mtd_probe
,
4252 .mtd_rename
= efx_mcdi_mtd_rename
,
4253 .mtd_read
= efx_mcdi_mtd_read
,
4254 .mtd_erase
= efx_mcdi_mtd_erase
,
4255 .mtd_write
= efx_mcdi_mtd_write
,
4256 .mtd_sync
= efx_mcdi_mtd_sync
,
4258 .ptp_write_host_time
= efx_ef10_ptp_write_host_time
,
4259 .ptp_set_ts_sync_events
= efx_ef10_ptp_set_ts_sync_events
,
4260 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config
,
4261 .vlan_rx_add_vid
= efx_ef10_vlan_rx_add_vid
,
4262 .vlan_rx_kill_vid
= efx_ef10_vlan_rx_kill_vid
,
4263 .udp_tnl_push_ports
= efx_ef10_udp_tnl_push_ports
,
4264 .udp_tnl_has_port
= efx_ef10_udp_tnl_has_port
,
4265 #ifdef CONFIG_SFC_SRIOV
4266 .sriov_configure
= efx_ef10_sriov_configure
,
4267 .sriov_init
= efx_ef10_sriov_init
,
4268 .sriov_fini
= efx_ef10_sriov_fini
,
4269 .sriov_wanted
= efx_ef10_sriov_wanted
,
4270 .sriov_set_vf_mac
= efx_ef10_sriov_set_vf_mac
,
4271 .sriov_set_vf_vlan
= efx_ef10_sriov_set_vf_vlan
,
4272 .sriov_set_vf_spoofchk
= efx_ef10_sriov_set_vf_spoofchk
,
4273 .sriov_get_vf_config
= efx_ef10_sriov_get_vf_config
,
4274 .sriov_set_vf_link_state
= efx_ef10_sriov_set_vf_link_state
,
4275 .vswitching_probe
= efx_ef10_vswitching_probe_pf
,
4276 .vswitching_restore
= efx_ef10_vswitching_restore_pf
,
4277 .vswitching_remove
= efx_ef10_vswitching_remove_pf
,
4279 .get_mac_address
= efx_ef10_get_mac_address_pf
,
4280 .set_mac_address
= efx_ef10_set_mac_address
,
4281 .tso_versions
= efx_ef10_tso_versions
,
4283 .get_phys_port_id
= efx_ef10_get_phys_port_id
,
4284 .revision
= EFX_REV_HUNT_A0
,
4285 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
4286 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
4287 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
4288 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
4289 .can_rx_scatter
= true,
4290 .always_rx_scatter
= true,
4291 .option_descriptors
= true,
4292 .min_interrupt_mode
= EFX_INT_MODE_LEGACY
,
4293 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
4294 .offload_features
= EF10_OFFLOAD_FEATURES
,
4296 .max_rx_ip_filters
= EFX_MCDI_FILTER_TBL_ROWS
,
4297 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
4298 1 << HWTSTAMP_FILTER_ALL
,
4299 .rx_hash_key_size
= 40,
4300 .check_caps
= ef10_check_caps
,
4301 .print_additional_fwver
= efx_ef10_print_additional_fwver
,
4302 .sensor_event
= efx_mcdi_sensor_event
,
4303 .rx_recycle_ring_size
= efx_ef10_recycle_ring_size
,
4306 const struct efx_nic_type efx_x4_nic_type
= {
4308 .mem_bar
= efx_ef10_pf_mem_bar
,
4309 .mem_map_size
= efx_ef10_mem_map_size
,
4310 .probe
= efx_ef10_probe_pf
,
4311 .remove
= efx_ef10_remove
,
4312 .dimension_resources
= efx_ef10_dimension_resources
,
4313 .init
= efx_ef10_init_nic
,
4314 .fini
= efx_ef10_fini_nic
,
4315 .map_reset_reason
= efx_ef10_map_reset_reason
,
4316 .map_reset_flags
= efx_ef10_map_reset_flags
,
4317 .reset
= efx_ef10_reset
,
4318 .probe_port
= efx_mcdi_port_probe
,
4319 .remove_port
= efx_mcdi_port_remove
,
4320 .fini_dmaq
= efx_fini_dmaq
,
4321 .prepare_flr
= efx_ef10_prepare_flr
,
4322 .finish_flr
= efx_port_dummy_op_void
,
4323 .describe_stats
= efx_ef10_describe_stats
,
4324 .update_stats
= efx_ef10_update_stats_pf
,
4325 .start_stats
= efx_mcdi_mac_start_stats
,
4326 .pull_stats
= efx_mcdi_mac_pull_stats
,
4327 .stop_stats
= efx_mcdi_mac_stop_stats
,
4328 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
4329 .reconfigure_mac
= efx_ef10_mac_reconfigure
,
4330 .check_mac_fault
= efx_mcdi_mac_check_fault
,
4331 .reconfigure_port
= efx_mcdi_port_reconfigure
,
4332 .get_wol
= efx_ef10_get_wol
,
4333 .set_wol
= efx_ef10_set_wol
,
4334 .resume_wol
= efx_port_dummy_op_void
,
4335 .get_fec_stats
= efx_ef10_get_fec_stats
,
4336 .test_chip
= efx_ef10_test_chip
,
4337 .test_nvram
= efx_mcdi_nvram_test_all
,
4338 .mcdi_request
= efx_ef10_mcdi_request
,
4339 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
4340 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
4341 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
4342 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
4343 .irq_enable_master
= efx_port_dummy_op_void
,
4344 .irq_test_generate
= efx_ef10_irq_test_generate
,
4345 .irq_disable_non_ev
= efx_port_dummy_op_void
,
4346 .irq_handle_msi
= efx_ef10_msi_interrupt
,
4347 .tx_probe
= efx_ef10_tx_probe
,
4348 .tx_init
= efx_ef10_tx_init
,
4349 .tx_write
= efx_ef10_tx_write
,
4350 .tx_limit_len
= efx_ef10_tx_limit_len
,
4351 .tx_enqueue
= __efx_enqueue_skb
,
4352 .rx_push_rss_config
= efx_mcdi_pf_rx_push_rss_config
,
4353 .rx_pull_rss_config
= efx_mcdi_rx_pull_rss_config
,
4354 .rx_push_rss_context_config
= efx_mcdi_rx_push_rss_context_config
,
4355 .rx_pull_rss_context_config
= efx_mcdi_rx_pull_rss_context_config
,
4356 .rx_restore_rss_contexts
= efx_mcdi_rx_restore_rss_contexts
,
4357 .rx_probe
= efx_mcdi_rx_probe
,
4358 .rx_init
= efx_mcdi_rx_init
,
4359 .rx_remove
= efx_mcdi_rx_remove
,
4360 .rx_write
= efx_ef10_rx_write
,
4361 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
4362 .rx_packet
= __efx_rx_packet
,
4363 .ev_probe
= efx_mcdi_ev_probe
,
4364 .ev_init
= efx_ef10_ev_init
,
4365 .ev_fini
= efx_mcdi_ev_fini
,
4366 .ev_remove
= efx_mcdi_ev_remove
,
4367 .ev_process
= efx_ef10_ev_process
,
4368 .ev_read_ack
= efx_ef10_ev_read_ack
,
4369 .ev_test_generate
= efx_ef10_ev_test_generate
,
4370 .filter_table_probe
= efx_ef10_filter_table_probe
,
4371 .filter_table_restore
= efx_mcdi_filter_table_restore
,
4372 .filter_table_remove
= efx_ef10_filter_table_remove
,
4373 .filter_insert
= efx_mcdi_filter_insert
,
4374 .filter_remove_safe
= efx_mcdi_filter_remove_safe
,
4375 .filter_get_safe
= efx_mcdi_filter_get_safe
,
4376 .filter_clear_rx
= efx_mcdi_filter_clear_rx
,
4377 .filter_count_rx_used
= efx_mcdi_filter_count_rx_used
,
4378 .filter_get_rx_id_limit
= efx_mcdi_filter_get_rx_id_limit
,
4379 .filter_get_rx_ids
= efx_mcdi_filter_get_rx_ids
,
4380 #ifdef CONFIG_RFS_ACCEL
4381 .filter_rfs_expire_one
= efx_mcdi_filter_rfs_expire_one
,
4383 #ifdef CONFIG_SFC_MTD
4384 .mtd_probe
= efx_ef10_mtd_probe
,
4385 .mtd_rename
= efx_mcdi_mtd_rename
,
4386 .mtd_read
= efx_mcdi_mtd_read
,
4387 .mtd_erase
= efx_mcdi_mtd_erase
,
4388 .mtd_write
= efx_mcdi_mtd_write
,
4389 .mtd_sync
= efx_mcdi_mtd_sync
,
4391 .ptp_write_host_time
= efx_ef10_ptp_write_host_time
,
4392 .ptp_set_ts_sync_events
= efx_ef10_ptp_set_ts_sync_events
,
4393 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config
,
4394 .vlan_rx_add_vid
= efx_ef10_vlan_rx_add_vid
,
4395 .vlan_rx_kill_vid
= efx_ef10_vlan_rx_kill_vid
,
4396 .udp_tnl_push_ports
= efx_ef10_udp_tnl_push_ports
,
4397 .udp_tnl_has_port
= efx_ef10_udp_tnl_has_port
,
4398 #ifdef CONFIG_SFC_SRIOV
4399 /* currently set to the VF versions of these functions
4400 * because SRIOV will be reimplemented later.
4402 .vswitching_probe
= efx_ef10_vswitching_probe_vf
,
4403 .vswitching_restore
= efx_ef10_vswitching_restore_vf
,
4404 .vswitching_remove
= efx_ef10_vswitching_remove_vf
,
4406 .get_mac_address
= efx_ef10_get_mac_address_pf
,
4407 .set_mac_address
= efx_ef10_set_mac_address
,
4408 .tso_versions
= efx_ef10_tso_versions
,
4410 .get_phys_port_id
= efx_ef10_get_phys_port_id
,
4411 .revision
= EFX_REV_X4
,
4412 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
4413 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
4414 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
4415 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
4416 .can_rx_scatter
= true,
4417 .always_rx_scatter
= true,
4418 .option_descriptors
= true,
4419 .min_interrupt_mode
= EFX_INT_MODE_MSIX
,
4420 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
4421 .offload_features
= EF10_OFFLOAD_FEATURES
,
4423 .max_rx_ip_filters
= EFX_MCDI_FILTER_TBL_ROWS
,
4424 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
4425 1 << HWTSTAMP_FILTER_ALL
,
4426 .check_caps
= ef10_check_caps
,
4427 .print_additional_fwver
= efx_ef10_print_additional_fwver
,
4428 .sensor_event
= efx_mcdi_sensor_event
,
4429 .rx_recycle_ring_size
= efx_ef10_recycle_ring_size
,