drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / net / ethernet / sfc / mcdi.c
blobd461b1a6ce810dca9533ad8e01b839af23e5cf0b
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
5 */
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
11 #include "nic.h"
12 #include "io.h"
13 #include "mcdi_pcol.h"
15 /**************************************************************************
17 * Management-Controller-to-Driver Interface
19 **************************************************************************
22 #define MCDI_RPC_TIMEOUT (10 * HZ)
24 /* A reboot/assertion causes the MCDI status word to be set after the
25 * command word is set or a REBOOT event is sent. If we notice a reboot
26 * via these mechanisms then wait 250ms for the status word to be set.
28 #define MCDI_STATUS_DELAY_US 100
29 #define MCDI_STATUS_DELAY_COUNT 2500
30 #define MCDI_STATUS_SLEEP_MS \
31 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
33 #define SEQ_MASK \
34 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
36 struct efx_mcdi_async_param {
37 struct list_head list;
38 unsigned int cmd;
39 size_t inlen;
40 size_t outlen;
41 bool quiet;
42 efx_mcdi_async_completer *complete;
43 unsigned long cookie;
44 /* followed by request/response buffer */
47 static void efx_mcdi_timeout_async(struct timer_list *t);
48 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
49 bool *was_attached_out);
50 static bool efx_mcdi_poll_once(struct efx_nic *efx);
51 static void efx_mcdi_abandon(struct efx_nic *efx);
53 #ifdef CONFIG_SFC_MCDI_LOGGING
54 static bool mcdi_logging_default;
55 module_param(mcdi_logging_default, bool, 0644);
56 MODULE_PARM_DESC(mcdi_logging_default,
57 "Enable MCDI logging on newly-probed functions");
58 #endif
60 int efx_mcdi_init(struct efx_nic *efx)
62 struct efx_mcdi_iface *mcdi;
63 bool already_attached;
64 int rc = -ENOMEM;
66 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
67 if (!efx->mcdi)
68 goto fail;
70 mcdi = efx_mcdi(efx);
71 mcdi->efx = efx;
72 #ifdef CONFIG_SFC_MCDI_LOGGING
73 /* consuming code assumes buffer is page-sized */
74 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
75 if (!mcdi->logging_buffer)
76 goto fail1;
77 mcdi->logging_enabled = mcdi_logging_default;
78 #endif
79 init_waitqueue_head(&mcdi->wq);
80 init_waitqueue_head(&mcdi->proxy_rx_wq);
81 spin_lock_init(&mcdi->iface_lock);
82 mcdi->state = MCDI_STATE_QUIESCENT;
83 mcdi->mode = MCDI_MODE_POLL;
84 spin_lock_init(&mcdi->async_lock);
85 INIT_LIST_HEAD(&mcdi->async_list);
86 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
88 (void) efx_mcdi_poll_reboot(efx);
89 mcdi->new_epoch = true;
91 /* Recover from a failed assertion before probing */
92 rc = efx_mcdi_handle_assertion(efx);
93 if (rc)
94 goto fail2;
96 /* Let the MC (and BMC, if this is a LOM) know that the driver
97 * is loaded. We should do this before we reset the NIC.
99 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
100 if (rc) {
101 pci_err(efx->pci_dev, "Unable to register driver with MCPU\n");
102 goto fail2;
104 if (already_attached)
105 /* Not a fatal error */
106 pci_err(efx->pci_dev, "Host already registered with MCPU\n");
108 if (efx->mcdi->fn_flags &
109 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
110 efx->primary = efx;
112 return 0;
113 fail2:
114 #ifdef CONFIG_SFC_MCDI_LOGGING
115 free_page((unsigned long)mcdi->logging_buffer);
116 fail1:
117 #endif
118 kfree(efx->mcdi);
119 efx->mcdi = NULL;
120 fail:
121 return rc;
124 void efx_mcdi_detach(struct efx_nic *efx)
126 if (!efx->mcdi)
127 return;
129 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
131 /* Relinquish the device (back to the BMC, if this is a LOM) */
132 efx_mcdi_drv_attach(efx, false, NULL);
135 void efx_mcdi_fini(struct efx_nic *efx)
137 if (!efx->mcdi)
138 return;
140 #ifdef CONFIG_SFC_MCDI_LOGGING
141 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
142 #endif
144 kfree(efx->mcdi);
147 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
148 const efx_dword_t *inbuf, size_t inlen)
150 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
151 #ifdef CONFIG_SFC_MCDI_LOGGING
152 char *buf = mcdi->logging_buffer; /* page-sized */
153 #endif
154 efx_dword_t hdr[2];
155 size_t hdr_len;
156 u32 xflags, seqno;
158 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
160 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
161 spin_lock_bh(&mcdi->iface_lock);
162 ++mcdi->seqno;
163 seqno = mcdi->seqno & SEQ_MASK;
164 spin_unlock_bh(&mcdi->iface_lock);
166 xflags = 0;
167 if (mcdi->mode == MCDI_MODE_EVENTS)
168 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
170 if (efx->type->mcdi_max_ver == 1) {
171 /* MCDI v1 */
172 EFX_POPULATE_DWORD_7(hdr[0],
173 MCDI_HEADER_RESPONSE, 0,
174 MCDI_HEADER_RESYNC, 1,
175 MCDI_HEADER_CODE, cmd,
176 MCDI_HEADER_DATALEN, inlen,
177 MCDI_HEADER_SEQ, seqno,
178 MCDI_HEADER_XFLAGS, xflags,
179 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
180 hdr_len = 4;
181 } else {
182 /* MCDI v2 */
183 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
184 EFX_POPULATE_DWORD_7(hdr[0],
185 MCDI_HEADER_RESPONSE, 0,
186 MCDI_HEADER_RESYNC, 1,
187 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
188 MCDI_HEADER_DATALEN, 0,
189 MCDI_HEADER_SEQ, seqno,
190 MCDI_HEADER_XFLAGS, xflags,
191 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
192 EFX_POPULATE_DWORD_2(hdr[1],
193 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
194 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
195 hdr_len = 8;
198 #ifdef CONFIG_SFC_MCDI_LOGGING
199 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
200 int bytes = 0;
201 int i;
202 /* Lengths should always be a whole number of dwords, so scream
203 * if they're not.
205 WARN_ON_ONCE(hdr_len % 4);
206 WARN_ON_ONCE(inlen % 4);
208 /* We own the logging buffer, as only one MCDI can be in
209 * progress on a NIC at any one time. So no need for locking.
211 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
212 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
213 " %08x",
214 le32_to_cpu(hdr[i].u32[0]));
216 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
217 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
218 " %08x",
219 le32_to_cpu(inbuf[i].u32[0]));
221 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
223 #endif
225 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
227 mcdi->new_epoch = false;
230 static int efx_mcdi_errno(unsigned int mcdi_err)
232 switch (mcdi_err) {
233 case 0:
234 return 0;
235 #define TRANSLATE_ERROR(name) \
236 case MC_CMD_ERR_ ## name: \
237 return -name;
238 TRANSLATE_ERROR(EPERM);
239 TRANSLATE_ERROR(ENOENT);
240 TRANSLATE_ERROR(EINTR);
241 TRANSLATE_ERROR(EAGAIN);
242 TRANSLATE_ERROR(EACCES);
243 TRANSLATE_ERROR(EBUSY);
244 TRANSLATE_ERROR(EINVAL);
245 TRANSLATE_ERROR(EDEADLK);
246 TRANSLATE_ERROR(ENOSYS);
247 TRANSLATE_ERROR(ETIME);
248 TRANSLATE_ERROR(EALREADY);
249 TRANSLATE_ERROR(ENOSPC);
250 #undef TRANSLATE_ERROR
251 case MC_CMD_ERR_ENOTSUP:
252 return -EOPNOTSUPP;
253 case MC_CMD_ERR_ALLOC_FAIL:
254 return -ENOBUFS;
255 case MC_CMD_ERR_MAC_EXIST:
256 return -EADDRINUSE;
257 default:
258 return -EPROTO;
262 static void efx_mcdi_read_response_header(struct efx_nic *efx)
264 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
265 unsigned int respseq, respcmd, error;
266 #ifdef CONFIG_SFC_MCDI_LOGGING
267 char *buf = mcdi->logging_buffer; /* page-sized */
268 #endif
269 efx_dword_t hdr;
271 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
272 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
273 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
274 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
276 if (respcmd != MC_CMD_V2_EXTN) {
277 mcdi->resp_hdr_len = 4;
278 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
279 } else {
280 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
281 mcdi->resp_hdr_len = 8;
282 mcdi->resp_data_len =
283 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
286 #ifdef CONFIG_SFC_MCDI_LOGGING
287 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
288 size_t hdr_len, data_len;
289 int bytes = 0;
290 int i;
292 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
293 hdr_len = mcdi->resp_hdr_len / 4;
294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 * to dword size, and the MCDI buffer is always dword size
297 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
299 /* We own the logging buffer, as only one MCDI can be in
300 * progress on a NIC at any one time. So no need for locking.
302 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
303 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
304 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
305 " %08x", le32_to_cpu(hdr.u32[0]));
308 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
309 efx->type->mcdi_read_response(efx, &hdr,
310 mcdi->resp_hdr_len + (i * 4), 4);
311 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
312 " %08x", le32_to_cpu(hdr.u32[0]));
315 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
317 #endif
319 mcdi->resprc_raw = 0;
320 if (error && mcdi->resp_data_len == 0) {
321 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
322 mcdi->resprc = -EIO;
323 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
324 netif_err(efx, hw, efx->net_dev,
325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 respseq, mcdi->seqno);
327 mcdi->resprc = -EIO;
328 } else if (error) {
329 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
330 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
331 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
332 } else {
333 mcdi->resprc = 0;
337 static bool efx_mcdi_poll_once(struct efx_nic *efx)
339 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
341 rmb();
342 if (!efx->type->mcdi_poll_response(efx))
343 return false;
345 spin_lock_bh(&mcdi->iface_lock);
346 efx_mcdi_read_response_header(efx);
347 spin_unlock_bh(&mcdi->iface_lock);
349 return true;
352 static int efx_mcdi_poll(struct efx_nic *efx)
354 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
355 unsigned long time, finish;
356 unsigned int spins;
357 int rc;
359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 rc = efx_mcdi_poll_reboot(efx);
361 if (rc) {
362 spin_lock_bh(&mcdi->iface_lock);
363 mcdi->resprc = rc;
364 mcdi->resp_hdr_len = 0;
365 mcdi->resp_data_len = 0;
366 spin_unlock_bh(&mcdi->iface_lock);
367 return 0;
370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 * because generally mcdi responses are fast. After that, back off
372 * and poll once a jiffy (approximately)
374 spins = USER_TICK_USEC;
375 finish = jiffies + MCDI_RPC_TIMEOUT;
377 while (1) {
378 if (spins != 0) {
379 --spins;
380 udelay(1);
381 } else {
382 schedule_timeout_uninterruptible(1);
385 time = jiffies;
387 if (efx_mcdi_poll_once(efx))
388 break;
390 if (time_after(time, finish))
391 return -ETIMEDOUT;
394 /* Return rc=0 like wait_event_timeout() */
395 return 0;
398 /* Test and clear MC-rebooted flag for this port/function; reset
399 * software state as necessary.
401 int efx_mcdi_poll_reboot(struct efx_nic *efx)
403 if (!efx->mcdi)
404 return 0;
406 return efx->type->mcdi_poll_reboot(efx);
409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
411 return cmpxchg(&mcdi->state,
412 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
413 MCDI_STATE_QUIESCENT;
416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
418 /* Wait until the interface becomes QUIESCENT and we win the race
419 * to mark it RUNNING_SYNC.
421 wait_event(mcdi->wq,
422 cmpxchg(&mcdi->state,
423 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
424 MCDI_STATE_QUIESCENT);
427 static int efx_mcdi_await_completion(struct efx_nic *efx)
429 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
431 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
432 MCDI_RPC_TIMEOUT) == 0)
433 return -ETIMEDOUT;
435 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 * completed the request first, then we'll just end up completing the
438 * request again, which is safe.
440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 * wait_event_timeout() implicitly provides.
443 if (mcdi->mode == MCDI_MODE_POLL)
444 return efx_mcdi_poll(efx);
446 return 0;
449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450 * requester. Return whether this was done. Does not take any locks.
452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
454 if (cmpxchg(&mcdi->state,
455 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
456 MCDI_STATE_RUNNING_SYNC) {
457 wake_up(&mcdi->wq);
458 return true;
461 return false;
464 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
466 if (mcdi->mode == MCDI_MODE_EVENTS) {
467 struct efx_mcdi_async_param *async;
468 struct efx_nic *efx = mcdi->efx;
470 /* Process the asynchronous request queue */
471 spin_lock_bh(&mcdi->async_lock);
472 async = list_first_entry_or_null(
473 &mcdi->async_list, struct efx_mcdi_async_param, list);
474 if (async) {
475 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
476 efx_mcdi_send_request(efx, async->cmd,
477 (const efx_dword_t *)(async + 1),
478 async->inlen);
479 mod_timer(&mcdi->async_timer,
480 jiffies + MCDI_RPC_TIMEOUT);
482 spin_unlock_bh(&mcdi->async_lock);
484 if (async)
485 return;
488 mcdi->state = MCDI_STATE_QUIESCENT;
489 wake_up(&mcdi->wq);
492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493 * asynchronous completion function, and release the interface.
494 * Return whether this was done. Must be called in bh-disabled
495 * context. Will take iface_lock and async_lock.
497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
499 struct efx_nic *efx = mcdi->efx;
500 struct efx_mcdi_async_param *async;
501 size_t hdr_len, data_len, err_len;
502 efx_dword_t *outbuf;
503 MCDI_DECLARE_BUF_ERR(errbuf);
504 int rc;
506 if (cmpxchg(&mcdi->state,
507 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
508 MCDI_STATE_RUNNING_ASYNC)
509 return false;
511 spin_lock(&mcdi->iface_lock);
512 if (timeout) {
513 /* Ensure that if the completion event arrives later,
514 * the seqno check in efx_mcdi_ev_cpl() will fail
516 ++mcdi->seqno;
517 ++mcdi->credits;
518 rc = -ETIMEDOUT;
519 hdr_len = 0;
520 data_len = 0;
521 } else {
522 rc = mcdi->resprc;
523 hdr_len = mcdi->resp_hdr_len;
524 data_len = mcdi->resp_data_len;
526 spin_unlock(&mcdi->iface_lock);
528 /* Stop the timer. In case the timer function is running, we
529 * must wait for it to return so that there is no possibility
530 * of it aborting the next request.
532 if (!timeout)
533 del_timer_sync(&mcdi->async_timer);
535 spin_lock(&mcdi->async_lock);
536 async = list_first_entry(&mcdi->async_list,
537 struct efx_mcdi_async_param, list);
538 list_del(&async->list);
539 spin_unlock(&mcdi->async_lock);
541 outbuf = (efx_dword_t *)(async + 1);
542 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
543 min(async->outlen, data_len));
544 if (!timeout && rc && !async->quiet) {
545 err_len = min(sizeof(errbuf), data_len);
546 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
547 sizeof(errbuf));
548 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
549 err_len, rc);
552 if (async->complete)
553 async->complete(efx, async->cookie, rc, outbuf,
554 min(async->outlen, data_len));
555 kfree(async);
557 efx_mcdi_release(mcdi);
559 return true;
562 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
563 unsigned int datalen, unsigned int mcdi_err)
565 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
566 bool wake = false;
568 spin_lock(&mcdi->iface_lock);
570 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
571 if (mcdi->credits)
572 /* The request has been cancelled */
573 --mcdi->credits;
574 else
575 netif_err(efx, hw, efx->net_dev,
576 "MC response mismatch tx seq 0x%x rx "
577 "seq 0x%x\n", seqno, mcdi->seqno);
578 } else {
579 if (efx->type->mcdi_max_ver >= 2) {
580 /* MCDI v2 responses don't fit in an event */
581 efx_mcdi_read_response_header(efx);
582 } else {
583 mcdi->resprc = efx_mcdi_errno(mcdi_err);
584 mcdi->resp_hdr_len = 4;
585 mcdi->resp_data_len = datalen;
588 wake = true;
591 spin_unlock(&mcdi->iface_lock);
593 if (wake) {
594 if (!efx_mcdi_complete_async(mcdi, false))
595 (void) efx_mcdi_complete_sync(mcdi);
597 /* If the interface isn't RUNNING_ASYNC or
598 * RUNNING_SYNC then we've received a duplicate
599 * completion after we've already transitioned back to
600 * QUIESCENT. [A subsequent invocation would increment
601 * seqno, so would have failed the seqno check].
606 static void efx_mcdi_timeout_async(struct timer_list *t)
608 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
610 efx_mcdi_complete_async(mcdi, true);
613 static int
614 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
616 if (efx->type->mcdi_max_ver < 0 ||
617 (efx->type->mcdi_max_ver < 2 &&
618 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
619 return -EINVAL;
621 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
622 (efx->type->mcdi_max_ver < 2 &&
623 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
624 return -EMSGSIZE;
626 return 0;
629 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
630 size_t hdr_len, size_t data_len,
631 u32 *proxy_handle)
633 MCDI_DECLARE_BUF_ERR(testbuf);
634 const size_t buflen = sizeof(testbuf);
636 if (!proxy_handle || data_len < buflen)
637 return false;
639 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
640 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
641 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
642 return true;
645 return false;
648 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
649 size_t inlen,
650 efx_dword_t *outbuf, size_t outlen,
651 size_t *outlen_actual, bool quiet,
652 u32 *proxy_handle, int *raw_rc)
654 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
655 MCDI_DECLARE_BUF_ERR(errbuf);
656 int rc;
658 if (mcdi->mode == MCDI_MODE_POLL)
659 rc = efx_mcdi_poll(efx);
660 else
661 rc = efx_mcdi_await_completion(efx);
663 if (rc != 0) {
664 netif_err(efx, hw, efx->net_dev,
665 "MC command 0x%x inlen %d mode %d timed out\n",
666 cmd, (int)inlen, mcdi->mode);
668 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
669 netif_err(efx, hw, efx->net_dev,
670 "MCDI request was completed without an event\n");
671 rc = 0;
674 efx_mcdi_abandon(efx);
676 /* Close the race with efx_mcdi_ev_cpl() executing just too late
677 * and completing a request we've just cancelled, by ensuring
678 * that the seqno check therein fails.
680 spin_lock_bh(&mcdi->iface_lock);
681 ++mcdi->seqno;
682 ++mcdi->credits;
683 spin_unlock_bh(&mcdi->iface_lock);
686 if (proxy_handle)
687 *proxy_handle = 0;
689 if (rc != 0) {
690 if (outlen_actual)
691 *outlen_actual = 0;
692 } else {
693 size_t hdr_len, data_len, err_len;
695 /* At the very least we need a memory barrier here to ensure
696 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
697 * a spurious efx_mcdi_ev_cpl() running concurrently by
698 * acquiring the iface_lock. */
699 spin_lock_bh(&mcdi->iface_lock);
700 rc = mcdi->resprc;
701 if (raw_rc)
702 *raw_rc = mcdi->resprc_raw;
703 hdr_len = mcdi->resp_hdr_len;
704 data_len = mcdi->resp_data_len;
705 err_len = min(sizeof(errbuf), data_len);
706 spin_unlock_bh(&mcdi->iface_lock);
708 BUG_ON(rc > 0);
710 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
711 min(outlen, data_len));
712 if (outlen_actual)
713 *outlen_actual = data_len;
715 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
717 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
718 /* Don't reset if MC_CMD_REBOOT returns EIO */
719 } else if (rc == -EIO || rc == -EINTR) {
720 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
721 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
722 cmd, -rc);
723 if (efx->type->mcdi_reboot_detected)
724 efx->type->mcdi_reboot_detected(efx);
725 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
726 } else if (proxy_handle && (rc == -EPROTO) &&
727 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
728 proxy_handle)) {
729 mcdi->proxy_rx_status = 0;
730 mcdi->proxy_rx_handle = 0;
731 mcdi->state = MCDI_STATE_PROXY_WAIT;
732 } else if (rc && !quiet) {
733 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
734 rc);
737 if (rc == -EIO || rc == -EINTR) {
738 msleep(MCDI_STATUS_SLEEP_MS);
739 efx_mcdi_poll_reboot(efx);
740 mcdi->new_epoch = true;
744 if (!proxy_handle || !*proxy_handle)
745 efx_mcdi_release(mcdi);
746 return rc;
749 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
751 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
752 /* Interrupt the proxy wait. */
753 mcdi->proxy_rx_status = -EINTR;
754 wake_up(&mcdi->proxy_rx_wq);
758 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
759 u32 handle, int status)
761 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
763 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
765 mcdi->proxy_rx_status = efx_mcdi_errno(status);
766 /* Ensure the status is written before we update the handle, since the
767 * latter is used to check if we've finished.
769 wmb();
770 mcdi->proxy_rx_handle = handle;
771 wake_up(&mcdi->proxy_rx_wq);
774 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
776 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
777 int rc;
779 /* Wait for a proxy event, or timeout. */
780 rc = wait_event_timeout(mcdi->proxy_rx_wq,
781 mcdi->proxy_rx_handle != 0 ||
782 mcdi->proxy_rx_status == -EINTR,
783 MCDI_RPC_TIMEOUT);
785 if (rc <= 0) {
786 netif_dbg(efx, hw, efx->net_dev,
787 "MCDI proxy timeout %d\n", handle);
788 return -ETIMEDOUT;
789 } else if (mcdi->proxy_rx_handle != handle) {
790 netif_warn(efx, hw, efx->net_dev,
791 "MCDI proxy unexpected handle %d (expected %d)\n",
792 mcdi->proxy_rx_handle, handle);
793 return -EINVAL;
796 return mcdi->proxy_rx_status;
799 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
800 const efx_dword_t *inbuf, size_t inlen,
801 efx_dword_t *outbuf, size_t outlen,
802 size_t *outlen_actual, bool quiet, int *raw_rc)
804 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
805 int rc;
807 if (inbuf && inlen && (inbuf == outbuf)) {
808 /* The input buffer can't be aliased with the output. */
809 WARN_ON(1);
810 return -EINVAL;
813 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
814 if (rc)
815 return rc;
817 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
818 outlen_actual, quiet, &proxy_handle, raw_rc);
820 if (proxy_handle) {
821 /* Handle proxy authorisation. This allows approval of MCDI
822 * operations to be delegated to the admin function, allowing
823 * fine control over (eg) multicast subscriptions.
825 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
827 netif_dbg(efx, hw, efx->net_dev,
828 "MCDI waiting for proxy auth %d\n",
829 proxy_handle);
830 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
832 if (rc == 0) {
833 netif_dbg(efx, hw, efx->net_dev,
834 "MCDI proxy retry %d\n", proxy_handle);
836 /* We now retry the original request. */
837 mcdi->state = MCDI_STATE_RUNNING_SYNC;
838 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
840 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
841 outbuf, outlen, outlen_actual,
842 quiet, NULL, raw_rc);
843 } else {
844 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
845 "MC command 0x%x failed after proxy auth rc=%d\n",
846 cmd, rc);
848 if (rc == -EINTR || rc == -EIO)
849 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
850 efx_mcdi_release(mcdi);
854 return rc;
857 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
858 const efx_dword_t *inbuf, size_t inlen,
859 efx_dword_t *outbuf, size_t outlen,
860 size_t *outlen_actual, bool quiet)
862 int raw_rc = 0;
863 int rc;
865 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
866 outbuf, outlen, outlen_actual, true, &raw_rc);
868 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
869 efx->type->is_vf) {
870 /* If the EVB port isn't available within a VF this may
871 * mean the PF is still bringing the switch up. We should
872 * retry our request shortly.
874 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
875 unsigned int delay_us = 10000;
877 netif_dbg(efx, hw, efx->net_dev,
878 "%s: NO_EVB_PORT; will retry request\n",
879 __func__);
881 do {
882 usleep_range(delay_us, delay_us + 10000);
883 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
884 outbuf, outlen, outlen_actual,
885 true, &raw_rc);
886 if (delay_us < 100000)
887 delay_us <<= 1;
888 } while ((rc == -EPROTO) &&
889 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
890 time_before(jiffies, abort_time));
893 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
894 efx_mcdi_display_error(efx, cmd, inlen,
895 outbuf, outlen, rc);
897 return rc;
901 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
902 * @efx: NIC through which to issue the command
903 * @cmd: Command type number
904 * @inbuf: Command parameters
905 * @inlen: Length of command parameters, in bytes. Must be a multiple
906 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
907 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
908 * @outlen: Length of response buffer, in bytes. If the actual
909 * response is longer than @outlen & ~3, it will be truncated
910 * to that length.
911 * @outlen_actual: Pointer through which to return the actual response
912 * length. May be %NULL if this is not needed.
914 * This function may sleep and therefore must be called in an appropriate
915 * context.
917 * Return: A negative error code, or zero if successful. The error
918 * code may come from the MCDI response or may indicate a failure
919 * to communicate with the MC. In the former case, the response
920 * will still be copied to @outbuf and *@outlen_actual will be
921 * set accordingly. In the latter case, *@outlen_actual will be
922 * set to zero.
924 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
925 const efx_dword_t *inbuf, size_t inlen,
926 efx_dword_t *outbuf, size_t outlen,
927 size_t *outlen_actual)
929 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
930 outlen_actual, false);
933 /* Normally, on receiving an error code in the MCDI response,
934 * efx_mcdi_rpc will log an error message containing (among other
935 * things) the raw error code, by means of efx_mcdi_display_error.
936 * This _quiet version suppresses that; if the caller wishes to log
937 * the error conditionally on the return code, it should call this
938 * function and is then responsible for calling efx_mcdi_display_error
939 * as needed.
941 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
942 const efx_dword_t *inbuf, size_t inlen,
943 efx_dword_t *outbuf, size_t outlen,
944 size_t *outlen_actual)
946 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
947 outlen_actual, true);
950 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
951 const efx_dword_t *inbuf, size_t inlen)
953 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
954 int rc;
956 rc = efx_mcdi_check_supported(efx, cmd, inlen);
957 if (rc)
958 return rc;
960 if (efx->mc_bist_for_other_fn)
961 return -ENETDOWN;
963 if (mcdi->mode == MCDI_MODE_FAIL)
964 return -ENETDOWN;
966 efx_mcdi_acquire_sync(mcdi);
967 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
968 return 0;
971 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
972 const efx_dword_t *inbuf, size_t inlen,
973 size_t outlen,
974 efx_mcdi_async_completer *complete,
975 unsigned long cookie, bool quiet)
977 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
978 struct efx_mcdi_async_param *async;
979 int rc;
981 rc = efx_mcdi_check_supported(efx, cmd, inlen);
982 if (rc)
983 return rc;
985 if (efx->mc_bist_for_other_fn)
986 return -ENETDOWN;
988 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
989 GFP_ATOMIC);
990 if (!async)
991 return -ENOMEM;
993 async->cmd = cmd;
994 async->inlen = inlen;
995 async->outlen = outlen;
996 async->quiet = quiet;
997 async->complete = complete;
998 async->cookie = cookie;
999 memcpy(async + 1, inbuf, inlen);
1001 spin_lock_bh(&mcdi->async_lock);
1003 if (mcdi->mode == MCDI_MODE_EVENTS) {
1004 list_add_tail(&async->list, &mcdi->async_list);
1006 /* If this is at the front of the queue, try to start it
1007 * immediately
1009 if (mcdi->async_list.next == &async->list &&
1010 efx_mcdi_acquire_async(mcdi)) {
1011 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1012 mod_timer(&mcdi->async_timer,
1013 jiffies + MCDI_RPC_TIMEOUT);
1015 } else {
1016 kfree(async);
1017 rc = -ENETDOWN;
1020 spin_unlock_bh(&mcdi->async_lock);
1022 return rc;
1026 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1027 * @efx: NIC through which to issue the command
1028 * @cmd: Command type number
1029 * @inbuf: Command parameters
1030 * @inlen: Length of command parameters, in bytes
1031 * @outlen: Length to allocate for response buffer, in bytes
1032 * @complete: Function to be called on completion or cancellation.
1033 * @cookie: Arbitrary value to be passed to @complete.
1035 * This function does not sleep and therefore may be called in atomic
1036 * context. It will fail if event queues are disabled or if MCDI
1037 * event completions have been disabled due to an error.
1039 * If it succeeds, the @complete function will be called exactly once
1040 * in atomic context, when one of the following occurs:
1041 * (a) the completion event is received (in NAPI context)
1042 * (b) event queues are disabled (in the process that disables them)
1043 * (c) the request times-out (in timer context)
1046 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1047 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1048 efx_mcdi_async_completer *complete, unsigned long cookie)
1050 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1051 cookie, false);
1054 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1055 efx_dword_t *outbuf, size_t outlen,
1056 size_t *outlen_actual)
1058 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1059 outlen_actual, false, NULL, NULL);
1062 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1063 size_t inlen, efx_dword_t *outbuf,
1064 size_t outlen, int rc)
1066 int code = 0, err_arg = 0;
1068 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1069 code = MCDI_DWORD(outbuf, ERR_CODE);
1070 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1071 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1072 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1073 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1074 cmd, inlen, rc, code, err_arg);
1077 /* Switch to polled MCDI completions. This can be called in various
1078 * error conditions with various locks held, so it must be lockless.
1079 * Caller is responsible for flushing asynchronous requests later.
1081 void efx_mcdi_mode_poll(struct efx_nic *efx)
1083 struct efx_mcdi_iface *mcdi;
1085 if (!efx->mcdi)
1086 return;
1088 mcdi = efx_mcdi(efx);
1089 /* If already in polling mode, nothing to do.
1090 * If in fail-fast state, don't switch to polled completion.
1091 * FLR recovery will do that later.
1093 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1094 return;
1096 /* We can switch from event completion to polled completion, because
1097 * mcdi requests are always completed in shared memory. We do this by
1098 * switching the mode to POLL'd then completing the request.
1099 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1101 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1102 * which efx_mcdi_complete_sync() provides for us.
1104 mcdi->mode = MCDI_MODE_POLL;
1106 efx_mcdi_complete_sync(mcdi);
1109 /* Flush any running or queued asynchronous requests, after event processing
1110 * is stopped
1112 void efx_mcdi_flush_async(struct efx_nic *efx)
1114 struct efx_mcdi_async_param *async, *next;
1115 struct efx_mcdi_iface *mcdi;
1117 if (!efx->mcdi)
1118 return;
1120 mcdi = efx_mcdi(efx);
1122 /* We must be in poll or fail mode so no more requests can be queued */
1123 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1125 del_timer_sync(&mcdi->async_timer);
1127 /* If a request is still running, make sure we give the MC
1128 * time to complete it so that the response won't overwrite our
1129 * next request.
1131 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1132 efx_mcdi_poll(efx);
1133 mcdi->state = MCDI_STATE_QUIESCENT;
1136 /* Nothing else will access the async list now, so it is safe
1137 * to walk it without holding async_lock. If we hold it while
1138 * calling a completer then lockdep may warn that we have
1139 * acquired locks in the wrong order.
1141 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1142 if (async->complete)
1143 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1144 list_del(&async->list);
1145 kfree(async);
1149 void efx_mcdi_mode_event(struct efx_nic *efx)
1151 struct efx_mcdi_iface *mcdi;
1153 if (!efx->mcdi)
1154 return;
1156 mcdi = efx_mcdi(efx);
1157 /* If already in event completion mode, nothing to do.
1158 * If in fail-fast state, don't switch to event completion. FLR
1159 * recovery will do that later.
1161 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1162 return;
1164 /* We can't switch from polled to event completion in the middle of a
1165 * request, because the completion method is specified in the request.
1166 * So acquire the interface to serialise the requestors. We don't need
1167 * to acquire the iface_lock to change the mode here, but we do need a
1168 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1169 * efx_mcdi_acquire() provides.
1171 efx_mcdi_acquire_sync(mcdi);
1172 mcdi->mode = MCDI_MODE_EVENTS;
1173 efx_mcdi_release(mcdi);
1176 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1178 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1180 /* If there is an outstanding MCDI request, it has been terminated
1181 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1182 * in polled mode, then do nothing because the MC reboot handler will
1183 * set the header correctly. However, if the mcdi interface is waiting
1184 * for a CMDDONE event it won't receive it [and since all MCDI events
1185 * are sent to the same queue, we can't be racing with
1186 * efx_mcdi_ev_cpl()]
1188 * If there is an outstanding asynchronous request, we can't
1189 * complete it now (efx_mcdi_complete() would deadlock). The
1190 * reset process will take care of this.
1192 * There's a race here with efx_mcdi_send_request(), because
1193 * we might receive a REBOOT event *before* the request has
1194 * been copied out. In polled mode (during startup) this is
1195 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1196 * event mode, this condition is just an edge-case of
1197 * receiving a REBOOT event after posting the MCDI
1198 * request. Did the mc reboot before or after the copyout? The
1199 * best we can do always is just return failure.
1201 * If there is an outstanding proxy response expected it is not going
1202 * to arrive. We should thus abort it.
1204 spin_lock(&mcdi->iface_lock);
1205 efx_mcdi_proxy_abort(mcdi);
1207 if (efx_mcdi_complete_sync(mcdi)) {
1208 if (mcdi->mode == MCDI_MODE_EVENTS) {
1209 mcdi->resprc = rc;
1210 mcdi->resp_hdr_len = 0;
1211 mcdi->resp_data_len = 0;
1212 ++mcdi->credits;
1214 } else {
1215 int count;
1217 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1218 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1219 rc = efx_mcdi_poll_reboot(efx);
1220 if (rc)
1221 break;
1222 udelay(MCDI_STATUS_DELAY_US);
1225 /* On EF10, a CODE_MC_REBOOT event can be received without the
1226 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1227 * If zero was returned from the final call to
1228 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1229 * MC has definitely rebooted so prepare for the reset.
1231 if (!rc && efx->type->mcdi_reboot_detected)
1232 efx->type->mcdi_reboot_detected(efx);
1234 mcdi->new_epoch = true;
1236 /* Nobody was waiting for an MCDI request, so trigger a reset */
1237 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1240 spin_unlock(&mcdi->iface_lock);
1243 /* The MC is going down in to BIST mode. set the BIST flag to block
1244 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
1245 * (which doesn't actually execute a reset, it waits for the controlling
1246 * function to reset it).
1248 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1250 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1252 spin_lock(&mcdi->iface_lock);
1253 efx->mc_bist_for_other_fn = true;
1254 efx_mcdi_proxy_abort(mcdi);
1256 if (efx_mcdi_complete_sync(mcdi)) {
1257 if (mcdi->mode == MCDI_MODE_EVENTS) {
1258 mcdi->resprc = -EIO;
1259 mcdi->resp_hdr_len = 0;
1260 mcdi->resp_data_len = 0;
1261 ++mcdi->credits;
1264 mcdi->new_epoch = true;
1265 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1266 spin_unlock(&mcdi->iface_lock);
1269 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1270 * to recover.
1272 static void efx_mcdi_abandon(struct efx_nic *efx)
1274 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1276 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1277 return; /* it had already been done */
1278 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1279 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1282 static void efx_handle_drain_event(struct efx_nic *efx)
1284 if (atomic_dec_and_test(&efx->active_queues))
1285 wake_up(&efx->flush_wq);
1287 WARN_ON(atomic_read(&efx->active_queues) < 0);
1290 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1291 void efx_mcdi_process_event(struct efx_channel *channel,
1292 efx_qword_t *event)
1294 struct efx_nic *efx = channel->efx;
1295 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1296 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1298 switch (code) {
1299 case MCDI_EVENT_CODE_BADSSERT:
1300 netif_err(efx, hw, efx->net_dev,
1301 "MC watchdog or assertion failure at 0x%x\n", data);
1302 efx_mcdi_ev_death(efx, -EINTR);
1303 break;
1305 case MCDI_EVENT_CODE_PMNOTICE:
1306 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1307 break;
1309 case MCDI_EVENT_CODE_CMDDONE:
1310 efx_mcdi_ev_cpl(efx,
1311 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1312 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1313 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1314 break;
1316 case MCDI_EVENT_CODE_LINKCHANGE:
1317 efx_mcdi_process_link_change(efx, event);
1318 break;
1319 case MCDI_EVENT_CODE_SENSOREVT:
1320 efx_sensor_event(efx, event);
1321 break;
1322 case MCDI_EVENT_CODE_SCHEDERR:
1323 netif_dbg(efx, hw, efx->net_dev,
1324 "MC Scheduler alert (0x%x)\n", data);
1325 break;
1326 case MCDI_EVENT_CODE_REBOOT:
1327 case MCDI_EVENT_CODE_MC_REBOOT:
1328 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1329 efx_mcdi_ev_death(efx, -EIO);
1330 break;
1331 case MCDI_EVENT_CODE_MC_BIST:
1332 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1333 efx_mcdi_ev_bist(efx);
1334 break;
1335 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1336 /* MAC stats are gather lazily. We can ignore this. */
1337 break;
1338 case MCDI_EVENT_CODE_PTP_FAULT:
1339 case MCDI_EVENT_CODE_PTP_PPS:
1340 efx_ptp_event(efx, event);
1341 break;
1342 case MCDI_EVENT_CODE_PTP_TIME:
1343 efx_time_sync_event(channel, event);
1344 break;
1345 case MCDI_EVENT_CODE_TX_FLUSH:
1346 case MCDI_EVENT_CODE_RX_FLUSH:
1347 /* Two flush events will be sent: one to the same event
1348 * queue as completions, and one to event queue 0.
1349 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1350 * flag will be set, and we should ignore the event
1351 * because we want to wait for all completions.
1353 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1354 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1355 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1356 efx_handle_drain_event(efx);
1357 break;
1358 case MCDI_EVENT_CODE_TX_ERR:
1359 case MCDI_EVENT_CODE_RX_ERR:
1360 netif_err(efx, hw, efx->net_dev,
1361 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1362 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1363 EFX_QWORD_VAL(*event));
1364 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1365 break;
1366 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1367 efx_mcdi_ev_proxy_response(efx,
1368 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1369 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1370 break;
1371 default:
1372 netif_err(efx, hw, efx->net_dev,
1373 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1374 EFX_QWORD_VAL(*event));
1378 /**************************************************************************
1380 * Specific request functions
1382 **************************************************************************
1385 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1387 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1388 size_t outlength;
1389 const __le16 *ver_words;
1390 size_t offset;
1391 int rc;
1393 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1394 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1395 outbuf, sizeof(outbuf), &outlength);
1396 if (rc)
1397 goto fail;
1398 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1399 rc = -EIO;
1400 goto fail;
1403 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1404 offset = scnprintf(buf, len, "%u.%u.%u.%u",
1405 le16_to_cpu(ver_words[0]),
1406 le16_to_cpu(ver_words[1]),
1407 le16_to_cpu(ver_words[2]),
1408 le16_to_cpu(ver_words[3]));
1410 if (efx->type->print_additional_fwver)
1411 offset += efx->type->print_additional_fwver(efx, buf + offset,
1412 len - offset);
1414 /* It's theoretically possible for the string to exceed 31
1415 * characters, though in practice the first three version
1416 * components are short enough that this doesn't happen.
1418 if (WARN_ON(offset >= len))
1419 buf[0] = 0;
1421 return;
1423 fail:
1424 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1425 buf[0] = 0;
1428 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1429 bool *was_attached)
1431 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1432 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1433 size_t outlen;
1434 int rc;
1436 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1437 driver_operating ? 1 : 0);
1438 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1439 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1441 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1442 outbuf, sizeof(outbuf), &outlen);
1443 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1444 * specified will fail with EPERM, and we have to tell the MC we don't
1445 * care what firmware we get.
1447 if (rc == -EPERM) {
1448 pci_dbg(efx->pci_dev,
1449 "%s with fw-variant setting failed EPERM, trying without it\n",
1450 __func__);
1451 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1452 MC_CMD_FW_DONT_CARE);
1453 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1454 sizeof(inbuf), outbuf, sizeof(outbuf),
1455 &outlen);
1457 if (rc) {
1458 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1459 outbuf, outlen, rc);
1460 goto fail;
1462 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1463 rc = -EIO;
1464 goto fail;
1467 if (driver_operating) {
1468 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1469 efx->mcdi->fn_flags =
1470 MCDI_DWORD(outbuf,
1471 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1472 } else {
1473 /* Synthesise flags for Siena */
1474 efx->mcdi->fn_flags =
1475 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1476 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1477 (efx_port_num(efx) == 0) <<
1478 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1482 /* We currently assume we have control of the external link
1483 * and are completely trusted by firmware. Abort probing
1484 * if that's not true for this function.
1487 if (was_attached != NULL)
1488 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1489 return 0;
1491 fail:
1492 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1493 return rc;
1496 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1497 u16 *fw_subtype_list, u32 *capabilities)
1499 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1500 size_t outlen, i;
1501 int port_num = efx_port_num(efx);
1502 int rc;
1504 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1505 /* we need __aligned(2) for ether_addr_copy */
1506 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1507 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1509 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1510 outbuf, sizeof(outbuf), &outlen);
1511 if (rc)
1512 goto fail;
1514 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1515 rc = -EIO;
1516 goto fail;
1519 if (mac_address)
1520 ether_addr_copy(mac_address,
1521 port_num ?
1522 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1523 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1524 if (fw_subtype_list) {
1525 for (i = 0;
1526 i < MCDI_VAR_ARRAY_LEN(outlen,
1527 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1528 i++)
1529 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1530 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1531 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1532 fw_subtype_list[i] = 0;
1534 if (capabilities) {
1535 if (port_num)
1536 *capabilities = MCDI_DWORD(outbuf,
1537 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1538 else
1539 *capabilities = MCDI_DWORD(outbuf,
1540 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1543 return 0;
1545 fail:
1546 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1547 __func__, rc, (int)outlen);
1549 return rc;
1552 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1554 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1555 u32 dest = 0;
1556 int rc;
1558 if (uart)
1559 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1560 if (evq)
1561 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1563 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1564 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1566 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1568 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1569 NULL, 0, NULL);
1570 return rc;
1573 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1575 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1576 size_t outlen;
1577 int rc;
1579 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1581 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1582 outbuf, sizeof(outbuf), &outlen);
1583 if (rc)
1584 goto fail;
1585 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1586 rc = -EIO;
1587 goto fail;
1590 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1591 return 0;
1593 fail:
1594 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1595 __func__, rc);
1596 return rc;
1599 /* This function finds types using the new NVRAM_PARTITIONS mcdi. */
1600 static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number,
1601 u32 *nvram_types)
1603 efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1604 GFP_KERNEL);
1605 size_t outlen;
1606 int rc;
1608 if (!outbuf)
1609 return -ENOMEM;
1611 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
1613 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
1614 outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen);
1615 if (rc)
1616 goto fail;
1618 *number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
1620 memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID),
1621 *number * sizeof(u32));
1623 fail:
1624 kfree(outbuf);
1625 return rc;
1628 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1629 size_t *size_out, size_t *erase_size_out,
1630 bool *protected_out)
1632 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1633 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1634 size_t outlen;
1635 int rc;
1637 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1639 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1640 outbuf, sizeof(outbuf), &outlen);
1641 if (rc)
1642 goto fail;
1643 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1644 rc = -EIO;
1645 goto fail;
1648 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1649 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1650 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1651 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1652 return 0;
1654 fail:
1655 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1656 return rc;
1659 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1661 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1662 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1663 int rc;
1665 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1667 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1668 outbuf, sizeof(outbuf), NULL);
1669 if (rc)
1670 return rc;
1672 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1673 case MC_CMD_NVRAM_TEST_PASS:
1674 case MC_CMD_NVRAM_TEST_NOTSUPP:
1675 return 0;
1676 default:
1677 return -EIO;
1681 /* This function tests nvram partitions using the new mcdi partition lookup scheme */
1682 int efx_new_mcdi_nvram_test_all(struct efx_nic *efx)
1684 u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1685 GFP_KERNEL);
1686 unsigned int number;
1687 int rc, i;
1689 if (!nvram_types)
1690 return -ENOMEM;
1692 rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types);
1693 if (rc)
1694 goto fail;
1696 /* Require at least one check */
1697 rc = -EAGAIN;
1699 for (i = 0; i < number; i++) {
1700 if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP ||
1701 nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG)
1702 continue;
1704 rc = efx_mcdi_nvram_test(efx, nvram_types[i]);
1705 if (rc)
1706 goto fail;
1709 fail:
1710 kfree(nvram_types);
1711 return rc;
1714 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1716 u32 nvram_types;
1717 unsigned int type;
1718 int rc;
1720 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1721 if (rc)
1722 goto fail1;
1724 type = 0;
1725 while (nvram_types != 0) {
1726 if (nvram_types & 1) {
1727 rc = efx_mcdi_nvram_test(efx, type);
1728 if (rc)
1729 goto fail2;
1731 type++;
1732 nvram_types >>= 1;
1735 return 0;
1737 fail2:
1738 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1739 __func__, type);
1740 fail1:
1741 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1742 return rc;
1745 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1746 * negative on error.
1748 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1750 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1751 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1752 unsigned int flags, index;
1753 const char *reason;
1754 size_t outlen;
1755 int retry;
1756 int rc;
1758 /* Attempt to read any stored assertion state before we reboot
1759 * the mcfw out of the assertion handler. Retry twice, once
1760 * because a boot-time assertion might cause this command to fail
1761 * with EINTR. And once again because GET_ASSERTS can race with
1762 * MC_CMD_REBOOT running on the other port. */
1763 retry = 2;
1764 do {
1765 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1766 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1767 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1768 outbuf, sizeof(outbuf), &outlen);
1769 if (rc == -EPERM)
1770 return 0;
1771 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1773 if (rc) {
1774 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1775 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1776 outlen, rc);
1777 return rc;
1779 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1780 return -EIO;
1782 /* Print out any recorded assertion state */
1783 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1784 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1785 return 0;
1787 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1788 ? "system-level assertion"
1789 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1790 ? "thread-level assertion"
1791 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1792 ? "watchdog reset"
1793 : "unknown assertion";
1794 netif_err(efx, hw, efx->net_dev,
1795 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1796 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1797 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1799 /* Print out the registers */
1800 for (index = 0;
1801 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1802 index++)
1803 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1804 1 + index,
1805 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1806 index));
1808 return 1;
1811 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1813 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1814 int rc;
1816 /* If the MC is running debug firmware, it might now be
1817 * waiting for a debugger to attach, but we just want it to
1818 * reboot. We set a flag that makes the command a no-op if it
1819 * has already done so.
1820 * The MCDI will thus return either 0 or -EIO.
1822 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1823 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1824 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1825 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1826 NULL, 0, NULL);
1827 if (rc == -EIO)
1828 rc = 0;
1829 if (rc)
1830 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1831 NULL, 0, rc);
1832 return rc;
1835 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1837 int rc;
1839 rc = efx_mcdi_read_assertion(efx);
1840 if (rc <= 0)
1841 return rc;
1843 return efx_mcdi_exit_assertion(efx);
1846 int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1848 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1850 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1851 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1852 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1854 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1856 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1858 return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL);
1861 static int efx_mcdi_reset_func(struct efx_nic *efx)
1863 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1864 int rc;
1866 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1867 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1868 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1869 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1870 NULL, 0, NULL);
1871 return rc;
1874 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1876 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1877 int rc;
1879 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1880 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1881 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1882 NULL, 0, NULL);
1883 /* White is black, and up is down */
1884 if (rc == -EIO)
1885 return 0;
1886 if (rc == 0)
1887 rc = -EIO;
1888 return rc;
1891 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1893 return RESET_TYPE_RECOVER_OR_ALL;
1896 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1898 int rc;
1900 /* If MCDI is down, we can't handle_assertion */
1901 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1902 rc = pci_reset_function(efx->pci_dev);
1903 if (rc)
1904 return rc;
1905 /* Re-enable polled MCDI completion */
1906 if (efx->mcdi) {
1907 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1908 mcdi->mode = MCDI_MODE_POLL;
1910 return 0;
1913 /* Recover from a failed assertion pre-reset */
1914 rc = efx_mcdi_handle_assertion(efx);
1915 if (rc)
1916 return rc;
1918 if (method == RESET_TYPE_DATAPATH)
1919 return 0;
1920 else if (method == RESET_TYPE_WORLD)
1921 return efx_mcdi_reset_mc(efx);
1922 else
1923 return efx_mcdi_reset_func(efx);
1926 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1927 const u8 *mac, int *id_out)
1929 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1930 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1931 size_t outlen;
1932 int rc;
1934 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1935 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1936 MC_CMD_FILTER_MODE_SIMPLE);
1937 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1939 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1940 outbuf, sizeof(outbuf), &outlen);
1941 if (rc)
1942 goto fail;
1944 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1945 rc = -EIO;
1946 goto fail;
1949 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1951 return 0;
1953 fail:
1954 *id_out = -1;
1955 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1956 return rc;
1962 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1964 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1968 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1970 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1971 int rc;
1973 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1975 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1976 NULL, 0, NULL);
1977 return rc;
1980 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1982 int rc;
1984 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1985 return rc;
1988 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
1989 unsigned int *flags)
1991 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1992 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
1993 size_t outlen;
1994 int rc;
1996 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1997 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1998 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1999 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2000 outbuf, sizeof(outbuf), &outlen);
2001 if (rc)
2002 return rc;
2004 if (!flags)
2005 return 0;
2007 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2008 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2009 else
2010 *flags = 0;
2012 return 0;
2015 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2016 unsigned int *enabled_out)
2018 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2019 size_t outlen;
2020 int rc;
2022 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2023 outbuf, sizeof(outbuf), &outlen);
2024 if (rc)
2025 goto fail;
2027 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2028 rc = -EIO;
2029 goto fail;
2032 if (impl_out)
2033 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2035 if (enabled_out)
2036 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2038 return 0;
2040 fail:
2041 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2042 * terrifying. The call site will have to deal with it though.
2044 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2045 "%s: failed rc=%d\n", __func__, rc);
2046 return rc;
2049 /* Failure to read a privilege mask is never fatal, because we can always
2050 * carry on as though we didn't have the privilege we were interested in.
2051 * So use efx_mcdi_rpc_quiet().
2053 int efx_mcdi_get_privilege_mask(struct efx_nic *efx, u32 *mask)
2055 MCDI_DECLARE_BUF(fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
2056 MCDI_DECLARE_BUF(pm_inbuf, MC_CMD_PRIVILEGE_MASK_IN_LEN);
2057 MCDI_DECLARE_BUF(pm_outbuf, MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2058 size_t outlen;
2059 u16 pf, vf;
2060 int rc;
2062 if (!efx || !mask)
2063 return -EINVAL;
2065 /* Get our function number */
2066 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0,
2067 fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN,
2068 &outlen);
2069 if (rc != 0)
2070 return rc;
2071 if (outlen < MC_CMD_GET_FUNCTION_INFO_OUT_LEN)
2072 return -EIO;
2074 pf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_PF);
2075 vf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_VF);
2077 MCDI_POPULATE_DWORD_2(pm_inbuf, PRIVILEGE_MASK_IN_FUNCTION,
2078 PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2079 PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2081 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PRIVILEGE_MASK,
2082 pm_inbuf, sizeof(pm_inbuf),
2083 pm_outbuf, sizeof(pm_outbuf), &outlen);
2085 if (rc != 0)
2086 return rc;
2087 if (outlen < MC_CMD_PRIVILEGE_MASK_OUT_LEN)
2088 return -EIO;
2090 *mask = MCDI_DWORD(pm_outbuf, PRIVILEGE_MASK_OUT_OLD_MASK);
2092 return 0;
2095 int efx_mcdi_nvram_metadata(struct efx_nic *efx, unsigned int type,
2096 u32 *subtype, u16 version[4], char *desc,
2097 size_t descsize)
2099 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
2100 efx_dword_t *outbuf;
2101 size_t outlen;
2102 u32 flags;
2103 int rc;
2105 outbuf = kzalloc(MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2, GFP_KERNEL);
2106 if (!outbuf)
2107 return -ENOMEM;
2109 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
2111 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_NVRAM_METADATA, inbuf,
2112 sizeof(inbuf), outbuf,
2113 MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2,
2114 &outlen);
2115 if (rc)
2116 goto out_free;
2117 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) {
2118 rc = -EIO;
2119 goto out_free;
2122 flags = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS);
2124 if (desc && descsize > 0) {
2125 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_VALID_LBN)) {
2126 if (descsize <=
2127 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen)) {
2128 rc = -E2BIG;
2129 goto out_free;
2132 strscpy(desc,
2133 MCDI_PTR(outbuf, NVRAM_METADATA_OUT_DESCRIPTION),
2134 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen));
2135 } else {
2136 desc[0] = '\0';
2140 if (subtype) {
2141 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
2142 *subtype = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_SUBTYPE);
2143 else
2144 *subtype = 0;
2147 if (version) {
2148 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_VERSION_VALID_LBN)) {
2149 version[0] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_W);
2150 version[1] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_X);
2151 version[2] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Y);
2152 version[3] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Z);
2153 } else {
2154 version[0] = 0;
2155 version[1] = 0;
2156 version[2] = 0;
2157 version[3] = 0;
2161 out_free:
2162 kfree(outbuf);
2163 return rc;
2166 #ifdef CONFIG_SFC_MTD
2168 #define EFX_MCDI_NVRAM_LEN_MAX 128
2170 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2172 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2173 int rc;
2175 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2176 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2177 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2180 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2182 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2183 NULL, 0, NULL);
2185 return rc;
2188 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2189 loff_t offset, u8 *buffer, size_t length)
2191 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2192 MCDI_DECLARE_BUF(outbuf,
2193 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2194 size_t outlen;
2195 int rc;
2197 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2198 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2199 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2200 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2201 MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2203 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2204 outbuf, sizeof(outbuf), &outlen);
2205 if (rc)
2206 return rc;
2208 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2209 return 0;
2212 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2213 loff_t offset, const u8 *buffer, size_t length)
2215 MCDI_DECLARE_BUF(inbuf,
2216 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2217 int rc;
2219 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2220 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2221 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2222 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2224 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2226 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2227 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2228 NULL, 0, NULL);
2229 return rc;
2232 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2233 loff_t offset, size_t length)
2235 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2236 int rc;
2238 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2239 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2240 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2242 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2244 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2245 NULL, 0, NULL);
2246 return rc;
2249 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2251 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2252 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2253 size_t outlen;
2254 int rc, rc2;
2256 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2257 /* Always set this flag. Old firmware ignores it */
2258 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2259 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2262 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2263 outbuf, sizeof(outbuf), &outlen);
2264 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2265 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2266 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2267 netif_err(efx, drv, efx->net_dev,
2268 "NVRAM update failed verification with code 0x%x\n",
2269 rc2);
2270 switch (rc2) {
2271 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2272 break;
2273 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2274 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2275 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2276 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2277 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2278 rc = -EIO;
2279 break;
2280 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2281 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2282 rc = -EINVAL;
2283 break;
2284 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2285 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2286 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2287 rc = -EPERM;
2288 break;
2289 default:
2290 netif_err(efx, drv, efx->net_dev,
2291 "Unknown response to NVRAM_UPDATE_FINISH\n");
2292 rc = -EIO;
2296 return rc;
2299 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2300 size_t len, size_t *retlen, u8 *buffer)
2302 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2303 struct efx_nic *efx = mtd->priv;
2304 loff_t offset = start;
2305 loff_t end = min_t(loff_t, start + len, mtd->size);
2306 size_t chunk;
2307 int rc = 0;
2309 while (offset < end) {
2310 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2311 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2312 buffer, chunk);
2313 if (rc)
2314 goto out;
2315 offset += chunk;
2316 buffer += chunk;
2318 out:
2319 *retlen = offset - start;
2320 return rc;
2323 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2325 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2326 struct efx_nic *efx = mtd->priv;
2327 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2328 loff_t end = min_t(loff_t, start + len, mtd->size);
2329 size_t chunk = part->common.mtd.erasesize;
2330 int rc = 0;
2332 if (!part->updating) {
2333 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2334 if (rc)
2335 goto out;
2336 part->updating = true;
2339 /* The MCDI interface can in fact do multiple erase blocks at once;
2340 * but erasing may be slow, so we make multiple calls here to avoid
2341 * tripping the MCDI RPC timeout. */
2342 while (offset < end) {
2343 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2344 chunk);
2345 if (rc)
2346 goto out;
2347 offset += chunk;
2349 out:
2350 return rc;
2353 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2354 size_t len, size_t *retlen, const u8 *buffer)
2356 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2357 struct efx_nic *efx = mtd->priv;
2358 loff_t offset = start;
2359 loff_t end = min_t(loff_t, start + len, mtd->size);
2360 size_t chunk;
2361 int rc = 0;
2363 if (!part->updating) {
2364 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2365 if (rc)
2366 goto out;
2367 part->updating = true;
2370 while (offset < end) {
2371 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2372 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2373 buffer, chunk);
2374 if (rc)
2375 goto out;
2376 offset += chunk;
2377 buffer += chunk;
2379 out:
2380 *retlen = offset - start;
2381 return rc;
2384 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2386 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2387 struct efx_nic *efx = mtd->priv;
2388 int rc = 0;
2390 if (part->updating) {
2391 part->updating = false;
2392 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2395 return rc;
2398 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2400 struct efx_mcdi_mtd_partition *mcdi_part =
2401 container_of(part, struct efx_mcdi_mtd_partition, common);
2402 struct efx_nic *efx = part->mtd.priv;
2404 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2405 efx->name, part->type_name, mcdi_part->fw_subtype);
2408 #endif /* CONFIG_SFC_MTD */