drm/nouveau: consume the return of large GSP message
[drm/drm-misc.git] / drivers / net / ethernet / sfc / tx_common.c
bloba22a0d634ffc42d5bc8d3f5ee369447b860a0cec
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic_common.h"
14 #include "tx_common.h"
15 #include <net/gso.h>
17 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
19 return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
20 PAGE_SIZE >> EFX_TX_CB_ORDER);
23 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
25 struct efx_nic *efx = tx_queue->efx;
26 unsigned int entries;
27 int rc;
29 /* Create the smallest power-of-two aligned ring */
30 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
31 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
32 tx_queue->ptr_mask = entries - 1;
34 netif_dbg(efx, probe, efx->net_dev,
35 "creating TX queue %d size %#x mask %#x\n",
36 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
38 /* Allocate software ring */
39 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
40 GFP_KERNEL);
41 if (!tx_queue->buffer)
42 return -ENOMEM;
44 tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
45 sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
46 if (!tx_queue->cb_page) {
47 rc = -ENOMEM;
48 goto fail1;
51 /* Allocate hardware ring, determine TXQ type */
52 rc = efx_nic_probe_tx(tx_queue);
53 if (rc)
54 goto fail2;
56 tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
57 return 0;
59 fail2:
60 kfree(tx_queue->cb_page);
61 tx_queue->cb_page = NULL;
62 fail1:
63 kfree(tx_queue->buffer);
64 tx_queue->buffer = NULL;
65 return rc;
68 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
70 struct efx_nic *efx = tx_queue->efx;
72 netif_dbg(efx, drv, efx->net_dev,
73 "initialising TX queue %d\n", tx_queue->queue);
75 tx_queue->insert_count = 0;
76 tx_queue->notify_count = 0;
77 tx_queue->write_count = 0;
78 tx_queue->packet_write_count = 0;
79 tx_queue->old_write_count = 0;
80 tx_queue->read_count = 0;
81 tx_queue->old_read_count = 0;
82 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
83 tx_queue->xmit_pending = false;
84 tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
85 tx_queue->channel == efx_ptp_channel(efx));
86 tx_queue->completed_timestamp_major = 0;
87 tx_queue->completed_timestamp_minor = 0;
89 tx_queue->old_complete_packets = tx_queue->complete_packets;
90 tx_queue->old_complete_bytes = tx_queue->complete_bytes;
91 tx_queue->old_tso_bursts = tx_queue->tso_bursts;
92 tx_queue->old_tso_packets = tx_queue->tso_packets;
94 tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
95 tx_queue->tso_version = 0;
97 /* Set up TX descriptor ring */
98 efx_nic_init_tx(tx_queue);
100 tx_queue->initialised = true;
103 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
105 struct efx_tx_buffer *buffer;
107 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
108 "shutting down TX queue %d\n", tx_queue->queue);
110 tx_queue->initialised = false;
112 if (!tx_queue->buffer)
113 return;
115 /* Free any buffers left in the ring */
116 while (tx_queue->read_count != tx_queue->write_count) {
117 unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0;
118 unsigned int pkts_compl = 0, bytes_compl = 0;
119 unsigned int efv_pkts_compl = 0;
121 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
122 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
123 &efv_pkts_compl, &xdp_pkts_compl,
124 &xdp_bytes_compl);
126 ++tx_queue->read_count;
128 tx_queue->xmit_pending = false;
129 netdev_tx_reset_queue(tx_queue->core_txq);
132 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
134 int i;
136 if (!tx_queue->buffer)
137 return;
139 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
140 "destroying TX queue %d\n", tx_queue->queue);
141 efx_nic_remove_tx(tx_queue);
143 if (tx_queue->cb_page) {
144 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
145 efx_nic_free_buffer(tx_queue->efx,
146 &tx_queue->cb_page[i]);
147 kfree(tx_queue->cb_page);
148 tx_queue->cb_page = NULL;
151 kfree(tx_queue->buffer);
152 tx_queue->buffer = NULL;
153 tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
156 void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
157 struct efx_tx_buffer *buffer,
158 unsigned int *pkts_compl,
159 unsigned int *bytes_compl,
160 unsigned int *efv_pkts_compl,
161 unsigned int *xdp_pkts,
162 unsigned int *xdp_bytes)
164 if (buffer->unmap_len) {
165 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
166 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
168 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
169 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
170 DMA_TO_DEVICE);
171 else
172 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
173 DMA_TO_DEVICE);
174 buffer->unmap_len = 0;
177 if (buffer->flags & EFX_TX_BUF_SKB) {
178 struct sk_buff *skb = (struct sk_buff *)buffer->skb;
180 if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) {
181 EFX_WARN_ON_PARANOID(!efv_pkts_compl);
182 (*efv_pkts_compl)++;
183 } else {
184 EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
185 (*pkts_compl)++;
186 (*bytes_compl) += skb->len;
189 if (tx_queue->timestamping &&
190 (tx_queue->completed_timestamp_major ||
191 tx_queue->completed_timestamp_minor)) {
192 struct skb_shared_hwtstamps hwtstamp;
194 hwtstamp.hwtstamp =
195 efx_ptp_nic_to_kernel_time(tx_queue);
196 skb_tstamp_tx(skb, &hwtstamp);
198 tx_queue->completed_timestamp_major = 0;
199 tx_queue->completed_timestamp_minor = 0;
201 dev_consume_skb_any((struct sk_buff *)buffer->skb);
202 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
203 "TX queue %d transmission id %x complete\n",
204 tx_queue->queue, tx_queue->read_count);
205 } else if (buffer->flags & EFX_TX_BUF_XDP) {
206 xdp_return_frame_rx_napi(buffer->xdpf);
207 if (xdp_pkts)
208 (*xdp_pkts)++;
209 if (xdp_bytes)
210 (*xdp_bytes) += buffer->xdpf->len;
213 buffer->len = 0;
214 buffer->flags = 0;
217 /* Remove packets from the TX queue
219 * This removes packets from the TX queue, up to and including the
220 * specified index.
222 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
223 unsigned int index,
224 unsigned int *pkts_compl,
225 unsigned int *bytes_compl,
226 unsigned int *efv_pkts_compl,
227 unsigned int *xdp_pkts,
228 unsigned int *xdp_bytes)
230 struct efx_nic *efx = tx_queue->efx;
231 unsigned int stop_index, read_ptr;
233 stop_index = (index + 1) & tx_queue->ptr_mask;
234 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
236 while (read_ptr != stop_index) {
237 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
239 if (!efx_tx_buffer_in_use(buffer)) {
240 netif_err(efx, tx_err, efx->net_dev,
241 "TX queue %d spurious TX completion id %d\n",
242 tx_queue->queue, read_ptr);
243 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
244 return;
247 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl,
248 efv_pkts_compl, xdp_pkts, xdp_bytes);
250 ++tx_queue->read_count;
251 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
255 void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
257 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
258 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
259 if (tx_queue->read_count == tx_queue->old_write_count) {
260 /* Ensure that read_count is flushed. */
261 smp_mb();
262 tx_queue->empty_read_count =
263 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
268 int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
270 unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
271 unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0;
272 unsigned int efv_pkts_compl = 0;
273 struct efx_nic *efx = tx_queue->efx;
275 EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
277 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl,
278 &efv_pkts_compl, &xdp_pkts_compl, &xdp_bytes_compl);
279 tx_queue->pkts_compl += pkts_compl;
280 tx_queue->bytes_compl += bytes_compl;
281 tx_queue->complete_xdp_packets += xdp_pkts_compl;
282 tx_queue->complete_xdp_bytes += xdp_bytes_compl;
284 if (pkts_compl + efv_pkts_compl > 1)
285 ++tx_queue->merge_events;
287 /* See if we need to restart the netif queue. This memory
288 * barrier ensures that we write read_count (inside
289 * efx_dequeue_buffers()) before reading the queue status.
291 smp_mb();
292 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
293 likely(efx->port_enabled) &&
294 likely(netif_device_present(efx->net_dev))) {
295 fill_level = efx_channel_tx_fill_level(tx_queue->channel);
296 if (fill_level <= efx->txq_wake_thresh)
297 netif_tx_wake_queue(tx_queue->core_txq);
300 efx_xmit_done_check_empty(tx_queue);
302 return pkts_compl + efv_pkts_compl;
305 /* Remove buffers put into a tx_queue for the current packet.
306 * None of the buffers must have an skb attached.
308 void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
309 unsigned int insert_count)
311 unsigned int xdp_bytes_compl = 0;
312 unsigned int xdp_pkts_compl = 0;
313 unsigned int efv_pkts_compl = 0;
314 struct efx_tx_buffer *buffer;
315 unsigned int bytes_compl = 0;
316 unsigned int pkts_compl = 0;
318 /* Work backwards until we hit the original insert pointer value */
319 while (tx_queue->insert_count != insert_count) {
320 --tx_queue->insert_count;
321 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
322 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
323 &efv_pkts_compl, &xdp_pkts_compl,
324 &xdp_bytes_compl);
328 struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
329 dma_addr_t dma_addr, size_t len)
331 const struct efx_nic_type *nic_type = tx_queue->efx->type;
332 struct efx_tx_buffer *buffer;
333 unsigned int dma_len;
335 /* Map the fragment taking account of NIC-dependent DMA limits. */
336 do {
337 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
339 if (nic_type->tx_limit_len)
340 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
341 else
342 dma_len = len;
344 buffer->len = dma_len;
345 buffer->dma_addr = dma_addr;
346 buffer->flags = EFX_TX_BUF_CONT;
347 len -= dma_len;
348 dma_addr += dma_len;
349 ++tx_queue->insert_count;
350 } while (len);
352 return buffer;
355 int efx_tx_tso_header_length(struct sk_buff *skb)
357 size_t header_len;
359 if (skb->encapsulation)
360 header_len = skb_inner_transport_offset(skb) +
361 (inner_tcp_hdr(skb)->doff << 2u);
362 else
363 header_len = skb_transport_offset(skb) +
364 (tcp_hdr(skb)->doff << 2u);
365 return header_len;
368 /* Map all data from an SKB for DMA and create descriptors on the queue. */
369 int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
370 unsigned int segment_count)
372 struct efx_nic *efx = tx_queue->efx;
373 struct device *dma_dev = &efx->pci_dev->dev;
374 unsigned int frag_index, nr_frags;
375 dma_addr_t dma_addr, unmap_addr;
376 unsigned short dma_flags;
377 size_t len, unmap_len;
379 nr_frags = skb_shinfo(skb)->nr_frags;
380 frag_index = 0;
382 /* Map header data. */
383 len = skb_headlen(skb);
384 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
385 dma_flags = EFX_TX_BUF_MAP_SINGLE;
386 unmap_len = len;
387 unmap_addr = dma_addr;
389 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
390 return -EIO;
392 if (segment_count) {
393 /* For TSO we need to put the header in to a separate
394 * descriptor. Map this separately if necessary.
396 size_t header_len = efx_tx_tso_header_length(skb);
398 if (header_len != len) {
399 tx_queue->tso_long_headers++;
400 efx_tx_map_chunk(tx_queue, dma_addr, header_len);
401 len -= header_len;
402 dma_addr += header_len;
406 /* Add descriptors for each fragment. */
407 do {
408 struct efx_tx_buffer *buffer;
409 skb_frag_t *fragment;
411 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
413 /* The final descriptor for a fragment is responsible for
414 * unmapping the whole fragment.
416 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
417 buffer->unmap_len = unmap_len;
418 buffer->dma_offset = buffer->dma_addr - unmap_addr;
420 if (frag_index >= nr_frags) {
421 /* Store SKB details with the final buffer for
422 * the completion.
424 buffer->skb = skb;
425 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
426 return 0;
429 /* Move on to the next fragment. */
430 fragment = &skb_shinfo(skb)->frags[frag_index++];
431 len = skb_frag_size(fragment);
432 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
433 DMA_TO_DEVICE);
434 dma_flags = 0;
435 unmap_len = len;
436 unmap_addr = dma_addr;
438 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
439 return -EIO;
440 } while (1);
443 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
445 /* Header and payload descriptor for each output segment, plus
446 * one for every input fragment boundary within a segment
448 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
450 /* Possibly one more per segment for option descriptors */
451 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
452 max_descs += EFX_TSO_MAX_SEGS;
454 /* Possibly more for PCIe page boundaries within input fragments */
455 if (PAGE_SIZE > EFX_PAGE_SIZE)
456 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
457 DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
458 EFX_PAGE_SIZE));
460 return max_descs;
464 * Fallback to software TSO.
466 * This is used if we are unable to send a GSO packet through hardware TSO.
467 * This should only ever happen due to per-queue restrictions - unsupported
468 * packets should first be filtered by the feature flags.
470 * Returns 0 on success, error code otherwise.
472 int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
474 struct sk_buff *segments, *next;
476 segments = skb_gso_segment(skb, 0);
477 if (IS_ERR(segments))
478 return PTR_ERR(segments);
480 dev_consume_skb_any(skb);
482 skb_list_walk_safe(segments, skb, next) {
483 skb_mark_not_on_list(skb);
484 efx_enqueue_skb(tx_queue, skb);
487 return 0;