1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include "net_driver.h"
13 #include "nic_common.h"
14 #include "tx_common.h"
17 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue
*tx_queue
)
19 return DIV_ROUND_UP(tx_queue
->ptr_mask
+ 1,
20 PAGE_SIZE
>> EFX_TX_CB_ORDER
);
23 int efx_siena_probe_tx_queue(struct efx_tx_queue
*tx_queue
)
25 struct efx_nic
*efx
= tx_queue
->efx
;
29 /* Create the smallest power-of-two aligned ring */
30 entries
= max(roundup_pow_of_two(efx
->txq_entries
), EFX_MIN_DMAQ_SIZE
);
31 EFX_WARN_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
32 tx_queue
->ptr_mask
= entries
- 1;
34 netif_dbg(efx
, probe
, efx
->net_dev
,
35 "creating TX queue %d size %#x mask %#x\n",
36 tx_queue
->queue
, efx
->txq_entries
, tx_queue
->ptr_mask
);
38 /* Allocate software ring */
39 tx_queue
->buffer
= kcalloc(entries
, sizeof(*tx_queue
->buffer
),
41 if (!tx_queue
->buffer
)
44 tx_queue
->cb_page
= kcalloc(efx_tx_cb_page_count(tx_queue
),
45 sizeof(tx_queue
->cb_page
[0]), GFP_KERNEL
);
46 if (!tx_queue
->cb_page
) {
51 /* Allocate hardware ring, determine TXQ type */
52 rc
= efx_nic_probe_tx(tx_queue
);
56 tx_queue
->channel
->tx_queue_by_type
[tx_queue
->type
] = tx_queue
;
60 kfree(tx_queue
->cb_page
);
61 tx_queue
->cb_page
= NULL
;
63 kfree(tx_queue
->buffer
);
64 tx_queue
->buffer
= NULL
;
68 void efx_siena_init_tx_queue(struct efx_tx_queue
*tx_queue
)
70 struct efx_nic
*efx
= tx_queue
->efx
;
72 netif_dbg(efx
, drv
, efx
->net_dev
,
73 "initialising TX queue %d\n", tx_queue
->queue
);
75 tx_queue
->insert_count
= 0;
76 tx_queue
->notify_count
= 0;
77 tx_queue
->write_count
= 0;
78 tx_queue
->packet_write_count
= 0;
79 tx_queue
->old_write_count
= 0;
80 tx_queue
->read_count
= 0;
81 tx_queue
->old_read_count
= 0;
82 tx_queue
->empty_read_count
= 0 | EFX_EMPTY_COUNT_VALID
;
83 tx_queue
->xmit_pending
= false;
84 tx_queue
->timestamping
= (efx_siena_ptp_use_mac_tx_timestamps(efx
) &&
85 tx_queue
->channel
== efx_siena_ptp_channel(efx
));
86 tx_queue
->completed_timestamp_major
= 0;
87 tx_queue
->completed_timestamp_minor
= 0;
89 tx_queue
->xdp_tx
= efx_channel_is_xdp_tx(tx_queue
->channel
);
90 tx_queue
->tso_version
= 0;
92 /* Set up TX descriptor ring */
93 efx_nic_init_tx(tx_queue
);
95 tx_queue
->initialised
= true;
98 void efx_siena_remove_tx_queue(struct efx_tx_queue
*tx_queue
)
102 if (!tx_queue
->buffer
)
105 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
106 "destroying TX queue %d\n", tx_queue
->queue
);
107 efx_nic_remove_tx(tx_queue
);
109 if (tx_queue
->cb_page
) {
110 for (i
= 0; i
< efx_tx_cb_page_count(tx_queue
); i
++)
111 efx_siena_free_buffer(tx_queue
->efx
,
112 &tx_queue
->cb_page
[i
]);
113 kfree(tx_queue
->cb_page
);
114 tx_queue
->cb_page
= NULL
;
117 kfree(tx_queue
->buffer
);
118 tx_queue
->buffer
= NULL
;
119 tx_queue
->channel
->tx_queue_by_type
[tx_queue
->type
] = NULL
;
122 static void efx_dequeue_buffer(struct efx_tx_queue
*tx_queue
,
123 struct efx_tx_buffer
*buffer
,
124 unsigned int *pkts_compl
,
125 unsigned int *bytes_compl
)
127 if (buffer
->unmap_len
) {
128 struct device
*dma_dev
= &tx_queue
->efx
->pci_dev
->dev
;
129 dma_addr_t unmap_addr
= buffer
->dma_addr
- buffer
->dma_offset
;
131 if (buffer
->flags
& EFX_TX_BUF_MAP_SINGLE
)
132 dma_unmap_single(dma_dev
, unmap_addr
, buffer
->unmap_len
,
135 dma_unmap_page(dma_dev
, unmap_addr
, buffer
->unmap_len
,
137 buffer
->unmap_len
= 0;
140 if (buffer
->flags
& EFX_TX_BUF_SKB
) {
141 struct sk_buff
*skb
= (struct sk_buff
*)buffer
->skb
;
143 EFX_WARN_ON_PARANOID(!pkts_compl
|| !bytes_compl
);
145 (*bytes_compl
) += skb
->len
;
146 if (tx_queue
->timestamping
&&
147 (tx_queue
->completed_timestamp_major
||
148 tx_queue
->completed_timestamp_minor
)) {
149 struct skb_shared_hwtstamps hwtstamp
;
152 efx_siena_ptp_nic_to_kernel_time(tx_queue
);
153 skb_tstamp_tx(skb
, &hwtstamp
);
155 tx_queue
->completed_timestamp_major
= 0;
156 tx_queue
->completed_timestamp_minor
= 0;
158 dev_consume_skb_any((struct sk_buff
*)buffer
->skb
);
159 netif_vdbg(tx_queue
->efx
, tx_done
, tx_queue
->efx
->net_dev
,
160 "TX queue %d transmission id %x complete\n",
161 tx_queue
->queue
, tx_queue
->read_count
);
162 } else if (buffer
->flags
& EFX_TX_BUF_XDP
) {
163 xdp_return_frame_rx_napi(buffer
->xdpf
);
170 void efx_siena_fini_tx_queue(struct efx_tx_queue
*tx_queue
)
172 struct efx_tx_buffer
*buffer
;
174 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
175 "shutting down TX queue %d\n", tx_queue
->queue
);
177 if (!tx_queue
->buffer
)
180 /* Free any buffers left in the ring */
181 while (tx_queue
->read_count
!= tx_queue
->write_count
) {
182 unsigned int pkts_compl
= 0, bytes_compl
= 0;
184 buffer
= &tx_queue
->buffer
[tx_queue
->read_count
& tx_queue
->ptr_mask
];
185 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
187 ++tx_queue
->read_count
;
189 tx_queue
->xmit_pending
= false;
190 netdev_tx_reset_queue(tx_queue
->core_txq
);
193 /* Remove packets from the TX queue
195 * This removes packets from the TX queue, up to and including the
198 static void efx_dequeue_buffers(struct efx_tx_queue
*tx_queue
,
200 unsigned int *pkts_compl
,
201 unsigned int *bytes_compl
)
203 struct efx_nic
*efx
= tx_queue
->efx
;
204 unsigned int stop_index
, read_ptr
;
206 stop_index
= (index
+ 1) & tx_queue
->ptr_mask
;
207 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
209 while (read_ptr
!= stop_index
) {
210 struct efx_tx_buffer
*buffer
= &tx_queue
->buffer
[read_ptr
];
212 if (!efx_tx_buffer_in_use(buffer
)) {
213 netif_err(efx
, tx_err
, efx
->net_dev
,
214 "TX queue %d spurious TX completion id %d\n",
215 tx_queue
->queue
, read_ptr
);
216 efx_siena_schedule_reset(efx
, RESET_TYPE_TX_SKIP
);
220 efx_dequeue_buffer(tx_queue
, buffer
, pkts_compl
, bytes_compl
);
222 ++tx_queue
->read_count
;
223 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
227 void efx_siena_xmit_done_check_empty(struct efx_tx_queue
*tx_queue
)
229 if ((int)(tx_queue
->read_count
- tx_queue
->old_write_count
) >= 0) {
230 tx_queue
->old_write_count
= READ_ONCE(tx_queue
->write_count
);
231 if (tx_queue
->read_count
== tx_queue
->old_write_count
) {
232 /* Ensure that read_count is flushed. */
234 tx_queue
->empty_read_count
=
235 tx_queue
->read_count
| EFX_EMPTY_COUNT_VALID
;
240 void efx_siena_xmit_done(struct efx_tx_queue
*tx_queue
, unsigned int index
)
242 unsigned int fill_level
, pkts_compl
= 0, bytes_compl
= 0;
243 struct efx_nic
*efx
= tx_queue
->efx
;
245 EFX_WARN_ON_ONCE_PARANOID(index
> tx_queue
->ptr_mask
);
247 efx_dequeue_buffers(tx_queue
, index
, &pkts_compl
, &bytes_compl
);
248 tx_queue
->pkts_compl
+= pkts_compl
;
249 tx_queue
->bytes_compl
+= bytes_compl
;
252 ++tx_queue
->merge_events
;
254 /* See if we need to restart the netif queue. This memory
255 * barrier ensures that we write read_count (inside
256 * efx_dequeue_buffers()) before reading the queue status.
259 if (unlikely(netif_tx_queue_stopped(tx_queue
->core_txq
)) &&
260 likely(efx
->port_enabled
) &&
261 likely(netif_device_present(efx
->net_dev
))) {
262 fill_level
= efx_channel_tx_fill_level(tx_queue
->channel
);
263 if (fill_level
<= efx
->txq_wake_thresh
)
264 netif_tx_wake_queue(tx_queue
->core_txq
);
267 efx_siena_xmit_done_check_empty(tx_queue
);
270 /* Remove buffers put into a tx_queue for the current packet.
271 * None of the buffers must have an skb attached.
273 void efx_siena_enqueue_unwind(struct efx_tx_queue
*tx_queue
,
274 unsigned int insert_count
)
276 struct efx_tx_buffer
*buffer
;
277 unsigned int bytes_compl
= 0;
278 unsigned int pkts_compl
= 0;
280 /* Work backwards until we hit the original insert pointer value */
281 while (tx_queue
->insert_count
!= insert_count
) {
282 --tx_queue
->insert_count
;
283 buffer
= __efx_tx_queue_get_insert_buffer(tx_queue
);
284 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
288 struct efx_tx_buffer
*efx_siena_tx_map_chunk(struct efx_tx_queue
*tx_queue
,
289 dma_addr_t dma_addr
, size_t len
)
291 const struct efx_nic_type
*nic_type
= tx_queue
->efx
->type
;
292 struct efx_tx_buffer
*buffer
;
293 unsigned int dma_len
;
295 /* Map the fragment taking account of NIC-dependent DMA limits. */
297 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
299 if (nic_type
->tx_limit_len
)
300 dma_len
= nic_type
->tx_limit_len(tx_queue
, dma_addr
, len
);
304 buffer
->len
= dma_len
;
305 buffer
->dma_addr
= dma_addr
;
306 buffer
->flags
= EFX_TX_BUF_CONT
;
309 ++tx_queue
->insert_count
;
315 static int efx_tx_tso_header_length(struct sk_buff
*skb
)
319 if (skb
->encapsulation
)
320 header_len
= skb_inner_transport_offset(skb
) +
321 (inner_tcp_hdr(skb
)->doff
<< 2u);
323 header_len
= skb_transport_offset(skb
) +
324 (tcp_hdr(skb
)->doff
<< 2u);
328 /* Map all data from an SKB for DMA and create descriptors on the queue. */
329 int efx_siena_tx_map_data(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
,
330 unsigned int segment_count
)
332 struct efx_nic
*efx
= tx_queue
->efx
;
333 struct device
*dma_dev
= &efx
->pci_dev
->dev
;
334 unsigned int frag_index
, nr_frags
;
335 dma_addr_t dma_addr
, unmap_addr
;
336 unsigned short dma_flags
;
337 size_t len
, unmap_len
;
339 nr_frags
= skb_shinfo(skb
)->nr_frags
;
342 /* Map header data. */
343 len
= skb_headlen(skb
);
344 dma_addr
= dma_map_single(dma_dev
, skb
->data
, len
, DMA_TO_DEVICE
);
345 dma_flags
= EFX_TX_BUF_MAP_SINGLE
;
347 unmap_addr
= dma_addr
;
349 if (unlikely(dma_mapping_error(dma_dev
, dma_addr
)))
353 /* For TSO we need to put the header in to a separate
354 * descriptor. Map this separately if necessary.
356 size_t header_len
= efx_tx_tso_header_length(skb
);
358 if (header_len
!= len
) {
359 tx_queue
->tso_long_headers
++;
360 efx_siena_tx_map_chunk(tx_queue
, dma_addr
, header_len
);
362 dma_addr
+= header_len
;
366 /* Add descriptors for each fragment. */
368 struct efx_tx_buffer
*buffer
;
369 skb_frag_t
*fragment
;
371 buffer
= efx_siena_tx_map_chunk(tx_queue
, dma_addr
, len
);
373 /* The final descriptor for a fragment is responsible for
374 * unmapping the whole fragment.
376 buffer
->flags
= EFX_TX_BUF_CONT
| dma_flags
;
377 buffer
->unmap_len
= unmap_len
;
378 buffer
->dma_offset
= buffer
->dma_addr
- unmap_addr
;
380 if (frag_index
>= nr_frags
) {
381 /* Store SKB details with the final buffer for
385 buffer
->flags
= EFX_TX_BUF_SKB
| dma_flags
;
389 /* Move on to the next fragment. */
390 fragment
= &skb_shinfo(skb
)->frags
[frag_index
++];
391 len
= skb_frag_size(fragment
);
392 dma_addr
= skb_frag_dma_map(dma_dev
, fragment
, 0, len
,
396 unmap_addr
= dma_addr
;
398 if (unlikely(dma_mapping_error(dma_dev
, dma_addr
)))
403 unsigned int efx_siena_tx_max_skb_descs(struct efx_nic
*efx
)
405 /* Header and payload descriptor for each output segment, plus
406 * one for every input fragment boundary within a segment
408 unsigned int max_descs
= EFX_TSO_MAX_SEGS
* 2 + MAX_SKB_FRAGS
;
410 /* Possibly one more per segment for option descriptors */
411 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
)
412 max_descs
+= EFX_TSO_MAX_SEGS
;
414 /* Possibly more for PCIe page boundaries within input fragments */
415 if (PAGE_SIZE
> EFX_PAGE_SIZE
)
416 max_descs
+= max_t(unsigned int, MAX_SKB_FRAGS
,
417 DIV_ROUND_UP(GSO_MAX_SIZE
, EFX_PAGE_SIZE
));
423 * Fallback to software TSO.
425 * This is used if we are unable to send a GSO packet through hardware TSO.
426 * This should only ever happen due to per-queue restrictions - unsupported
427 * packets should first be filtered by the feature flags.
429 * Returns 0 on success, error code otherwise.
431 int efx_siena_tx_tso_fallback(struct efx_tx_queue
*tx_queue
,
434 struct sk_buff
*segments
, *next
;
436 segments
= skb_gso_segment(skb
, 0);
437 if (IS_ERR(segments
))
438 return PTR_ERR(segments
);
440 dev_consume_skb_any(skb
);
442 skb_list_walk_safe(segments
, skb
, next
) {
443 skb_mark_not_on_list(skb
);
444 efx_enqueue_skb(tx_queue
, skb
);