1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
13 #include "mcdi_pcol.h"
15 /**************************************************************************
17 * Management-Controller-to-Driver Interface
19 **************************************************************************
22 #define MCDI_RPC_TIMEOUT (10 * HZ)
24 /* A reboot/assertion causes the MCDI status word to be set after the
25 * command word is set or a REBOOT event is sent. If we notice a reboot
26 * via these mechanisms then wait 250ms for the status word to be set.
28 #define MCDI_STATUS_DELAY_US 100
29 #define MCDI_STATUS_DELAY_COUNT 2500
30 #define MCDI_STATUS_SLEEP_MS \
31 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
34 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
36 struct efx_mcdi_async_param
{
37 struct list_head list
;
42 efx_mcdi_async_completer
*complete
;
44 /* followed by request/response buffer */
47 static void efx_mcdi_timeout_async(struct timer_list
*t
);
48 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
49 bool *was_attached_out
);
50 static bool efx_mcdi_poll_once(struct efx_nic
*efx
);
51 static void efx_mcdi_abandon(struct efx_nic
*efx
);
53 #ifdef CONFIG_SFC_MCDI_LOGGING
54 static bool mcdi_logging_default
;
55 module_param(mcdi_logging_default
, bool, 0644);
56 MODULE_PARM_DESC(mcdi_logging_default
,
57 "Enable MCDI logging on newly-probed functions");
60 int efx_mcdi_init(struct efx_nic
*efx
)
62 struct efx_mcdi_iface
*mcdi
;
63 bool already_attached
;
66 efx
->mcdi
= kzalloc(sizeof(*efx
->mcdi
), GFP_KERNEL
);
72 #ifdef CONFIG_SFC_MCDI_LOGGING
73 /* consuming code assumes buffer is page-sized */
74 mcdi
->logging_buffer
= (char *)__get_free_page(GFP_KERNEL
);
75 if (!mcdi
->logging_buffer
)
77 mcdi
->logging_enabled
= mcdi_logging_default
;
79 init_waitqueue_head(&mcdi
->wq
);
80 init_waitqueue_head(&mcdi
->proxy_rx_wq
);
81 spin_lock_init(&mcdi
->iface_lock
);
82 mcdi
->state
= MCDI_STATE_QUIESCENT
;
83 mcdi
->mode
= MCDI_MODE_POLL
;
84 spin_lock_init(&mcdi
->async_lock
);
85 INIT_LIST_HEAD(&mcdi
->async_list
);
86 timer_setup(&mcdi
->async_timer
, efx_mcdi_timeout_async
, 0);
88 (void) efx_mcdi_poll_reboot(efx
);
89 mcdi
->new_epoch
= true;
91 /* Recover from a failed assertion before probing */
92 rc
= efx_mcdi_handle_assertion(efx
);
96 /* Let the MC (and BMC, if this is a LOM) know that the driver
97 * is loaded. We should do this before we reset the NIC.
99 rc
= efx_mcdi_drv_attach(efx
, true, &already_attached
);
101 pci_err(efx
->pci_dev
, "Unable to register driver with MCPU\n");
104 if (already_attached
)
105 /* Not a fatal error */
106 pci_err(efx
->pci_dev
, "Host already registered with MCPU\n");
108 if (efx
->mcdi
->fn_flags
&
109 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
114 #ifdef CONFIG_SFC_MCDI_LOGGING
115 free_page((unsigned long)mcdi
->logging_buffer
);
124 void efx_mcdi_detach(struct efx_nic
*efx
)
129 BUG_ON(efx
->mcdi
->iface
.state
!= MCDI_STATE_QUIESCENT
);
131 /* Relinquish the device (back to the BMC, if this is a LOM) */
132 efx_mcdi_drv_attach(efx
, false, NULL
);
135 void efx_mcdi_fini(struct efx_nic
*efx
)
140 #ifdef CONFIG_SFC_MCDI_LOGGING
141 free_page((unsigned long)efx
->mcdi
->iface
.logging_buffer
);
147 static void efx_mcdi_send_request(struct efx_nic
*efx
, unsigned cmd
,
148 const efx_dword_t
*inbuf
, size_t inlen
)
150 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
151 #ifdef CONFIG_SFC_MCDI_LOGGING
152 char *buf
= mcdi
->logging_buffer
; /* page-sized */
158 BUG_ON(mcdi
->state
== MCDI_STATE_QUIESCENT
);
160 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
161 spin_lock_bh(&mcdi
->iface_lock
);
163 seqno
= mcdi
->seqno
& SEQ_MASK
;
164 spin_unlock_bh(&mcdi
->iface_lock
);
167 if (mcdi
->mode
== MCDI_MODE_EVENTS
)
168 xflags
|= MCDI_HEADER_XFLAGS_EVREQ
;
170 if (efx
->type
->mcdi_max_ver
== 1) {
172 EFX_POPULATE_DWORD_7(hdr
[0],
173 MCDI_HEADER_RESPONSE
, 0,
174 MCDI_HEADER_RESYNC
, 1,
175 MCDI_HEADER_CODE
, cmd
,
176 MCDI_HEADER_DATALEN
, inlen
,
177 MCDI_HEADER_SEQ
, seqno
,
178 MCDI_HEADER_XFLAGS
, xflags
,
179 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
183 BUG_ON(inlen
> MCDI_CTL_SDU_LEN_MAX_V2
);
184 EFX_POPULATE_DWORD_7(hdr
[0],
185 MCDI_HEADER_RESPONSE
, 0,
186 MCDI_HEADER_RESYNC
, 1,
187 MCDI_HEADER_CODE
, MC_CMD_V2_EXTN
,
188 MCDI_HEADER_DATALEN
, 0,
189 MCDI_HEADER_SEQ
, seqno
,
190 MCDI_HEADER_XFLAGS
, xflags
,
191 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
192 EFX_POPULATE_DWORD_2(hdr
[1],
193 MC_CMD_V2_EXTN_IN_EXTENDED_CMD
, cmd
,
194 MC_CMD_V2_EXTN_IN_ACTUAL_LEN
, inlen
);
198 #ifdef CONFIG_SFC_MCDI_LOGGING
199 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
202 /* Lengths should always be a whole number of dwords, so scream
205 WARN_ON_ONCE(hdr_len
% 4);
206 WARN_ON_ONCE(inlen
% 4);
208 /* We own the logging buffer, as only one MCDI can be in
209 * progress on a NIC at any one time. So no need for locking.
211 for (i
= 0; i
< hdr_len
/ 4 && bytes
< PAGE_SIZE
; i
++)
212 bytes
+= scnprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
214 le32_to_cpu(hdr
[i
].u32
[0]));
216 for (i
= 0; i
< inlen
/ 4 && bytes
< PAGE_SIZE
; i
++)
217 bytes
+= scnprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
219 le32_to_cpu(inbuf
[i
].u32
[0]));
221 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC REQ:%s\n", buf
);
225 efx
->type
->mcdi_request(efx
, hdr
, hdr_len
, inbuf
, inlen
);
227 mcdi
->new_epoch
= false;
230 static int efx_mcdi_errno(unsigned int mcdi_err
)
235 #define TRANSLATE_ERROR(name) \
236 case MC_CMD_ERR_ ## name: \
238 TRANSLATE_ERROR(EPERM
);
239 TRANSLATE_ERROR(ENOENT
);
240 TRANSLATE_ERROR(EINTR
);
241 TRANSLATE_ERROR(EAGAIN
);
242 TRANSLATE_ERROR(EACCES
);
243 TRANSLATE_ERROR(EBUSY
);
244 TRANSLATE_ERROR(EINVAL
);
245 TRANSLATE_ERROR(EDEADLK
);
246 TRANSLATE_ERROR(ENOSYS
);
247 TRANSLATE_ERROR(ETIME
);
248 TRANSLATE_ERROR(EALREADY
);
249 TRANSLATE_ERROR(ENOSPC
);
250 #undef TRANSLATE_ERROR
251 case MC_CMD_ERR_ENOTSUP
:
253 case MC_CMD_ERR_ALLOC_FAIL
:
255 case MC_CMD_ERR_MAC_EXIST
:
262 static void efx_mcdi_read_response_header(struct efx_nic
*efx
)
264 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
265 unsigned int respseq
, respcmd
, error
;
266 #ifdef CONFIG_SFC_MCDI_LOGGING
267 char *buf
= mcdi
->logging_buffer
; /* page-sized */
271 efx
->type
->mcdi_read_response(efx
, &hdr
, 0, 4);
272 respseq
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_SEQ
);
273 respcmd
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_CODE
);
274 error
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_ERROR
);
276 if (respcmd
!= MC_CMD_V2_EXTN
) {
277 mcdi
->resp_hdr_len
= 4;
278 mcdi
->resp_data_len
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_DATALEN
);
280 efx
->type
->mcdi_read_response(efx
, &hdr
, 4, 4);
281 mcdi
->resp_hdr_len
= 8;
282 mcdi
->resp_data_len
=
283 EFX_DWORD_FIELD(hdr
, MC_CMD_V2_EXTN_IN_ACTUAL_LEN
);
286 #ifdef CONFIG_SFC_MCDI_LOGGING
287 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
288 size_t hdr_len
, data_len
;
292 WARN_ON_ONCE(mcdi
->resp_hdr_len
% 4);
293 hdr_len
= mcdi
->resp_hdr_len
/ 4;
294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 * to dword size, and the MCDI buffer is always dword size
297 data_len
= DIV_ROUND_UP(mcdi
->resp_data_len
, 4);
299 /* We own the logging buffer, as only one MCDI can be in
300 * progress on a NIC at any one time. So no need for locking.
302 for (i
= 0; i
< hdr_len
&& bytes
< PAGE_SIZE
; i
++) {
303 efx
->type
->mcdi_read_response(efx
, &hdr
, (i
* 4), 4);
304 bytes
+= scnprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
305 " %08x", le32_to_cpu(hdr
.u32
[0]));
308 for (i
= 0; i
< data_len
&& bytes
< PAGE_SIZE
; i
++) {
309 efx
->type
->mcdi_read_response(efx
, &hdr
,
310 mcdi
->resp_hdr_len
+ (i
* 4), 4);
311 bytes
+= scnprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
312 " %08x", le32_to_cpu(hdr
.u32
[0]));
315 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC RESP:%s\n", buf
);
319 mcdi
->resprc_raw
= 0;
320 if (error
&& mcdi
->resp_data_len
== 0) {
321 netif_err(efx
, hw
, efx
->net_dev
, "MC rebooted\n");
323 } else if ((respseq
^ mcdi
->seqno
) & SEQ_MASK
) {
324 netif_err(efx
, hw
, efx
->net_dev
,
325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 respseq
, mcdi
->seqno
);
329 efx
->type
->mcdi_read_response(efx
, &hdr
, mcdi
->resp_hdr_len
, 4);
330 mcdi
->resprc_raw
= EFX_DWORD_FIELD(hdr
, EFX_DWORD_0
);
331 mcdi
->resprc
= efx_mcdi_errno(mcdi
->resprc_raw
);
337 static bool efx_mcdi_poll_once(struct efx_nic
*efx
)
339 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
342 if (!efx
->type
->mcdi_poll_response(efx
))
345 spin_lock_bh(&mcdi
->iface_lock
);
346 efx_mcdi_read_response_header(efx
);
347 spin_unlock_bh(&mcdi
->iface_lock
);
352 static int efx_mcdi_poll(struct efx_nic
*efx
)
354 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
355 unsigned long time
, finish
;
359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 rc
= efx_mcdi_poll_reboot(efx
);
362 spin_lock_bh(&mcdi
->iface_lock
);
364 mcdi
->resp_hdr_len
= 0;
365 mcdi
->resp_data_len
= 0;
366 spin_unlock_bh(&mcdi
->iface_lock
);
370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 * because generally mcdi responses are fast. After that, back off
372 * and poll once a jiffy (approximately)
374 spins
= USER_TICK_USEC
;
375 finish
= jiffies
+ MCDI_RPC_TIMEOUT
;
382 schedule_timeout_uninterruptible(1);
387 if (efx_mcdi_poll_once(efx
))
390 if (time_after(time
, finish
))
394 /* Return rc=0 like wait_event_timeout() */
398 /* Test and clear MC-rebooted flag for this port/function; reset
399 * software state as necessary.
401 int efx_mcdi_poll_reboot(struct efx_nic
*efx
)
406 return efx
->type
->mcdi_poll_reboot(efx
);
409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface
*mcdi
)
411 return cmpxchg(&mcdi
->state
,
412 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_ASYNC
) ==
413 MCDI_STATE_QUIESCENT
;
416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface
*mcdi
)
418 /* Wait until the interface becomes QUIESCENT and we win the race
419 * to mark it RUNNING_SYNC.
422 cmpxchg(&mcdi
->state
,
423 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_SYNC
) ==
424 MCDI_STATE_QUIESCENT
);
427 static int efx_mcdi_await_completion(struct efx_nic
*efx
)
429 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
431 if (wait_event_timeout(mcdi
->wq
, mcdi
->state
== MCDI_STATE_COMPLETED
,
432 MCDI_RPC_TIMEOUT
) == 0)
435 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 * completed the request first, then we'll just end up completing the
438 * request again, which is safe.
440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 * wait_event_timeout() implicitly provides.
443 if (mcdi
->mode
== MCDI_MODE_POLL
)
444 return efx_mcdi_poll(efx
);
449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450 * requester. Return whether this was done. Does not take any locks.
452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface
*mcdi
)
454 if (cmpxchg(&mcdi
->state
,
455 MCDI_STATE_RUNNING_SYNC
, MCDI_STATE_COMPLETED
) ==
456 MCDI_STATE_RUNNING_SYNC
) {
464 static void efx_mcdi_release(struct efx_mcdi_iface
*mcdi
)
466 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
467 struct efx_mcdi_async_param
*async
;
468 struct efx_nic
*efx
= mcdi
->efx
;
470 /* Process the asynchronous request queue */
471 spin_lock_bh(&mcdi
->async_lock
);
472 async
= list_first_entry_or_null(
473 &mcdi
->async_list
, struct efx_mcdi_async_param
, list
);
475 mcdi
->state
= MCDI_STATE_RUNNING_ASYNC
;
476 efx_mcdi_send_request(efx
, async
->cmd
,
477 (const efx_dword_t
*)(async
+ 1),
479 mod_timer(&mcdi
->async_timer
,
480 jiffies
+ MCDI_RPC_TIMEOUT
);
482 spin_unlock_bh(&mcdi
->async_lock
);
488 mcdi
->state
= MCDI_STATE_QUIESCENT
;
492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493 * asynchronous completion function, and release the interface.
494 * Return whether this was done. Must be called in bh-disabled
495 * context. Will take iface_lock and async_lock.
497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface
*mcdi
, bool timeout
)
499 struct efx_nic
*efx
= mcdi
->efx
;
500 struct efx_mcdi_async_param
*async
;
501 size_t hdr_len
, data_len
, err_len
;
503 MCDI_DECLARE_BUF_ERR(errbuf
);
506 if (cmpxchg(&mcdi
->state
,
507 MCDI_STATE_RUNNING_ASYNC
, MCDI_STATE_COMPLETED
) !=
508 MCDI_STATE_RUNNING_ASYNC
)
511 spin_lock(&mcdi
->iface_lock
);
513 /* Ensure that if the completion event arrives later,
514 * the seqno check in efx_mcdi_ev_cpl() will fail
523 hdr_len
= mcdi
->resp_hdr_len
;
524 data_len
= mcdi
->resp_data_len
;
526 spin_unlock(&mcdi
->iface_lock
);
528 /* Stop the timer. In case the timer function is running, we
529 * must wait for it to return so that there is no possibility
530 * of it aborting the next request.
533 del_timer_sync(&mcdi
->async_timer
);
535 spin_lock(&mcdi
->async_lock
);
536 async
= list_first_entry(&mcdi
->async_list
,
537 struct efx_mcdi_async_param
, list
);
538 list_del(&async
->list
);
539 spin_unlock(&mcdi
->async_lock
);
541 outbuf
= (efx_dword_t
*)(async
+ 1);
542 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
543 min(async
->outlen
, data_len
));
544 if (!timeout
&& rc
&& !async
->quiet
) {
545 err_len
= min(sizeof(errbuf
), data_len
);
546 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
,
548 efx_mcdi_display_error(efx
, async
->cmd
, async
->inlen
, errbuf
,
553 async
->complete(efx
, async
->cookie
, rc
, outbuf
,
554 min(async
->outlen
, data_len
));
557 efx_mcdi_release(mcdi
);
562 static void efx_mcdi_ev_cpl(struct efx_nic
*efx
, unsigned int seqno
,
563 unsigned int datalen
, unsigned int mcdi_err
)
565 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
568 spin_lock(&mcdi
->iface_lock
);
570 if ((seqno
^ mcdi
->seqno
) & SEQ_MASK
) {
572 /* The request has been cancelled */
575 netif_err(efx
, hw
, efx
->net_dev
,
576 "MC response mismatch tx seq 0x%x rx "
577 "seq 0x%x\n", seqno
, mcdi
->seqno
);
579 if (efx
->type
->mcdi_max_ver
>= 2) {
580 /* MCDI v2 responses don't fit in an event */
581 efx_mcdi_read_response_header(efx
);
583 mcdi
->resprc
= efx_mcdi_errno(mcdi_err
);
584 mcdi
->resp_hdr_len
= 4;
585 mcdi
->resp_data_len
= datalen
;
591 spin_unlock(&mcdi
->iface_lock
);
594 if (!efx_mcdi_complete_async(mcdi
, false))
595 (void) efx_mcdi_complete_sync(mcdi
);
597 /* If the interface isn't RUNNING_ASYNC or
598 * RUNNING_SYNC then we've received a duplicate
599 * completion after we've already transitioned back to
600 * QUIESCENT. [A subsequent invocation would increment
601 * seqno, so would have failed the seqno check].
606 static void efx_mcdi_timeout_async(struct timer_list
*t
)
608 struct efx_mcdi_iface
*mcdi
= from_timer(mcdi
, t
, async_timer
);
610 efx_mcdi_complete_async(mcdi
, true);
614 efx_mcdi_check_supported(struct efx_nic
*efx
, unsigned int cmd
, size_t inlen
)
616 if (efx
->type
->mcdi_max_ver
< 0 ||
617 (efx
->type
->mcdi_max_ver
< 2 &&
618 cmd
> MC_CMD_CMD_SPACE_ESCAPE_7
))
621 if (inlen
> MCDI_CTL_SDU_LEN_MAX_V2
||
622 (efx
->type
->mcdi_max_ver
< 2 &&
623 inlen
> MCDI_CTL_SDU_LEN_MAX_V1
))
629 static bool efx_mcdi_get_proxy_handle(struct efx_nic
*efx
,
630 size_t hdr_len
, size_t data_len
,
633 MCDI_DECLARE_BUF_ERR(testbuf
);
634 const size_t buflen
= sizeof(testbuf
);
636 if (!proxy_handle
|| data_len
< buflen
)
639 efx
->type
->mcdi_read_response(efx
, testbuf
, hdr_len
, buflen
);
640 if (MCDI_DWORD(testbuf
, ERR_CODE
) == MC_CMD_ERR_PROXY_PENDING
) {
641 *proxy_handle
= MCDI_DWORD(testbuf
, ERR_PROXY_PENDING_HANDLE
);
648 static int _efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned int cmd
,
650 efx_dword_t
*outbuf
, size_t outlen
,
651 size_t *outlen_actual
, bool quiet
,
652 u32
*proxy_handle
, int *raw_rc
)
654 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
655 MCDI_DECLARE_BUF_ERR(errbuf
);
658 if (mcdi
->mode
== MCDI_MODE_POLL
)
659 rc
= efx_mcdi_poll(efx
);
661 rc
= efx_mcdi_await_completion(efx
);
664 netif_err(efx
, hw
, efx
->net_dev
,
665 "MC command 0x%x inlen %d mode %d timed out\n",
666 cmd
, (int)inlen
, mcdi
->mode
);
668 if (mcdi
->mode
== MCDI_MODE_EVENTS
&& efx_mcdi_poll_once(efx
)) {
669 netif_err(efx
, hw
, efx
->net_dev
,
670 "MCDI request was completed without an event\n");
674 efx_mcdi_abandon(efx
);
676 /* Close the race with efx_mcdi_ev_cpl() executing just too late
677 * and completing a request we've just cancelled, by ensuring
678 * that the seqno check therein fails.
680 spin_lock_bh(&mcdi
->iface_lock
);
683 spin_unlock_bh(&mcdi
->iface_lock
);
693 size_t hdr_len
, data_len
, err_len
;
695 /* At the very least we need a memory barrier here to ensure
696 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
697 * a spurious efx_mcdi_ev_cpl() running concurrently by
698 * acquiring the iface_lock. */
699 spin_lock_bh(&mcdi
->iface_lock
);
702 *raw_rc
= mcdi
->resprc_raw
;
703 hdr_len
= mcdi
->resp_hdr_len
;
704 data_len
= mcdi
->resp_data_len
;
705 err_len
= min(sizeof(errbuf
), data_len
);
706 spin_unlock_bh(&mcdi
->iface_lock
);
710 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
711 min(outlen
, data_len
));
713 *outlen_actual
= data_len
;
715 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
, err_len
);
717 if (cmd
== MC_CMD_REBOOT
&& rc
== -EIO
) {
718 /* Don't reset if MC_CMD_REBOOT returns EIO */
719 } else if (rc
== -EIO
|| rc
== -EINTR
) {
720 netif_err(efx
, hw
, efx
->net_dev
, "MC reboot detected\n");
721 netif_dbg(efx
, hw
, efx
->net_dev
, "MC rebooted during command %d rc %d\n",
723 if (efx
->type
->mcdi_reboot_detected
)
724 efx
->type
->mcdi_reboot_detected(efx
);
725 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
726 } else if (proxy_handle
&& (rc
== -EPROTO
) &&
727 efx_mcdi_get_proxy_handle(efx
, hdr_len
, data_len
,
729 mcdi
->proxy_rx_status
= 0;
730 mcdi
->proxy_rx_handle
= 0;
731 mcdi
->state
= MCDI_STATE_PROXY_WAIT
;
732 } else if (rc
&& !quiet
) {
733 efx_mcdi_display_error(efx
, cmd
, inlen
, errbuf
, err_len
,
737 if (rc
== -EIO
|| rc
== -EINTR
) {
738 msleep(MCDI_STATUS_SLEEP_MS
);
739 efx_mcdi_poll_reboot(efx
);
740 mcdi
->new_epoch
= true;
744 if (!proxy_handle
|| !*proxy_handle
)
745 efx_mcdi_release(mcdi
);
749 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface
*mcdi
)
751 if (mcdi
->state
== MCDI_STATE_PROXY_WAIT
) {
752 /* Interrupt the proxy wait. */
753 mcdi
->proxy_rx_status
= -EINTR
;
754 wake_up(&mcdi
->proxy_rx_wq
);
758 static void efx_mcdi_ev_proxy_response(struct efx_nic
*efx
,
759 u32 handle
, int status
)
761 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
763 WARN_ON(mcdi
->state
!= MCDI_STATE_PROXY_WAIT
);
765 mcdi
->proxy_rx_status
= efx_mcdi_errno(status
);
766 /* Ensure the status is written before we update the handle, since the
767 * latter is used to check if we've finished.
770 mcdi
->proxy_rx_handle
= handle
;
771 wake_up(&mcdi
->proxy_rx_wq
);
774 static int efx_mcdi_proxy_wait(struct efx_nic
*efx
, u32 handle
, bool quiet
)
776 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
779 /* Wait for a proxy event, or timeout. */
780 rc
= wait_event_timeout(mcdi
->proxy_rx_wq
,
781 mcdi
->proxy_rx_handle
!= 0 ||
782 mcdi
->proxy_rx_status
== -EINTR
,
786 netif_dbg(efx
, hw
, efx
->net_dev
,
787 "MCDI proxy timeout %d\n", handle
);
789 } else if (mcdi
->proxy_rx_handle
!= handle
) {
790 netif_warn(efx
, hw
, efx
->net_dev
,
791 "MCDI proxy unexpected handle %d (expected %d)\n",
792 mcdi
->proxy_rx_handle
, handle
);
796 return mcdi
->proxy_rx_status
;
799 static int _efx_mcdi_rpc(struct efx_nic
*efx
, unsigned int cmd
,
800 const efx_dword_t
*inbuf
, size_t inlen
,
801 efx_dword_t
*outbuf
, size_t outlen
,
802 size_t *outlen_actual
, bool quiet
, int *raw_rc
)
804 u32 proxy_handle
= 0; /* Zero is an invalid proxy handle. */
807 if (inbuf
&& inlen
&& (inbuf
== outbuf
)) {
808 /* The input buffer can't be aliased with the output. */
813 rc
= efx_mcdi_rpc_start(efx
, cmd
, inbuf
, inlen
);
817 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
818 outlen_actual
, quiet
, &proxy_handle
, raw_rc
);
821 /* Handle proxy authorisation. This allows approval of MCDI
822 * operations to be delegated to the admin function, allowing
823 * fine control over (eg) multicast subscriptions.
825 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
827 netif_dbg(efx
, hw
, efx
->net_dev
,
828 "MCDI waiting for proxy auth %d\n",
830 rc
= efx_mcdi_proxy_wait(efx
, proxy_handle
, quiet
);
833 netif_dbg(efx
, hw
, efx
->net_dev
,
834 "MCDI proxy retry %d\n", proxy_handle
);
836 /* We now retry the original request. */
837 mcdi
->state
= MCDI_STATE_RUNNING_SYNC
;
838 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
840 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
,
841 outbuf
, outlen
, outlen_actual
,
842 quiet
, NULL
, raw_rc
);
844 netif_cond_dbg(efx
, hw
, efx
->net_dev
, rc
== -EPERM
, err
,
845 "MC command 0x%x failed after proxy auth rc=%d\n",
848 if (rc
== -EINTR
|| rc
== -EIO
)
849 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
850 efx_mcdi_release(mcdi
);
857 static int _efx_mcdi_rpc_evb_retry(struct efx_nic
*efx
, unsigned cmd
,
858 const efx_dword_t
*inbuf
, size_t inlen
,
859 efx_dword_t
*outbuf
, size_t outlen
,
860 size_t *outlen_actual
, bool quiet
)
865 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
866 outbuf
, outlen
, outlen_actual
, true, &raw_rc
);
868 if ((rc
== -EPROTO
) && (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
870 /* If the EVB port isn't available within a VF this may
871 * mean the PF is still bringing the switch up. We should
872 * retry our request shortly.
874 unsigned long abort_time
= jiffies
+ MCDI_RPC_TIMEOUT
;
875 unsigned int delay_us
= 10000;
877 netif_dbg(efx
, hw
, efx
->net_dev
,
878 "%s: NO_EVB_PORT; will retry request\n",
882 usleep_range(delay_us
, delay_us
+ 10000);
883 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
884 outbuf
, outlen
, outlen_actual
,
886 if (delay_us
< 100000)
888 } while ((rc
== -EPROTO
) &&
889 (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
890 time_before(jiffies
, abort_time
));
893 if (rc
&& !quiet
&& !(cmd
== MC_CMD_REBOOT
&& rc
== -EIO
))
894 efx_mcdi_display_error(efx
, cmd
, inlen
,
901 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
902 * @efx: NIC through which to issue the command
903 * @cmd: Command type number
904 * @inbuf: Command parameters
905 * @inlen: Length of command parameters, in bytes. Must be a multiple
906 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
907 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
908 * @outlen: Length of response buffer, in bytes. If the actual
909 * response is longer than @outlen & ~3, it will be truncated
911 * @outlen_actual: Pointer through which to return the actual response
912 * length. May be %NULL if this is not needed.
914 * This function may sleep and therefore must be called in an appropriate
917 * Return: A negative error code, or zero if successful. The error
918 * code may come from the MCDI response or may indicate a failure
919 * to communicate with the MC. In the former case, the response
920 * will still be copied to @outbuf and *@outlen_actual will be
921 * set accordingly. In the latter case, *@outlen_actual will be
924 int efx_mcdi_rpc(struct efx_nic
*efx
, unsigned cmd
,
925 const efx_dword_t
*inbuf
, size_t inlen
,
926 efx_dword_t
*outbuf
, size_t outlen
,
927 size_t *outlen_actual
)
929 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
930 outlen_actual
, false);
933 /* Normally, on receiving an error code in the MCDI response,
934 * efx_mcdi_rpc will log an error message containing (among other
935 * things) the raw error code, by means of efx_mcdi_display_error.
936 * This _quiet version suppresses that; if the caller wishes to log
937 * the error conditionally on the return code, it should call this
938 * function and is then responsible for calling efx_mcdi_display_error
941 int efx_mcdi_rpc_quiet(struct efx_nic
*efx
, unsigned cmd
,
942 const efx_dword_t
*inbuf
, size_t inlen
,
943 efx_dword_t
*outbuf
, size_t outlen
,
944 size_t *outlen_actual
)
946 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
947 outlen_actual
, true);
950 int efx_mcdi_rpc_start(struct efx_nic
*efx
, unsigned cmd
,
951 const efx_dword_t
*inbuf
, size_t inlen
)
953 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
956 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
960 if (efx
->mc_bist_for_other_fn
)
963 if (mcdi
->mode
== MCDI_MODE_FAIL
)
966 efx_mcdi_acquire_sync(mcdi
);
967 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
971 static int _efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
972 const efx_dword_t
*inbuf
, size_t inlen
,
974 efx_mcdi_async_completer
*complete
,
975 unsigned long cookie
, bool quiet
)
977 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
978 struct efx_mcdi_async_param
*async
;
981 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
985 if (efx
->mc_bist_for_other_fn
)
988 async
= kmalloc(sizeof(*async
) + ALIGN(max(inlen
, outlen
), 4),
994 async
->inlen
= inlen
;
995 async
->outlen
= outlen
;
996 async
->quiet
= quiet
;
997 async
->complete
= complete
;
998 async
->cookie
= cookie
;
999 memcpy(async
+ 1, inbuf
, inlen
);
1001 spin_lock_bh(&mcdi
->async_lock
);
1003 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1004 list_add_tail(&async
->list
, &mcdi
->async_list
);
1006 /* If this is at the front of the queue, try to start it
1009 if (mcdi
->async_list
.next
== &async
->list
&&
1010 efx_mcdi_acquire_async(mcdi
)) {
1011 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
1012 mod_timer(&mcdi
->async_timer
,
1013 jiffies
+ MCDI_RPC_TIMEOUT
);
1020 spin_unlock_bh(&mcdi
->async_lock
);
1026 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1027 * @efx: NIC through which to issue the command
1028 * @cmd: Command type number
1029 * @inbuf: Command parameters
1030 * @inlen: Length of command parameters, in bytes
1031 * @outlen: Length to allocate for response buffer, in bytes
1032 * @complete: Function to be called on completion or cancellation.
1033 * @cookie: Arbitrary value to be passed to @complete.
1035 * This function does not sleep and therefore may be called in atomic
1036 * context. It will fail if event queues are disabled or if MCDI
1037 * event completions have been disabled due to an error.
1039 * If it succeeds, the @complete function will be called exactly once
1040 * in atomic context, when one of the following occurs:
1041 * (a) the completion event is received (in NAPI context)
1042 * (b) event queues are disabled (in the process that disables them)
1043 * (c) the request times-out (in timer context)
1046 efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
1047 const efx_dword_t
*inbuf
, size_t inlen
, size_t outlen
,
1048 efx_mcdi_async_completer
*complete
, unsigned long cookie
)
1050 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
1054 int efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
1055 efx_dword_t
*outbuf
, size_t outlen
,
1056 size_t *outlen_actual
)
1058 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
1059 outlen_actual
, false, NULL
, NULL
);
1062 void efx_mcdi_display_error(struct efx_nic
*efx
, unsigned cmd
,
1063 size_t inlen
, efx_dword_t
*outbuf
,
1064 size_t outlen
, int rc
)
1066 int code
= 0, err_arg
= 0;
1068 if (outlen
>= MC_CMD_ERR_CODE_OFST
+ 4)
1069 code
= MCDI_DWORD(outbuf
, ERR_CODE
);
1070 if (outlen
>= MC_CMD_ERR_ARG_OFST
+ 4)
1071 err_arg
= MCDI_DWORD(outbuf
, ERR_ARG
);
1072 netif_cond_dbg(efx
, hw
, efx
->net_dev
, rc
== -EPERM
, err
,
1073 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1074 cmd
, inlen
, rc
, code
, err_arg
);
1077 /* Switch to polled MCDI completions. This can be called in various
1078 * error conditions with various locks held, so it must be lockless.
1079 * Caller is responsible for flushing asynchronous requests later.
1081 void efx_mcdi_mode_poll(struct efx_nic
*efx
)
1083 struct efx_mcdi_iface
*mcdi
;
1088 mcdi
= efx_mcdi(efx
);
1089 /* If already in polling mode, nothing to do.
1090 * If in fail-fast state, don't switch to polled completion.
1091 * FLR recovery will do that later.
1093 if (mcdi
->mode
== MCDI_MODE_POLL
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1096 /* We can switch from event completion to polled completion, because
1097 * mcdi requests are always completed in shared memory. We do this by
1098 * switching the mode to POLL'd then completing the request.
1099 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1101 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1102 * which efx_mcdi_complete_sync() provides for us.
1104 mcdi
->mode
= MCDI_MODE_POLL
;
1106 efx_mcdi_complete_sync(mcdi
);
1109 /* Flush any running or queued asynchronous requests, after event processing
1112 void efx_mcdi_flush_async(struct efx_nic
*efx
)
1114 struct efx_mcdi_async_param
*async
, *next
;
1115 struct efx_mcdi_iface
*mcdi
;
1120 mcdi
= efx_mcdi(efx
);
1122 /* We must be in poll or fail mode so no more requests can be queued */
1123 BUG_ON(mcdi
->mode
== MCDI_MODE_EVENTS
);
1125 del_timer_sync(&mcdi
->async_timer
);
1127 /* If a request is still running, make sure we give the MC
1128 * time to complete it so that the response won't overwrite our
1131 if (mcdi
->state
== MCDI_STATE_RUNNING_ASYNC
) {
1133 mcdi
->state
= MCDI_STATE_QUIESCENT
;
1136 /* Nothing else will access the async list now, so it is safe
1137 * to walk it without holding async_lock. If we hold it while
1138 * calling a completer then lockdep may warn that we have
1139 * acquired locks in the wrong order.
1141 list_for_each_entry_safe(async
, next
, &mcdi
->async_list
, list
) {
1142 if (async
->complete
)
1143 async
->complete(efx
, async
->cookie
, -ENETDOWN
, NULL
, 0);
1144 list_del(&async
->list
);
1149 void efx_mcdi_mode_event(struct efx_nic
*efx
)
1151 struct efx_mcdi_iface
*mcdi
;
1156 mcdi
= efx_mcdi(efx
);
1157 /* If already in event completion mode, nothing to do.
1158 * If in fail-fast state, don't switch to event completion. FLR
1159 * recovery will do that later.
1161 if (mcdi
->mode
== MCDI_MODE_EVENTS
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1164 /* We can't switch from polled to event completion in the middle of a
1165 * request, because the completion method is specified in the request.
1166 * So acquire the interface to serialise the requestors. We don't need
1167 * to acquire the iface_lock to change the mode here, but we do need a
1168 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1169 * efx_mcdi_acquire() provides.
1171 efx_mcdi_acquire_sync(mcdi
);
1172 mcdi
->mode
= MCDI_MODE_EVENTS
;
1173 efx_mcdi_release(mcdi
);
1176 static void efx_mcdi_ev_death(struct efx_nic
*efx
, int rc
)
1178 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1180 /* If there is an outstanding MCDI request, it has been terminated
1181 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1182 * in polled mode, then do nothing because the MC reboot handler will
1183 * set the header correctly. However, if the mcdi interface is waiting
1184 * for a CMDDONE event it won't receive it [and since all MCDI events
1185 * are sent to the same queue, we can't be racing with
1186 * efx_mcdi_ev_cpl()]
1188 * If there is an outstanding asynchronous request, we can't
1189 * complete it now (efx_mcdi_complete() would deadlock). The
1190 * reset process will take care of this.
1192 * There's a race here with efx_mcdi_send_request(), because
1193 * we might receive a REBOOT event *before* the request has
1194 * been copied out. In polled mode (during startup) this is
1195 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1196 * event mode, this condition is just an edge-case of
1197 * receiving a REBOOT event after posting the MCDI
1198 * request. Did the mc reboot before or after the copyout? The
1199 * best we can do always is just return failure.
1201 * If there is an outstanding proxy response expected it is not going
1202 * to arrive. We should thus abort it.
1204 spin_lock(&mcdi
->iface_lock
);
1205 efx_mcdi_proxy_abort(mcdi
);
1207 if (efx_mcdi_complete_sync(mcdi
)) {
1208 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1210 mcdi
->resp_hdr_len
= 0;
1211 mcdi
->resp_data_len
= 0;
1217 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1218 for (count
= 0; count
< MCDI_STATUS_DELAY_COUNT
; ++count
) {
1219 rc
= efx_mcdi_poll_reboot(efx
);
1222 udelay(MCDI_STATUS_DELAY_US
);
1225 /* On EF10, a CODE_MC_REBOOT event can be received without the
1226 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1227 * If zero was returned from the final call to
1228 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1229 * MC has definitely rebooted so prepare for the reset.
1231 if (!rc
&& efx
->type
->mcdi_reboot_detected
)
1232 efx
->type
->mcdi_reboot_detected(efx
);
1234 mcdi
->new_epoch
= true;
1236 /* Nobody was waiting for an MCDI request, so trigger a reset */
1237 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
1240 spin_unlock(&mcdi
->iface_lock
);
1243 /* The MC is going down in to BIST mode. set the BIST flag to block
1244 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
1245 * (which doesn't actually execute a reset, it waits for the controlling
1246 * function to reset it).
1248 static void efx_mcdi_ev_bist(struct efx_nic
*efx
)
1250 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1252 spin_lock(&mcdi
->iface_lock
);
1253 efx
->mc_bist_for_other_fn
= true;
1254 efx_mcdi_proxy_abort(mcdi
);
1256 if (efx_mcdi_complete_sync(mcdi
)) {
1257 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1258 mcdi
->resprc
= -EIO
;
1259 mcdi
->resp_hdr_len
= 0;
1260 mcdi
->resp_data_len
= 0;
1264 mcdi
->new_epoch
= true;
1265 efx_schedule_reset(efx
, RESET_TYPE_MC_BIST
);
1266 spin_unlock(&mcdi
->iface_lock
);
1269 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1272 static void efx_mcdi_abandon(struct efx_nic
*efx
)
1274 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1276 if (xchg(&mcdi
->mode
, MCDI_MODE_FAIL
) == MCDI_MODE_FAIL
)
1277 return; /* it had already been done */
1278 netif_dbg(efx
, hw
, efx
->net_dev
, "MCDI is timing out; trying to recover\n");
1279 efx_schedule_reset(efx
, RESET_TYPE_MCDI_TIMEOUT
);
1282 static void efx_handle_drain_event(struct efx_nic
*efx
)
1284 if (atomic_dec_and_test(&efx
->active_queues
))
1285 wake_up(&efx
->flush_wq
);
1287 WARN_ON(atomic_read(&efx
->active_queues
) < 0);
1290 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1291 void efx_mcdi_process_event(struct efx_channel
*channel
,
1294 struct efx_nic
*efx
= channel
->efx
;
1295 int code
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_CODE
);
1296 u32 data
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_DATA
);
1299 case MCDI_EVENT_CODE_BADSSERT
:
1300 netif_err(efx
, hw
, efx
->net_dev
,
1301 "MC watchdog or assertion failure at 0x%x\n", data
);
1302 efx_mcdi_ev_death(efx
, -EINTR
);
1305 case MCDI_EVENT_CODE_PMNOTICE
:
1306 netif_info(efx
, wol
, efx
->net_dev
, "MCDI PM event.\n");
1309 case MCDI_EVENT_CODE_CMDDONE
:
1310 efx_mcdi_ev_cpl(efx
,
1311 MCDI_EVENT_FIELD(*event
, CMDDONE_SEQ
),
1312 MCDI_EVENT_FIELD(*event
, CMDDONE_DATALEN
),
1313 MCDI_EVENT_FIELD(*event
, CMDDONE_ERRNO
));
1316 case MCDI_EVENT_CODE_LINKCHANGE
:
1317 efx_mcdi_process_link_change(efx
, event
);
1319 case MCDI_EVENT_CODE_SENSOREVT
:
1320 efx_sensor_event(efx
, event
);
1322 case MCDI_EVENT_CODE_SCHEDERR
:
1323 netif_dbg(efx
, hw
, efx
->net_dev
,
1324 "MC Scheduler alert (0x%x)\n", data
);
1326 case MCDI_EVENT_CODE_REBOOT
:
1327 case MCDI_EVENT_CODE_MC_REBOOT
:
1328 netif_info(efx
, hw
, efx
->net_dev
, "MC Reboot\n");
1329 efx_mcdi_ev_death(efx
, -EIO
);
1331 case MCDI_EVENT_CODE_MC_BIST
:
1332 netif_info(efx
, hw
, efx
->net_dev
, "MC entered BIST mode\n");
1333 efx_mcdi_ev_bist(efx
);
1335 case MCDI_EVENT_CODE_MAC_STATS_DMA
:
1336 /* MAC stats are gather lazily. We can ignore this. */
1338 case MCDI_EVENT_CODE_PTP_FAULT
:
1339 case MCDI_EVENT_CODE_PTP_PPS
:
1340 efx_ptp_event(efx
, event
);
1342 case MCDI_EVENT_CODE_PTP_TIME
:
1343 efx_time_sync_event(channel
, event
);
1345 case MCDI_EVENT_CODE_TX_FLUSH
:
1346 case MCDI_EVENT_CODE_RX_FLUSH
:
1347 /* Two flush events will be sent: one to the same event
1348 * queue as completions, and one to event queue 0.
1349 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1350 * flag will be set, and we should ignore the event
1351 * because we want to wait for all completions.
1353 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN
!=
1354 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN
);
1355 if (!MCDI_EVENT_FIELD(*event
, TX_FLUSH_TO_DRIVER
))
1356 efx_handle_drain_event(efx
);
1358 case MCDI_EVENT_CODE_TX_ERR
:
1359 case MCDI_EVENT_CODE_RX_ERR
:
1360 netif_err(efx
, hw
, efx
->net_dev
,
1361 "%s DMA error (event: "EFX_QWORD_FMT
")\n",
1362 code
== MCDI_EVENT_CODE_TX_ERR
? "TX" : "RX",
1363 EFX_QWORD_VAL(*event
));
1364 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1366 case MCDI_EVENT_CODE_PROXY_RESPONSE
:
1367 efx_mcdi_ev_proxy_response(efx
,
1368 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_HANDLE
),
1369 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_RC
));
1372 netif_err(efx
, hw
, efx
->net_dev
,
1373 "Unknown MCDI event " EFX_QWORD_FMT
"\n",
1374 EFX_QWORD_VAL(*event
));
1378 /**************************************************************************
1380 * Specific request functions
1382 **************************************************************************
1385 void efx_mcdi_print_fwver(struct efx_nic
*efx
, char *buf
, size_t len
)
1387 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_VERSION_OUT_LEN
);
1389 const __le16
*ver_words
;
1393 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN
!= 0);
1394 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_VERSION
, NULL
, 0,
1395 outbuf
, sizeof(outbuf
), &outlength
);
1398 if (outlength
< MC_CMD_GET_VERSION_OUT_LEN
) {
1403 ver_words
= (__le16
*)MCDI_PTR(outbuf
, GET_VERSION_OUT_VERSION
);
1404 offset
= scnprintf(buf
, len
, "%u.%u.%u.%u",
1405 le16_to_cpu(ver_words
[0]),
1406 le16_to_cpu(ver_words
[1]),
1407 le16_to_cpu(ver_words
[2]),
1408 le16_to_cpu(ver_words
[3]));
1410 if (efx
->type
->print_additional_fwver
)
1411 offset
+= efx
->type
->print_additional_fwver(efx
, buf
+ offset
,
1414 /* It's theoretically possible for the string to exceed 31
1415 * characters, though in practice the first three version
1416 * components are short enough that this doesn't happen.
1418 if (WARN_ON(offset
>= len
))
1424 pci_err(efx
->pci_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1428 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
1431 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRV_ATTACH_IN_LEN
);
1432 MCDI_DECLARE_BUF(outbuf
, MC_CMD_DRV_ATTACH_EXT_OUT_LEN
);
1436 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_NEW_STATE
,
1437 driver_operating
? 1 : 0);
1438 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_UPDATE
, 1);
1439 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
, MC_CMD_FW_LOW_LATENCY
);
1441 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
, sizeof(inbuf
),
1442 outbuf
, sizeof(outbuf
), &outlen
);
1443 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1444 * specified will fail with EPERM, and we have to tell the MC we don't
1445 * care what firmware we get.
1448 pci_dbg(efx
->pci_dev
,
1449 "%s with fw-variant setting failed EPERM, trying without it\n",
1451 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
,
1452 MC_CMD_FW_DONT_CARE
);
1453 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
,
1454 sizeof(inbuf
), outbuf
, sizeof(outbuf
),
1458 efx_mcdi_display_error(efx
, MC_CMD_DRV_ATTACH
, sizeof(inbuf
),
1459 outbuf
, outlen
, rc
);
1462 if (outlen
< MC_CMD_DRV_ATTACH_OUT_LEN
) {
1467 if (driver_operating
) {
1468 if (outlen
>= MC_CMD_DRV_ATTACH_EXT_OUT_LEN
) {
1469 efx
->mcdi
->fn_flags
=
1471 DRV_ATTACH_EXT_OUT_FUNC_FLAGS
);
1473 /* Synthesise flags for Siena */
1474 efx
->mcdi
->fn_flags
=
1475 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
|
1476 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
|
1477 (efx_port_num(efx
) == 0) <<
1478 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
;
1482 /* We currently assume we have control of the external link
1483 * and are completely trusted by firmware. Abort probing
1484 * if that's not true for this function.
1487 if (was_attached
!= NULL
)
1488 *was_attached
= MCDI_DWORD(outbuf
, DRV_ATTACH_OUT_OLD_STATE
);
1492 pci_err(efx
->pci_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1496 int efx_mcdi_get_board_cfg(struct efx_nic
*efx
, u8
*mac_address
,
1497 u16
*fw_subtype_list
, u32
*capabilities
)
1499 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_BOARD_CFG_OUT_LENMAX
);
1501 int port_num
= efx_port_num(efx
);
1504 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN
!= 0);
1505 /* we need __aligned(2) for ether_addr_copy */
1506 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST
& 1);
1507 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
& 1);
1509 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_BOARD_CFG
, NULL
, 0,
1510 outbuf
, sizeof(outbuf
), &outlen
);
1514 if (outlen
< MC_CMD_GET_BOARD_CFG_OUT_LENMIN
) {
1520 ether_addr_copy(mac_address
,
1522 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1
) :
1523 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0
));
1524 if (fw_subtype_list
) {
1526 i
< MCDI_VAR_ARRAY_LEN(outlen
,
1527 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
);
1529 fw_subtype_list
[i
] = MCDI_ARRAY_WORD(
1530 outbuf
, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
, i
);
1531 for (; i
< MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM
; i
++)
1532 fw_subtype_list
[i
] = 0;
1536 *capabilities
= MCDI_DWORD(outbuf
,
1537 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1
);
1539 *capabilities
= MCDI_DWORD(outbuf
,
1540 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0
);
1546 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d len=%d\n",
1547 __func__
, rc
, (int)outlen
);
1552 int efx_mcdi_log_ctrl(struct efx_nic
*efx
, bool evq
, bool uart
, u32 dest_evq
)
1554 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LOG_CTRL_IN_LEN
);
1559 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART
;
1561 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ
;
1563 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST
, dest
);
1564 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST_EVQ
, dest_evq
);
1566 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN
!= 0);
1568 rc
= efx_mcdi_rpc(efx
, MC_CMD_LOG_CTRL
, inbuf
, sizeof(inbuf
),
1573 int efx_mcdi_nvram_types(struct efx_nic
*efx
, u32
*nvram_types_out
)
1575 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TYPES_OUT_LEN
);
1579 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN
!= 0);
1581 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TYPES
, NULL
, 0,
1582 outbuf
, sizeof(outbuf
), &outlen
);
1585 if (outlen
< MC_CMD_NVRAM_TYPES_OUT_LEN
) {
1590 *nvram_types_out
= MCDI_DWORD(outbuf
, NVRAM_TYPES_OUT_TYPES
);
1594 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n",
1599 /* This function finds types using the new NVRAM_PARTITIONS mcdi. */
1600 static int efx_new_mcdi_nvram_types(struct efx_nic
*efx
, u32
*number
,
1603 efx_dword_t
*outbuf
= kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2
,
1611 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN
!= 0);
1613 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_PARTITIONS
, NULL
, 0,
1614 outbuf
, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2
, &outlen
);
1618 *number
= MCDI_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS
);
1620 memcpy(nvram_types
, MCDI_PTR(outbuf
, NVRAM_PARTITIONS_OUT_TYPE_ID
),
1621 *number
* sizeof(u32
));
1628 int efx_mcdi_nvram_info(struct efx_nic
*efx
, unsigned int type
,
1629 size_t *size_out
, size_t *erase_size_out
,
1630 bool *protected_out
)
1632 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_INFO_IN_LEN
);
1633 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_INFO_OUT_LEN
);
1637 MCDI_SET_DWORD(inbuf
, NVRAM_INFO_IN_TYPE
, type
);
1639 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_INFO
, inbuf
, sizeof(inbuf
),
1640 outbuf
, sizeof(outbuf
), &outlen
);
1643 if (outlen
< MC_CMD_NVRAM_INFO_OUT_LEN
) {
1648 *size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_SIZE
);
1649 *erase_size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_ERASESIZE
);
1650 *protected_out
= !!(MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_FLAGS
) &
1651 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN
));
1655 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1659 static int efx_mcdi_nvram_test(struct efx_nic
*efx
, unsigned int type
)
1661 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_TEST_IN_LEN
);
1662 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TEST_OUT_LEN
);
1665 MCDI_SET_DWORD(inbuf
, NVRAM_TEST_IN_TYPE
, type
);
1667 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TEST
, inbuf
, sizeof(inbuf
),
1668 outbuf
, sizeof(outbuf
), NULL
);
1672 switch (MCDI_DWORD(outbuf
, NVRAM_TEST_OUT_RESULT
)) {
1673 case MC_CMD_NVRAM_TEST_PASS
:
1674 case MC_CMD_NVRAM_TEST_NOTSUPP
:
1681 /* This function tests nvram partitions using the new mcdi partition lookup scheme */
1682 int efx_new_mcdi_nvram_test_all(struct efx_nic
*efx
)
1684 u32
*nvram_types
= kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2
,
1686 unsigned int number
;
1692 rc
= efx_new_mcdi_nvram_types(efx
, &number
, nvram_types
);
1696 /* Require at least one check */
1699 for (i
= 0; i
< number
; i
++) {
1700 if (nvram_types
[i
] == NVRAM_PARTITION_TYPE_PARTITION_MAP
||
1701 nvram_types
[i
] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG
)
1704 rc
= efx_mcdi_nvram_test(efx
, nvram_types
[i
]);
1714 int efx_mcdi_nvram_test_all(struct efx_nic
*efx
)
1720 rc
= efx_mcdi_nvram_types(efx
, &nvram_types
);
1725 while (nvram_types
!= 0) {
1726 if (nvram_types
& 1) {
1727 rc
= efx_mcdi_nvram_test(efx
, type
);
1738 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed type=%u\n",
1741 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1745 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1746 * negative on error.
1748 static int efx_mcdi_read_assertion(struct efx_nic
*efx
)
1750 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
);
1751 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_ASSERTS_OUT_LEN
);
1752 unsigned int flags
, index
;
1758 /* Attempt to read any stored assertion state before we reboot
1759 * the mcfw out of the assertion handler. Retry twice, once
1760 * because a boot-time assertion might cause this command to fail
1761 * with EINTR. And once again because GET_ASSERTS can race with
1762 * MC_CMD_REBOOT running on the other port. */
1765 MCDI_SET_DWORD(inbuf
, GET_ASSERTS_IN_CLEAR
, 1);
1766 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_ASSERTS
,
1767 inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
,
1768 outbuf
, sizeof(outbuf
), &outlen
);
1771 } while ((rc
== -EINTR
|| rc
== -EIO
) && retry
-- > 0);
1774 efx_mcdi_display_error(efx
, MC_CMD_GET_ASSERTS
,
1775 MC_CMD_GET_ASSERTS_IN_LEN
, outbuf
,
1779 if (outlen
< MC_CMD_GET_ASSERTS_OUT_LEN
)
1782 /* Print out any recorded assertion state */
1783 flags
= MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_GLOBAL_FLAGS
);
1784 if (flags
== MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS
)
1787 reason
= (flags
== MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL
)
1788 ? "system-level assertion"
1789 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL
)
1790 ? "thread-level assertion"
1791 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED
)
1793 : "unknown assertion";
1794 netif_err(efx
, hw
, efx
->net_dev
,
1795 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason
,
1796 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_SAVED_PC_OFFS
),
1797 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_THREAD_OFFS
));
1799 /* Print out the registers */
1801 index
< MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM
;
1803 netif_err(efx
, hw
, efx
->net_dev
, "R%.2d (?): 0x%.8x\n",
1805 MCDI_ARRAY_DWORD(outbuf
, GET_ASSERTS_OUT_GP_REGS_OFFS
,
1811 static int efx_mcdi_exit_assertion(struct efx_nic
*efx
)
1813 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1816 /* If the MC is running debug firmware, it might now be
1817 * waiting for a debugger to attach, but we just want it to
1818 * reboot. We set a flag that makes the command a no-op if it
1819 * has already done so.
1820 * The MCDI will thus return either 0 or -EIO.
1822 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1823 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
,
1824 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION
);
1825 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_REBOOT
, inbuf
, MC_CMD_REBOOT_IN_LEN
,
1830 efx_mcdi_display_error(efx
, MC_CMD_REBOOT
, MC_CMD_REBOOT_IN_LEN
,
1835 int efx_mcdi_handle_assertion(struct efx_nic
*efx
)
1839 rc
= efx_mcdi_read_assertion(efx
);
1843 return efx_mcdi_exit_assertion(efx
);
1846 int efx_mcdi_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1848 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_ID_LED_IN_LEN
);
1850 BUILD_BUG_ON(EFX_LED_OFF
!= MC_CMD_LED_OFF
);
1851 BUILD_BUG_ON(EFX_LED_ON
!= MC_CMD_LED_ON
);
1852 BUILD_BUG_ON(EFX_LED_DEFAULT
!= MC_CMD_LED_DEFAULT
);
1854 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN
!= 0);
1856 MCDI_SET_DWORD(inbuf
, SET_ID_LED_IN_STATE
, mode
);
1858 return efx_mcdi_rpc(efx
, MC_CMD_SET_ID_LED
, inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
1861 static int efx_mcdi_reset_func(struct efx_nic
*efx
)
1863 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ENTITY_RESET_IN_LEN
);
1866 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN
!= 0);
1867 MCDI_POPULATE_DWORD_1(inbuf
, ENTITY_RESET_IN_FLAG
,
1868 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET
, 1);
1869 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENTITY_RESET
, inbuf
, sizeof(inbuf
),
1874 static int efx_mcdi_reset_mc(struct efx_nic
*efx
)
1876 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1879 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1880 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
, 0);
1881 rc
= efx_mcdi_rpc(efx
, MC_CMD_REBOOT
, inbuf
, sizeof(inbuf
),
1883 /* White is black, and up is down */
1891 enum reset_type
efx_mcdi_map_reset_reason(enum reset_type reason
)
1893 return RESET_TYPE_RECOVER_OR_ALL
;
1896 int efx_mcdi_reset(struct efx_nic
*efx
, enum reset_type method
)
1900 /* If MCDI is down, we can't handle_assertion */
1901 if (method
== RESET_TYPE_MCDI_TIMEOUT
) {
1902 rc
= pci_reset_function(efx
->pci_dev
);
1905 /* Re-enable polled MCDI completion */
1907 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1908 mcdi
->mode
= MCDI_MODE_POLL
;
1913 /* Recover from a failed assertion pre-reset */
1914 rc
= efx_mcdi_handle_assertion(efx
);
1918 if (method
== RESET_TYPE_DATAPATH
)
1920 else if (method
== RESET_TYPE_WORLD
)
1921 return efx_mcdi_reset_mc(efx
);
1923 return efx_mcdi_reset_func(efx
);
1926 static int efx_mcdi_wol_filter_set(struct efx_nic
*efx
, u32 type
,
1927 const u8
*mac
, int *id_out
)
1929 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_SET_IN_LEN
);
1930 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_SET_OUT_LEN
);
1934 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_WOL_TYPE
, type
);
1935 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_FILTER_MODE
,
1936 MC_CMD_FILTER_MODE_SIMPLE
);
1937 ether_addr_copy(MCDI_PTR(inbuf
, WOL_FILTER_SET_IN_MAGIC_MAC
), mac
);
1939 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_SET
, inbuf
, sizeof(inbuf
),
1940 outbuf
, sizeof(outbuf
), &outlen
);
1944 if (outlen
< MC_CMD_WOL_FILTER_SET_OUT_LEN
) {
1949 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_SET_OUT_FILTER_ID
);
1955 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1962 efx_mcdi_wol_filter_set_magic(struct efx_nic
*efx
, const u8
*mac
, int *id_out
)
1964 return efx_mcdi_wol_filter_set(efx
, MC_CMD_WOL_TYPE_MAGIC
, mac
, id_out
);
1968 int efx_mcdi_wol_filter_remove(struct efx_nic
*efx
, int id
)
1970 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_REMOVE_IN_LEN
);
1973 MCDI_SET_DWORD(inbuf
, WOL_FILTER_REMOVE_IN_FILTER_ID
, (u32
)id
);
1975 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_REMOVE
, inbuf
, sizeof(inbuf
),
1980 int efx_mcdi_wol_filter_reset(struct efx_nic
*efx
)
1984 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_RESET
, NULL
, 0, NULL
, 0, NULL
);
1988 int efx_mcdi_set_workaround(struct efx_nic
*efx
, u32 type
, bool enabled
,
1989 unsigned int *flags
)
1991 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WORKAROUND_IN_LEN
);
1992 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WORKAROUND_EXT_OUT_LEN
);
1996 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN
!= 0);
1997 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_TYPE
, type
);
1998 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_ENABLED
, enabled
);
1999 rc
= efx_mcdi_rpc(efx
, MC_CMD_WORKAROUND
, inbuf
, sizeof(inbuf
),
2000 outbuf
, sizeof(outbuf
), &outlen
);
2007 if (outlen
>= MC_CMD_WORKAROUND_EXT_OUT_LEN
)
2008 *flags
= MCDI_DWORD(outbuf
, WORKAROUND_EXT_OUT_FLAGS
);
2015 int efx_mcdi_get_workarounds(struct efx_nic
*efx
, unsigned int *impl_out
,
2016 unsigned int *enabled_out
)
2018 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_WORKAROUNDS_OUT_LEN
);
2022 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_WORKAROUNDS
, NULL
, 0,
2023 outbuf
, sizeof(outbuf
), &outlen
);
2027 if (outlen
< MC_CMD_GET_WORKAROUNDS_OUT_LEN
) {
2033 *impl_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_IMPLEMENTED
);
2036 *enabled_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_ENABLED
);
2041 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2042 * terrifying. The call site will have to deal with it though.
2044 netif_cond_dbg(efx
, hw
, efx
->net_dev
, rc
== -ENOSYS
, err
,
2045 "%s: failed rc=%d\n", __func__
, rc
);
2049 /* Failure to read a privilege mask is never fatal, because we can always
2050 * carry on as though we didn't have the privilege we were interested in.
2051 * So use efx_mcdi_rpc_quiet().
2053 int efx_mcdi_get_privilege_mask(struct efx_nic
*efx
, u32
*mask
)
2055 MCDI_DECLARE_BUF(fi_outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
);
2056 MCDI_DECLARE_BUF(pm_inbuf
, MC_CMD_PRIVILEGE_MASK_IN_LEN
);
2057 MCDI_DECLARE_BUF(pm_outbuf
, MC_CMD_PRIVILEGE_MASK_OUT_LEN
);
2065 /* Get our function number */
2066 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_FUNCTION_INFO
, NULL
, 0,
2067 fi_outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
,
2071 if (outlen
< MC_CMD_GET_FUNCTION_INFO_OUT_LEN
)
2074 pf
= MCDI_DWORD(fi_outbuf
, GET_FUNCTION_INFO_OUT_PF
);
2075 vf
= MCDI_DWORD(fi_outbuf
, GET_FUNCTION_INFO_OUT_VF
);
2077 MCDI_POPULATE_DWORD_2(pm_inbuf
, PRIVILEGE_MASK_IN_FUNCTION
,
2078 PRIVILEGE_MASK_IN_FUNCTION_PF
, pf
,
2079 PRIVILEGE_MASK_IN_FUNCTION_VF
, vf
);
2081 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PRIVILEGE_MASK
,
2082 pm_inbuf
, sizeof(pm_inbuf
),
2083 pm_outbuf
, sizeof(pm_outbuf
), &outlen
);
2087 if (outlen
< MC_CMD_PRIVILEGE_MASK_OUT_LEN
)
2090 *mask
= MCDI_DWORD(pm_outbuf
, PRIVILEGE_MASK_OUT_OLD_MASK
);
2095 int efx_mcdi_nvram_metadata(struct efx_nic
*efx
, unsigned int type
,
2096 u32
*subtype
, u16 version
[4], char *desc
,
2099 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_METADATA_IN_LEN
);
2100 efx_dword_t
*outbuf
;
2105 outbuf
= kzalloc(MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2
, GFP_KERNEL
);
2109 MCDI_SET_DWORD(inbuf
, NVRAM_METADATA_IN_TYPE
, type
);
2111 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_NVRAM_METADATA
, inbuf
,
2112 sizeof(inbuf
), outbuf
,
2113 MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2
,
2117 if (outlen
< MC_CMD_NVRAM_METADATA_OUT_LENMIN
) {
2122 flags
= MCDI_DWORD(outbuf
, NVRAM_METADATA_OUT_FLAGS
);
2124 if (desc
&& descsize
> 0) {
2125 if (flags
& BIT(MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_VALID_LBN
)) {
2127 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen
)) {
2133 MCDI_PTR(outbuf
, NVRAM_METADATA_OUT_DESCRIPTION
),
2134 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen
));
2141 if (flags
& BIT(MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN
))
2142 *subtype
= MCDI_DWORD(outbuf
, NVRAM_METADATA_OUT_SUBTYPE
);
2148 if (flags
& BIT(MC_CMD_NVRAM_METADATA_OUT_VERSION_VALID_LBN
)) {
2149 version
[0] = MCDI_WORD(outbuf
, NVRAM_METADATA_OUT_VERSION_W
);
2150 version
[1] = MCDI_WORD(outbuf
, NVRAM_METADATA_OUT_VERSION_X
);
2151 version
[2] = MCDI_WORD(outbuf
, NVRAM_METADATA_OUT_VERSION_Y
);
2152 version
[3] = MCDI_WORD(outbuf
, NVRAM_METADATA_OUT_VERSION_Z
);
2166 #ifdef CONFIG_SFC_MTD
2168 #define EFX_MCDI_NVRAM_LEN_MAX 128
2170 static int efx_mcdi_nvram_update_start(struct efx_nic
*efx
, unsigned int type
)
2172 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN
);
2175 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_START_IN_TYPE
, type
);
2176 MCDI_POPULATE_DWORD_1(inbuf
, NVRAM_UPDATE_START_V2_IN_FLAGS
,
2177 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT
,
2180 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN
!= 0);
2182 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_START
, inbuf
, sizeof(inbuf
),
2188 static int efx_mcdi_nvram_read(struct efx_nic
*efx
, unsigned int type
,
2189 loff_t offset
, u8
*buffer
, size_t length
)
2191 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_READ_IN_V2_LEN
);
2192 MCDI_DECLARE_BUF(outbuf
,
2193 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2197 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_TYPE
, type
);
2198 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_OFFSET
, offset
);
2199 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_LENGTH
, length
);
2200 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_V2_MODE
,
2201 MC_CMD_NVRAM_READ_IN_V2_DEFAULT
);
2203 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_READ
, inbuf
, sizeof(inbuf
),
2204 outbuf
, sizeof(outbuf
), &outlen
);
2208 memcpy(buffer
, MCDI_PTR(outbuf
, NVRAM_READ_OUT_READ_BUFFER
), length
);
2212 static int efx_mcdi_nvram_write(struct efx_nic
*efx
, unsigned int type
,
2213 loff_t offset
, const u8
*buffer
, size_t length
)
2215 MCDI_DECLARE_BUF(inbuf
,
2216 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2219 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_TYPE
, type
);
2220 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_OFFSET
, offset
);
2221 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_LENGTH
, length
);
2222 memcpy(MCDI_PTR(inbuf
, NVRAM_WRITE_IN_WRITE_BUFFER
), buffer
, length
);
2224 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN
!= 0);
2226 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_WRITE
, inbuf
,
2227 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length
), 4),
2232 static int efx_mcdi_nvram_erase(struct efx_nic
*efx
, unsigned int type
,
2233 loff_t offset
, size_t length
)
2235 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_ERASE_IN_LEN
);
2238 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_TYPE
, type
);
2239 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_OFFSET
, offset
);
2240 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_LENGTH
, length
);
2242 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN
!= 0);
2244 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_ERASE
, inbuf
, sizeof(inbuf
),
2249 static int efx_mcdi_nvram_update_finish(struct efx_nic
*efx
, unsigned int type
)
2251 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN
);
2252 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN
);
2256 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_FINISH_IN_TYPE
, type
);
2257 /* Always set this flag. Old firmware ignores it */
2258 MCDI_POPULATE_DWORD_1(inbuf
, NVRAM_UPDATE_FINISH_V2_IN_FLAGS
,
2259 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT
,
2262 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_FINISH
, inbuf
, sizeof(inbuf
),
2263 outbuf
, sizeof(outbuf
), &outlen
);
2264 if (!rc
&& outlen
>= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN
) {
2265 rc2
= MCDI_DWORD(outbuf
, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE
);
2266 if (rc2
!= MC_CMD_NVRAM_VERIFY_RC_SUCCESS
)
2267 netif_err(efx
, drv
, efx
->net_dev
,
2268 "NVRAM update failed verification with code 0x%x\n",
2271 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS
:
2273 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED
:
2274 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED
:
2275 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED
:
2276 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED
:
2277 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED
:
2280 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT
:
2281 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST
:
2284 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES
:
2285 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS
:
2286 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH
:
2290 netif_err(efx
, drv
, efx
->net_dev
,
2291 "Unknown response to NVRAM_UPDATE_FINISH\n");
2299 int efx_mcdi_mtd_read(struct mtd_info
*mtd
, loff_t start
,
2300 size_t len
, size_t *retlen
, u8
*buffer
)
2302 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2303 struct efx_nic
*efx
= mtd
->priv
;
2304 loff_t offset
= start
;
2305 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2309 while (offset
< end
) {
2310 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2311 rc
= efx_mcdi_nvram_read(efx
, part
->nvram_type
, offset
,
2319 *retlen
= offset
- start
;
2323 int efx_mcdi_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
2325 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2326 struct efx_nic
*efx
= mtd
->priv
;
2327 loff_t offset
= start
& ~((loff_t
)(mtd
->erasesize
- 1));
2328 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2329 size_t chunk
= part
->common
.mtd
.erasesize
;
2332 if (!part
->updating
) {
2333 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2336 part
->updating
= true;
2339 /* The MCDI interface can in fact do multiple erase blocks at once;
2340 * but erasing may be slow, so we make multiple calls here to avoid
2341 * tripping the MCDI RPC timeout. */
2342 while (offset
< end
) {
2343 rc
= efx_mcdi_nvram_erase(efx
, part
->nvram_type
, offset
,
2353 int efx_mcdi_mtd_write(struct mtd_info
*mtd
, loff_t start
,
2354 size_t len
, size_t *retlen
, const u8
*buffer
)
2356 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2357 struct efx_nic
*efx
= mtd
->priv
;
2358 loff_t offset
= start
;
2359 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2363 if (!part
->updating
) {
2364 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2367 part
->updating
= true;
2370 while (offset
< end
) {
2371 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2372 rc
= efx_mcdi_nvram_write(efx
, part
->nvram_type
, offset
,
2380 *retlen
= offset
- start
;
2384 int efx_mcdi_mtd_sync(struct mtd_info
*mtd
)
2386 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2387 struct efx_nic
*efx
= mtd
->priv
;
2390 if (part
->updating
) {
2391 part
->updating
= false;
2392 rc
= efx_mcdi_nvram_update_finish(efx
, part
->nvram_type
);
2398 void efx_mcdi_mtd_rename(struct efx_mtd_partition
*part
)
2400 struct efx_mcdi_mtd_partition
*mcdi_part
=
2401 container_of(part
, struct efx_mcdi_mtd_partition
, common
);
2402 struct efx_nic
*efx
= part
->mtd
.priv
;
2404 snprintf(part
->name
, sizeof(part
->name
), "%s %s:%02x",
2405 efx
->name
, part
->type_name
, mcdi_part
->fw_subtype
);
2408 #endif /* CONFIG_SFC_MTD */