1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
8 #include <linux/module.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
15 #include <linux/tcp.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/interrupt.h>
21 #include "net_driver.h"
26 #include "workarounds.h"
28 /**************************************************************************
32 **************************************************************************
35 /* Loopback mode names (see LOOPBACK_MODE()) */
36 const unsigned int ef4_loopback_mode_max
= LOOPBACK_MAX
;
37 const char *const ef4_loopback_mode_names
[] = {
38 [LOOPBACK_NONE
] = "NONE",
39 [LOOPBACK_DATA
] = "DATAPATH",
40 [LOOPBACK_GMAC
] = "GMAC",
41 [LOOPBACK_XGMII
] = "XGMII",
42 [LOOPBACK_XGXS
] = "XGXS",
43 [LOOPBACK_XAUI
] = "XAUI",
44 [LOOPBACK_GMII
] = "GMII",
45 [LOOPBACK_SGMII
] = "SGMII",
46 [LOOPBACK_XGBR
] = "XGBR",
47 [LOOPBACK_XFI
] = "XFI",
48 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
49 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
50 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
51 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
52 [LOOPBACK_GPHY
] = "GPHY",
53 [LOOPBACK_PHYXS
] = "PHYXS",
54 [LOOPBACK_PCS
] = "PCS",
55 [LOOPBACK_PMAPMD
] = "PMA/PMD",
56 [LOOPBACK_XPORT
] = "XPORT",
57 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
58 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
59 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
60 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
61 [LOOPBACK_GMII_WS
] = "GMII_WS",
62 [LOOPBACK_XFI_WS
] = "XFI_WS",
63 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
64 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
67 const unsigned int ef4_reset_type_max
= RESET_TYPE_MAX
;
68 const char *const ef4_reset_type_names
[] = {
69 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
70 [RESET_TYPE_ALL
] = "ALL",
71 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
72 [RESET_TYPE_WORLD
] = "WORLD",
73 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
74 [RESET_TYPE_DATAPATH
] = "DATAPATH",
75 [RESET_TYPE_DISABLE
] = "DISABLE",
76 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
77 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
78 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
79 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
80 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
83 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
84 * queued onto this work queue. This is not a per-nic work queue, because
85 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
87 static struct workqueue_struct
*reset_workqueue
;
89 /* How often and how many times to poll for a reset while waiting for a
90 * BIST that another function started to complete.
92 #define BIST_WAIT_DELAY_MS 100
93 #define BIST_WAIT_DELAY_COUNT 100
95 /**************************************************************************
99 *************************************************************************/
102 * Use separate channels for TX and RX events
104 * Set this to 1 to use separate channels for TX and RX. It allows us
105 * to control interrupt affinity separately for TX and RX.
107 * This is only used in MSI-X interrupt mode
109 bool ef4_separate_tx_channels
;
110 module_param(ef4_separate_tx_channels
, bool, 0444);
111 MODULE_PARM_DESC(ef4_separate_tx_channels
,
112 "Use separate channels for TX and RX");
114 /* This is the time (in jiffies) between invocations of the hardware
116 * On Falcon-based NICs, this will:
117 * - Check the on-board hardware monitor;
118 * - Poll the link state and reconfigure the hardware as necessary.
119 * On Siena-based NICs for power systems with EEH support, this will give EEH a
122 static unsigned int ef4_monitor_interval
= 1 * HZ
;
124 /* Initial interrupt moderation settings. They can be modified after
125 * module load with ethtool.
127 * The default for RX should strike a balance between increasing the
128 * round-trip latency and reducing overhead.
130 static unsigned int rx_irq_mod_usec
= 60;
132 /* Initial interrupt moderation settings. They can be modified after
133 * module load with ethtool.
135 * This default is chosen to ensure that a 10G link does not go idle
136 * while a TX queue is stopped after it has become full. A queue is
137 * restarted when it drops below half full. The time this takes (assuming
138 * worst case 3 descriptors per packet and 1024 descriptors) is
139 * 512 / 3 * 1.2 = 205 usec.
141 static unsigned int tx_irq_mod_usec
= 150;
143 /* This is the first interrupt mode to try out of:
148 static unsigned int interrupt_mode
;
150 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
151 * i.e. the number of CPUs among which we may distribute simultaneous
152 * interrupt handling.
154 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
155 * The default (0) means to assign an interrupt to each core.
157 static unsigned int rss_cpus
;
158 module_param(rss_cpus
, uint
, 0444);
159 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
161 static bool phy_flash_cfg
;
162 module_param(phy_flash_cfg
, bool, 0644);
163 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
165 static unsigned irq_adapt_low_thresh
= 8000;
166 module_param(irq_adapt_low_thresh
, uint
, 0644);
167 MODULE_PARM_DESC(irq_adapt_low_thresh
,
168 "Threshold score for reducing IRQ moderation");
170 static unsigned irq_adapt_high_thresh
= 16000;
171 module_param(irq_adapt_high_thresh
, uint
, 0644);
172 MODULE_PARM_DESC(irq_adapt_high_thresh
,
173 "Threshold score for increasing IRQ moderation");
175 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
176 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
177 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
178 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
179 module_param(debug
, uint
, 0);
180 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
182 /**************************************************************************
184 * Utility functions and prototypes
186 *************************************************************************/
188 static int ef4_soft_enable_interrupts(struct ef4_nic
*efx
);
189 static void ef4_soft_disable_interrupts(struct ef4_nic
*efx
);
190 static void ef4_remove_channel(struct ef4_channel
*channel
);
191 static void ef4_remove_channels(struct ef4_nic
*efx
);
192 static const struct ef4_channel_type ef4_default_channel_type
;
193 static void ef4_remove_port(struct ef4_nic
*efx
);
194 static void ef4_init_napi_channel(struct ef4_channel
*channel
);
195 static void ef4_fini_napi(struct ef4_nic
*efx
);
196 static void ef4_fini_napi_channel(struct ef4_channel
*channel
);
197 static void ef4_fini_struct(struct ef4_nic
*efx
);
198 static void ef4_start_all(struct ef4_nic
*efx
);
199 static void ef4_stop_all(struct ef4_nic
*efx
);
201 #define EF4_ASSERT_RESET_SERIALISED(efx) \
203 if ((efx->state == STATE_READY) || \
204 (efx->state == STATE_RECOVERY) || \
205 (efx->state == STATE_DISABLED)) \
209 static int ef4_check_disabled(struct ef4_nic
*efx
)
211 if (efx
->state
== STATE_DISABLED
|| efx
->state
== STATE_RECOVERY
) {
212 netif_err(efx
, drv
, efx
->net_dev
,
213 "device is disabled due to earlier errors\n");
219 /**************************************************************************
221 * Event queue processing
223 *************************************************************************/
225 /* Process channel's event queue
227 * This function is responsible for processing the event queue of a
228 * single channel. The caller must guarantee that this function will
229 * never be concurrently called more than once on the same channel,
230 * though different channels may be being processed concurrently.
232 static int ef4_process_channel(struct ef4_channel
*channel
, int budget
)
234 struct ef4_tx_queue
*tx_queue
;
237 if (unlikely(!channel
->enabled
))
240 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
241 tx_queue
->pkts_compl
= 0;
242 tx_queue
->bytes_compl
= 0;
245 spent
= ef4_nic_process_eventq(channel
, budget
);
246 if (spent
&& ef4_channel_has_rx_queue(channel
)) {
247 struct ef4_rx_queue
*rx_queue
=
248 ef4_channel_get_rx_queue(channel
);
250 ef4_rx_flush_packet(channel
);
251 ef4_fast_push_rx_descriptors(rx_queue
, true);
255 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
256 if (tx_queue
->bytes_compl
) {
257 netdev_tx_completed_queue(tx_queue
->core_txq
,
258 tx_queue
->pkts_compl
, tx_queue
->bytes_compl
);
267 * NAPI guarantees serialisation of polls of the same device, which
268 * provides the guarantee required by ef4_process_channel().
270 static void ef4_update_irq_mod(struct ef4_nic
*efx
, struct ef4_channel
*channel
)
272 int step
= efx
->irq_mod_step_us
;
274 if (channel
->irq_mod_score
< irq_adapt_low_thresh
) {
275 if (channel
->irq_moderation_us
> step
) {
276 channel
->irq_moderation_us
-= step
;
277 efx
->type
->push_irq_moderation(channel
);
279 } else if (channel
->irq_mod_score
> irq_adapt_high_thresh
) {
280 if (channel
->irq_moderation_us
<
281 efx
->irq_rx_moderation_us
) {
282 channel
->irq_moderation_us
+= step
;
283 efx
->type
->push_irq_moderation(channel
);
287 channel
->irq_count
= 0;
288 channel
->irq_mod_score
= 0;
291 static int ef4_poll(struct napi_struct
*napi
, int budget
)
293 struct ef4_channel
*channel
=
294 container_of(napi
, struct ef4_channel
, napi_str
);
295 struct ef4_nic
*efx
= channel
->efx
;
298 netif_vdbg(efx
, intr
, efx
->net_dev
,
299 "channel %d NAPI poll executing on CPU %d\n",
300 channel
->channel
, raw_smp_processor_id());
302 spent
= ef4_process_channel(channel
, budget
);
304 if (spent
< budget
) {
305 if (ef4_channel_has_rx_queue(channel
) &&
306 efx
->irq_rx_adaptive
&&
307 unlikely(++channel
->irq_count
== 1000)) {
308 ef4_update_irq_mod(efx
, channel
);
311 ef4_filter_rfs_expire(channel
);
313 /* There is no race here; although napi_disable() will
314 * only wait for napi_complete(), this isn't a problem
315 * since ef4_nic_eventq_read_ack() will have no effect if
316 * interrupts have already been disabled.
318 napi_complete_done(napi
, spent
);
319 ef4_nic_eventq_read_ack(channel
);
325 /* Create event queue
326 * Event queue memory allocations are done only once. If the channel
327 * is reset, the memory buffer will be reused; this guards against
328 * errors during channel reset and also simplifies interrupt handling.
330 static int ef4_probe_eventq(struct ef4_channel
*channel
)
332 struct ef4_nic
*efx
= channel
->efx
;
333 unsigned long entries
;
335 netif_dbg(efx
, probe
, efx
->net_dev
,
336 "chan %d create event queue\n", channel
->channel
);
338 /* Build an event queue with room for one event per tx and rx buffer,
339 * plus some extra for link state events and MCDI completions. */
340 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
341 EF4_BUG_ON_PARANOID(entries
> EF4_MAX_EVQ_SIZE
);
342 channel
->eventq_mask
= max(entries
, EF4_MIN_EVQ_SIZE
) - 1;
344 return ef4_nic_probe_eventq(channel
);
347 /* Prepare channel's event queue */
348 static int ef4_init_eventq(struct ef4_channel
*channel
)
350 struct ef4_nic
*efx
= channel
->efx
;
353 EF4_WARN_ON_PARANOID(channel
->eventq_init
);
355 netif_dbg(efx
, drv
, efx
->net_dev
,
356 "chan %d init event queue\n", channel
->channel
);
358 rc
= ef4_nic_init_eventq(channel
);
360 efx
->type
->push_irq_moderation(channel
);
361 channel
->eventq_read_ptr
= 0;
362 channel
->eventq_init
= true;
367 /* Enable event queue processing and NAPI */
368 void ef4_start_eventq(struct ef4_channel
*channel
)
370 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
371 "chan %d start event queue\n", channel
->channel
);
373 /* Make sure the NAPI handler sees the enabled flag set */
374 channel
->enabled
= true;
377 napi_enable(&channel
->napi_str
);
378 ef4_nic_eventq_read_ack(channel
);
381 /* Disable event queue processing and NAPI */
382 void ef4_stop_eventq(struct ef4_channel
*channel
)
384 if (!channel
->enabled
)
387 napi_disable(&channel
->napi_str
);
388 channel
->enabled
= false;
391 static void ef4_fini_eventq(struct ef4_channel
*channel
)
393 if (!channel
->eventq_init
)
396 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
397 "chan %d fini event queue\n", channel
->channel
);
399 ef4_nic_fini_eventq(channel
);
400 channel
->eventq_init
= false;
403 static void ef4_remove_eventq(struct ef4_channel
*channel
)
405 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
406 "chan %d remove event queue\n", channel
->channel
);
408 ef4_nic_remove_eventq(channel
);
411 /**************************************************************************
415 *************************************************************************/
417 /* Allocate and initialise a channel structure. */
418 static struct ef4_channel
*
419 ef4_alloc_channel(struct ef4_nic
*efx
, int i
, struct ef4_channel
*old_channel
)
421 struct ef4_channel
*channel
;
422 struct ef4_rx_queue
*rx_queue
;
423 struct ef4_tx_queue
*tx_queue
;
426 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
431 channel
->channel
= i
;
432 channel
->type
= &ef4_default_channel_type
;
434 for (j
= 0; j
< EF4_TXQ_TYPES
; j
++) {
435 tx_queue
= &channel
->tx_queue
[j
];
437 tx_queue
->queue
= i
* EF4_TXQ_TYPES
+ j
;
438 tx_queue
->channel
= channel
;
441 rx_queue
= &channel
->rx_queue
;
443 timer_setup(&rx_queue
->slow_fill
, ef4_rx_slow_fill
, 0);
448 /* Allocate and initialise a channel structure, copying parameters
449 * (but not resources) from an old channel structure.
451 static struct ef4_channel
*
452 ef4_copy_channel(const struct ef4_channel
*old_channel
)
454 struct ef4_channel
*channel
;
455 struct ef4_rx_queue
*rx_queue
;
456 struct ef4_tx_queue
*tx_queue
;
459 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
463 *channel
= *old_channel
;
465 channel
->napi_dev
= NULL
;
466 INIT_HLIST_NODE(&channel
->napi_str
.napi_hash_node
);
467 channel
->napi_str
.napi_id
= 0;
468 channel
->napi_str
.state
= 0;
469 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
471 for (j
= 0; j
< EF4_TXQ_TYPES
; j
++) {
472 tx_queue
= &channel
->tx_queue
[j
];
473 if (tx_queue
->channel
)
474 tx_queue
->channel
= channel
;
475 tx_queue
->buffer
= NULL
;
476 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
479 rx_queue
= &channel
->rx_queue
;
480 rx_queue
->buffer
= NULL
;
481 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
482 timer_setup(&rx_queue
->slow_fill
, ef4_rx_slow_fill
, 0);
487 static int ef4_probe_channel(struct ef4_channel
*channel
)
489 struct ef4_tx_queue
*tx_queue
;
490 struct ef4_rx_queue
*rx_queue
;
493 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
494 "creating channel %d\n", channel
->channel
);
496 rc
= channel
->type
->pre_probe(channel
);
500 rc
= ef4_probe_eventq(channel
);
504 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
505 rc
= ef4_probe_tx_queue(tx_queue
);
510 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
511 rc
= ef4_probe_rx_queue(rx_queue
);
519 ef4_remove_channel(channel
);
524 ef4_get_channel_name(struct ef4_channel
*channel
, char *buf
, size_t len
)
526 struct ef4_nic
*efx
= channel
->efx
;
530 number
= channel
->channel
;
531 if (efx
->tx_channel_offset
== 0) {
533 } else if (channel
->channel
< efx
->tx_channel_offset
) {
537 number
-= efx
->tx_channel_offset
;
539 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
542 static void ef4_set_channel_names(struct ef4_nic
*efx
)
544 struct ef4_channel
*channel
;
546 ef4_for_each_channel(channel
, efx
)
547 channel
->type
->get_name(channel
,
548 efx
->msi_context
[channel
->channel
].name
,
549 sizeof(efx
->msi_context
[0].name
));
552 static int ef4_probe_channels(struct ef4_nic
*efx
)
554 struct ef4_channel
*channel
;
557 /* Restart special buffer allocation */
558 efx
->next_buffer_table
= 0;
560 /* Probe channels in reverse, so that any 'extra' channels
561 * use the start of the buffer table. This allows the traffic
562 * channels to be resized without moving them or wasting the
563 * entries before them.
565 ef4_for_each_channel_rev(channel
, efx
) {
566 rc
= ef4_probe_channel(channel
);
568 netif_err(efx
, probe
, efx
->net_dev
,
569 "failed to create channel %d\n",
574 ef4_set_channel_names(efx
);
579 ef4_remove_channels(efx
);
583 /* Channels are shutdown and reinitialised whilst the NIC is running
584 * to propagate configuration changes (mtu, checksum offload), or
585 * to clear hardware error conditions
587 static void ef4_start_datapath(struct ef4_nic
*efx
)
589 netdev_features_t old_features
= efx
->net_dev
->features
;
590 bool old_rx_scatter
= efx
->rx_scatter
;
591 struct ef4_tx_queue
*tx_queue
;
592 struct ef4_rx_queue
*rx_queue
;
593 struct ef4_channel
*channel
;
596 /* Calculate the rx buffer allocation parameters required to
597 * support the current MTU, including padding for header
598 * alignment and overruns.
600 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
601 EF4_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
602 efx
->type
->rx_buffer_padding
);
603 rx_buf_len
= (sizeof(struct ef4_rx_page_state
) +
604 efx
->rx_ip_align
+ efx
->rx_dma_len
);
605 if (rx_buf_len
<= PAGE_SIZE
) {
606 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
607 efx
->rx_buffer_order
= 0;
608 } else if (efx
->type
->can_rx_scatter
) {
609 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
610 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state
) +
611 2 * ALIGN(NET_IP_ALIGN
+ EF4_RX_USR_BUF_SIZE
,
612 EF4_RX_BUF_ALIGNMENT
) >
614 efx
->rx_scatter
= true;
615 efx
->rx_dma_len
= EF4_RX_USR_BUF_SIZE
;
616 efx
->rx_buffer_order
= 0;
618 efx
->rx_scatter
= false;
619 efx
->rx_buffer_order
= get_order(rx_buf_len
);
622 ef4_rx_config_page_split(efx
);
623 if (efx
->rx_buffer_order
)
624 netif_dbg(efx
, drv
, efx
->net_dev
,
625 "RX buf len=%u; page order=%u batch=%u\n",
626 efx
->rx_dma_len
, efx
->rx_buffer_order
,
627 efx
->rx_pages_per_batch
);
629 netif_dbg(efx
, drv
, efx
->net_dev
,
630 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
631 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
632 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
634 /* Restore previously fixed features in hw_features and remove
635 * features which are fixed now
637 efx
->net_dev
->hw_features
|= efx
->net_dev
->features
;
638 efx
->net_dev
->hw_features
&= ~efx
->fixed_features
;
639 efx
->net_dev
->features
|= efx
->fixed_features
;
640 if (efx
->net_dev
->features
!= old_features
)
641 netdev_features_change(efx
->net_dev
);
643 /* RX filters may also have scatter-enabled flags */
644 if (efx
->rx_scatter
!= old_rx_scatter
)
645 efx
->type
->filter_update_rx_scatter(efx
);
647 /* We must keep at least one descriptor in a TX ring empty.
648 * We could avoid this when the queue size does not exactly
649 * match the hardware ring size, but it's not that important.
650 * Therefore we stop the queue when one more skb might fill
651 * the ring completely. We wake it when half way back to
654 efx
->txq_stop_thresh
= efx
->txq_entries
- ef4_tx_max_skb_descs(efx
);
655 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
657 /* Initialise the channels */
658 ef4_for_each_channel(channel
, efx
) {
659 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
660 ef4_init_tx_queue(tx_queue
);
661 atomic_inc(&efx
->active_queues
);
664 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
665 ef4_init_rx_queue(rx_queue
);
666 atomic_inc(&efx
->active_queues
);
667 ef4_stop_eventq(channel
);
668 ef4_fast_push_rx_descriptors(rx_queue
, false);
669 ef4_start_eventq(channel
);
672 WARN_ON(channel
->rx_pkt_n_frags
);
675 if (netif_device_present(efx
->net_dev
))
676 netif_tx_wake_all_queues(efx
->net_dev
);
679 static void ef4_stop_datapath(struct ef4_nic
*efx
)
681 struct ef4_channel
*channel
;
682 struct ef4_tx_queue
*tx_queue
;
683 struct ef4_rx_queue
*rx_queue
;
686 EF4_ASSERT_RESET_SERIALISED(efx
);
687 BUG_ON(efx
->port_enabled
);
690 ef4_for_each_channel(channel
, efx
) {
691 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
692 rx_queue
->refill_enabled
= false;
695 ef4_for_each_channel(channel
, efx
) {
696 /* RX packet processing is pipelined, so wait for the
697 * NAPI handler to complete. At least event queue 0
698 * might be kept active by non-data events, so don't
699 * use napi_synchronize() but actually disable NAPI
702 if (ef4_channel_has_rx_queue(channel
)) {
703 ef4_stop_eventq(channel
);
704 ef4_start_eventq(channel
);
708 rc
= efx
->type
->fini_dmaq(efx
);
709 if (rc
&& EF4_WORKAROUND_7803(efx
)) {
710 /* Schedule a reset to recover from the flush failure. The
711 * descriptor caches reference memory we're about to free,
712 * but falcon_reconfigure_mac_wrapper() won't reconnect
713 * the MACs because of the pending reset.
715 netif_err(efx
, drv
, efx
->net_dev
,
716 "Resetting to recover from flush failure\n");
717 ef4_schedule_reset(efx
, RESET_TYPE_ALL
);
719 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
721 netif_dbg(efx
, drv
, efx
->net_dev
,
722 "successfully flushed all queues\n");
725 ef4_for_each_channel(channel
, efx
) {
726 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
727 ef4_fini_rx_queue(rx_queue
);
728 ef4_for_each_possible_channel_tx_queue(tx_queue
, channel
)
729 ef4_fini_tx_queue(tx_queue
);
733 static void ef4_remove_channel(struct ef4_channel
*channel
)
735 struct ef4_tx_queue
*tx_queue
;
736 struct ef4_rx_queue
*rx_queue
;
738 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
739 "destroy chan %d\n", channel
->channel
);
741 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
742 ef4_remove_rx_queue(rx_queue
);
743 ef4_for_each_possible_channel_tx_queue(tx_queue
, channel
)
744 ef4_remove_tx_queue(tx_queue
);
745 ef4_remove_eventq(channel
);
746 channel
->type
->post_remove(channel
);
749 static void ef4_remove_channels(struct ef4_nic
*efx
)
751 struct ef4_channel
*channel
;
753 ef4_for_each_channel(channel
, efx
)
754 ef4_remove_channel(channel
);
758 ef4_realloc_channels(struct ef4_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
760 struct ef4_channel
*other_channel
[EF4_MAX_CHANNELS
], *channel
;
761 u32 old_rxq_entries
, old_txq_entries
;
762 unsigned i
, next_buffer_table
= 0;
765 rc
= ef4_check_disabled(efx
);
769 /* Not all channels should be reallocated. We must avoid
770 * reallocating their buffer table entries.
772 ef4_for_each_channel(channel
, efx
) {
773 struct ef4_rx_queue
*rx_queue
;
774 struct ef4_tx_queue
*tx_queue
;
776 if (channel
->type
->copy
)
778 next_buffer_table
= max(next_buffer_table
,
779 channel
->eventq
.index
+
780 channel
->eventq
.entries
);
781 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
782 next_buffer_table
= max(next_buffer_table
,
783 rx_queue
->rxd
.index
+
784 rx_queue
->rxd
.entries
);
785 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
786 next_buffer_table
= max(next_buffer_table
,
787 tx_queue
->txd
.index
+
788 tx_queue
->txd
.entries
);
791 ef4_device_detach_sync(efx
);
793 ef4_soft_disable_interrupts(efx
);
795 /* Clone channels (where possible) */
796 memset(other_channel
, 0, sizeof(other_channel
));
797 for (i
= 0; i
< efx
->n_channels
; i
++) {
798 channel
= efx
->channel
[i
];
799 if (channel
->type
->copy
)
800 channel
= channel
->type
->copy(channel
);
805 other_channel
[i
] = channel
;
808 /* Swap entry counts and channel pointers */
809 old_rxq_entries
= efx
->rxq_entries
;
810 old_txq_entries
= efx
->txq_entries
;
811 efx
->rxq_entries
= rxq_entries
;
812 efx
->txq_entries
= txq_entries
;
813 for (i
= 0; i
< efx
->n_channels
; i
++) {
814 swap(efx
->channel
[i
], other_channel
[i
]);
817 /* Restart buffer table allocation */
818 efx
->next_buffer_table
= next_buffer_table
;
820 for (i
= 0; i
< efx
->n_channels
; i
++) {
821 channel
= efx
->channel
[i
];
822 if (!channel
->type
->copy
)
824 rc
= ef4_probe_channel(channel
);
827 ef4_init_napi_channel(efx
->channel
[i
]);
831 /* Destroy unused channel structures */
832 for (i
= 0; i
< efx
->n_channels
; i
++) {
833 channel
= other_channel
[i
];
834 if (channel
&& channel
->type
->copy
) {
835 ef4_fini_napi_channel(channel
);
836 ef4_remove_channel(channel
);
841 rc2
= ef4_soft_enable_interrupts(efx
);
844 netif_err(efx
, drv
, efx
->net_dev
,
845 "unable to restart interrupts on channel reallocation\n");
846 ef4_schedule_reset(efx
, RESET_TYPE_DISABLE
);
849 netif_device_attach(efx
->net_dev
);
855 efx
->rxq_entries
= old_rxq_entries
;
856 efx
->txq_entries
= old_txq_entries
;
857 for (i
= 0; i
< efx
->n_channels
; i
++) {
858 swap(efx
->channel
[i
], other_channel
[i
]);
863 void ef4_schedule_slow_fill(struct ef4_rx_queue
*rx_queue
)
865 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
868 static const struct ef4_channel_type ef4_default_channel_type
= {
869 .pre_probe
= ef4_channel_dummy_op_int
,
870 .post_remove
= ef4_channel_dummy_op_void
,
871 .get_name
= ef4_get_channel_name
,
872 .copy
= ef4_copy_channel
,
873 .keep_eventq
= false,
876 int ef4_channel_dummy_op_int(struct ef4_channel
*channel
)
881 void ef4_channel_dummy_op_void(struct ef4_channel
*channel
)
885 /**************************************************************************
889 **************************************************************************/
891 /* This ensures that the kernel is kept informed (via
892 * netif_carrier_on/off) of the link status, and also maintains the
893 * link status's stop on the port's TX queue.
895 void ef4_link_status_changed(struct ef4_nic
*efx
)
897 struct ef4_link_state
*link_state
= &efx
->link_state
;
899 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
900 * that no events are triggered between unregister_netdev() and the
901 * driver unloading. A more general condition is that NETDEV_CHANGE
902 * can only be generated between NETDEV_UP and NETDEV_DOWN */
903 if (!netif_running(efx
->net_dev
))
906 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
907 efx
->n_link_state_changes
++;
910 netif_carrier_on(efx
->net_dev
);
912 netif_carrier_off(efx
->net_dev
);
915 /* Status message for kernel log */
917 netif_info(efx
, link
, efx
->net_dev
,
918 "link up at %uMbps %s-duplex (MTU %d)\n",
919 link_state
->speed
, link_state
->fd
? "full" : "half",
922 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
925 void ef4_link_set_advertising(struct ef4_nic
*efx
, u32 advertising
)
927 efx
->link_advertising
= advertising
;
929 if (advertising
& ADVERTISED_Pause
)
930 efx
->wanted_fc
|= (EF4_FC_TX
| EF4_FC_RX
);
932 efx
->wanted_fc
&= ~(EF4_FC_TX
| EF4_FC_RX
);
933 if (advertising
& ADVERTISED_Asym_Pause
)
934 efx
->wanted_fc
^= EF4_FC_TX
;
938 void ef4_link_set_wanted_fc(struct ef4_nic
*efx
, u8 wanted_fc
)
940 efx
->wanted_fc
= wanted_fc
;
941 if (efx
->link_advertising
) {
942 if (wanted_fc
& EF4_FC_RX
)
943 efx
->link_advertising
|= (ADVERTISED_Pause
|
944 ADVERTISED_Asym_Pause
);
946 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
947 ADVERTISED_Asym_Pause
);
948 if (wanted_fc
& EF4_FC_TX
)
949 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
953 static void ef4_fini_port(struct ef4_nic
*efx
);
955 /* We assume that efx->type->reconfigure_mac will always try to sync RX
956 * filters and therefore needs to read-lock the filter table against freeing
958 void ef4_mac_reconfigure(struct ef4_nic
*efx
)
960 down_read(&efx
->filter_sem
);
961 efx
->type
->reconfigure_mac(efx
);
962 up_read(&efx
->filter_sem
);
965 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
966 * the MAC appropriately. All other PHY configuration changes are pushed
967 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
968 * through ef4_monitor().
970 * Callers must hold the mac_lock
972 int __ef4_reconfigure_port(struct ef4_nic
*efx
)
974 enum ef4_phy_mode phy_mode
;
977 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
979 /* Disable PHY transmit in mac level loopbacks */
980 phy_mode
= efx
->phy_mode
;
981 if (LOOPBACK_INTERNAL(efx
))
982 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
984 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
986 rc
= efx
->type
->reconfigure_port(efx
);
989 efx
->phy_mode
= phy_mode
;
994 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
996 int ef4_reconfigure_port(struct ef4_nic
*efx
)
1000 EF4_ASSERT_RESET_SERIALISED(efx
);
1002 mutex_lock(&efx
->mac_lock
);
1003 rc
= __ef4_reconfigure_port(efx
);
1004 mutex_unlock(&efx
->mac_lock
);
1009 /* Asynchronous work item for changing MAC promiscuity and multicast
1010 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1012 static void ef4_mac_work(struct work_struct
*data
)
1014 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
, mac_work
);
1016 mutex_lock(&efx
->mac_lock
);
1017 if (efx
->port_enabled
)
1018 ef4_mac_reconfigure(efx
);
1019 mutex_unlock(&efx
->mac_lock
);
1022 static int ef4_probe_port(struct ef4_nic
*efx
)
1026 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
1029 efx
->phy_mode
= PHY_MODE_SPECIAL
;
1031 /* Connect up MAC/PHY operations table */
1032 rc
= efx
->type
->probe_port(efx
);
1036 /* Initialise MAC address to permanent address */
1037 eth_hw_addr_set(efx
->net_dev
, efx
->net_dev
->perm_addr
);
1042 static int ef4_init_port(struct ef4_nic
*efx
)
1046 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
1048 mutex_lock(&efx
->mac_lock
);
1050 rc
= efx
->phy_op
->init(efx
);
1054 efx
->port_initialized
= true;
1056 /* Reconfigure the MAC before creating dma queues (required for
1057 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1058 ef4_mac_reconfigure(efx
);
1060 /* Ensure the PHY advertises the correct flow control settings */
1061 rc
= efx
->phy_op
->reconfigure(efx
);
1062 if (rc
&& rc
!= -EPERM
)
1065 mutex_unlock(&efx
->mac_lock
);
1069 efx
->phy_op
->fini(efx
);
1071 mutex_unlock(&efx
->mac_lock
);
1075 static void ef4_start_port(struct ef4_nic
*efx
)
1077 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
1078 BUG_ON(efx
->port_enabled
);
1080 mutex_lock(&efx
->mac_lock
);
1081 efx
->port_enabled
= true;
1083 /* Ensure MAC ingress/egress is enabled */
1084 ef4_mac_reconfigure(efx
);
1086 mutex_unlock(&efx
->mac_lock
);
1089 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1090 * and the async self-test, wait for them to finish and prevent them
1091 * being scheduled again. This doesn't cover online resets, which
1092 * should only be cancelled when removing the device.
1094 static void ef4_stop_port(struct ef4_nic
*efx
)
1096 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1098 EF4_ASSERT_RESET_SERIALISED(efx
);
1100 mutex_lock(&efx
->mac_lock
);
1101 efx
->port_enabled
= false;
1102 mutex_unlock(&efx
->mac_lock
);
1104 /* Serialise against ef4_set_multicast_list() */
1105 netif_addr_lock_bh(efx
->net_dev
);
1106 netif_addr_unlock_bh(efx
->net_dev
);
1108 cancel_delayed_work_sync(&efx
->monitor_work
);
1109 ef4_selftest_async_cancel(efx
);
1110 cancel_work_sync(&efx
->mac_work
);
1113 static void ef4_fini_port(struct ef4_nic
*efx
)
1115 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1117 if (!efx
->port_initialized
)
1120 efx
->phy_op
->fini(efx
);
1121 efx
->port_initialized
= false;
1123 efx
->link_state
.up
= false;
1124 ef4_link_status_changed(efx
);
1127 static void ef4_remove_port(struct ef4_nic
*efx
)
1129 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1131 efx
->type
->remove_port(efx
);
1134 /**************************************************************************
1138 **************************************************************************/
1140 static LIST_HEAD(ef4_primary_list
);
1141 static LIST_HEAD(ef4_unassociated_list
);
1143 static bool ef4_same_controller(struct ef4_nic
*left
, struct ef4_nic
*right
)
1145 return left
->type
== right
->type
&&
1146 left
->vpd_sn
&& right
->vpd_sn
&&
1147 !strcmp(left
->vpd_sn
, right
->vpd_sn
);
1150 static void ef4_associate(struct ef4_nic
*efx
)
1152 struct ef4_nic
*other
, *next
;
1154 if (efx
->primary
== efx
) {
1155 /* Adding primary function; look for secondaries */
1157 netif_dbg(efx
, probe
, efx
->net_dev
, "adding to primary list\n");
1158 list_add_tail(&efx
->node
, &ef4_primary_list
);
1160 list_for_each_entry_safe(other
, next
, &ef4_unassociated_list
,
1162 if (ef4_same_controller(efx
, other
)) {
1163 list_del(&other
->node
);
1164 netif_dbg(other
, probe
, other
->net_dev
,
1165 "moving to secondary list of %s %s\n",
1166 pci_name(efx
->pci_dev
),
1167 efx
->net_dev
->name
);
1168 list_add_tail(&other
->node
,
1169 &efx
->secondary_list
);
1170 other
->primary
= efx
;
1174 /* Adding secondary function; look for primary */
1176 list_for_each_entry(other
, &ef4_primary_list
, node
) {
1177 if (ef4_same_controller(efx
, other
)) {
1178 netif_dbg(efx
, probe
, efx
->net_dev
,
1179 "adding to secondary list of %s %s\n",
1180 pci_name(other
->pci_dev
),
1181 other
->net_dev
->name
);
1182 list_add_tail(&efx
->node
,
1183 &other
->secondary_list
);
1184 efx
->primary
= other
;
1189 netif_dbg(efx
, probe
, efx
->net_dev
,
1190 "adding to unassociated list\n");
1191 list_add_tail(&efx
->node
, &ef4_unassociated_list
);
1195 static void ef4_dissociate(struct ef4_nic
*efx
)
1197 struct ef4_nic
*other
, *next
;
1199 list_del(&efx
->node
);
1200 efx
->primary
= NULL
;
1202 list_for_each_entry_safe(other
, next
, &efx
->secondary_list
, node
) {
1203 list_del(&other
->node
);
1204 netif_dbg(other
, probe
, other
->net_dev
,
1205 "moving to unassociated list\n");
1206 list_add_tail(&other
->node
, &ef4_unassociated_list
);
1207 other
->primary
= NULL
;
1211 /* This configures the PCI device to enable I/O and DMA. */
1212 static int ef4_init_io(struct ef4_nic
*efx
)
1214 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1215 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1216 unsigned int mem_map_size
= efx
->type
->mem_map_size(efx
);
1219 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1221 bar
= efx
->type
->mem_bar
;
1223 rc
= pci_enable_device(pci_dev
);
1225 netif_err(efx
, probe
, efx
->net_dev
,
1226 "failed to enable PCI device\n");
1230 pci_set_master(pci_dev
);
1232 /* Set the PCI DMA mask. Try all possibilities from our genuine mask
1233 * down to 32 bits, because some architectures will allow 40 bit
1234 * masks event though they reject 46 bit masks.
1236 while (dma_mask
> 0x7fffffffUL
) {
1237 rc
= dma_set_mask_and_coherent(&pci_dev
->dev
, dma_mask
);
1243 netif_err(efx
, probe
, efx
->net_dev
,
1244 "could not find a suitable DMA mask\n");
1247 netif_dbg(efx
, probe
, efx
->net_dev
,
1248 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1250 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, bar
);
1251 rc
= pci_request_region(pci_dev
, bar
, "sfc");
1253 netif_err(efx
, probe
, efx
->net_dev
,
1254 "request for memory BAR failed\n");
1258 efx
->membase
= ioremap(efx
->membase_phys
, mem_map_size
);
1259 if (!efx
->membase
) {
1260 netif_err(efx
, probe
, efx
->net_dev
,
1261 "could not map memory BAR at %llx+%x\n",
1262 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1266 netif_dbg(efx
, probe
, efx
->net_dev
,
1267 "memory BAR at %llx+%x (virtual %p)\n",
1268 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1274 pci_release_region(efx
->pci_dev
, bar
);
1276 efx
->membase_phys
= 0;
1278 pci_disable_device(efx
->pci_dev
);
1283 static void ef4_fini_io(struct ef4_nic
*efx
)
1287 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1290 iounmap(efx
->membase
);
1291 efx
->membase
= NULL
;
1294 if (efx
->membase_phys
) {
1295 bar
= efx
->type
->mem_bar
;
1296 pci_release_region(efx
->pci_dev
, bar
);
1297 efx
->membase_phys
= 0;
1300 /* Don't disable bus-mastering if VFs are assigned */
1301 if (!pci_vfs_assigned(efx
->pci_dev
))
1302 pci_disable_device(efx
->pci_dev
);
1305 void ef4_set_default_rx_indir_table(struct ef4_nic
*efx
)
1309 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1310 efx
->rx_indir_table
[i
] =
1311 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
1314 static unsigned int ef4_wanted_parallelism(struct ef4_nic
*efx
)
1316 cpumask_var_t thread_mask
;
1323 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
1324 netif_warn(efx
, probe
, efx
->net_dev
,
1325 "RSS disabled due to allocation failure\n");
1330 for_each_online_cpu(cpu
) {
1331 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
1333 cpumask_or(thread_mask
, thread_mask
,
1334 topology_sibling_cpumask(cpu
));
1338 free_cpumask_var(thread_mask
);
1341 if (count
> EF4_MAX_RX_QUEUES
) {
1342 netif_cond_dbg(efx
, probe
, efx
->net_dev
, !rss_cpus
, warn
,
1343 "Reducing number of rx queues from %u to %u.\n",
1344 count
, EF4_MAX_RX_QUEUES
);
1345 count
= EF4_MAX_RX_QUEUES
;
1351 /* Probe the number and type of interrupts we are able to obtain, and
1352 * the resulting numbers of channels and RX queues.
1354 static int ef4_probe_interrupts(struct ef4_nic
*efx
)
1356 unsigned int extra_channels
= 0;
1360 for (i
= 0; i
< EF4_MAX_EXTRA_CHANNELS
; i
++)
1361 if (efx
->extra_channel_type
[i
])
1364 if (efx
->interrupt_mode
== EF4_INT_MODE_MSIX
) {
1365 struct msix_entry xentries
[EF4_MAX_CHANNELS
];
1366 unsigned int n_channels
;
1368 n_channels
= ef4_wanted_parallelism(efx
);
1369 if (ef4_separate_tx_channels
)
1371 n_channels
+= extra_channels
;
1372 n_channels
= min(n_channels
, efx
->max_channels
);
1374 for (i
= 0; i
< n_channels
; i
++)
1375 xentries
[i
].entry
= i
;
1376 rc
= pci_enable_msix_range(efx
->pci_dev
,
1377 xentries
, 1, n_channels
);
1379 /* Fall back to single channel MSI */
1380 efx
->interrupt_mode
= EF4_INT_MODE_MSI
;
1381 netif_err(efx
, drv
, efx
->net_dev
,
1382 "could not enable MSI-X\n");
1383 } else if (rc
< n_channels
) {
1384 netif_err(efx
, drv
, efx
->net_dev
,
1385 "WARNING: Insufficient MSI-X vectors"
1386 " available (%d < %u).\n", rc
, n_channels
);
1387 netif_err(efx
, drv
, efx
->net_dev
,
1388 "WARNING: Performance may be reduced.\n");
1393 efx
->n_channels
= n_channels
;
1394 if (n_channels
> extra_channels
)
1395 n_channels
-= extra_channels
;
1396 if (ef4_separate_tx_channels
) {
1397 efx
->n_tx_channels
= min(max(n_channels
/ 2,
1399 efx
->max_tx_channels
);
1400 efx
->n_rx_channels
= max(n_channels
-
1404 efx
->n_tx_channels
= min(n_channels
,
1405 efx
->max_tx_channels
);
1406 efx
->n_rx_channels
= n_channels
;
1408 for (i
= 0; i
< efx
->n_channels
; i
++)
1409 ef4_get_channel(efx
, i
)->irq
=
1414 /* Try single interrupt MSI */
1415 if (efx
->interrupt_mode
== EF4_INT_MODE_MSI
) {
1416 efx
->n_channels
= 1;
1417 efx
->n_rx_channels
= 1;
1418 efx
->n_tx_channels
= 1;
1419 rc
= pci_enable_msi(efx
->pci_dev
);
1421 ef4_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1423 netif_err(efx
, drv
, efx
->net_dev
,
1424 "could not enable MSI\n");
1425 efx
->interrupt_mode
= EF4_INT_MODE_LEGACY
;
1429 /* Assume legacy interrupts */
1430 if (efx
->interrupt_mode
== EF4_INT_MODE_LEGACY
) {
1431 efx
->n_channels
= 1 + (ef4_separate_tx_channels
? 1 : 0);
1432 efx
->n_rx_channels
= 1;
1433 efx
->n_tx_channels
= 1;
1434 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1437 /* Assign extra channels if possible */
1438 j
= efx
->n_channels
;
1439 for (i
= 0; i
< EF4_MAX_EXTRA_CHANNELS
; i
++) {
1440 if (!efx
->extra_channel_type
[i
])
1442 if (efx
->interrupt_mode
!= EF4_INT_MODE_MSIX
||
1443 efx
->n_channels
<= extra_channels
) {
1444 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
1447 ef4_get_channel(efx
, j
)->type
=
1448 efx
->extra_channel_type
[i
];
1452 efx
->rss_spread
= efx
->n_rx_channels
;
1457 static int ef4_soft_enable_interrupts(struct ef4_nic
*efx
)
1459 struct ef4_channel
*channel
, *end_channel
;
1462 BUG_ON(efx
->state
== STATE_DISABLED
);
1464 efx
->irq_soft_enabled
= true;
1467 ef4_for_each_channel(channel
, efx
) {
1468 if (!channel
->type
->keep_eventq
) {
1469 rc
= ef4_init_eventq(channel
);
1473 ef4_start_eventq(channel
);
1478 end_channel
= channel
;
1479 ef4_for_each_channel(channel
, efx
) {
1480 if (channel
== end_channel
)
1482 ef4_stop_eventq(channel
);
1483 if (!channel
->type
->keep_eventq
)
1484 ef4_fini_eventq(channel
);
1490 static void ef4_soft_disable_interrupts(struct ef4_nic
*efx
)
1492 struct ef4_channel
*channel
;
1494 if (efx
->state
== STATE_DISABLED
)
1497 efx
->irq_soft_enabled
= false;
1500 if (efx
->legacy_irq
)
1501 synchronize_irq(efx
->legacy_irq
);
1503 ef4_for_each_channel(channel
, efx
) {
1505 synchronize_irq(channel
->irq
);
1507 ef4_stop_eventq(channel
);
1508 if (!channel
->type
->keep_eventq
)
1509 ef4_fini_eventq(channel
);
1513 static int ef4_enable_interrupts(struct ef4_nic
*efx
)
1515 struct ef4_channel
*channel
, *end_channel
;
1518 BUG_ON(efx
->state
== STATE_DISABLED
);
1520 if (efx
->eeh_disabled_legacy_irq
) {
1521 enable_irq(efx
->legacy_irq
);
1522 efx
->eeh_disabled_legacy_irq
= false;
1525 efx
->type
->irq_enable_master(efx
);
1527 ef4_for_each_channel(channel
, efx
) {
1528 if (channel
->type
->keep_eventq
) {
1529 rc
= ef4_init_eventq(channel
);
1535 rc
= ef4_soft_enable_interrupts(efx
);
1542 end_channel
= channel
;
1543 ef4_for_each_channel(channel
, efx
) {
1544 if (channel
== end_channel
)
1546 if (channel
->type
->keep_eventq
)
1547 ef4_fini_eventq(channel
);
1550 efx
->type
->irq_disable_non_ev(efx
);
1555 static void ef4_disable_interrupts(struct ef4_nic
*efx
)
1557 struct ef4_channel
*channel
;
1559 ef4_soft_disable_interrupts(efx
);
1561 ef4_for_each_channel(channel
, efx
) {
1562 if (channel
->type
->keep_eventq
)
1563 ef4_fini_eventq(channel
);
1566 efx
->type
->irq_disable_non_ev(efx
);
1569 static void ef4_remove_interrupts(struct ef4_nic
*efx
)
1571 struct ef4_channel
*channel
;
1573 /* Remove MSI/MSI-X interrupts */
1574 ef4_for_each_channel(channel
, efx
)
1576 pci_disable_msi(efx
->pci_dev
);
1577 pci_disable_msix(efx
->pci_dev
);
1579 /* Remove legacy interrupt */
1580 efx
->legacy_irq
= 0;
1583 static void ef4_set_channels(struct ef4_nic
*efx
)
1585 struct ef4_channel
*channel
;
1586 struct ef4_tx_queue
*tx_queue
;
1588 efx
->tx_channel_offset
=
1589 ef4_separate_tx_channels
?
1590 efx
->n_channels
- efx
->n_tx_channels
: 0;
1592 /* We need to mark which channels really have RX and TX
1593 * queues, and adjust the TX queue numbers if we have separate
1594 * RX-only and TX-only channels.
1596 ef4_for_each_channel(channel
, efx
) {
1597 if (channel
->channel
< efx
->n_rx_channels
)
1598 channel
->rx_queue
.core_index
= channel
->channel
;
1600 channel
->rx_queue
.core_index
= -1;
1602 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
1603 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1608 static int ef4_probe_nic(struct ef4_nic
*efx
)
1612 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1614 /* Carry out hardware-type specific initialisation */
1615 rc
= efx
->type
->probe(efx
);
1620 if (!efx
->max_channels
|| !efx
->max_tx_channels
) {
1621 netif_err(efx
, drv
, efx
->net_dev
,
1622 "Insufficient resources to allocate"
1628 /* Determine the number of channels and queues by trying
1629 * to hook in MSI-X interrupts.
1631 rc
= ef4_probe_interrupts(efx
);
1635 ef4_set_channels(efx
);
1637 /* dimension_resources can fail with EAGAIN */
1638 rc
= efx
->type
->dimension_resources(efx
);
1639 if (rc
!= 0 && rc
!= -EAGAIN
)
1643 /* try again with new max_channels */
1644 ef4_remove_interrupts(efx
);
1646 } while (rc
== -EAGAIN
);
1648 if (efx
->n_channels
> 1)
1649 netdev_rss_key_fill(&efx
->rx_hash_key
,
1650 sizeof(efx
->rx_hash_key
));
1651 ef4_set_default_rx_indir_table(efx
);
1653 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1654 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1656 /* Initialise the interrupt moderation settings */
1657 efx
->irq_mod_step_us
= DIV_ROUND_UP(efx
->timer_quantum_ns
, 1000);
1658 ef4_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1664 ef4_remove_interrupts(efx
);
1666 efx
->type
->remove(efx
);
1670 static void ef4_remove_nic(struct ef4_nic
*efx
)
1672 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1674 ef4_remove_interrupts(efx
);
1675 efx
->type
->remove(efx
);
1678 static int ef4_probe_filters(struct ef4_nic
*efx
)
1682 spin_lock_init(&efx
->filter_lock
);
1683 init_rwsem(&efx
->filter_sem
);
1684 mutex_lock(&efx
->mac_lock
);
1685 down_write(&efx
->filter_sem
);
1686 rc
= efx
->type
->filter_table_probe(efx
);
1690 #ifdef CONFIG_RFS_ACCEL
1691 if (efx
->type
->offload_features
& NETIF_F_NTUPLE
) {
1692 struct ef4_channel
*channel
;
1695 ef4_for_each_channel(channel
, efx
) {
1696 channel
->rps_flow_id
=
1697 kcalloc(efx
->type
->max_rx_ip_filters
,
1698 sizeof(*channel
->rps_flow_id
),
1700 if (!channel
->rps_flow_id
)
1704 i
< efx
->type
->max_rx_ip_filters
;
1706 channel
->rps_flow_id
[i
] =
1707 RPS_FLOW_ID_INVALID
;
1711 ef4_for_each_channel(channel
, efx
)
1712 kfree(channel
->rps_flow_id
);
1713 efx
->type
->filter_table_remove(efx
);
1718 efx
->rps_expire_index
= efx
->rps_expire_channel
= 0;
1722 up_write(&efx
->filter_sem
);
1723 mutex_unlock(&efx
->mac_lock
);
1727 static void ef4_remove_filters(struct ef4_nic
*efx
)
1729 #ifdef CONFIG_RFS_ACCEL
1730 struct ef4_channel
*channel
;
1732 ef4_for_each_channel(channel
, efx
)
1733 kfree(channel
->rps_flow_id
);
1735 down_write(&efx
->filter_sem
);
1736 efx
->type
->filter_table_remove(efx
);
1737 up_write(&efx
->filter_sem
);
1740 static void ef4_restore_filters(struct ef4_nic
*efx
)
1742 down_read(&efx
->filter_sem
);
1743 efx
->type
->filter_table_restore(efx
);
1744 up_read(&efx
->filter_sem
);
1747 /**************************************************************************
1749 * NIC startup/shutdown
1751 *************************************************************************/
1753 static int ef4_probe_all(struct ef4_nic
*efx
)
1757 rc
= ef4_probe_nic(efx
);
1759 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1763 rc
= ef4_probe_port(efx
);
1765 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1769 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE
< EF4_RXQ_MIN_ENT
);
1770 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE
< EF4_TXQ_MIN_ENT(efx
))) {
1774 efx
->rxq_entries
= efx
->txq_entries
= EF4_DEFAULT_DMAQ_SIZE
;
1776 rc
= ef4_probe_filters(efx
);
1778 netif_err(efx
, probe
, efx
->net_dev
,
1779 "failed to create filter tables\n");
1783 rc
= ef4_probe_channels(efx
);
1790 ef4_remove_filters(efx
);
1793 ef4_remove_port(efx
);
1795 ef4_remove_nic(efx
);
1800 /* If the interface is supposed to be running but is not, start
1801 * the hardware and software data path, regular activity for the port
1802 * (MAC statistics, link polling, etc.) and schedule the port to be
1803 * reconfigured. Interrupts must already be enabled. This function
1804 * is safe to call multiple times, so long as the NIC is not disabled.
1805 * Requires the RTNL lock.
1807 static void ef4_start_all(struct ef4_nic
*efx
)
1809 EF4_ASSERT_RESET_SERIALISED(efx
);
1810 BUG_ON(efx
->state
== STATE_DISABLED
);
1812 /* Check that it is appropriate to restart the interface. All
1813 * of these flags are safe to read under just the rtnl lock */
1814 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
) ||
1818 ef4_start_port(efx
);
1819 ef4_start_datapath(efx
);
1821 /* Start the hardware monitor if there is one */
1822 if (efx
->type
->monitor
!= NULL
)
1823 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1824 ef4_monitor_interval
);
1826 efx
->type
->start_stats(efx
);
1827 efx
->type
->pull_stats(efx
);
1828 spin_lock_bh(&efx
->stats_lock
);
1829 efx
->type
->update_stats(efx
, NULL
, NULL
);
1830 spin_unlock_bh(&efx
->stats_lock
);
1833 /* Quiesce the hardware and software data path, and regular activity
1834 * for the port without bringing the link down. Safe to call multiple
1835 * times with the NIC in almost any state, but interrupts should be
1836 * enabled. Requires the RTNL lock.
1838 static void ef4_stop_all(struct ef4_nic
*efx
)
1840 EF4_ASSERT_RESET_SERIALISED(efx
);
1842 /* port_enabled can be read safely under the rtnl lock */
1843 if (!efx
->port_enabled
)
1846 /* update stats before we go down so we can accurately count
1849 efx
->type
->pull_stats(efx
);
1850 spin_lock_bh(&efx
->stats_lock
);
1851 efx
->type
->update_stats(efx
, NULL
, NULL
);
1852 spin_unlock_bh(&efx
->stats_lock
);
1853 efx
->type
->stop_stats(efx
);
1856 /* Stop the kernel transmit interface. This is only valid if
1857 * the device is stopped or detached; otherwise the watchdog
1858 * may fire immediately.
1860 WARN_ON(netif_running(efx
->net_dev
) &&
1861 netif_device_present(efx
->net_dev
));
1862 netif_tx_disable(efx
->net_dev
);
1864 ef4_stop_datapath(efx
);
1867 static void ef4_remove_all(struct ef4_nic
*efx
)
1869 ef4_remove_channels(efx
);
1870 ef4_remove_filters(efx
);
1871 ef4_remove_port(efx
);
1872 ef4_remove_nic(efx
);
1875 /**************************************************************************
1877 * Interrupt moderation
1879 **************************************************************************/
1880 unsigned int ef4_usecs_to_ticks(struct ef4_nic
*efx
, unsigned int usecs
)
1884 if (usecs
* 1000 < efx
->timer_quantum_ns
)
1885 return 1; /* never round down to 0 */
1886 return usecs
* 1000 / efx
->timer_quantum_ns
;
1889 /* Set interrupt moderation parameters */
1890 int ef4_init_irq_moderation(struct ef4_nic
*efx
, unsigned int tx_usecs
,
1891 unsigned int rx_usecs
, bool rx_adaptive
,
1892 bool rx_may_override_tx
)
1894 struct ef4_channel
*channel
;
1895 unsigned int timer_max_us
;
1897 EF4_ASSERT_RESET_SERIALISED(efx
);
1899 timer_max_us
= efx
->timer_max_ns
/ 1000;
1901 if (tx_usecs
> timer_max_us
|| rx_usecs
> timer_max_us
)
1904 if (tx_usecs
!= rx_usecs
&& efx
->tx_channel_offset
== 0 &&
1905 !rx_may_override_tx
) {
1906 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
1907 "RX and TX IRQ moderation must be equal\n");
1911 efx
->irq_rx_adaptive
= rx_adaptive
;
1912 efx
->irq_rx_moderation_us
= rx_usecs
;
1913 ef4_for_each_channel(channel
, efx
) {
1914 if (ef4_channel_has_rx_queue(channel
))
1915 channel
->irq_moderation_us
= rx_usecs
;
1916 else if (ef4_channel_has_tx_queues(channel
))
1917 channel
->irq_moderation_us
= tx_usecs
;
1923 void ef4_get_irq_moderation(struct ef4_nic
*efx
, unsigned int *tx_usecs
,
1924 unsigned int *rx_usecs
, bool *rx_adaptive
)
1926 *rx_adaptive
= efx
->irq_rx_adaptive
;
1927 *rx_usecs
= efx
->irq_rx_moderation_us
;
1929 /* If channels are shared between RX and TX, so is IRQ
1930 * moderation. Otherwise, IRQ moderation is the same for all
1931 * TX channels and is not adaptive.
1933 if (efx
->tx_channel_offset
== 0) {
1934 *tx_usecs
= *rx_usecs
;
1936 struct ef4_channel
*tx_channel
;
1938 tx_channel
= efx
->channel
[efx
->tx_channel_offset
];
1939 *tx_usecs
= tx_channel
->irq_moderation_us
;
1943 /**************************************************************************
1947 **************************************************************************/
1949 /* Run periodically off the general workqueue */
1950 static void ef4_monitor(struct work_struct
*data
)
1952 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
,
1955 netif_vdbg(efx
, timer
, efx
->net_dev
,
1956 "hardware monitor executing on CPU %d\n",
1957 raw_smp_processor_id());
1958 BUG_ON(efx
->type
->monitor
== NULL
);
1960 /* If the mac_lock is already held then it is likely a port
1961 * reconfiguration is already in place, which will likely do
1962 * most of the work of monitor() anyway. */
1963 if (mutex_trylock(&efx
->mac_lock
)) {
1964 if (efx
->port_enabled
)
1965 efx
->type
->monitor(efx
);
1966 mutex_unlock(&efx
->mac_lock
);
1969 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1970 ef4_monitor_interval
);
1973 /**************************************************************************
1977 *************************************************************************/
1980 * Context: process, rtnl_lock() held.
1982 static int ef4_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1984 struct ef4_nic
*efx
= netdev_priv(net_dev
);
1985 struct mii_ioctl_data
*data
= if_mii(ifr
);
1987 /* Convert phy_id from older PRTAD/DEVAD format */
1988 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
1989 (data
->phy_id
& 0xfc00) == 0x0400)
1990 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
1992 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
1995 /**************************************************************************
1999 **************************************************************************/
2001 static void ef4_init_napi_channel(struct ef4_channel
*channel
)
2003 struct ef4_nic
*efx
= channel
->efx
;
2005 channel
->napi_dev
= efx
->net_dev
;
2006 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
, ef4_poll
);
2009 static void ef4_init_napi(struct ef4_nic
*efx
)
2011 struct ef4_channel
*channel
;
2013 ef4_for_each_channel(channel
, efx
)
2014 ef4_init_napi_channel(channel
);
2017 static void ef4_fini_napi_channel(struct ef4_channel
*channel
)
2019 if (channel
->napi_dev
)
2020 netif_napi_del(&channel
->napi_str
);
2022 channel
->napi_dev
= NULL
;
2025 static void ef4_fini_napi(struct ef4_nic
*efx
)
2027 struct ef4_channel
*channel
;
2029 ef4_for_each_channel(channel
, efx
)
2030 ef4_fini_napi_channel(channel
);
2033 /**************************************************************************
2035 * Kernel net device interface
2037 *************************************************************************/
2039 /* Context: process, rtnl_lock() held. */
2040 int ef4_net_open(struct net_device
*net_dev
)
2042 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2045 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
2046 raw_smp_processor_id());
2048 rc
= ef4_check_disabled(efx
);
2051 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
2054 /* Notify the kernel of the link state polled during driver load,
2055 * before the monitor starts running */
2056 ef4_link_status_changed(efx
);
2059 ef4_selftest_async_start(efx
);
2063 /* Context: process, rtnl_lock() held.
2064 * Note that the kernel will ignore our return code; this method
2065 * should really be a void.
2067 int ef4_net_stop(struct net_device
*net_dev
)
2069 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2071 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
2072 raw_smp_processor_id());
2074 /* Stop the device and flush all the channels */
2080 /* Context: process, rcu_read_lock or RTNL held, non-blocking. */
2081 static void ef4_net_stats(struct net_device
*net_dev
,
2082 struct rtnl_link_stats64
*stats
)
2084 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2086 spin_lock_bh(&efx
->stats_lock
);
2087 efx
->type
->update_stats(efx
, NULL
, stats
);
2088 spin_unlock_bh(&efx
->stats_lock
);
2091 /* Context: netif_tx_lock held, BHs disabled. */
2092 static void ef4_watchdog(struct net_device
*net_dev
, unsigned int txqueue
)
2094 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2096 netif_err(efx
, tx_err
, efx
->net_dev
,
2097 "TX stuck with port_enabled=%d: resetting channels\n",
2100 ef4_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
2104 /* Context: process, rtnl_lock() held. */
2105 static int ef4_change_mtu(struct net_device
*net_dev
, int new_mtu
)
2107 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2110 rc
= ef4_check_disabled(efx
);
2114 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
2116 ef4_device_detach_sync(efx
);
2119 mutex_lock(&efx
->mac_lock
);
2120 WRITE_ONCE(net_dev
->mtu
, new_mtu
);
2121 ef4_mac_reconfigure(efx
);
2122 mutex_unlock(&efx
->mac_lock
);
2125 netif_device_attach(efx
->net_dev
);
2129 static int ef4_set_mac_address(struct net_device
*net_dev
, void *data
)
2131 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2132 struct sockaddr
*addr
= data
;
2133 u8
*new_addr
= addr
->sa_data
;
2137 if (!is_valid_ether_addr(new_addr
)) {
2138 netif_err(efx
, drv
, efx
->net_dev
,
2139 "invalid ethernet MAC address requested: %pM\n",
2141 return -EADDRNOTAVAIL
;
2144 /* save old address */
2145 ether_addr_copy(old_addr
, net_dev
->dev_addr
);
2146 eth_hw_addr_set(net_dev
, new_addr
);
2147 if (efx
->type
->set_mac_address
) {
2148 rc
= efx
->type
->set_mac_address(efx
);
2150 eth_hw_addr_set(net_dev
, old_addr
);
2155 /* Reconfigure the MAC */
2156 mutex_lock(&efx
->mac_lock
);
2157 ef4_mac_reconfigure(efx
);
2158 mutex_unlock(&efx
->mac_lock
);
2163 /* Context: netif_addr_lock held, BHs disabled. */
2164 static void ef4_set_rx_mode(struct net_device
*net_dev
)
2166 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2168 if (efx
->port_enabled
)
2169 queue_work(efx
->workqueue
, &efx
->mac_work
);
2170 /* Otherwise ef4_start_port() will do this */
2173 static int ef4_set_features(struct net_device
*net_dev
, netdev_features_t data
)
2175 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2178 /* If disabling RX n-tuple filtering, clear existing filters */
2179 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
) {
2180 rc
= efx
->type
->filter_clear_rx(efx
, EF4_FILTER_PRI_MANUAL
);
2185 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2186 if ((net_dev
->features
^ data
) & NETIF_F_HW_VLAN_CTAG_FILTER
) {
2187 /* ef4_set_rx_mode() will schedule MAC work to update filters
2188 * when a new features are finally set in net_dev.
2190 ef4_set_rx_mode(net_dev
);
2196 static const struct net_device_ops ef4_netdev_ops
= {
2197 .ndo_open
= ef4_net_open
,
2198 .ndo_stop
= ef4_net_stop
,
2199 .ndo_get_stats64
= ef4_net_stats
,
2200 .ndo_tx_timeout
= ef4_watchdog
,
2201 .ndo_start_xmit
= ef4_hard_start_xmit
,
2202 .ndo_validate_addr
= eth_validate_addr
,
2203 .ndo_eth_ioctl
= ef4_ioctl
,
2204 .ndo_change_mtu
= ef4_change_mtu
,
2205 .ndo_set_mac_address
= ef4_set_mac_address
,
2206 .ndo_set_rx_mode
= ef4_set_rx_mode
,
2207 .ndo_set_features
= ef4_set_features
,
2208 .ndo_setup_tc
= ef4_setup_tc
,
2209 #ifdef CONFIG_RFS_ACCEL
2210 .ndo_rx_flow_steer
= ef4_filter_rfs
,
2214 static void ef4_update_name(struct ef4_nic
*efx
)
2216 strcpy(efx
->name
, efx
->net_dev
->name
);
2217 ef4_mtd_rename(efx
);
2218 ef4_set_channel_names(efx
);
2221 static int ef4_netdev_event(struct notifier_block
*this,
2222 unsigned long event
, void *ptr
)
2224 struct net_device
*net_dev
= netdev_notifier_info_to_dev(ptr
);
2226 if ((net_dev
->netdev_ops
== &ef4_netdev_ops
) &&
2227 event
== NETDEV_CHANGENAME
)
2228 ef4_update_name(netdev_priv(net_dev
));
2233 static struct notifier_block ef4_netdev_notifier
= {
2234 .notifier_call
= ef4_netdev_event
,
2238 phy_type_show(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2240 struct ef4_nic
*efx
= dev_get_drvdata(dev
);
2241 return sprintf(buf
, "%d\n", efx
->phy_type
);
2243 static DEVICE_ATTR_RO(phy_type
);
2245 static int ef4_register_netdev(struct ef4_nic
*efx
)
2247 struct net_device
*net_dev
= efx
->net_dev
;
2248 struct ef4_channel
*channel
;
2251 net_dev
->watchdog_timeo
= 5 * HZ
;
2252 net_dev
->irq
= efx
->pci_dev
->irq
;
2253 net_dev
->netdev_ops
= &ef4_netdev_ops
;
2254 net_dev
->ethtool_ops
= &ef4_ethtool_ops
;
2255 netif_set_tso_max_segs(net_dev
, EF4_TSO_MAX_SEGS
);
2256 net_dev
->min_mtu
= EF4_MIN_MTU
;
2257 net_dev
->max_mtu
= EF4_MAX_MTU
;
2261 /* Enable resets to be scheduled and check whether any were
2262 * already requested. If so, the NIC is probably hosed so we
2265 efx
->state
= STATE_READY
;
2266 smp_mb(); /* ensure we change state before checking reset_pending */
2267 if (efx
->reset_pending
) {
2268 netif_err(efx
, probe
, efx
->net_dev
,
2269 "aborting probe due to scheduled reset\n");
2274 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
2277 ef4_update_name(efx
);
2279 /* Always start with carrier off; PHY events will detect the link */
2280 netif_carrier_off(net_dev
);
2282 rc
= register_netdevice(net_dev
);
2286 ef4_for_each_channel(channel
, efx
) {
2287 struct ef4_tx_queue
*tx_queue
;
2288 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
2289 ef4_init_tx_queue_core_txq(tx_queue
);
2296 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2298 netif_err(efx
, drv
, efx
->net_dev
,
2299 "failed to init net dev attributes\n");
2300 goto fail_registered
;
2306 ef4_dissociate(efx
);
2307 unregister_netdevice(net_dev
);
2309 efx
->state
= STATE_UNINIT
;
2311 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2315 static void ef4_unregister_netdev(struct ef4_nic
*efx
)
2320 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2322 if (ef4_dev_registered(efx
)) {
2323 strscpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2324 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2325 unregister_netdev(efx
->net_dev
);
2329 /**************************************************************************
2331 * Device reset and suspend
2333 **************************************************************************/
2335 /* Tears down the entire software state and most of the hardware state
2337 void ef4_reset_down(struct ef4_nic
*efx
, enum reset_type method
)
2339 EF4_ASSERT_RESET_SERIALISED(efx
);
2342 ef4_disable_interrupts(efx
);
2344 mutex_lock(&efx
->mac_lock
);
2345 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2346 method
!= RESET_TYPE_DATAPATH
)
2347 efx
->phy_op
->fini(efx
);
2348 efx
->type
->fini(efx
);
2351 /* This function will always ensure that the locks acquired in
2352 * ef4_reset_down() are released. A failure return code indicates
2353 * that we were unable to reinitialise the hardware, and the
2354 * driver should be disabled. If ok is false, then the rx and tx
2355 * engines are not restarted, pending a RESET_DISABLE. */
2356 int ef4_reset_up(struct ef4_nic
*efx
, enum reset_type method
, bool ok
)
2360 EF4_ASSERT_RESET_SERIALISED(efx
);
2362 /* Ensure that SRAM is initialised even if we're disabling the device */
2363 rc
= efx
->type
->init(efx
);
2365 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2372 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2373 method
!= RESET_TYPE_DATAPATH
) {
2374 rc
= efx
->phy_op
->init(efx
);
2377 rc
= efx
->phy_op
->reconfigure(efx
);
2378 if (rc
&& rc
!= -EPERM
)
2379 netif_err(efx
, drv
, efx
->net_dev
,
2380 "could not restore PHY settings\n");
2383 rc
= ef4_enable_interrupts(efx
);
2387 down_read(&efx
->filter_sem
);
2388 ef4_restore_filters(efx
);
2389 up_read(&efx
->filter_sem
);
2391 mutex_unlock(&efx
->mac_lock
);
2398 efx
->port_initialized
= false;
2400 mutex_unlock(&efx
->mac_lock
);
2405 /* Reset the NIC using the specified method. Note that the reset may
2406 * fail, in which case the card will be left in an unusable state.
2408 * Caller must hold the rtnl_lock.
2410 int ef4_reset(struct ef4_nic
*efx
, enum reset_type method
)
2415 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2416 RESET_TYPE(method
));
2418 ef4_device_detach_sync(efx
);
2419 ef4_reset_down(efx
, method
);
2421 rc
= efx
->type
->reset(efx
, method
);
2423 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2427 /* Clear flags for the scopes we covered. We assume the NIC and
2428 * driver are now quiescent so that there is no race here.
2430 if (method
< RESET_TYPE_MAX_METHOD
)
2431 efx
->reset_pending
&= -(1 << (method
+ 1));
2432 else /* it doesn't fit into the well-ordered scope hierarchy */
2433 __clear_bit(method
, &efx
->reset_pending
);
2435 /* Reinitialise bus-mastering, which may have been turned off before
2436 * the reset was scheduled. This is still appropriate, even in the
2437 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2438 * can respond to requests. */
2439 pci_set_master(efx
->pci_dev
);
2442 /* Leave device stopped if necessary */
2444 method
== RESET_TYPE_DISABLE
||
2445 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
2446 rc2
= ef4_reset_up(efx
, method
, !disabled
);
2454 dev_close(efx
->net_dev
);
2455 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2456 efx
->state
= STATE_DISABLED
;
2458 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2459 netif_device_attach(efx
->net_dev
);
2464 /* Try recovery mechanisms.
2465 * For now only EEH is supported.
2466 * Returns 0 if the recovery mechanisms are unsuccessful.
2467 * Returns a non-zero value otherwise.
2469 int ef4_try_recovery(struct ef4_nic
*efx
)
2472 /* A PCI error can occur and not be seen by EEH because nothing
2473 * happens on the PCI bus. In this case the driver may fail and
2474 * schedule a 'recover or reset', leading to this recovery handler.
2475 * Manually call the eeh failure check function.
2477 struct eeh_dev
*eehdev
= pci_dev_to_eeh_dev(efx
->pci_dev
);
2478 if (eeh_dev_check_failure(eehdev
)) {
2479 /* The EEH mechanisms will handle the error and reset the
2480 * device if necessary.
2488 /* The worker thread exists so that code that cannot sleep can
2489 * schedule a reset for later.
2491 static void ef4_reset_work(struct work_struct
*data
)
2493 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
, reset_work
);
2494 unsigned long pending
;
2495 enum reset_type method
;
2497 pending
= READ_ONCE(efx
->reset_pending
);
2498 method
= fls(pending
) - 1;
2500 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
2501 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
2502 ef4_try_recovery(efx
))
2510 /* We checked the state in ef4_schedule_reset() but it may
2511 * have changed by now. Now that we have the RTNL lock,
2512 * it cannot change again.
2514 if (efx
->state
== STATE_READY
)
2515 (void)ef4_reset(efx
, method
);
2520 void ef4_schedule_reset(struct ef4_nic
*efx
, enum reset_type type
)
2522 enum reset_type method
;
2524 if (efx
->state
== STATE_RECOVERY
) {
2525 netif_dbg(efx
, drv
, efx
->net_dev
,
2526 "recovering: skip scheduling %s reset\n",
2532 case RESET_TYPE_INVISIBLE
:
2533 case RESET_TYPE_ALL
:
2534 case RESET_TYPE_RECOVER_OR_ALL
:
2535 case RESET_TYPE_WORLD
:
2536 case RESET_TYPE_DISABLE
:
2537 case RESET_TYPE_RECOVER_OR_DISABLE
:
2538 case RESET_TYPE_DATAPATH
:
2540 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2541 RESET_TYPE(method
));
2544 method
= efx
->type
->map_reset_reason(type
);
2545 netif_dbg(efx
, drv
, efx
->net_dev
,
2546 "scheduling %s reset for %s\n",
2547 RESET_TYPE(method
), RESET_TYPE(type
));
2551 set_bit(method
, &efx
->reset_pending
);
2552 smp_mb(); /* ensure we change reset_pending before checking state */
2554 /* If we're not READY then just leave the flags set as the cue
2555 * to abort probing or reschedule the reset later.
2557 if (READ_ONCE(efx
->state
) != STATE_READY
)
2560 queue_work(reset_workqueue
, &efx
->reset_work
);
2563 /**************************************************************************
2565 * List of NICs we support
2567 **************************************************************************/
2569 /* PCI device ID table */
2570 static const struct pci_device_id ef4_pci_table
[] = {
2571 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2572 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0
),
2573 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2574 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2575 PCI_DEVICE_ID_SOLARFLARE_SFC4000B
),
2576 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2577 {0} /* end of list */
2580 /**************************************************************************
2582 * Dummy PHY/MAC operations
2584 * Can be used for some unimplemented operations
2585 * Needed so all function pointers are valid and do not have to be tested
2588 **************************************************************************/
2589 int ef4_port_dummy_op_int(struct ef4_nic
*efx
)
2593 void ef4_port_dummy_op_void(struct ef4_nic
*efx
) {}
2595 static bool ef4_port_dummy_op_poll(struct ef4_nic
*efx
)
2600 static const struct ef4_phy_operations ef4_dummy_phy_operations
= {
2601 .init
= ef4_port_dummy_op_int
,
2602 .reconfigure
= ef4_port_dummy_op_int
,
2603 .poll
= ef4_port_dummy_op_poll
,
2604 .fini
= ef4_port_dummy_op_void
,
2607 /**************************************************************************
2611 **************************************************************************/
2613 /* This zeroes out and then fills in the invariants in a struct
2614 * ef4_nic (including all sub-structures).
2616 static int ef4_init_struct(struct ef4_nic
*efx
,
2617 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2621 /* Initialise common structures */
2622 INIT_LIST_HEAD(&efx
->node
);
2623 INIT_LIST_HEAD(&efx
->secondary_list
);
2624 spin_lock_init(&efx
->biu_lock
);
2625 #ifdef CONFIG_SFC_FALCON_MTD
2626 INIT_LIST_HEAD(&efx
->mtd_list
);
2628 INIT_WORK(&efx
->reset_work
, ef4_reset_work
);
2629 INIT_DELAYED_WORK(&efx
->monitor_work
, ef4_monitor
);
2630 INIT_DELAYED_WORK(&efx
->selftest_work
, ef4_selftest_async_work
);
2631 efx
->pci_dev
= pci_dev
;
2632 efx
->msg_enable
= debug
;
2633 efx
->state
= STATE_UNINIT
;
2634 strscpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2636 efx
->net_dev
= net_dev
;
2637 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
2639 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
2640 efx
->rx_packet_hash_offset
=
2641 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
2642 efx
->rx_packet_ts_offset
=
2643 efx
->type
->rx_ts_offset
- efx
->type
->rx_prefix_size
;
2644 spin_lock_init(&efx
->stats_lock
);
2645 mutex_init(&efx
->mac_lock
);
2646 efx
->phy_op
= &ef4_dummy_phy_operations
;
2647 efx
->mdio
.dev
= net_dev
;
2648 INIT_WORK(&efx
->mac_work
, ef4_mac_work
);
2649 init_waitqueue_head(&efx
->flush_wq
);
2651 for (i
= 0; i
< EF4_MAX_CHANNELS
; i
++) {
2652 efx
->channel
[i
] = ef4_alloc_channel(efx
, i
, NULL
);
2653 if (!efx
->channel
[i
])
2655 efx
->msi_context
[i
].efx
= efx
;
2656 efx
->msi_context
[i
].index
= i
;
2659 /* Higher numbered interrupt modes are less capable! */
2660 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2663 /* Would be good to use the net_dev name, but we're too early */
2664 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2666 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2667 if (!efx
->workqueue
)
2673 ef4_fini_struct(efx
);
2677 static void ef4_fini_struct(struct ef4_nic
*efx
)
2681 for (i
= 0; i
< EF4_MAX_CHANNELS
; i
++)
2682 kfree(efx
->channel
[i
]);
2686 if (efx
->workqueue
) {
2687 destroy_workqueue(efx
->workqueue
);
2688 efx
->workqueue
= NULL
;
2692 void ef4_update_sw_stats(struct ef4_nic
*efx
, u64
*stats
)
2694 u64 n_rx_nodesc_trunc
= 0;
2695 struct ef4_channel
*channel
;
2697 ef4_for_each_channel(channel
, efx
)
2698 n_rx_nodesc_trunc
+= channel
->n_rx_nodesc_trunc
;
2699 stats
[GENERIC_STAT_rx_nodesc_trunc
] = n_rx_nodesc_trunc
;
2700 stats
[GENERIC_STAT_rx_noskb_drops
] = atomic_read(&efx
->n_rx_noskb_drops
);
2703 /**************************************************************************
2707 **************************************************************************/
2709 /* Main body of final NIC shutdown code
2710 * This is called only at module unload (or hotplug removal).
2712 static void ef4_pci_remove_main(struct ef4_nic
*efx
)
2714 /* Flush reset_work. It can no longer be scheduled since we
2717 BUG_ON(efx
->state
== STATE_READY
);
2718 cancel_work_sync(&efx
->reset_work
);
2720 ef4_disable_interrupts(efx
);
2721 ef4_nic_fini_interrupt(efx
);
2723 efx
->type
->fini(efx
);
2725 ef4_remove_all(efx
);
2728 /* Final NIC shutdown
2729 * This is called only at module unload (or hotplug removal). A PF can call
2730 * this on its VFs to ensure they are unbound first.
2732 static void ef4_pci_remove(struct pci_dev
*pci_dev
)
2734 struct ef4_nic
*efx
;
2736 efx
= pci_get_drvdata(pci_dev
);
2740 /* Mark the NIC as fini, then stop the interface */
2742 ef4_dissociate(efx
);
2743 dev_close(efx
->net_dev
);
2744 ef4_disable_interrupts(efx
);
2745 efx
->state
= STATE_UNINIT
;
2748 ef4_unregister_netdev(efx
);
2750 ef4_mtd_remove(efx
);
2752 ef4_pci_remove_main(efx
);
2755 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
2757 ef4_fini_struct(efx
);
2758 free_netdev(efx
->net_dev
);
2761 /* NIC VPD information
2762 * Called during probe to display the part number of the installed NIC.
2764 static void ef4_probe_vpd_strings(struct ef4_nic
*efx
)
2766 struct pci_dev
*dev
= efx
->pci_dev
;
2767 unsigned int vpd_size
, kw_len
;
2771 vpd_data
= pci_vpd_alloc(dev
, &vpd_size
);
2772 if (IS_ERR(vpd_data
)) {
2773 pci_warn(dev
, "Unable to read VPD\n");
2777 start
= pci_vpd_find_ro_info_keyword(vpd_data
, vpd_size
,
2778 PCI_VPD_RO_KEYWORD_PARTNO
, &kw_len
);
2780 pci_warn(dev
, "Part number not found or incomplete\n");
2782 pci_info(dev
, "Part Number : %.*s\n", kw_len
, vpd_data
+ start
);
2784 start
= pci_vpd_find_ro_info_keyword(vpd_data
, vpd_size
,
2785 PCI_VPD_RO_KEYWORD_SERIALNO
, &kw_len
);
2787 pci_warn(dev
, "Serial number not found or incomplete\n");
2789 efx
->vpd_sn
= kmemdup_nul(vpd_data
+ start
, kw_len
, GFP_KERNEL
);
2795 /* Main body of NIC initialisation
2796 * This is called at module load (or hotplug insertion, theoretically).
2798 static int ef4_pci_probe_main(struct ef4_nic
*efx
)
2802 /* Do start-of-day initialisation */
2803 rc
= ef4_probe_all(efx
);
2809 rc
= efx
->type
->init(efx
);
2811 netif_err(efx
, probe
, efx
->net_dev
,
2812 "failed to initialise NIC\n");
2816 rc
= ef4_init_port(efx
);
2818 netif_err(efx
, probe
, efx
->net_dev
,
2819 "failed to initialise port\n");
2823 rc
= ef4_nic_init_interrupt(efx
);
2826 rc
= ef4_enable_interrupts(efx
);
2833 ef4_nic_fini_interrupt(efx
);
2837 efx
->type
->fini(efx
);
2840 ef4_remove_all(efx
);
2845 /* NIC initialisation
2847 * This is called at module load (or hotplug insertion,
2848 * theoretically). It sets up PCI mappings, resets the NIC,
2849 * sets up and registers the network devices with the kernel and hooks
2850 * the interrupt service routine. It does not prepare the device for
2851 * transmission; this is left to the first time one of the network
2852 * interfaces is brought up (i.e. ef4_net_open).
2854 static int ef4_pci_probe(struct pci_dev
*pci_dev
,
2855 const struct pci_device_id
*entry
)
2857 struct net_device
*net_dev
;
2858 struct ef4_nic
*efx
;
2861 /* Allocate and initialise a struct net_device and struct ef4_nic */
2862 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EF4_MAX_CORE_TX_QUEUES
,
2866 efx
= netdev_priv(net_dev
);
2867 efx
->type
= (const struct ef4_nic_type
*) entry
->driver_data
;
2868 efx
->fixed_features
|= NETIF_F_HIGHDMA
;
2870 pci_set_drvdata(pci_dev
, efx
);
2871 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
2872 rc
= ef4_init_struct(efx
, pci_dev
, net_dev
);
2876 netif_info(efx
, probe
, efx
->net_dev
,
2877 "Solarflare NIC detected\n");
2879 ef4_probe_vpd_strings(efx
);
2881 /* Set up basic I/O (BAR mappings etc) */
2882 rc
= ef4_init_io(efx
);
2886 rc
= ef4_pci_probe_main(efx
);
2890 net_dev
->features
|= (efx
->type
->offload_features
| NETIF_F_SG
|
2892 /* Mask for features that also apply to VLAN devices */
2893 net_dev
->vlan_features
|= (NETIF_F_HW_CSUM
| NETIF_F_SG
|
2894 NETIF_F_HIGHDMA
| NETIF_F_RXCSUM
);
2896 net_dev
->hw_features
= net_dev
->features
& ~efx
->fixed_features
;
2898 /* Disable VLAN filtering by default. It may be enforced if
2899 * the feature is fixed (i.e. VLAN filters are required to
2900 * receive VLAN tagged packets due to vPort restrictions).
2902 net_dev
->features
&= ~NETIF_F_HW_VLAN_CTAG_FILTER
;
2903 net_dev
->features
|= efx
->fixed_features
;
2905 rc
= ef4_register_netdev(efx
);
2909 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
2911 /* Try to create MTDs, but allow this to fail */
2913 rc
= ef4_mtd_probe(efx
);
2915 if (rc
&& rc
!= -EPERM
)
2916 netif_warn(efx
, probe
, efx
->net_dev
,
2917 "failed to create MTDs (%d)\n", rc
);
2922 ef4_pci_remove_main(efx
);
2926 ef4_fini_struct(efx
);
2929 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
2930 free_netdev(net_dev
);
2934 static int ef4_pm_freeze(struct device
*dev
)
2936 struct ef4_nic
*efx
= dev_get_drvdata(dev
);
2940 if (efx
->state
!= STATE_DISABLED
) {
2941 efx
->state
= STATE_UNINIT
;
2943 ef4_device_detach_sync(efx
);
2946 ef4_disable_interrupts(efx
);
2954 static int ef4_pm_thaw(struct device
*dev
)
2957 struct ef4_nic
*efx
= dev_get_drvdata(dev
);
2961 if (efx
->state
!= STATE_DISABLED
) {
2962 rc
= ef4_enable_interrupts(efx
);
2966 mutex_lock(&efx
->mac_lock
);
2967 efx
->phy_op
->reconfigure(efx
);
2968 mutex_unlock(&efx
->mac_lock
);
2972 netif_device_attach(efx
->net_dev
);
2974 efx
->state
= STATE_READY
;
2976 efx
->type
->resume_wol(efx
);
2981 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
2982 queue_work(reset_workqueue
, &efx
->reset_work
);
2992 static int ef4_pm_poweroff(struct device
*dev
)
2994 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2995 struct ef4_nic
*efx
= pci_get_drvdata(pci_dev
);
2997 efx
->type
->fini(efx
);
2999 efx
->reset_pending
= 0;
3001 pci_save_state(pci_dev
);
3002 return pci_set_power_state(pci_dev
, PCI_D3hot
);
3005 /* Used for both resume and restore */
3006 static int ef4_pm_resume(struct device
*dev
)
3008 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3009 struct ef4_nic
*efx
= pci_get_drvdata(pci_dev
);
3012 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
3015 pci_restore_state(pci_dev
);
3016 rc
= pci_enable_device(pci_dev
);
3019 pci_set_master(efx
->pci_dev
);
3020 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
3023 rc
= efx
->type
->init(efx
);
3026 rc
= ef4_pm_thaw(dev
);
3030 static int ef4_pm_suspend(struct device
*dev
)
3035 rc
= ef4_pm_poweroff(dev
);
3041 static const struct dev_pm_ops ef4_pm_ops
= {
3042 .suspend
= ef4_pm_suspend
,
3043 .resume
= ef4_pm_resume
,
3044 .freeze
= ef4_pm_freeze
,
3045 .thaw
= ef4_pm_thaw
,
3046 .poweroff
= ef4_pm_poweroff
,
3047 .restore
= ef4_pm_resume
,
3050 /* A PCI error affecting this device was detected.
3051 * At this point MMIO and DMA may be disabled.
3052 * Stop the software path and request a slot reset.
3054 static pci_ers_result_t
ef4_io_error_detected(struct pci_dev
*pdev
,
3055 pci_channel_state_t state
)
3057 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3058 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3060 if (state
== pci_channel_io_perm_failure
)
3061 return PCI_ERS_RESULT_DISCONNECT
;
3065 if (efx
->state
!= STATE_DISABLED
) {
3066 efx
->state
= STATE_RECOVERY
;
3067 efx
->reset_pending
= 0;
3069 ef4_device_detach_sync(efx
);
3072 ef4_disable_interrupts(efx
);
3074 status
= PCI_ERS_RESULT_NEED_RESET
;
3076 /* If the interface is disabled we don't want to do anything
3079 status
= PCI_ERS_RESULT_RECOVERED
;
3084 pci_disable_device(pdev
);
3089 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3090 static pci_ers_result_t
ef4_io_slot_reset(struct pci_dev
*pdev
)
3092 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3093 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3095 if (pci_enable_device(pdev
)) {
3096 netif_err(efx
, hw
, efx
->net_dev
,
3097 "Cannot re-enable PCI device after reset.\n");
3098 status
= PCI_ERS_RESULT_DISCONNECT
;
3104 /* Perform the actual reset and resume I/O operations. */
3105 static void ef4_io_resume(struct pci_dev
*pdev
)
3107 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3112 if (efx
->state
== STATE_DISABLED
)
3115 rc
= ef4_reset(efx
, RESET_TYPE_ALL
);
3117 netif_err(efx
, hw
, efx
->net_dev
,
3118 "ef4_reset failed after PCI error (%d)\n", rc
);
3120 efx
->state
= STATE_READY
;
3121 netif_dbg(efx
, hw
, efx
->net_dev
,
3122 "Done resetting and resuming IO after PCI error.\n");
3129 /* For simplicity and reliability, we always require a slot reset and try to
3130 * reset the hardware when a pci error affecting the device is detected.
3131 * We leave both the link_reset and mmio_enabled callback unimplemented:
3132 * with our request for slot reset the mmio_enabled callback will never be
3133 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3135 static const struct pci_error_handlers ef4_err_handlers
= {
3136 .error_detected
= ef4_io_error_detected
,
3137 .slot_reset
= ef4_io_slot_reset
,
3138 .resume
= ef4_io_resume
,
3141 static struct pci_driver ef4_pci_driver
= {
3142 .name
= KBUILD_MODNAME
,
3143 .id_table
= ef4_pci_table
,
3144 .probe
= ef4_pci_probe
,
3145 .remove
= ef4_pci_remove
,
3146 .driver
.pm
= &ef4_pm_ops
,
3147 .err_handler
= &ef4_err_handlers
,
3150 /**************************************************************************
3152 * Kernel module interface
3154 *************************************************************************/
3156 module_param(interrupt_mode
, uint
, 0444);
3157 MODULE_PARM_DESC(interrupt_mode
,
3158 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3160 static int __init
ef4_init_module(void)
3164 printk(KERN_INFO
"Solarflare Falcon driver v" EF4_DRIVER_VERSION
"\n");
3166 rc
= register_netdevice_notifier(&ef4_netdev_notifier
);
3170 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
3171 if (!reset_workqueue
) {
3176 rc
= pci_register_driver(&ef4_pci_driver
);
3183 destroy_workqueue(reset_workqueue
);
3185 unregister_netdevice_notifier(&ef4_netdev_notifier
);
3190 static void __exit
ef4_exit_module(void)
3192 printk(KERN_INFO
"Solarflare Falcon driver unloading\n");
3194 pci_unregister_driver(&ef4_pci_driver
);
3195 destroy_workqueue(reset_workqueue
);
3196 unregister_netdevice_notifier(&ef4_netdev_notifier
);
3200 module_init(ef4_init_module
);
3201 module_exit(ef4_exit_module
);
3203 MODULE_AUTHOR("Solarflare Communications and "
3204 "Michael Brown <mbrown@fensystems.co.uk>");
3205 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3206 MODULE_LICENSE("GPL");
3207 MODULE_DEVICE_TABLE(pci
, ef4_pci_table
);
3208 MODULE_VERSION(EF4_DRIVER_VERSION
);