1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
23 #include "workarounds.h"
25 static inline u8
*ef4_tx_get_copy_buffer(struct ef4_tx_queue
*tx_queue
,
26 struct ef4_tx_buffer
*buffer
)
28 unsigned int index
= ef4_tx_queue_get_insert_index(tx_queue
);
29 struct ef4_buffer
*page_buf
=
30 &tx_queue
->cb_page
[index
>> (PAGE_SHIFT
- EF4_TX_CB_ORDER
)];
32 ((index
<< EF4_TX_CB_ORDER
) + NET_IP_ALIGN
) & (PAGE_SIZE
- 1);
34 if (unlikely(!page_buf
->addr
) &&
35 ef4_nic_alloc_buffer(tx_queue
->efx
, page_buf
, PAGE_SIZE
,
38 buffer
->dma_addr
= page_buf
->dma_addr
+ offset
;
39 buffer
->unmap_len
= 0;
40 return (u8
*)page_buf
->addr
+ offset
;
43 static void ef4_dequeue_buffer(struct ef4_tx_queue
*tx_queue
,
44 struct ef4_tx_buffer
*buffer
,
45 unsigned int *pkts_compl
,
46 unsigned int *bytes_compl
)
48 if (buffer
->unmap_len
) {
49 struct device
*dma_dev
= &tx_queue
->efx
->pci_dev
->dev
;
50 dma_addr_t unmap_addr
= buffer
->dma_addr
- buffer
->dma_offset
;
51 if (buffer
->flags
& EF4_TX_BUF_MAP_SINGLE
)
52 dma_unmap_single(dma_dev
, unmap_addr
, buffer
->unmap_len
,
55 dma_unmap_page(dma_dev
, unmap_addr
, buffer
->unmap_len
,
57 buffer
->unmap_len
= 0;
60 if (buffer
->flags
& EF4_TX_BUF_SKB
) {
62 (*bytes_compl
) += buffer
->skb
->len
;
63 dev_consume_skb_any((struct sk_buff
*)buffer
->skb
);
64 netif_vdbg(tx_queue
->efx
, tx_done
, tx_queue
->efx
->net_dev
,
65 "TX queue %d transmission id %x complete\n",
66 tx_queue
->queue
, tx_queue
->read_count
);
73 unsigned int ef4_tx_max_skb_descs(struct ef4_nic
*efx
)
75 /* This is probably too much since we don't have any TSO support;
76 * it's a left-over from when we had Software TSO. But it's safer
77 * to leave it as-is than try to determine a new bound.
79 /* Header and payload descriptor for each output segment, plus
80 * one for every input fragment boundary within a segment
82 unsigned int max_descs
= EF4_TSO_MAX_SEGS
* 2 + MAX_SKB_FRAGS
;
84 /* Possibly one more per segment for the alignment workaround,
85 * or for option descriptors
87 if (EF4_WORKAROUND_5391(efx
))
88 max_descs
+= EF4_TSO_MAX_SEGS
;
90 /* Possibly more for PCIe page boundaries within input fragments */
91 if (PAGE_SIZE
> EF4_PAGE_SIZE
)
92 max_descs
+= max_t(unsigned int, MAX_SKB_FRAGS
,
93 DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE
,
99 static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue
*txq1
)
101 /* We need to consider both queues that the net core sees as one */
102 struct ef4_tx_queue
*txq2
= ef4_tx_queue_partner(txq1
);
103 struct ef4_nic
*efx
= txq1
->efx
;
104 unsigned int fill_level
;
106 fill_level
= max(txq1
->insert_count
- txq1
->old_read_count
,
107 txq2
->insert_count
- txq2
->old_read_count
);
108 if (likely(fill_level
< efx
->txq_stop_thresh
))
111 /* We used the stale old_read_count above, which gives us a
112 * pessimistic estimate of the fill level (which may even
113 * validly be >= efx->txq_entries). Now try again using
114 * read_count (more likely to be a cache miss).
116 * If we read read_count and then conditionally stop the
117 * queue, it is possible for the completion path to race with
118 * us and complete all outstanding descriptors in the middle,
119 * after which there will be no more completions to wake it.
120 * Therefore we stop the queue first, then read read_count
121 * (with a memory barrier to ensure the ordering), then
122 * restart the queue if the fill level turns out to be low
125 netif_tx_stop_queue(txq1
->core_txq
);
127 txq1
->old_read_count
= READ_ONCE(txq1
->read_count
);
128 txq2
->old_read_count
= READ_ONCE(txq2
->read_count
);
130 fill_level
= max(txq1
->insert_count
- txq1
->old_read_count
,
131 txq2
->insert_count
- txq2
->old_read_count
);
132 EF4_BUG_ON_PARANOID(fill_level
>= efx
->txq_entries
);
133 if (likely(fill_level
< efx
->txq_stop_thresh
)) {
135 if (likely(!efx
->loopback_selftest
))
136 netif_tx_start_queue(txq1
->core_txq
);
140 static int ef4_enqueue_skb_copy(struct ef4_tx_queue
*tx_queue
,
143 unsigned int min_len
= tx_queue
->tx_min_size
;
144 unsigned int copy_len
= skb
->len
;
145 struct ef4_tx_buffer
*buffer
;
149 EF4_BUG_ON_PARANOID(copy_len
> EF4_TX_CB_SIZE
);
151 buffer
= ef4_tx_queue_get_insert_buffer(tx_queue
);
153 copy_buffer
= ef4_tx_get_copy_buffer(tx_queue
, buffer
);
154 if (unlikely(!copy_buffer
))
157 rc
= skb_copy_bits(skb
, 0, copy_buffer
, copy_len
);
158 EF4_WARN_ON_PARANOID(rc
);
159 if (unlikely(copy_len
< min_len
)) {
160 memset(copy_buffer
+ copy_len
, 0, min_len
- copy_len
);
161 buffer
->len
= min_len
;
163 buffer
->len
= copy_len
;
167 buffer
->flags
= EF4_TX_BUF_SKB
;
169 ++tx_queue
->insert_count
;
173 static struct ef4_tx_buffer
*ef4_tx_map_chunk(struct ef4_tx_queue
*tx_queue
,
177 const struct ef4_nic_type
*nic_type
= tx_queue
->efx
->type
;
178 struct ef4_tx_buffer
*buffer
;
179 unsigned int dma_len
;
181 /* Map the fragment taking account of NIC-dependent DMA limits. */
183 buffer
= ef4_tx_queue_get_insert_buffer(tx_queue
);
184 dma_len
= nic_type
->tx_limit_len(tx_queue
, dma_addr
, len
);
186 buffer
->len
= dma_len
;
187 buffer
->dma_addr
= dma_addr
;
188 buffer
->flags
= EF4_TX_BUF_CONT
;
191 ++tx_queue
->insert_count
;
197 /* Map all data from an SKB for DMA and create descriptors on the queue.
199 static int ef4_tx_map_data(struct ef4_tx_queue
*tx_queue
, struct sk_buff
*skb
)
201 struct ef4_nic
*efx
= tx_queue
->efx
;
202 struct device
*dma_dev
= &efx
->pci_dev
->dev
;
203 unsigned int frag_index
, nr_frags
;
204 dma_addr_t dma_addr
, unmap_addr
;
205 unsigned short dma_flags
;
206 size_t len
, unmap_len
;
208 nr_frags
= skb_shinfo(skb
)->nr_frags
;
211 /* Map header data. */
212 len
= skb_headlen(skb
);
213 dma_addr
= dma_map_single(dma_dev
, skb
->data
, len
, DMA_TO_DEVICE
);
214 dma_flags
= EF4_TX_BUF_MAP_SINGLE
;
216 unmap_addr
= dma_addr
;
218 if (unlikely(dma_mapping_error(dma_dev
, dma_addr
)))
221 /* Add descriptors for each fragment. */
223 struct ef4_tx_buffer
*buffer
;
224 skb_frag_t
*fragment
;
226 buffer
= ef4_tx_map_chunk(tx_queue
, dma_addr
, len
);
228 /* The final descriptor for a fragment is responsible for
229 * unmapping the whole fragment.
231 buffer
->flags
= EF4_TX_BUF_CONT
| dma_flags
;
232 buffer
->unmap_len
= unmap_len
;
233 buffer
->dma_offset
= buffer
->dma_addr
- unmap_addr
;
235 if (frag_index
>= nr_frags
) {
236 /* Store SKB details with the final buffer for
240 buffer
->flags
= EF4_TX_BUF_SKB
| dma_flags
;
244 /* Move on to the next fragment. */
245 fragment
= &skb_shinfo(skb
)->frags
[frag_index
++];
246 len
= skb_frag_size(fragment
);
247 dma_addr
= skb_frag_dma_map(dma_dev
, fragment
,
248 0, len
, DMA_TO_DEVICE
);
251 unmap_addr
= dma_addr
;
253 if (unlikely(dma_mapping_error(dma_dev
, dma_addr
)))
258 /* Remove buffers put into a tx_queue. None of the buffers must have
261 static void ef4_enqueue_unwind(struct ef4_tx_queue
*tx_queue
)
263 struct ef4_tx_buffer
*buffer
;
265 /* Work backwards until we hit the original insert pointer value */
266 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
267 --tx_queue
->insert_count
;
268 buffer
= __ef4_tx_queue_get_insert_buffer(tx_queue
);
269 ef4_dequeue_buffer(tx_queue
, buffer
, NULL
, NULL
);
274 * Add a socket buffer to a TX queue
276 * This maps all fragments of a socket buffer for DMA and adds them to
277 * the TX queue. The queue's insert pointer will be incremented by
278 * the number of fragments in the socket buffer.
280 * If any DMA mapping fails, any mapped fragments will be unmapped,
281 * the queue's insert pointer will be restored to its original value.
283 * This function is split out from ef4_hard_start_xmit to allow the
284 * loopback test to direct packets via specific TX queues.
286 * Returns NETDEV_TX_OK.
287 * You must hold netif_tx_lock() to call this function.
289 netdev_tx_t
ef4_enqueue_skb(struct ef4_tx_queue
*tx_queue
, struct sk_buff
*skb
)
291 bool data_mapped
= false;
292 unsigned int skb_len
;
295 EF4_WARN_ON_PARANOID(skb_is_gso(skb
));
297 if (skb_len
< tx_queue
->tx_min_size
||
298 (skb
->data_len
&& skb_len
<= EF4_TX_CB_SIZE
)) {
299 /* Pad short packets or coalesce short fragmented packets. */
300 if (ef4_enqueue_skb_copy(tx_queue
, skb
))
302 tx_queue
->cb_packets
++;
306 /* Map for DMA and create descriptors if we haven't done so already. */
307 if (!data_mapped
&& (ef4_tx_map_data(tx_queue
, skb
)))
311 netdev_tx_sent_queue(tx_queue
->core_txq
, skb_len
);
313 /* Pass off to hardware */
314 if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue
->core_txq
)) {
315 struct ef4_tx_queue
*txq2
= ef4_tx_queue_partner(tx_queue
);
317 /* There could be packets left on the partner queue if those
318 * SKBs had skb->xmit_more set. If we do not push those they
319 * could be left for a long time and cause a netdev watchdog.
321 if (txq2
->xmit_more_available
)
322 ef4_nic_push_buffers(txq2
);
324 ef4_nic_push_buffers(tx_queue
);
326 tx_queue
->xmit_more_available
= netdev_xmit_more();
329 tx_queue
->tx_packets
++;
331 ef4_tx_maybe_stop_queue(tx_queue
);
337 ef4_enqueue_unwind(tx_queue
);
338 dev_kfree_skb_any(skb
);
342 /* Remove packets from the TX queue
344 * This removes packets from the TX queue, up to and including the
347 static void ef4_dequeue_buffers(struct ef4_tx_queue
*tx_queue
,
349 unsigned int *pkts_compl
,
350 unsigned int *bytes_compl
)
352 struct ef4_nic
*efx
= tx_queue
->efx
;
353 unsigned int stop_index
, read_ptr
;
355 stop_index
= (index
+ 1) & tx_queue
->ptr_mask
;
356 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
358 while (read_ptr
!= stop_index
) {
359 struct ef4_tx_buffer
*buffer
= &tx_queue
->buffer
[read_ptr
];
361 if (!(buffer
->flags
& EF4_TX_BUF_OPTION
) &&
362 unlikely(buffer
->len
== 0)) {
363 netif_err(efx
, tx_err
, efx
->net_dev
,
364 "TX queue %d spurious TX completion id %x\n",
365 tx_queue
->queue
, read_ptr
);
366 ef4_schedule_reset(efx
, RESET_TYPE_TX_SKIP
);
370 ef4_dequeue_buffer(tx_queue
, buffer
, pkts_compl
, bytes_compl
);
372 ++tx_queue
->read_count
;
373 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
377 /* Initiate a packet transmission. We use one channel per CPU
378 * (sharing when we have more CPUs than channels). On Falcon, the TX
379 * completion events will be directed back to the CPU that transmitted
380 * the packet, which should be cache-efficient.
382 * Context: non-blocking.
383 * Note that returning anything other than NETDEV_TX_OK will cause the
384 * OS to free the skb.
386 netdev_tx_t
ef4_hard_start_xmit(struct sk_buff
*skb
,
387 struct net_device
*net_dev
)
389 struct ef4_nic
*efx
= netdev_priv(net_dev
);
390 struct ef4_tx_queue
*tx_queue
;
391 unsigned index
, type
;
393 EF4_WARN_ON_PARANOID(!netif_device_present(net_dev
));
395 index
= skb_get_queue_mapping(skb
);
396 type
= skb
->ip_summed
== CHECKSUM_PARTIAL
? EF4_TXQ_TYPE_OFFLOAD
: 0;
397 if (index
>= efx
->n_tx_channels
) {
398 index
-= efx
->n_tx_channels
;
399 type
|= EF4_TXQ_TYPE_HIGHPRI
;
401 tx_queue
= ef4_get_tx_queue(efx
, index
, type
);
403 return ef4_enqueue_skb(tx_queue
, skb
);
406 void ef4_init_tx_queue_core_txq(struct ef4_tx_queue
*tx_queue
)
408 struct ef4_nic
*efx
= tx_queue
->efx
;
410 /* Must be inverse of queue lookup in ef4_hard_start_xmit() */
412 netdev_get_tx_queue(efx
->net_dev
,
413 tx_queue
->queue
/ EF4_TXQ_TYPES
+
414 ((tx_queue
->queue
& EF4_TXQ_TYPE_HIGHPRI
) ?
415 efx
->n_tx_channels
: 0));
418 int ef4_setup_tc(struct net_device
*net_dev
, enum tc_setup_type type
,
421 struct ef4_nic
*efx
= netdev_priv(net_dev
);
422 struct tc_mqprio_qopt
*mqprio
= type_data
;
423 struct ef4_channel
*channel
;
424 struct ef4_tx_queue
*tx_queue
;
428 if (type
!= TC_SETUP_QDISC_MQPRIO
)
431 num_tc
= mqprio
->num_tc
;
433 if (ef4_nic_rev(efx
) < EF4_REV_FALCON_B0
|| num_tc
> EF4_MAX_TX_TC
)
436 mqprio
->hw
= TC_MQPRIO_HW_OFFLOAD_TCS
;
438 if (num_tc
== net_dev
->num_tc
)
441 for (tc
= 0; tc
< num_tc
; tc
++) {
442 net_dev
->tc_to_txq
[tc
].offset
= tc
* efx
->n_tx_channels
;
443 net_dev
->tc_to_txq
[tc
].count
= efx
->n_tx_channels
;
446 if (num_tc
> net_dev
->num_tc
) {
447 /* Initialise high-priority queues as necessary */
448 ef4_for_each_channel(channel
, efx
) {
449 ef4_for_each_possible_channel_tx_queue(tx_queue
,
451 if (!(tx_queue
->queue
& EF4_TXQ_TYPE_HIGHPRI
))
453 if (!tx_queue
->buffer
) {
454 rc
= ef4_probe_tx_queue(tx_queue
);
458 if (!tx_queue
->initialised
)
459 ef4_init_tx_queue(tx_queue
);
460 ef4_init_tx_queue_core_txq(tx_queue
);
464 /* Reduce number of classes before number of queues */
465 net_dev
->num_tc
= num_tc
;
468 rc
= netif_set_real_num_tx_queues(net_dev
,
469 max_t(int, num_tc
, 1) *
474 /* Do not destroy high-priority queues when they become
475 * unused. We would have to flush them first, and it is
476 * fairly difficult to flush a subset of TX queues. Leave
477 * it to ef4_fini_channels().
480 net_dev
->num_tc
= num_tc
;
484 void ef4_xmit_done(struct ef4_tx_queue
*tx_queue
, unsigned int index
)
487 struct ef4_nic
*efx
= tx_queue
->efx
;
488 struct ef4_tx_queue
*txq2
;
489 unsigned int pkts_compl
= 0, bytes_compl
= 0;
491 EF4_BUG_ON_PARANOID(index
> tx_queue
->ptr_mask
);
493 ef4_dequeue_buffers(tx_queue
, index
, &pkts_compl
, &bytes_compl
);
494 tx_queue
->pkts_compl
+= pkts_compl
;
495 tx_queue
->bytes_compl
+= bytes_compl
;
498 ++tx_queue
->merge_events
;
500 /* See if we need to restart the netif queue. This memory
501 * barrier ensures that we write read_count (inside
502 * ef4_dequeue_buffers()) before reading the queue status.
505 if (unlikely(netif_tx_queue_stopped(tx_queue
->core_txq
)) &&
506 likely(efx
->port_enabled
) &&
507 likely(netif_device_present(efx
->net_dev
))) {
508 txq2
= ef4_tx_queue_partner(tx_queue
);
509 fill_level
= max(tx_queue
->insert_count
- tx_queue
->read_count
,
510 txq2
->insert_count
- txq2
->read_count
);
511 if (fill_level
<= efx
->txq_wake_thresh
)
512 netif_tx_wake_queue(tx_queue
->core_txq
);
515 /* Check whether the hardware queue is now empty */
516 if ((int)(tx_queue
->read_count
- tx_queue
->old_write_count
) >= 0) {
517 tx_queue
->old_write_count
= READ_ONCE(tx_queue
->write_count
);
518 if (tx_queue
->read_count
== tx_queue
->old_write_count
) {
520 tx_queue
->empty_read_count
=
521 tx_queue
->read_count
| EF4_EMPTY_COUNT_VALID
;
526 static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue
*tx_queue
)
528 return DIV_ROUND_UP(tx_queue
->ptr_mask
+ 1, PAGE_SIZE
>> EF4_TX_CB_ORDER
);
531 int ef4_probe_tx_queue(struct ef4_tx_queue
*tx_queue
)
533 struct ef4_nic
*efx
= tx_queue
->efx
;
534 unsigned int entries
;
537 /* Create the smallest power-of-two aligned ring */
538 entries
= max(roundup_pow_of_two(efx
->txq_entries
), EF4_MIN_DMAQ_SIZE
);
539 EF4_BUG_ON_PARANOID(entries
> EF4_MAX_DMAQ_SIZE
);
540 tx_queue
->ptr_mask
= entries
- 1;
542 netif_dbg(efx
, probe
, efx
->net_dev
,
543 "creating TX queue %d size %#x mask %#x\n",
544 tx_queue
->queue
, efx
->txq_entries
, tx_queue
->ptr_mask
);
546 /* Allocate software ring */
547 tx_queue
->buffer
= kcalloc(entries
, sizeof(*tx_queue
->buffer
),
549 if (!tx_queue
->buffer
)
552 tx_queue
->cb_page
= kcalloc(ef4_tx_cb_page_count(tx_queue
),
553 sizeof(tx_queue
->cb_page
[0]), GFP_KERNEL
);
554 if (!tx_queue
->cb_page
) {
559 /* Allocate hardware ring */
560 rc
= ef4_nic_probe_tx(tx_queue
);
567 kfree(tx_queue
->cb_page
);
568 tx_queue
->cb_page
= NULL
;
570 kfree(tx_queue
->buffer
);
571 tx_queue
->buffer
= NULL
;
575 void ef4_init_tx_queue(struct ef4_tx_queue
*tx_queue
)
577 struct ef4_nic
*efx
= tx_queue
->efx
;
579 netif_dbg(efx
, drv
, efx
->net_dev
,
580 "initialising TX queue %d\n", tx_queue
->queue
);
582 tx_queue
->insert_count
= 0;
583 tx_queue
->write_count
= 0;
584 tx_queue
->old_write_count
= 0;
585 tx_queue
->read_count
= 0;
586 tx_queue
->old_read_count
= 0;
587 tx_queue
->empty_read_count
= 0 | EF4_EMPTY_COUNT_VALID
;
588 tx_queue
->xmit_more_available
= false;
590 /* Some older hardware requires Tx writes larger than 32. */
591 tx_queue
->tx_min_size
= EF4_WORKAROUND_15592(efx
) ? 33 : 0;
593 /* Set up TX descriptor ring */
594 ef4_nic_init_tx(tx_queue
);
596 tx_queue
->initialised
= true;
599 void ef4_fini_tx_queue(struct ef4_tx_queue
*tx_queue
)
601 struct ef4_tx_buffer
*buffer
;
603 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
604 "shutting down TX queue %d\n", tx_queue
->queue
);
606 if (!tx_queue
->buffer
)
609 /* Free any buffers left in the ring */
610 while (tx_queue
->read_count
!= tx_queue
->write_count
) {
611 unsigned int pkts_compl
= 0, bytes_compl
= 0;
612 buffer
= &tx_queue
->buffer
[tx_queue
->read_count
& tx_queue
->ptr_mask
];
613 ef4_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
615 ++tx_queue
->read_count
;
617 tx_queue
->xmit_more_available
= false;
618 netdev_tx_reset_queue(tx_queue
->core_txq
);
621 void ef4_remove_tx_queue(struct ef4_tx_queue
*tx_queue
)
625 if (!tx_queue
->buffer
)
628 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
629 "destroying TX queue %d\n", tx_queue
->queue
);
630 ef4_nic_remove_tx(tx_queue
);
632 if (tx_queue
->cb_page
) {
633 for (i
= 0; i
< ef4_tx_cb_page_count(tx_queue
); i
++)
634 ef4_nic_free_buffer(tx_queue
->efx
,
635 &tx_queue
->cb_page
[i
]);
636 kfree(tx_queue
->cb_page
);
637 tx_queue
->cb_page
= NULL
;
640 kfree(tx_queue
->buffer
);
641 tx_queue
->buffer
= NULL
;