drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / net / ethernet / sfc / ef100_tx.c
blobe6b6be5495817de9d9490cc6a137bed1d17da9d4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 * Copyright 2019-2020 Xilinx Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation, incorporated herein by reference.
12 #include <net/ip6_checksum.h>
14 #include "net_driver.h"
15 #include "tx_common.h"
16 #include "nic_common.h"
17 #include "mcdi_functions.h"
18 #include "ef100_regs.h"
19 #include "io.h"
20 #include "ef100_tx.h"
21 #include "ef100_nic.h"
23 int ef100_tx_probe(struct efx_tx_queue *tx_queue)
25 /* Allocate an extra descriptor for the QMDA status completion entry */
26 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
27 (tx_queue->ptr_mask + 2) *
28 sizeof(efx_oword_t),
29 GFP_KERNEL);
32 void ef100_tx_init(struct efx_tx_queue *tx_queue)
34 /* must be the inverse of lookup in efx_get_tx_channel */
35 tx_queue->core_txq =
36 netdev_get_tx_queue(tx_queue->efx->net_dev,
37 tx_queue->channel->channel -
38 tx_queue->efx->tx_channel_offset);
40 /* This value is purely documentational; as EF100 never passes through
41 * the switch statement in tx.c:__efx_enqueue_skb(), that switch does
42 * not handle case 3. EF100's TSOv3 descriptors are generated by
43 * ef100_make_tso_desc().
44 * Meanwhile, all efx_mcdi_tx_init() cares about is that it's not 2.
46 tx_queue->tso_version = 3;
47 if (efx_mcdi_tx_init(tx_queue))
48 netdev_WARN(tx_queue->efx->net_dev,
49 "failed to initialise TXQ %d\n", tx_queue->queue);
52 static bool ef100_tx_can_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
54 struct efx_nic *efx = tx_queue->efx;
55 struct ef100_nic_data *nic_data;
56 struct efx_tx_buffer *buffer;
57 size_t header_len;
58 u32 mss;
60 nic_data = efx->nic_data;
62 if (!skb_is_gso_tcp(skb))
63 return false;
64 if (!(efx->net_dev->features & NETIF_F_TSO))
65 return false;
67 mss = skb_shinfo(skb)->gso_size;
68 if (unlikely(mss < 4)) {
69 WARN_ONCE(1, "MSS of %u is too small for TSO\n", mss);
70 return false;
73 header_len = efx_tx_tso_header_length(skb);
74 if (header_len > nic_data->tso_max_hdr_len)
75 return false;
77 if (skb_shinfo(skb)->gso_segs > nic_data->tso_max_payload_num_segs) {
78 /* net_dev->gso_max_segs should've caught this */
79 WARN_ON_ONCE(1);
80 return false;
83 if (skb->data_len / mss > nic_data->tso_max_frames)
84 return false;
86 /* net_dev->gso_max_size should've caught this */
87 if (WARN_ON_ONCE(skb->data_len > nic_data->tso_max_payload_len))
88 return false;
90 /* Reserve an empty buffer for the TSO V3 descriptor.
91 * Convey the length of the header since we already know it.
93 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
94 buffer->flags = EFX_TX_BUF_TSO_V3 | EFX_TX_BUF_CONT;
95 buffer->len = header_len;
96 buffer->unmap_len = 0;
97 buffer->skb = skb;
98 ++tx_queue->insert_count;
99 return true;
102 static efx_oword_t *ef100_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
104 if (likely(tx_queue->txd.addr))
105 return ((efx_oword_t *)tx_queue->txd.addr) + index;
106 else
107 return NULL;
110 static void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue)
112 unsigned int write_ptr;
113 efx_dword_t reg;
115 tx_queue->xmit_pending = false;
117 if (unlikely(tx_queue->notify_count == tx_queue->write_count))
118 return;
120 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
121 /* The write pointer goes into the high word */
122 EFX_POPULATE_DWORD_1(reg, ERF_GZ_TX_RING_PIDX, write_ptr);
123 efx_writed_page(tx_queue->efx, &reg,
124 ER_GZ_TX_RING_DOORBELL, tx_queue->queue);
125 tx_queue->notify_count = tx_queue->write_count;
128 static void ef100_tx_push_buffers(struct efx_tx_queue *tx_queue)
130 ef100_notify_tx_desc(tx_queue);
131 ++tx_queue->pushes;
134 static void ef100_set_tx_csum_partial(const struct sk_buff *skb,
135 struct efx_tx_buffer *buffer, efx_oword_t *txd)
137 efx_oword_t csum;
138 int csum_start;
140 if (!skb || skb->ip_summed != CHECKSUM_PARTIAL)
141 return;
143 /* skb->csum_start has the offset from head, but we need the offset
144 * from data.
146 csum_start = skb_checksum_start_offset(skb);
147 EFX_POPULATE_OWORD_3(csum,
148 ESF_GZ_TX_SEND_CSO_PARTIAL_EN, 1,
149 ESF_GZ_TX_SEND_CSO_PARTIAL_START_W,
150 csum_start >> 1,
151 ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W,
152 skb->csum_offset >> 1);
153 EFX_OR_OWORD(*txd, *txd, csum);
156 static void ef100_set_tx_hw_vlan(const struct sk_buff *skb, efx_oword_t *txd)
158 u16 vlan_tci = skb_vlan_tag_get(skb);
159 efx_oword_t vlan;
161 EFX_POPULATE_OWORD_2(vlan,
162 ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
163 ESF_GZ_TX_SEND_VLAN_INSERT_TCI, vlan_tci);
164 EFX_OR_OWORD(*txd, *txd, vlan);
167 static void ef100_make_send_desc(struct efx_nic *efx,
168 const struct sk_buff *skb,
169 struct efx_tx_buffer *buffer, efx_oword_t *txd,
170 unsigned int segment_count)
172 /* TX send descriptor */
173 EFX_POPULATE_OWORD_3(*txd,
174 ESF_GZ_TX_SEND_NUM_SEGS, segment_count,
175 ESF_GZ_TX_SEND_LEN, buffer->len,
176 ESF_GZ_TX_SEND_ADDR, buffer->dma_addr);
178 if (likely(efx->net_dev->features & NETIF_F_HW_CSUM))
179 ef100_set_tx_csum_partial(skb, buffer, txd);
180 if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
181 skb && skb_vlan_tag_present(skb))
182 ef100_set_tx_hw_vlan(skb, txd);
185 static void ef100_make_tso_desc(struct efx_nic *efx,
186 const struct sk_buff *skb,
187 struct efx_tx_buffer *buffer, efx_oword_t *txd,
188 unsigned int segment_count)
190 bool gso_partial = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
191 unsigned int len, ip_offset, tcp_offset, payload_segs;
192 u32 mangleid = ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
193 unsigned int outer_ip_offset, outer_l4_offset;
194 u16 vlan_tci = skb_vlan_tag_get(skb);
195 u32 mss = skb_shinfo(skb)->gso_size;
196 bool encap = skb->encapsulation;
197 bool udp_encap = false;
198 u16 vlan_enable = 0;
199 struct tcphdr *tcp;
200 bool outer_csum;
201 u32 paylen;
203 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID)
204 mangleid = ESE_GZ_TX_DESC_IP4_ID_NO_OP;
205 if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX)
206 vlan_enable = skb_vlan_tag_present(skb);
208 len = skb->len - buffer->len;
209 /* We use 1 for the TSO descriptor and 1 for the header */
210 payload_segs = segment_count - 2;
211 if (encap) {
212 outer_ip_offset = skb_network_offset(skb);
213 outer_l4_offset = skb_transport_offset(skb);
214 ip_offset = skb_inner_network_offset(skb);
215 tcp_offset = skb_inner_transport_offset(skb);
216 if (skb_shinfo(skb)->gso_type &
217 (SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM))
218 udp_encap = true;
219 } else {
220 ip_offset = skb_network_offset(skb);
221 tcp_offset = skb_transport_offset(skb);
222 outer_ip_offset = outer_l4_offset = 0;
224 outer_csum = skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM;
226 /* subtract TCP payload length from inner checksum */
227 tcp = (void *)skb->data + tcp_offset;
228 paylen = skb->len - tcp_offset;
229 csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
231 EFX_POPULATE_OWORD_19(*txd,
232 ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO,
233 ESF_GZ_TX_TSO_MSS, mss,
234 ESF_GZ_TX_TSO_HDR_NUM_SEGS, 1,
235 ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, payload_segs,
236 ESF_GZ_TX_TSO_HDR_LEN_W, buffer->len >> 1,
237 ESF_GZ_TX_TSO_PAYLOAD_LEN, len,
238 ESF_GZ_TX_TSO_CSO_OUTER_L4, outer_csum,
239 ESF_GZ_TX_TSO_CSO_INNER_L4, 1,
240 ESF_GZ_TX_TSO_INNER_L3_OFF_W, ip_offset >> 1,
241 ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcp_offset >> 1,
242 ESF_GZ_TX_TSO_ED_INNER_IP4_ID, mangleid,
243 ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
244 ESF_GZ_TX_TSO_OUTER_L3_OFF_W, outer_ip_offset >> 1,
245 ESF_GZ_TX_TSO_OUTER_L4_OFF_W, outer_l4_offset >> 1,
246 ESF_GZ_TX_TSO_ED_OUTER_UDP_LEN, udp_encap && !gso_partial,
247 ESF_GZ_TX_TSO_ED_OUTER_IP_LEN, encap && !gso_partial,
248 ESF_GZ_TX_TSO_ED_OUTER_IP4_ID, encap ? mangleid :
249 ESE_GZ_TX_DESC_IP4_ID_NO_OP,
250 ESF_GZ_TX_TSO_VLAN_INSERT_EN, vlan_enable,
251 ESF_GZ_TX_TSO_VLAN_INSERT_TCI, vlan_tci
255 static void ef100_tx_make_descriptors(struct efx_tx_queue *tx_queue,
256 const struct sk_buff *skb,
257 unsigned int segment_count,
258 struct efx_rep *efv)
260 unsigned int old_write_count = tx_queue->write_count;
261 unsigned int new_write_count = old_write_count;
262 struct efx_tx_buffer *buffer;
263 unsigned int next_desc_type;
264 unsigned int write_ptr;
265 efx_oword_t *txd;
266 unsigned int nr_descs = tx_queue->insert_count - old_write_count;
268 if (unlikely(nr_descs == 0))
269 return;
271 if (segment_count)
272 next_desc_type = ESE_GZ_TX_DESC_TYPE_TSO;
273 else
274 next_desc_type = ESE_GZ_TX_DESC_TYPE_SEND;
276 if (unlikely(efv)) {
277 /* Create TX override descriptor */
278 write_ptr = new_write_count & tx_queue->ptr_mask;
279 txd = ef100_tx_desc(tx_queue, write_ptr);
280 ++new_write_count;
282 tx_queue->packet_write_count = new_write_count;
283 EFX_POPULATE_OWORD_3(*txd,
284 ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_PREFIX,
285 ESF_GZ_TX_PREFIX_EGRESS_MPORT, efv->mport,
286 ESF_GZ_TX_PREFIX_EGRESS_MPORT_EN, 1);
287 nr_descs--;
290 /* if it's a raw write (such as XDP) then always SEND single frames */
291 if (!skb)
292 nr_descs = 1;
294 do {
295 write_ptr = new_write_count & tx_queue->ptr_mask;
296 buffer = &tx_queue->buffer[write_ptr];
297 txd = ef100_tx_desc(tx_queue, write_ptr);
298 ++new_write_count;
300 /* Create TX descriptor ring entry */
301 tx_queue->packet_write_count = new_write_count;
303 switch (next_desc_type) {
304 case ESE_GZ_TX_DESC_TYPE_SEND:
305 ef100_make_send_desc(tx_queue->efx, skb,
306 buffer, txd, nr_descs);
307 break;
308 case ESE_GZ_TX_DESC_TYPE_TSO:
309 /* TX TSO descriptor */
310 WARN_ON_ONCE(!(buffer->flags & EFX_TX_BUF_TSO_V3));
311 ef100_make_tso_desc(tx_queue->efx, skb,
312 buffer, txd, nr_descs);
313 break;
314 default:
315 /* TX segment descriptor */
316 EFX_POPULATE_OWORD_3(*txd,
317 ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG,
318 ESF_GZ_TX_SEG_LEN, buffer->len,
319 ESF_GZ_TX_SEG_ADDR, buffer->dma_addr);
321 /* if it's a raw write (such as XDP) then always SEND */
322 next_desc_type = skb ? ESE_GZ_TX_DESC_TYPE_SEG :
323 ESE_GZ_TX_DESC_TYPE_SEND;
324 /* mark as an EFV buffer if applicable */
325 if (unlikely(efv))
326 buffer->flags |= EFX_TX_BUF_EFV;
328 } while (new_write_count != tx_queue->insert_count);
330 wmb(); /* Ensure descriptors are written before they are fetched */
332 tx_queue->write_count = new_write_count;
334 /* The write_count above must be updated before reading
335 * channel->holdoff_doorbell to avoid a race with the
336 * completion path, so ensure these operations are not
337 * re-ordered. This also flushes the update of write_count
338 * back into the cache.
340 smp_mb();
343 void ef100_tx_write(struct efx_tx_queue *tx_queue)
345 ef100_tx_make_descriptors(tx_queue, NULL, 0, NULL);
346 ef100_tx_push_buffers(tx_queue);
349 int ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event)
351 unsigned int tx_done =
352 EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_NUM_DESC);
353 unsigned int qlabel =
354 EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_Q_LABEL);
355 struct efx_tx_queue *tx_queue =
356 efx_channel_get_tx_queue(channel, qlabel);
357 unsigned int tx_index = (tx_queue->read_count + tx_done - 1) &
358 tx_queue->ptr_mask;
360 return efx_xmit_done(tx_queue, tx_index);
363 /* Add a socket buffer to a TX queue
365 * You must hold netif_tx_lock() to call this function.
367 * Returns 0 on success, error code otherwise. In case of an error this
368 * function will free the SKB.
370 netdev_tx_t ef100_enqueue_skb(struct efx_tx_queue *tx_queue,
371 struct sk_buff *skb)
373 return __ef100_enqueue_skb(tx_queue, skb, NULL);
376 int __ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
377 struct efx_rep *efv)
379 unsigned int old_insert_count = tx_queue->insert_count;
380 struct efx_nic *efx = tx_queue->efx;
381 bool xmit_more = netdev_xmit_more();
382 unsigned int fill_level;
383 unsigned int segments;
384 int rc;
386 if (!tx_queue->buffer || !tx_queue->ptr_mask) {
387 netif_stop_queue(efx->net_dev);
388 dev_kfree_skb_any(skb);
389 return -ENODEV;
392 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
393 if (segments == 1)
394 segments = 0; /* Don't use TSO/GSO for a single segment. */
395 if (segments && !ef100_tx_can_tso(tx_queue, skb)) {
396 rc = efx_tx_tso_fallback(tx_queue, skb);
397 tx_queue->tso_fallbacks++;
398 if (rc)
399 goto err;
400 else
401 return 0;
404 if (unlikely(efv)) {
405 struct efx_tx_buffer *buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
407 /* Drop representor packets if the queue is stopped.
408 * We currently don't assert backoff to representors so this is
409 * to make sure representor traffic can't starve the main
410 * net device.
411 * And, of course, if there are no TX descriptors left.
413 if (netif_tx_queue_stopped(tx_queue->core_txq) ||
414 unlikely(efx_tx_buffer_in_use(buffer))) {
415 atomic64_inc(&efv->stats.tx_errors);
416 rc = -ENOSPC;
417 goto err;
420 /* Also drop representor traffic if it could cause us to
421 * stop the queue. If we assert backoff and we haven't
422 * received traffic on the main net device recently then the
423 * TX watchdog can go off erroneously.
425 fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
426 fill_level += efx_tx_max_skb_descs(efx);
427 if (fill_level > efx->txq_stop_thresh) {
428 struct efx_tx_queue *txq2;
430 /* Refresh cached fill level and re-check */
431 efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
432 txq2->old_read_count = READ_ONCE(txq2->read_count);
434 fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
435 fill_level += efx_tx_max_skb_descs(efx);
436 if (fill_level > efx->txq_stop_thresh) {
437 atomic64_inc(&efv->stats.tx_errors);
438 rc = -ENOSPC;
439 goto err;
443 buffer->flags = EFX_TX_BUF_OPTION | EFX_TX_BUF_EFV;
444 tx_queue->insert_count++;
447 /* Map for DMA and create descriptors */
448 rc = efx_tx_map_data(tx_queue, skb, segments);
449 if (rc)
450 goto err;
451 ef100_tx_make_descriptors(tx_queue, skb, segments, efv);
453 fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
454 if (fill_level > efx->txq_stop_thresh) {
455 struct efx_tx_queue *txq2;
457 /* Because of checks above, representor traffic should
458 * not be able to stop the queue.
460 WARN_ON(efv);
462 netif_tx_stop_queue(tx_queue->core_txq);
463 /* Re-read after a memory barrier in case we've raced with
464 * the completion path. Otherwise there's a danger we'll never
465 * restart the queue if all completions have just happened.
467 smp_mb();
468 efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
469 txq2->old_read_count = READ_ONCE(txq2->read_count);
470 fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
471 if (fill_level < efx->txq_stop_thresh)
472 netif_tx_start_queue(tx_queue->core_txq);
475 tx_queue->xmit_pending = true;
477 /* If xmit_more then we don't need to push the doorbell, unless there
478 * are 256 descriptors already queued in which case we have to push to
479 * ensure we never push more than 256 at once.
481 * Always push for representor traffic, and don't account it to parent
482 * PF netdevice's BQL.
484 if (unlikely(efv) ||
485 __netdev_tx_sent_queue(tx_queue->core_txq, skb->len, xmit_more) ||
486 tx_queue->write_count - tx_queue->notify_count > 255)
487 ef100_tx_push_buffers(tx_queue);
489 if (segments) {
490 tx_queue->tso_bursts++;
491 tx_queue->tso_packets += segments;
492 tx_queue->tx_packets += segments;
493 } else {
494 tx_queue->tx_packets++;
496 return 0;
498 err:
499 efx_enqueue_unwind(tx_queue, old_insert_count);
500 if (!IS_ERR_OR_NULL(skb))
501 dev_kfree_skb_any(skb);
503 /* If we're not expecting another transmit and we had something to push
504 * on this queue then we need to push here to get the previous packets
505 * out. We only enter this branch from before the xmit_more handling
506 * above, so xmit_pending still refers to the old state.
508 if (tx_queue->xmit_pending && !xmit_more)
509 ef100_tx_push_buffers(tx_queue);
510 return rc;