2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
62 #include <linux/unaligned.h>
64 #include <net/mac80211.h>
72 #define CREATE_TRACE_POINTS
75 bool ath5k_modparam_nohwcrypt
;
76 module_param_named(nohwcrypt
, ath5k_modparam_nohwcrypt
, bool, 0444);
77 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
79 static bool modparam_fastchanswitch
;
80 module_param_named(fastchanswitch
, modparam_fastchanswitch
, bool, 0444);
81 MODULE_PARM_DESC(fastchanswitch
, "Enable fast channel switching for AR2413/AR5413 radios.");
83 static bool ath5k_modparam_no_hw_rfkill_switch
;
84 module_param_named(no_hw_rfkill_switch
, ath5k_modparam_no_hw_rfkill_switch
,
86 MODULE_PARM_DESC(no_hw_rfkill_switch
, "Ignore the GPIO RFKill switch state");
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_LICENSE("Dual BSD/GPL");
95 static int ath5k_init(struct ieee80211_hw
*hw
);
96 static int ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
100 static const struct ath5k_srev_name srev_names
[] = {
101 #ifdef CONFIG_ATH5K_AHB
102 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R2
},
103 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R7
},
104 { "2313", AR5K_VERSION_MAC
, AR5K_SREV_AR2313_R8
},
105 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R6
},
106 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R7
},
107 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R1
},
108 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R2
},
110 { "5210", AR5K_VERSION_MAC
, AR5K_SREV_AR5210
},
111 { "5311", AR5K_VERSION_MAC
, AR5K_SREV_AR5311
},
112 { "5311A", AR5K_VERSION_MAC
, AR5K_SREV_AR5311A
},
113 { "5311B", AR5K_VERSION_MAC
, AR5K_SREV_AR5311B
},
114 { "5211", AR5K_VERSION_MAC
, AR5K_SREV_AR5211
},
115 { "5212", AR5K_VERSION_MAC
, AR5K_SREV_AR5212
},
116 { "5213", AR5K_VERSION_MAC
, AR5K_SREV_AR5213
},
117 { "5213A", AR5K_VERSION_MAC
, AR5K_SREV_AR5213A
},
118 { "2413", AR5K_VERSION_MAC
, AR5K_SREV_AR2413
},
119 { "2414", AR5K_VERSION_MAC
, AR5K_SREV_AR2414
},
120 { "5424", AR5K_VERSION_MAC
, AR5K_SREV_AR5424
},
121 { "5413", AR5K_VERSION_MAC
, AR5K_SREV_AR5413
},
122 { "5414", AR5K_VERSION_MAC
, AR5K_SREV_AR5414
},
123 { "2415", AR5K_VERSION_MAC
, AR5K_SREV_AR2415
},
124 { "5416", AR5K_VERSION_MAC
, AR5K_SREV_AR5416
},
125 { "5418", AR5K_VERSION_MAC
, AR5K_SREV_AR5418
},
126 { "2425", AR5K_VERSION_MAC
, AR5K_SREV_AR2425
},
127 { "2417", AR5K_VERSION_MAC
, AR5K_SREV_AR2417
},
129 { "xxxxx", AR5K_VERSION_MAC
, AR5K_SREV_UNKNOWN
},
130 { "5110", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5110
},
131 { "5111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111
},
132 { "5111A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111A
},
133 { "2111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2111
},
134 { "5112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112
},
135 { "5112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112A
},
136 { "5112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112B
},
137 { "2112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112
},
138 { "2112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112A
},
139 { "2112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112B
},
140 { "2413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2413
},
141 { "5413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5413
},
142 { "5424", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5424
},
143 { "5133", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5133
},
144 #ifdef CONFIG_ATH5K_AHB
145 { "2316", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2316
},
146 { "2317", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2317
},
148 { "xxxxx", AR5K_VERSION_RAD
, AR5K_SREV_UNKNOWN
},
151 static const struct ieee80211_rate ath5k_rates
[] = {
153 .hw_value
= ATH5K_RATE_CODE_1M
, },
155 .hw_value
= ATH5K_RATE_CODE_2M
,
156 .hw_value_short
= ATH5K_RATE_CODE_2M
| AR5K_SET_SHORT_PREAMBLE
,
157 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
159 .hw_value
= ATH5K_RATE_CODE_5_5M
,
160 .hw_value_short
= ATH5K_RATE_CODE_5_5M
| AR5K_SET_SHORT_PREAMBLE
,
161 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
163 .hw_value
= ATH5K_RATE_CODE_11M
,
164 .hw_value_short
= ATH5K_RATE_CODE_11M
| AR5K_SET_SHORT_PREAMBLE
,
165 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
167 .hw_value
= ATH5K_RATE_CODE_6M
,
168 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
169 IEEE80211_RATE_SUPPORTS_10MHZ
},
171 .hw_value
= ATH5K_RATE_CODE_9M
,
172 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
173 IEEE80211_RATE_SUPPORTS_10MHZ
},
175 .hw_value
= ATH5K_RATE_CODE_12M
,
176 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
177 IEEE80211_RATE_SUPPORTS_10MHZ
},
179 .hw_value
= ATH5K_RATE_CODE_18M
,
180 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
181 IEEE80211_RATE_SUPPORTS_10MHZ
},
183 .hw_value
= ATH5K_RATE_CODE_24M
,
184 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
185 IEEE80211_RATE_SUPPORTS_10MHZ
},
187 .hw_value
= ATH5K_RATE_CODE_36M
,
188 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
189 IEEE80211_RATE_SUPPORTS_10MHZ
},
191 .hw_value
= ATH5K_RATE_CODE_48M
,
192 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
193 IEEE80211_RATE_SUPPORTS_10MHZ
},
195 .hw_value
= ATH5K_RATE_CODE_54M
,
196 .flags
= IEEE80211_RATE_SUPPORTS_5MHZ
|
197 IEEE80211_RATE_SUPPORTS_10MHZ
},
200 static inline u64
ath5k_extend_tsf(struct ath5k_hw
*ah
, u32 rstamp
)
202 u64 tsf
= ath5k_hw_get_tsf64(ah
);
204 if ((tsf
& 0x7fff) < rstamp
)
207 return (tsf
& ~0x7fff) | rstamp
;
211 ath5k_chip_name(enum ath5k_srev_type type
, u_int16_t val
)
213 const char *name
= "xxxxx";
216 for (i
= 0; i
< ARRAY_SIZE(srev_names
); i
++) {
217 if (srev_names
[i
].sr_type
!= type
)
220 if ((val
& 0xf0) == srev_names
[i
].sr_val
)
221 name
= srev_names
[i
].sr_name
;
223 if ((val
& 0xff) == srev_names
[i
].sr_val
) {
224 name
= srev_names
[i
].sr_name
;
231 static unsigned int ath5k_ioread32(void *hw_priv
, u32 reg_offset
)
233 struct ath5k_hw
*ah
= hw_priv
;
234 return ath5k_hw_reg_read(ah
, reg_offset
);
237 static void ath5k_iowrite32(void *hw_priv
, u32 val
, u32 reg_offset
)
239 struct ath5k_hw
*ah
= hw_priv
;
240 ath5k_hw_reg_write(ah
, val
, reg_offset
);
243 static const struct ath_ops ath5k_common_ops
= {
244 .read
= ath5k_ioread32
,
245 .write
= ath5k_iowrite32
,
248 /***********************\
249 * Driver Initialization *
250 \***********************/
252 static void ath5k_reg_notifier(struct wiphy
*wiphy
,
253 struct regulatory_request
*request
)
255 struct ieee80211_hw
*hw
= wiphy_to_ieee80211_hw(wiphy
);
256 struct ath5k_hw
*ah
= hw
->priv
;
257 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
259 ath_reg_notifier_apply(wiphy
, request
, regulatory
);
262 /********************\
263 * Channel/mode setup *
264 \********************/
267 * Returns true for the channel numbers used.
269 #ifdef CONFIG_ATH5K_TEST_CHANNELS
270 static bool ath5k_is_standard_channel(short chan
, enum nl80211_band band
)
276 static bool ath5k_is_standard_channel(short chan
, enum nl80211_band band
)
278 if (band
== NL80211_BAND_2GHZ
&& chan
<= 14)
281 return /* UNII 1,2 */
282 (((chan
& 3) == 0 && chan
>= 36 && chan
<= 64) ||
284 ((chan
& 3) == 0 && chan
>= 100 && chan
<= 140) ||
286 ((chan
& 3) == 1 && chan
>= 149 && chan
<= 165) ||
287 /* 802.11j 5.030-5.080 GHz (20MHz) */
288 (chan
== 8 || chan
== 12 || chan
== 16) ||
289 /* 802.11j 4.9GHz (20MHz) */
290 (chan
== 184 || chan
== 188 || chan
== 192 || chan
== 196));
295 ath5k_setup_channels(struct ath5k_hw
*ah
, struct ieee80211_channel
*channels
,
296 unsigned int mode
, unsigned int max
)
298 unsigned int count
, size
, freq
, ch
;
299 enum nl80211_band band
;
303 /* 1..220, but 2GHz frequencies are filtered by check_channel */
305 band
= NL80211_BAND_5GHZ
;
310 band
= NL80211_BAND_2GHZ
;
313 ATH5K_WARN(ah
, "bad mode, not copying channels\n");
318 for (ch
= 1; ch
<= size
&& count
< max
; ch
++) {
319 freq
= ieee80211_channel_to_frequency(ch
, band
);
321 if (freq
== 0) /* mapping failed - not a standard channel */
324 /* Write channel info, needed for ath5k_channel_ok() */
325 channels
[count
].center_freq
= freq
;
326 channels
[count
].band
= band
;
327 channels
[count
].hw_value
= mode
;
329 /* Check if channel is supported by the chipset */
330 if (!ath5k_channel_ok(ah
, &channels
[count
]))
333 if (!ath5k_is_standard_channel(ch
, band
))
343 ath5k_setup_rate_idx(struct ath5k_hw
*ah
, struct ieee80211_supported_band
*b
)
347 for (i
= 0; i
< AR5K_MAX_RATES
; i
++)
348 ah
->rate_idx
[b
->band
][i
] = -1;
350 for (i
= 0; i
< b
->n_bitrates
; i
++) {
351 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value
] = i
;
352 if (b
->bitrates
[i
].hw_value_short
)
353 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value_short
] = i
;
358 ath5k_setup_bands(struct ieee80211_hw
*hw
)
360 struct ath5k_hw
*ah
= hw
->priv
;
361 struct ieee80211_supported_band
*sband
;
362 int max_c
, count_c
= 0;
365 BUILD_BUG_ON(ARRAY_SIZE(ah
->sbands
) < NUM_NL80211_BANDS
);
366 max_c
= ARRAY_SIZE(ah
->channels
);
369 sband
= &ah
->sbands
[NL80211_BAND_2GHZ
];
370 sband
->band
= NL80211_BAND_2GHZ
;
371 sband
->bitrates
= &ah
->rates
[NL80211_BAND_2GHZ
][0];
373 if (test_bit(AR5K_MODE_11G
, ah
->ah_capabilities
.cap_mode
)) {
375 memcpy(sband
->bitrates
, &ath5k_rates
[0],
376 sizeof(struct ieee80211_rate
) * 12);
377 sband
->n_bitrates
= 12;
379 sband
->channels
= ah
->channels
;
380 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
381 AR5K_MODE_11G
, max_c
);
383 hw
->wiphy
->bands
[NL80211_BAND_2GHZ
] = sband
;
384 count_c
= sband
->n_channels
;
386 } else if (test_bit(AR5K_MODE_11B
, ah
->ah_capabilities
.cap_mode
)) {
388 memcpy(sband
->bitrates
, &ath5k_rates
[0],
389 sizeof(struct ieee80211_rate
) * 4);
390 sband
->n_bitrates
= 4;
392 /* 5211 only supports B rates and uses 4bit rate codes
393 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
396 if (ah
->ah_version
== AR5K_AR5211
) {
397 for (i
= 0; i
< 4; i
++) {
398 sband
->bitrates
[i
].hw_value
=
399 sband
->bitrates
[i
].hw_value
& 0xF;
400 sband
->bitrates
[i
].hw_value_short
=
401 sband
->bitrates
[i
].hw_value_short
& 0xF;
405 sband
->channels
= ah
->channels
;
406 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
407 AR5K_MODE_11B
, max_c
);
409 hw
->wiphy
->bands
[NL80211_BAND_2GHZ
] = sband
;
410 count_c
= sband
->n_channels
;
413 ath5k_setup_rate_idx(ah
, sband
);
415 /* 5GHz band, A mode */
416 if (test_bit(AR5K_MODE_11A
, ah
->ah_capabilities
.cap_mode
)) {
417 sband
= &ah
->sbands
[NL80211_BAND_5GHZ
];
418 sband
->band
= NL80211_BAND_5GHZ
;
419 sband
->bitrates
= &ah
->rates
[NL80211_BAND_5GHZ
][0];
421 memcpy(sband
->bitrates
, &ath5k_rates
[4],
422 sizeof(struct ieee80211_rate
) * 8);
423 sband
->n_bitrates
= 8;
425 sband
->channels
= &ah
->channels
[count_c
];
426 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
427 AR5K_MODE_11A
, max_c
);
429 hw
->wiphy
->bands
[NL80211_BAND_5GHZ
] = sband
;
431 ath5k_setup_rate_idx(ah
, sband
);
433 ath5k_debug_dump_bands(ah
);
439 * Set/change channels. We always reset the chip.
440 * To accomplish this we must first cleanup any pending DMA,
441 * then restart stuff after a la ath5k_init.
443 * Called with ah->lock.
446 ath5k_chan_set(struct ath5k_hw
*ah
, struct cfg80211_chan_def
*chandef
)
448 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
449 "channel set, resetting (%u -> %u MHz)\n",
450 ah
->curchan
->center_freq
, chandef
->chan
->center_freq
);
452 switch (chandef
->width
) {
453 case NL80211_CHAN_WIDTH_20
:
454 case NL80211_CHAN_WIDTH_20_NOHT
:
455 ah
->ah_bwmode
= AR5K_BWMODE_DEFAULT
;
457 case NL80211_CHAN_WIDTH_5
:
458 ah
->ah_bwmode
= AR5K_BWMODE_5MHZ
;
460 case NL80211_CHAN_WIDTH_10
:
461 ah
->ah_bwmode
= AR5K_BWMODE_10MHZ
;
469 * To switch channels clear any pending DMA operations;
470 * wait long enough for the RX fifo to drain, reset the
471 * hardware at the new frequency, and then re-enable
472 * the relevant bits of the h/w.
474 return ath5k_reset(ah
, chandef
->chan
, true);
477 void ath5k_vif_iter(void *data
, u8
*mac
, struct ieee80211_vif
*vif
)
479 struct ath5k_vif_iter_data
*iter_data
= data
;
481 struct ath5k_vif
*avf
= (void *)vif
->drv_priv
;
483 if (iter_data
->hw_macaddr
)
484 for (i
= 0; i
< ETH_ALEN
; i
++)
485 iter_data
->mask
[i
] &=
486 ~(iter_data
->hw_macaddr
[i
] ^ mac
[i
]);
488 if (!iter_data
->found_active
) {
489 iter_data
->found_active
= true;
490 memcpy(iter_data
->active_mac
, mac
, ETH_ALEN
);
493 if (iter_data
->need_set_hw_addr
&& iter_data
->hw_macaddr
)
494 if (ether_addr_equal(iter_data
->hw_macaddr
, mac
))
495 iter_data
->need_set_hw_addr
= false;
497 if (!iter_data
->any_assoc
) {
499 iter_data
->any_assoc
= true;
502 /* Calculate combined mode - when APs are active, operate in AP mode.
503 * Otherwise use the mode of the new interface. This can currently
504 * only deal with combinations of APs and STAs. Only one ad-hoc
505 * interfaces is allowed.
507 if (avf
->opmode
== NL80211_IFTYPE_AP
)
508 iter_data
->opmode
= NL80211_IFTYPE_AP
;
510 if (avf
->opmode
== NL80211_IFTYPE_STATION
)
512 if (iter_data
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
513 iter_data
->opmode
= avf
->opmode
;
518 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw
*ah
,
519 struct ieee80211_vif
*vif
)
521 struct ath_common
*common
= ath5k_hw_common(ah
);
522 struct ath5k_vif_iter_data iter_data
;
526 * Use the hardware MAC address as reference, the hardware uses it
527 * together with the BSSID mask when matching addresses.
529 iter_data
.hw_macaddr
= common
->macaddr
;
530 eth_broadcast_addr(iter_data
.mask
);
531 iter_data
.found_active
= false;
532 iter_data
.need_set_hw_addr
= true;
533 iter_data
.opmode
= NL80211_IFTYPE_UNSPECIFIED
;
534 iter_data
.n_stas
= 0;
537 ath5k_vif_iter(&iter_data
, vif
->addr
, vif
);
539 /* Get list of all active MAC addresses */
540 ieee80211_iterate_active_interfaces_atomic(
541 ah
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
542 ath5k_vif_iter
, &iter_data
);
543 memcpy(ah
->bssidmask
, iter_data
.mask
, ETH_ALEN
);
545 ah
->opmode
= iter_data
.opmode
;
546 if (ah
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
547 /* Nothing active, default to station mode */
548 ah
->opmode
= NL80211_IFTYPE_STATION
;
550 ath5k_hw_set_opmode(ah
, ah
->opmode
);
551 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "mode setup opmode %d (%s)\n",
552 ah
->opmode
, ath_opmode_to_string(ah
->opmode
));
554 if (iter_data
.need_set_hw_addr
&& iter_data
.found_active
)
555 ath5k_hw_set_lladdr(ah
, iter_data
.active_mac
);
557 if (ath5k_hw_hasbssidmask(ah
))
558 ath5k_hw_set_bssid_mask(ah
, ah
->bssidmask
);
560 /* Set up RX Filter */
561 if (iter_data
.n_stas
> 1) {
562 /* If you have multiple STA interfaces connected to
563 * different APs, ARPs are not received (most of the time?)
564 * Enabling PROMISC appears to fix that problem.
566 ah
->filter_flags
|= AR5K_RX_FILTER_PROM
;
569 rfilt
= ah
->filter_flags
;
570 ath5k_hw_set_rx_filter(ah
, rfilt
);
571 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "RX filter 0x%x\n", rfilt
);
575 ath5k_hw_to_driver_rix(struct ath5k_hw
*ah
, int hw_rix
)
579 /* return base rate on errors */
580 if (WARN(hw_rix
< 0 || hw_rix
>= AR5K_MAX_RATES
,
581 "hw_rix out of bounds: %x\n", hw_rix
))
584 rix
= ah
->rate_idx
[ah
->curchan
->band
][hw_rix
];
585 if (WARN(rix
< 0, "invalid hw_rix: %x\n", hw_rix
))
596 struct sk_buff
*ath5k_rx_skb_alloc(struct ath5k_hw
*ah
, dma_addr_t
*skb_addr
)
598 struct ath_common
*common
= ath5k_hw_common(ah
);
602 * Allocate buffer with headroom_needed space for the
603 * fake physical layer header at the start.
605 skb
= ath_rxbuf_alloc(common
,
610 ATH5K_ERR(ah
, "can't alloc skbuff of size %u\n",
615 *skb_addr
= dma_map_single(ah
->dev
,
616 skb
->data
, common
->rx_bufsize
,
619 if (unlikely(dma_mapping_error(ah
->dev
, *skb_addr
))) {
620 ATH5K_ERR(ah
, "%s: DMA mapping failed\n", __func__
);
628 ath5k_rxbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
630 struct sk_buff
*skb
= bf
->skb
;
631 struct ath5k_desc
*ds
;
635 skb
= ath5k_rx_skb_alloc(ah
, &bf
->skbaddr
);
642 * Setup descriptors. For receive we always terminate
643 * the descriptor list with a self-linked entry so we'll
644 * not get overrun under high load (as can happen with a
645 * 5212 when ANI processing enables PHY error frames).
647 * To ensure the last descriptor is self-linked we create
648 * each descriptor as self-linked and add it to the end. As
649 * each additional descriptor is added the previous self-linked
650 * entry is "fixed" naturally. This should be safe even
651 * if DMA is happening. When processing RX interrupts we
652 * never remove/process the last, self-linked, entry on the
653 * descriptor list. This ensures the hardware always has
654 * someplace to write a new frame.
657 ds
->ds_link
= bf
->daddr
; /* link to self */
658 ds
->ds_data
= bf
->skbaddr
;
659 ret
= ath5k_hw_setup_rx_desc(ah
, ds
, ah
->common
.rx_bufsize
, 0);
661 ATH5K_ERR(ah
, "%s: could not setup RX desc\n", __func__
);
665 if (ah
->rxlink
!= NULL
)
666 *ah
->rxlink
= bf
->daddr
;
667 ah
->rxlink
= &ds
->ds_link
;
671 static enum ath5k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
673 struct ieee80211_hdr
*hdr
;
674 enum ath5k_pkt_type htype
;
677 hdr
= (struct ieee80211_hdr
*)skb
->data
;
678 fc
= hdr
->frame_control
;
680 if (ieee80211_is_beacon(fc
))
681 htype
= AR5K_PKT_TYPE_BEACON
;
682 else if (ieee80211_is_probe_resp(fc
))
683 htype
= AR5K_PKT_TYPE_PROBE_RESP
;
684 else if (ieee80211_is_atim(fc
))
685 htype
= AR5K_PKT_TYPE_ATIM
;
686 else if (ieee80211_is_pspoll(fc
))
687 htype
= AR5K_PKT_TYPE_PSPOLL
;
689 htype
= AR5K_PKT_TYPE_NORMAL
;
694 static struct ieee80211_rate
*
695 ath5k_get_rate(const struct ieee80211_hw
*hw
,
696 const struct ieee80211_tx_info
*info
,
697 struct ath5k_buf
*bf
, int idx
)
700 * convert a ieee80211_tx_rate RC-table entry to
701 * the respective ieee80211_rate struct
703 if (bf
->rates
[idx
].idx
< 0) {
707 return &hw
->wiphy
->bands
[info
->band
]->bitrates
[ bf
->rates
[idx
].idx
];
711 ath5k_get_rate_hw_value(const struct ieee80211_hw
*hw
,
712 const struct ieee80211_tx_info
*info
,
713 struct ath5k_buf
*bf
, int idx
)
715 struct ieee80211_rate
*rate
;
719 rate
= ath5k_get_rate(hw
, info
, bf
, idx
);
723 rc_flags
= bf
->rates
[idx
].flags
;
724 hw_rate
= (rc_flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
) ?
725 rate
->hw_value_short
: rate
->hw_value
;
730 static bool ath5k_merge_ratetbl(struct ieee80211_sta
*sta
,
731 struct ath5k_buf
*bf
,
732 struct ieee80211_tx_info
*tx_info
)
734 struct ieee80211_sta_rates
*ratetbl
;
740 ratetbl
= rcu_dereference(sta
->rates
);
744 if (tx_info
->control
.rates
[0].idx
< 0 ||
745 tx_info
->control
.rates
[0].count
== 0)
749 bf
->rates
[0] = tx_info
->control
.rates
[0];
753 for ( ; i
< IEEE80211_TX_MAX_RATES
; i
++) {
754 bf
->rates
[i
].idx
= ratetbl
->rate
[i
].idx
;
755 bf
->rates
[i
].flags
= ratetbl
->rate
[i
].flags
;
756 if (tx_info
->control
.use_rts
)
757 bf
->rates
[i
].count
= ratetbl
->rate
[i
].count_rts
;
758 else if (tx_info
->control
.use_cts_prot
)
759 bf
->rates
[i
].count
= ratetbl
->rate
[i
].count_cts
;
761 bf
->rates
[i
].count
= ratetbl
->rate
[i
].count
;
768 ath5k_txbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
,
769 struct ath5k_txq
*txq
, int padsize
,
770 struct ieee80211_tx_control
*control
)
772 struct ath5k_desc
*ds
= bf
->desc
;
773 struct sk_buff
*skb
= bf
->skb
;
774 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
775 unsigned int pktlen
, flags
, keyidx
= AR5K_TXKEYIX_INVALID
;
776 struct ieee80211_rate
*rate
;
777 struct ieee80211_sta
*sta
;
778 unsigned int mrr_rate
[3], mrr_tries
[3];
785 flags
= AR5K_TXDESC_INTREQ
| AR5K_TXDESC_CLRDMASK
;
788 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
791 if (dma_mapping_error(ah
->dev
, bf
->skbaddr
))
799 if (!ath5k_merge_ratetbl(sta
, bf
, info
)) {
800 ieee80211_get_tx_rates(info
->control
.vif
,
802 ARRAY_SIZE(bf
->rates
));
805 rate
= ath5k_get_rate(ah
->hw
, info
, bf
, 0);
812 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
813 flags
|= AR5K_TXDESC_NOACK
;
815 rc_flags
= bf
->rates
[0].flags
;
817 hw_rate
= ath5k_get_rate_hw_value(ah
->hw
, info
, bf
, 0);
821 /* FIXME: If we are in g mode and rate is a CCK rate
822 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
823 * from tx power (value is in dB units already) */
824 if (info
->control
.hw_key
) {
825 keyidx
= info
->control
.hw_key
->hw_key_idx
;
826 pktlen
+= info
->control
.hw_key
->icv_len
;
828 if (rc_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
829 flags
|= AR5K_TXDESC_RTSENA
;
830 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
831 duration
= le16_to_cpu(ieee80211_rts_duration(ah
->hw
,
832 info
->control
.vif
, pktlen
, info
));
834 if (rc_flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
835 flags
|= AR5K_TXDESC_CTSENA
;
836 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
837 duration
= le16_to_cpu(ieee80211_ctstoself_duration(ah
->hw
,
838 info
->control
.vif
, pktlen
, info
));
841 ret
= ah
->ah_setup_tx_desc(ah
, ds
, pktlen
,
842 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
843 get_hw_packet_type(skb
),
844 (ah
->ah_txpower
.txp_requested
* 2),
846 bf
->rates
[0].count
, keyidx
, ah
->ah_tx_ant
, flags
,
851 /* Set up MRR descriptor */
852 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
853 memset(mrr_rate
, 0, sizeof(mrr_rate
));
854 memset(mrr_tries
, 0, sizeof(mrr_tries
));
856 for (i
= 0; i
< 3; i
++) {
858 rate
= ath5k_get_rate(ah
->hw
, info
, bf
, i
);
862 mrr_rate
[i
] = ath5k_get_rate_hw_value(ah
->hw
, info
, bf
, i
);
863 mrr_tries
[i
] = bf
->rates
[i
].count
;
866 ath5k_hw_setup_mrr_tx_desc(ah
, ds
,
867 mrr_rate
[0], mrr_tries
[0],
868 mrr_rate
[1], mrr_tries
[1],
869 mrr_rate
[2], mrr_tries
[2]);
873 ds
->ds_data
= bf
->skbaddr
;
875 spin_lock_bh(&txq
->lock
);
876 list_add_tail(&bf
->list
, &txq
->q
);
878 if (txq
->link
== NULL
) /* is this first packet? */
879 ath5k_hw_set_txdp(ah
, txq
->qnum
, bf
->daddr
);
880 else /* no, so only link it */
881 *txq
->link
= bf
->daddr
;
883 txq
->link
= &ds
->ds_link
;
884 ath5k_hw_start_tx_dma(ah
, txq
->qnum
);
885 spin_unlock_bh(&txq
->lock
);
889 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
893 /*******************\
894 * Descriptors setup *
895 \*******************/
898 ath5k_desc_alloc(struct ath5k_hw
*ah
)
900 struct ath5k_desc
*ds
;
901 struct ath5k_buf
*bf
;
906 /* allocate descriptors */
907 ah
->desc_len
= sizeof(struct ath5k_desc
) *
908 (ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
+ 1);
910 ah
->desc
= dma_alloc_coherent(ah
->dev
, ah
->desc_len
,
911 &ah
->desc_daddr
, GFP_KERNEL
);
912 if (ah
->desc
== NULL
) {
913 ATH5K_ERR(ah
, "can't allocate descriptors\n");
919 ATH5K_DBG(ah
, ATH5K_DEBUG_ANY
, "DMA map: %p (%zu) -> %llx\n",
920 ds
, ah
->desc_len
, (unsigned long long)ah
->desc_daddr
);
922 bf
= kcalloc(1 + ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
,
923 sizeof(struct ath5k_buf
), GFP_KERNEL
);
925 ATH5K_ERR(ah
, "can't allocate bufptr\n");
931 INIT_LIST_HEAD(&ah
->rxbuf
);
932 for (i
= 0; i
< ATH_RXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
935 list_add_tail(&bf
->list
, &ah
->rxbuf
);
938 INIT_LIST_HEAD(&ah
->txbuf
);
939 ah
->txbuf_len
= ATH_TXBUF
;
940 for (i
= 0; i
< ATH_TXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
943 list_add_tail(&bf
->list
, &ah
->txbuf
);
947 INIT_LIST_HEAD(&ah
->bcbuf
);
948 for (i
= 0; i
< ATH_BCBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
951 list_add_tail(&bf
->list
, &ah
->bcbuf
);
956 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
963 ath5k_txbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
968 dma_unmap_single(ah
->dev
, bf
->skbaddr
, bf
->skb
->len
,
970 ieee80211_free_txskb(ah
->hw
, bf
->skb
);
973 bf
->desc
->ds_data
= 0;
977 ath5k_rxbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
979 struct ath_common
*common
= ath5k_hw_common(ah
);
984 dma_unmap_single(ah
->dev
, bf
->skbaddr
, common
->rx_bufsize
,
986 dev_kfree_skb_any(bf
->skb
);
989 bf
->desc
->ds_data
= 0;
993 ath5k_desc_free(struct ath5k_hw
*ah
)
995 struct ath5k_buf
*bf
;
997 list_for_each_entry(bf
, &ah
->txbuf
, list
)
998 ath5k_txbuf_free_skb(ah
, bf
);
999 list_for_each_entry(bf
, &ah
->rxbuf
, list
)
1000 ath5k_rxbuf_free_skb(ah
, bf
);
1001 list_for_each_entry(bf
, &ah
->bcbuf
, list
)
1002 ath5k_txbuf_free_skb(ah
, bf
);
1004 /* Free memory associated with all descriptors */
1005 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
1018 static struct ath5k_txq
*
1019 ath5k_txq_setup(struct ath5k_hw
*ah
,
1020 int qtype
, int subtype
)
1022 struct ath5k_txq
*txq
;
1023 struct ath5k_txq_info qi
= {
1024 .tqi_subtype
= subtype
,
1025 /* XXX: default values not correct for B and XR channels,
1027 .tqi_aifs
= AR5K_TUNE_AIFS
,
1028 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
1029 .tqi_cw_max
= AR5K_TUNE_CWMAX
1034 * Enable interrupts only for EOL and DESC conditions.
1035 * We mark tx descriptors to receive a DESC interrupt
1036 * when a tx queue gets deep; otherwise we wait for the
1037 * EOL to reap descriptors. Note that this is done to
1038 * reduce interrupt load and this only defers reaping
1039 * descriptors, never transmitting frames. Aside from
1040 * reducing interrupts this also permits more concurrency.
1041 * The only potential downside is if the tx queue backs
1042 * up in which case the top half of the kernel may backup
1043 * due to a lack of tx descriptors.
1045 qi
.tqi_flags
= AR5K_TXQ_FLAG_TXEOLINT_ENABLE
|
1046 AR5K_TXQ_FLAG_TXDESCINT_ENABLE
;
1047 qnum
= ath5k_hw_setup_tx_queue(ah
, qtype
, &qi
);
1050 * NB: don't print a message, this happens
1051 * normally on parts with too few tx queues
1053 return ERR_PTR(qnum
);
1055 txq
= &ah
->txqs
[qnum
];
1059 INIT_LIST_HEAD(&txq
->q
);
1060 spin_lock_init(&txq
->lock
);
1063 txq
->txq_max
= ATH5K_TXQ_LEN_MAX
;
1064 txq
->txq_poll_mark
= false;
1067 return &ah
->txqs
[qnum
];
1071 ath5k_beaconq_setup(struct ath5k_hw
*ah
)
1073 struct ath5k_txq_info qi
= {
1074 /* XXX: default values not correct for B and XR channels,
1076 .tqi_aifs
= AR5K_TUNE_AIFS
,
1077 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
1078 .tqi_cw_max
= AR5K_TUNE_CWMAX
,
1079 /* NB: for dynamic turbo, don't enable any other interrupts */
1080 .tqi_flags
= AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1083 return ath5k_hw_setup_tx_queue(ah
, AR5K_TX_QUEUE_BEACON
, &qi
);
1087 ath5k_beaconq_config(struct ath5k_hw
*ah
)
1089 struct ath5k_txq_info qi
;
1092 ret
= ath5k_hw_get_tx_queueprops(ah
, ah
->bhalq
, &qi
);
1096 if (ah
->opmode
== NL80211_IFTYPE_AP
||
1097 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1099 * Always burst out beacon and CAB traffic
1100 * (aifs = cwmin = cwmax = 0)
1105 } else if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
1107 * Adhoc mode; backoff between 0 and (2 * cw_min).
1111 qi
.tqi_cw_max
= 2 * AR5K_TUNE_CWMIN
;
1114 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1115 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1116 qi
.tqi_aifs
, qi
.tqi_cw_min
, qi
.tqi_cw_max
);
1118 ret
= ath5k_hw_set_tx_queueprops(ah
, ah
->bhalq
, &qi
);
1120 ATH5K_ERR(ah
, "%s: unable to update parameters for beacon "
1121 "hardware queue!\n", __func__
);
1124 ret
= ath5k_hw_reset_tx_queue(ah
, ah
->bhalq
); /* push to h/w */
1128 /* reconfigure cabq with ready time to 80% of beacon_interval */
1129 ret
= ath5k_hw_get_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1133 qi
.tqi_ready_time
= (ah
->bintval
* 80) / 100;
1134 ret
= ath5k_hw_set_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1138 ret
= ath5k_hw_reset_tx_queue(ah
, AR5K_TX_QUEUE_ID_CAB
);
1144 * ath5k_drain_tx_buffs - Empty tx buffers
1146 * @ah: The &struct ath5k_hw
1148 * Empty tx buffers from all queues in preparation
1149 * of a reset or during shutdown.
1151 * NB: this assumes output has been stopped and
1152 * we do not need to block ath5k_tx_tasklet
1155 ath5k_drain_tx_buffs(struct ath5k_hw
*ah
)
1157 struct ath5k_txq
*txq
;
1158 struct ath5k_buf
*bf
, *bf0
;
1161 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
1162 if (ah
->txqs
[i
].setup
) {
1164 spin_lock_bh(&txq
->lock
);
1165 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1166 ath5k_debug_printtxbuf(ah
, bf
);
1168 ath5k_txbuf_free_skb(ah
, bf
);
1170 spin_lock(&ah
->txbuflock
);
1171 list_move_tail(&bf
->list
, &ah
->txbuf
);
1174 spin_unlock(&ah
->txbuflock
);
1177 txq
->txq_poll_mark
= false;
1178 spin_unlock_bh(&txq
->lock
);
1184 ath5k_txq_release(struct ath5k_hw
*ah
)
1186 struct ath5k_txq
*txq
= ah
->txqs
;
1189 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++, txq
++)
1191 ath5k_hw_release_tx_queue(ah
, txq
->qnum
);
1202 * Enable the receive h/w following a reset.
1205 ath5k_rx_start(struct ath5k_hw
*ah
)
1207 struct ath_common
*common
= ath5k_hw_common(ah
);
1208 struct ath5k_buf
*bf
;
1211 common
->rx_bufsize
= roundup(IEEE80211_MAX_FRAME_LEN
, common
->cachelsz
);
1213 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "cachelsz %u rx_bufsize %u\n",
1214 common
->cachelsz
, common
->rx_bufsize
);
1216 spin_lock_bh(&ah
->rxbuflock
);
1218 list_for_each_entry(bf
, &ah
->rxbuf
, list
) {
1219 ret
= ath5k_rxbuf_setup(ah
, bf
);
1221 spin_unlock_bh(&ah
->rxbuflock
);
1225 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1226 ath5k_hw_set_rxdp(ah
, bf
->daddr
);
1227 spin_unlock_bh(&ah
->rxbuflock
);
1229 ath5k_hw_start_rx_dma(ah
); /* enable recv descriptors */
1230 ath5k_update_bssid_mask_and_opmode(ah
, NULL
); /* set filters, etc. */
1231 ath5k_hw_start_rx_pcu(ah
); /* re-enable PCU/DMA engine */
1239 * Disable the receive logic on PCU (DRU)
1240 * In preparation for a shutdown.
1242 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1246 ath5k_rx_stop(struct ath5k_hw
*ah
)
1249 ath5k_hw_set_rx_filter(ah
, 0); /* clear recv filter */
1250 ath5k_hw_stop_rx_pcu(ah
); /* disable PCU */
1252 ath5k_debug_printrxbuffs(ah
);
1256 ath5k_rx_decrypted(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1257 struct ath5k_rx_status
*rs
)
1259 struct ath_common
*common
= ath5k_hw_common(ah
);
1260 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
1261 unsigned int keyix
, hlen
;
1263 if (!(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1264 rs
->rs_keyix
!= AR5K_RXKEYIX_INVALID
)
1265 return RX_FLAG_DECRYPTED
;
1267 /* Apparently when a default key is used to decrypt the packet
1268 the hw does not set the index used to decrypt. In such cases
1269 get the index from the packet. */
1270 hlen
= ieee80211_hdrlen(hdr
->frame_control
);
1271 if (ieee80211_has_protected(hdr
->frame_control
) &&
1272 !(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1273 skb
->len
>= hlen
+ 4) {
1274 keyix
= skb
->data
[hlen
+ 3] >> 6;
1276 if (test_bit(keyix
, common
->keymap
))
1277 return RX_FLAG_DECRYPTED
;
1285 ath5k_check_ibss_tsf(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1286 struct ieee80211_rx_status
*rxs
)
1290 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1292 if (le16_to_cpu(mgmt
->u
.beacon
.capab_info
) & WLAN_CAPABILITY_IBSS
) {
1294 * Received an IBSS beacon with the same BSSID. Hardware *must*
1295 * have updated the local TSF. We have to work around various
1296 * hardware bugs, though...
1298 tsf
= ath5k_hw_get_tsf64(ah
);
1299 bc_tstamp
= le64_to_cpu(mgmt
->u
.beacon
.timestamp
);
1300 hw_tu
= TSF_TO_TU(tsf
);
1302 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1303 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1304 (unsigned long long)bc_tstamp
,
1305 (unsigned long long)rxs
->mactime
,
1306 (unsigned long long)(rxs
->mactime
- bc_tstamp
),
1307 (unsigned long long)tsf
);
1310 * Sometimes the HW will give us a wrong tstamp in the rx
1311 * status, causing the timestamp extension to go wrong.
1312 * (This seems to happen especially with beacon frames bigger
1313 * than 78 byte (incl. FCS))
1314 * But we know that the receive timestamp must be later than the
1315 * timestamp of the beacon since HW must have synced to that.
1317 * NOTE: here we assume mactime to be after the frame was
1318 * received, not like mac80211 which defines it at the start.
1320 if (bc_tstamp
> rxs
->mactime
) {
1321 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1322 "fixing mactime from %llx to %llx\n",
1323 (unsigned long long)rxs
->mactime
,
1324 (unsigned long long)tsf
);
1329 * Local TSF might have moved higher than our beacon timers,
1330 * in that case we have to update them to continue sending
1331 * beacons. This also takes care of synchronizing beacon sending
1332 * times with other stations.
1334 if (hw_tu
>= ah
->nexttbtt
)
1335 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1337 /* Check if the beacon timers are still correct, because a TSF
1338 * update might have created a window between them - for a
1339 * longer description see the comment of this function: */
1340 if (!ath5k_hw_check_beacon_timers(ah
, ah
->bintval
)) {
1341 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1342 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1343 "fixed beacon timers after beacon receive\n");
1349 * Compute padding position. skb must contain an IEEE 802.11 frame
1351 static int ath5k_common_padpos(struct sk_buff
*skb
)
1353 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1354 __le16 frame_control
= hdr
->frame_control
;
1357 if (ieee80211_has_a4(frame_control
))
1360 if (ieee80211_is_data_qos(frame_control
))
1361 padpos
+= IEEE80211_QOS_CTL_LEN
;
1367 * This function expects an 802.11 frame and returns the number of
1368 * bytes added, or -1 if we don't have enough header room.
1370 static int ath5k_add_padding(struct sk_buff
*skb
)
1372 int padpos
= ath5k_common_padpos(skb
);
1373 int padsize
= padpos
& 3;
1375 if (padsize
&& skb
->len
> padpos
) {
1377 if (skb_headroom(skb
) < padsize
)
1380 skb_push(skb
, padsize
);
1381 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
1389 * The MAC header is padded to have 32-bit boundary if the
1390 * packet payload is non-zero. The general calculation for
1391 * padsize would take into account odd header lengths:
1392 * padsize = 4 - (hdrlen & 3); however, since only
1393 * even-length headers are used, padding can only be 0 or 2
1394 * bytes and we can optimize this a bit. We must not try to
1395 * remove padding from short control frames that do not have a
1398 * This function expects an 802.11 frame and returns the number of
1401 static int ath5k_remove_padding(struct sk_buff
*skb
)
1403 int padpos
= ath5k_common_padpos(skb
);
1404 int padsize
= padpos
& 3;
1406 if (padsize
&& skb
->len
>= padpos
+ padsize
) {
1407 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
1408 skb_pull(skb
, padsize
);
1416 ath5k_receive_frame(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1417 struct ath5k_rx_status
*rs
)
1419 struct ieee80211_rx_status
*rxs
;
1420 struct ath_common
*common
= ath5k_hw_common(ah
);
1422 ath5k_remove_padding(skb
);
1424 rxs
= IEEE80211_SKB_RXCB(skb
);
1427 if (unlikely(rs
->rs_status
& AR5K_RXERR_MIC
))
1428 rxs
->flag
|= RX_FLAG_MMIC_ERROR
;
1429 if (unlikely(rs
->rs_status
& AR5K_RXERR_CRC
))
1430 rxs
->flag
|= RX_FLAG_FAILED_FCS_CRC
;
1434 * always extend the mac timestamp, since this information is
1435 * also needed for proper IBSS merging.
1437 * XXX: it might be too late to do it here, since rs_tstamp is
1438 * 15bit only. that means TSF extension has to be done within
1439 * 32768usec (about 32ms). it might be necessary to move this to
1440 * the interrupt handler, like it is done in madwifi.
1442 rxs
->mactime
= ath5k_extend_tsf(ah
, rs
->rs_tstamp
);
1443 rxs
->flag
|= RX_FLAG_MACTIME_END
;
1445 rxs
->freq
= ah
->curchan
->center_freq
;
1446 rxs
->band
= ah
->curchan
->band
;
1448 rxs
->signal
= ah
->ah_noise_floor
+ rs
->rs_rssi
;
1450 rxs
->antenna
= rs
->rs_antenna
;
1452 if (rs
->rs_antenna
> 0 && rs
->rs_antenna
< 5)
1453 ah
->stats
.antenna_rx
[rs
->rs_antenna
]++;
1455 ah
->stats
.antenna_rx
[0]++; /* invalid */
1457 rxs
->rate_idx
= ath5k_hw_to_driver_rix(ah
, rs
->rs_rate
);
1458 rxs
->flag
|= ath5k_rx_decrypted(ah
, skb
, rs
);
1459 switch (ah
->ah_bwmode
) {
1460 case AR5K_BWMODE_5MHZ
:
1461 rxs
->bw
= RATE_INFO_BW_5
;
1463 case AR5K_BWMODE_10MHZ
:
1464 rxs
->bw
= RATE_INFO_BW_10
;
1471 ah
->sbands
[ah
->curchan
->band
].bitrates
[rxs
->rate_idx
].hw_value_short
)
1472 rxs
->enc_flags
|= RX_ENC_FLAG_SHORTPRE
;
1474 trace_ath5k_rx(ah
, skb
);
1476 if (ath_is_mybeacon(common
, (struct ieee80211_hdr
*)skb
->data
)) {
1477 ewma_beacon_rssi_add(&ah
->ah_beacon_rssi_avg
, rs
->rs_rssi
);
1479 /* check beacons in IBSS mode */
1480 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
)
1481 ath5k_check_ibss_tsf(ah
, skb
, rxs
);
1484 ieee80211_rx(ah
->hw
, skb
);
1487 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1489 * Check if we want to further process this frame or not. Also update
1490 * statistics. Return true if we want this frame, false if not.
1493 ath5k_receive_frame_ok(struct ath5k_hw
*ah
, struct ath5k_rx_status
*rs
)
1495 ah
->stats
.rx_all_count
++;
1496 ah
->stats
.rx_bytes_count
+= rs
->rs_datalen
;
1498 if (unlikely(rs
->rs_status
)) {
1499 unsigned int filters
;
1501 if (rs
->rs_status
& AR5K_RXERR_CRC
)
1502 ah
->stats
.rxerr_crc
++;
1503 if (rs
->rs_status
& AR5K_RXERR_FIFO
)
1504 ah
->stats
.rxerr_fifo
++;
1505 if (rs
->rs_status
& AR5K_RXERR_PHY
) {
1506 ah
->stats
.rxerr_phy
++;
1507 if (rs
->rs_phyerr
> 0 && rs
->rs_phyerr
< 32)
1508 ah
->stats
.rxerr_phy_code
[rs
->rs_phyerr
]++;
1511 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1512 * These restarts happen when the radio resynchronizes to a stronger frame
1513 * while receiving a weaker frame. Here we receive the prefix of the weak
1514 * frame. Since these are incomplete packets, mark their CRC as invalid.
1516 if (rs
->rs_phyerr
== AR5K_RX_PHY_ERROR_OFDM_RESTART
||
1517 rs
->rs_phyerr
== AR5K_RX_PHY_ERROR_CCK_RESTART
) {
1518 rs
->rs_status
|= AR5K_RXERR_CRC
;
1519 rs
->rs_status
&= ~AR5K_RXERR_PHY
;
1524 if (rs
->rs_status
& AR5K_RXERR_DECRYPT
) {
1526 * Decrypt error. If the error occurred
1527 * because there was no hardware key, then
1528 * let the frame through so the upper layers
1529 * can process it. This is necessary for 5210
1530 * parts which have no way to setup a ``clear''
1533 * XXX do key cache faulting
1535 ah
->stats
.rxerr_decrypt
++;
1536 if (rs
->rs_keyix
== AR5K_RXKEYIX_INVALID
&&
1537 !(rs
->rs_status
& AR5K_RXERR_CRC
))
1540 if (rs
->rs_status
& AR5K_RXERR_MIC
) {
1541 ah
->stats
.rxerr_mic
++;
1546 * Reject any frames with non-crypto errors, and take into account the
1547 * current FIF_* filters.
1549 filters
= AR5K_RXERR_DECRYPT
;
1550 if (ah
->fif_filter_flags
& FIF_FCSFAIL
)
1551 filters
|= AR5K_RXERR_CRC
;
1553 if (rs
->rs_status
& ~filters
)
1557 if (unlikely(rs
->rs_more
)) {
1558 ah
->stats
.rxerr_jumbo
++;
1565 ath5k_set_current_imask(struct ath5k_hw
*ah
)
1567 enum ath5k_int imask
;
1568 unsigned long flags
;
1570 if (test_bit(ATH_STAT_RESET
, ah
->status
))
1573 spin_lock_irqsave(&ah
->irqlock
, flags
);
1576 imask
&= ~AR5K_INT_RX_ALL
;
1578 imask
&= ~AR5K_INT_TX_ALL
;
1579 ath5k_hw_set_imr(ah
, imask
);
1580 spin_unlock_irqrestore(&ah
->irqlock
, flags
);
1584 ath5k_tasklet_rx(struct tasklet_struct
*t
)
1586 struct ath5k_rx_status rs
= {};
1587 struct sk_buff
*skb
, *next_skb
;
1588 dma_addr_t next_skb_addr
;
1589 struct ath5k_hw
*ah
= from_tasklet(ah
, t
, rxtq
);
1590 struct ath_common
*common
= ath5k_hw_common(ah
);
1591 struct ath5k_buf
*bf
;
1592 struct ath5k_desc
*ds
;
1595 spin_lock(&ah
->rxbuflock
);
1596 if (list_empty(&ah
->rxbuf
)) {
1597 ATH5K_WARN(ah
, "empty rx buf pool\n");
1601 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1602 BUG_ON(bf
->skb
== NULL
);
1606 /* bail if HW is still using self-linked descriptor */
1607 if (ath5k_hw_get_rxdp(ah
) == bf
->daddr
)
1610 ret
= ah
->ah_proc_rx_desc(ah
, ds
, &rs
);
1611 if (unlikely(ret
== -EINPROGRESS
))
1613 else if (unlikely(ret
)) {
1614 ATH5K_ERR(ah
, "error in processing rx descriptor\n");
1615 ah
->stats
.rxerr_proc
++;
1619 if (ath5k_receive_frame_ok(ah
, &rs
)) {
1620 next_skb
= ath5k_rx_skb_alloc(ah
, &next_skb_addr
);
1623 * If we can't replace bf->skb with a new skb under
1624 * memory pressure, just skip this packet
1629 dma_unmap_single(ah
->dev
, bf
->skbaddr
,
1633 skb_put(skb
, rs
.rs_datalen
);
1635 ath5k_receive_frame(ah
, skb
, &rs
);
1638 bf
->skbaddr
= next_skb_addr
;
1641 list_move_tail(&bf
->list
, &ah
->rxbuf
);
1642 } while (ath5k_rxbuf_setup(ah
, bf
) == 0);
1644 spin_unlock(&ah
->rxbuflock
);
1645 ah
->rx_pending
= false;
1646 ath5k_set_current_imask(ah
);
1655 ath5k_tx_queue(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
1656 struct ath5k_txq
*txq
, struct ieee80211_tx_control
*control
)
1658 struct ath5k_hw
*ah
= hw
->priv
;
1659 struct ath5k_buf
*bf
;
1660 unsigned long flags
;
1663 trace_ath5k_tx(ah
, skb
, txq
);
1666 * The hardware expects the header padded to 4 byte boundaries.
1667 * If this is not the case, we add the padding after the header.
1669 padsize
= ath5k_add_padding(skb
);
1671 ATH5K_ERR(ah
, "tx hdrlen not %%4: not enough"
1672 " headroom to pad");
1676 if (txq
->txq_len
>= txq
->txq_max
&&
1677 txq
->qnum
<= AR5K_TX_QUEUE_ID_DATA_MAX
)
1678 ieee80211_stop_queue(hw
, txq
->qnum
);
1680 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1681 if (list_empty(&ah
->txbuf
)) {
1682 ATH5K_ERR(ah
, "no further txbuf available, dropping packet\n");
1683 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1684 ieee80211_stop_queues(hw
);
1687 bf
= list_first_entry(&ah
->txbuf
, struct ath5k_buf
, list
);
1688 list_del(&bf
->list
);
1690 if (list_empty(&ah
->txbuf
))
1691 ieee80211_stop_queues(hw
);
1692 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1696 if (ath5k_txbuf_setup(ah
, bf
, txq
, padsize
, control
)) {
1698 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1699 list_add_tail(&bf
->list
, &ah
->txbuf
);
1701 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1707 ieee80211_free_txskb(hw
, skb
);
1711 ath5k_tx_frame_completed(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1712 struct ath5k_txq
*txq
, struct ath5k_tx_status
*ts
,
1713 struct ath5k_buf
*bf
)
1715 struct ieee80211_tx_info
*info
;
1720 ah
->stats
.tx_all_count
++;
1721 ah
->stats
.tx_bytes_count
+= skb
->len
;
1722 info
= IEEE80211_SKB_CB(skb
);
1724 size
= min_t(int, sizeof(info
->status
.rates
), sizeof(bf
->rates
));
1725 memcpy(info
->status
.rates
, bf
->rates
, size
);
1727 tries
[0] = info
->status
.rates
[0].count
;
1728 tries
[1] = info
->status
.rates
[1].count
;
1729 tries
[2] = info
->status
.rates
[2].count
;
1731 ieee80211_tx_info_clear_status(info
);
1733 for (i
= 0; i
< ts
->ts_final_idx
; i
++) {
1734 struct ieee80211_tx_rate
*r
=
1735 &info
->status
.rates
[i
];
1737 r
->count
= tries
[i
];
1740 info
->status
.rates
[ts
->ts_final_idx
].count
= ts
->ts_final_retry
;
1741 info
->status
.rates
[ts
->ts_final_idx
+ 1].idx
= -1;
1743 if (unlikely(ts
->ts_status
)) {
1744 ah
->stats
.ack_fail
++;
1745 if (ts
->ts_status
& AR5K_TXERR_FILT
) {
1746 info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
1747 ah
->stats
.txerr_filt
++;
1749 if (ts
->ts_status
& AR5K_TXERR_XRETRY
)
1750 ah
->stats
.txerr_retry
++;
1751 if (ts
->ts_status
& AR5K_TXERR_FIFO
)
1752 ah
->stats
.txerr_fifo
++;
1754 info
->flags
|= IEEE80211_TX_STAT_ACK
;
1755 info
->status
.ack_signal
= ts
->ts_rssi
;
1757 /* count the successful attempt as well */
1758 info
->status
.rates
[ts
->ts_final_idx
].count
++;
1762 * Remove MAC header padding before giving the frame
1765 ath5k_remove_padding(skb
);
1767 if (ts
->ts_antenna
> 0 && ts
->ts_antenna
< 5)
1768 ah
->stats
.antenna_tx
[ts
->ts_antenna
]++;
1770 ah
->stats
.antenna_tx
[0]++; /* invalid */
1772 trace_ath5k_tx_complete(ah
, skb
, txq
, ts
);
1773 ieee80211_tx_status_skb(ah
->hw
, skb
);
1777 ath5k_tx_processq(struct ath5k_hw
*ah
, struct ath5k_txq
*txq
)
1779 struct ath5k_tx_status ts
= {};
1780 struct ath5k_buf
*bf
, *bf0
;
1781 struct ath5k_desc
*ds
;
1782 struct sk_buff
*skb
;
1785 spin_lock(&txq
->lock
);
1786 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1788 txq
->txq_poll_mark
= false;
1790 /* skb might already have been processed last time. */
1791 if (bf
->skb
!= NULL
) {
1794 ret
= ah
->ah_proc_tx_desc(ah
, ds
, &ts
);
1795 if (unlikely(ret
== -EINPROGRESS
))
1797 else if (unlikely(ret
)) {
1799 "error %d while processing "
1800 "queue %u\n", ret
, txq
->qnum
);
1807 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
,
1809 ath5k_tx_frame_completed(ah
, skb
, txq
, &ts
, bf
);
1813 * It's possible that the hardware can say the buffer is
1814 * completed when it hasn't yet loaded the ds_link from
1815 * host memory and moved on.
1816 * Always keep the last descriptor to avoid HW races...
1818 if (ath5k_hw_get_txdp(ah
, txq
->qnum
) != bf
->daddr
) {
1819 spin_lock(&ah
->txbuflock
);
1820 list_move_tail(&bf
->list
, &ah
->txbuf
);
1823 spin_unlock(&ah
->txbuflock
);
1826 spin_unlock(&txq
->lock
);
1827 if (txq
->txq_len
< ATH5K_TXQ_LEN_LOW
&& txq
->qnum
< 4)
1828 ieee80211_wake_queue(ah
->hw
, txq
->qnum
);
1832 ath5k_tasklet_tx(struct tasklet_struct
*t
)
1835 struct ath5k_hw
*ah
= from_tasklet(ah
, t
, txtq
);
1837 for (i
= 0; i
< AR5K_NUM_TX_QUEUES
; i
++)
1838 if (ah
->txqs
[i
].setup
&& (ah
->ah_txq_isr_txok_all
& BIT(i
)))
1839 ath5k_tx_processq(ah
, &ah
->txqs
[i
]);
1841 ah
->tx_pending
= false;
1842 ath5k_set_current_imask(ah
);
1851 * Setup the beacon frame for transmit.
1854 ath5k_beacon_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
1856 struct sk_buff
*skb
= bf
->skb
;
1857 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
1858 struct ath5k_desc
*ds
;
1862 const int padsize
= 0;
1864 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
1866 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "skb %p [data %p len %u] "
1867 "skbaddr %llx\n", skb
, skb
->data
, skb
->len
,
1868 (unsigned long long)bf
->skbaddr
);
1870 if (dma_mapping_error(ah
->dev
, bf
->skbaddr
)) {
1871 ATH5K_ERR(ah
, "beacon DMA mapping failed\n");
1872 dev_kfree_skb_any(skb
);
1878 antenna
= ah
->ah_tx_ant
;
1880 flags
= AR5K_TXDESC_NOACK
;
1881 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
&& ath5k_hw_hasveol(ah
)) {
1882 ds
->ds_link
= bf
->daddr
; /* self-linked */
1883 flags
|= AR5K_TXDESC_VEOL
;
1888 * If we use multiple antennas on AP and use
1889 * the Sectored AP scenario, switch antenna every
1890 * 4 beacons to make sure everybody hears our AP.
1891 * When a client tries to associate, hw will keep
1892 * track of the tx antenna to be used for this client
1893 * automatically, based on ACKed packets.
1895 * Note: AP still listens and transmits RTS on the
1896 * default antenna which is supposed to be an omni.
1898 * Note2: On sectored scenarios it's possible to have
1899 * multiple antennas (1 omni -- the default -- and 14
1900 * sectors), so if we choose to actually support this
1901 * mode, we need to allow the user to set how many antennas
1902 * we have and tweak the code below to send beacons
1905 if (ah
->ah_ant_mode
== AR5K_ANTMODE_SECTOR_AP
)
1906 antenna
= ah
->bsent
& 4 ? 2 : 1;
1909 /* FIXME: If we are in g mode and rate is a CCK rate
1910 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1911 * from tx power (value is in dB units already) */
1912 ds
->ds_data
= bf
->skbaddr
;
1913 ret
= ah
->ah_setup_tx_desc(ah
, ds
, skb
->len
,
1914 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
1915 AR5K_PKT_TYPE_BEACON
,
1916 (ah
->ah_txpower
.txp_requested
* 2),
1917 ieee80211_get_tx_rate(ah
->hw
, info
)->hw_value
,
1918 1, AR5K_TXKEYIX_INVALID
,
1919 antenna
, flags
, 0, 0);
1925 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
1930 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1931 * this is called only once at config_bss time, for AP we do it every
1932 * SWBA interrupt so that the TIM will reflect buffered frames.
1934 * Called with the beacon lock.
1937 ath5k_beacon_update(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
1940 struct ath5k_hw
*ah
= hw
->priv
;
1941 struct ath5k_vif
*avf
;
1942 struct sk_buff
*skb
;
1944 if (WARN_ON(!vif
)) {
1949 skb
= ieee80211_beacon_get(hw
, vif
, 0);
1956 avf
= (void *)vif
->drv_priv
;
1957 ath5k_txbuf_free_skb(ah
, avf
->bbuf
);
1958 avf
->bbuf
->skb
= skb
;
1959 ret
= ath5k_beacon_setup(ah
, avf
->bbuf
);
1965 * Transmit a beacon frame at SWBA. Dynamic updates to the
1966 * frame contents are done as needed and the slot time is
1967 * also adjusted based on current state.
1969 * This is called from software irq context (beacontq tasklets)
1970 * or user context from ath5k_beacon_config.
1973 ath5k_beacon_send(struct ath5k_hw
*ah
)
1975 struct ieee80211_vif
*vif
;
1976 struct ath5k_vif
*avf
;
1977 struct ath5k_buf
*bf
;
1978 struct sk_buff
*skb
;
1981 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "in beacon_send\n");
1984 * Check if the previous beacon has gone out. If
1985 * not, don't try to post another: skip this
1986 * period and wait for the next. Missed beacons
1987 * indicate a problem and should not occur. If we
1988 * miss too many consecutive beacons reset the device.
1990 if (unlikely(ath5k_hw_num_tx_pending(ah
, ah
->bhalq
) != 0)) {
1992 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1993 "missed %u consecutive beacons\n", ah
->bmisscount
);
1994 if (ah
->bmisscount
> 10) { /* NB: 10 is a guess */
1995 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1996 "stuck beacon time (%u missed)\n",
1998 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
1999 "stuck beacon, resetting\n");
2000 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2004 if (unlikely(ah
->bmisscount
!= 0)) {
2005 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
2006 "resume beacon xmit after %u misses\n",
2011 if ((ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
+
2012 ah
->num_mesh_vifs
> 1) ||
2013 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
2014 u64 tsf
= ath5k_hw_get_tsf64(ah
);
2015 u32 tsftu
= TSF_TO_TU(tsf
);
2016 int slot
= ((tsftu
% ah
->bintval
) * ATH_BCBUF
) / ah
->bintval
;
2017 vif
= ah
->bslot
[(slot
+ 1) % ATH_BCBUF
];
2018 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
2019 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
2020 (unsigned long long)tsf
, tsftu
, ah
->bintval
, slot
, vif
);
2021 } else /* only one interface */
2027 avf
= (void *)vif
->drv_priv
;
2031 * Stop any current dma and put the new frame on the queue.
2032 * This should never fail since we check above that no frames
2033 * are still pending on the queue.
2035 if (unlikely(ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
))) {
2036 ATH5K_WARN(ah
, "beacon queue %u didn't start/stop ?\n", ah
->bhalq
);
2037 /* NB: hw still stops DMA, so proceed */
2040 /* refresh the beacon for AP or MESH mode */
2041 if (ah
->opmode
== NL80211_IFTYPE_AP
||
2042 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
2043 err
= ath5k_beacon_update(ah
->hw
, vif
);
2048 if (unlikely(bf
->skb
== NULL
|| ah
->opmode
== NL80211_IFTYPE_STATION
||
2049 ah
->opmode
== NL80211_IFTYPE_MONITOR
)) {
2050 ATH5K_WARN(ah
, "bf=%p bf_skb=%p\n", bf
, bf
->skb
);
2054 trace_ath5k_tx(ah
, bf
->skb
, &ah
->txqs
[ah
->bhalq
]);
2056 ath5k_hw_set_txdp(ah
, ah
->bhalq
, bf
->daddr
);
2057 ath5k_hw_start_tx_dma(ah
, ah
->bhalq
);
2058 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "TXDP[%u] = %llx (%p)\n",
2059 ah
->bhalq
, (unsigned long long)bf
->daddr
, bf
->desc
);
2061 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
2063 ath5k_tx_queue(ah
->hw
, skb
, ah
->cabq
, NULL
);
2065 if (ah
->cabq
->txq_len
>= ah
->cabq
->txq_max
)
2068 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
2075 * ath5k_beacon_update_timers - update beacon timers
2077 * @ah: struct ath5k_hw pointer we are operating on
2078 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2079 * beacon timer update based on the current HW TSF.
2081 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2082 * of a received beacon or the current local hardware TSF and write it to the
2083 * beacon timer registers.
2085 * This is called in a variety of situations, e.g. when a beacon is received,
2086 * when a TSF update has been detected, but also when an new IBSS is created or
2087 * when we otherwise know we have to update the timers, but we keep it in this
2088 * function to have it all together in one place.
2091 ath5k_beacon_update_timers(struct ath5k_hw
*ah
, u64 bc_tsf
)
2093 u32 nexttbtt
, intval
, hw_tu
, bc_tu
;
2096 intval
= ah
->bintval
& AR5K_BEACON_PERIOD
;
2097 if (ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
2098 + ah
->num_mesh_vifs
> 1) {
2099 intval
/= ATH_BCBUF
; /* staggered multi-bss beacons */
2101 ATH5K_WARN(ah
, "intval %u is too low, min 15\n",
2104 if (WARN_ON(!intval
))
2107 /* beacon TSF converted to TU */
2108 bc_tu
= TSF_TO_TU(bc_tsf
);
2110 /* current TSF converted to TU */
2111 hw_tsf
= ath5k_hw_get_tsf64(ah
);
2112 hw_tu
= TSF_TO_TU(hw_tsf
);
2114 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2115 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2116 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2117 * configuration we need to make sure it is bigger than that. */
2121 * no beacons received, called internally.
2122 * just need to refresh timers based on HW TSF.
2124 nexttbtt
= roundup(hw_tu
+ FUDGE
, intval
);
2125 } else if (bc_tsf
== 0) {
2127 * no beacon received, probably called by ath5k_reset_tsf().
2128 * reset TSF to start with 0.
2131 intval
|= AR5K_BEACON_RESET_TSF
;
2132 } else if (bc_tsf
> hw_tsf
) {
2134 * beacon received, SW merge happened but HW TSF not yet updated.
2135 * not possible to reconfigure timers yet, but next time we
2136 * receive a beacon with the same BSSID, the hardware will
2137 * automatically update the TSF and then we need to reconfigure
2140 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2141 "need to wait for HW TSF sync\n");
2145 * most important case for beacon synchronization between STA.
2147 * beacon received and HW TSF has been already updated by HW.
2148 * update next TBTT based on the TSF of the beacon, but make
2149 * sure it is ahead of our local TSF timer.
2151 nexttbtt
= bc_tu
+ roundup(hw_tu
+ FUDGE
- bc_tu
, intval
);
2155 ah
->nexttbtt
= nexttbtt
;
2157 intval
|= AR5K_BEACON_ENA
;
2158 ath5k_hw_init_beacon_timers(ah
, nexttbtt
, intval
);
2161 * debugging output last in order to preserve the time critical aspect
2165 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2166 "reconfigured timers based on HW TSF\n");
2167 else if (bc_tsf
== 0)
2168 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2169 "reset HW TSF and timers\n");
2171 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2172 "updated timers based on beacon TSF\n");
2174 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2175 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2176 (unsigned long long) bc_tsf
,
2177 (unsigned long long) hw_tsf
, bc_tu
, hw_tu
, nexttbtt
);
2178 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "intval %u %s %s\n",
2179 intval
& AR5K_BEACON_PERIOD
,
2180 intval
& AR5K_BEACON_ENA
? "AR5K_BEACON_ENA" : "",
2181 intval
& AR5K_BEACON_RESET_TSF
? "AR5K_BEACON_RESET_TSF" : "");
2185 * ath5k_beacon_config - Configure the beacon queues and interrupts
2187 * @ah: struct ath5k_hw pointer we are operating on
2189 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2190 * interrupts to detect TSF updates only.
2193 ath5k_beacon_config(struct ath5k_hw
*ah
)
2195 spin_lock_bh(&ah
->block
);
2197 ah
->imask
&= ~(AR5K_INT_BMISS
| AR5K_INT_SWBA
);
2199 if (ah
->enable_beacon
) {
2201 * In IBSS mode we use a self-linked tx descriptor and let the
2202 * hardware send the beacons automatically. We have to load it
2204 * We use the SWBA interrupt only to keep track of the beacon
2205 * timers in order to detect automatic TSF updates.
2207 ath5k_beaconq_config(ah
);
2209 ah
->imask
|= AR5K_INT_SWBA
;
2211 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2212 if (ath5k_hw_hasveol(ah
))
2213 ath5k_beacon_send(ah
);
2215 ath5k_beacon_update_timers(ah
, -1);
2217 ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
);
2220 ath5k_hw_set_imr(ah
, ah
->imask
);
2221 spin_unlock_bh(&ah
->block
);
2224 static void ath5k_tasklet_beacon(struct tasklet_struct
*t
)
2226 struct ath5k_hw
*ah
= from_tasklet(ah
, t
, beacontq
);
2229 * Software beacon alert--time to send a beacon.
2231 * In IBSS mode we use this interrupt just to
2232 * keep track of the next TBTT (target beacon
2233 * transmission time) in order to detect whether
2234 * automatic TSF updates happened.
2236 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2237 /* XXX: only if VEOL supported */
2238 u64 tsf
= ath5k_hw_get_tsf64(ah
);
2239 ah
->nexttbtt
+= ah
->bintval
;
2240 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
2241 "SWBA nexttbtt: %x hw_tu: %x "
2245 (unsigned long long) tsf
);
2247 spin_lock(&ah
->block
);
2248 ath5k_beacon_send(ah
);
2249 spin_unlock(&ah
->block
);
2254 /********************\
2255 * Interrupt handling *
2256 \********************/
2259 ath5k_intr_calibration_poll(struct ath5k_hw
*ah
)
2261 if (time_is_before_eq_jiffies(ah
->ah_cal_next_ani
) &&
2262 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2263 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2265 /* Run ANI only when calibration is not active */
2267 ah
->ah_cal_next_ani
= jiffies
+
2268 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2269 tasklet_schedule(&ah
->ani_tasklet
);
2271 } else if (time_is_before_eq_jiffies(ah
->ah_cal_next_short
) &&
2272 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2273 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2275 /* Run calibration only when another calibration
2278 * Note: This is for both full/short calibration,
2279 * if it's time for a full one, ath5k_calibrate_work will deal
2282 ah
->ah_cal_next_short
= jiffies
+
2283 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2284 ieee80211_queue_work(ah
->hw
, &ah
->calib_work
);
2286 /* we could use SWI to generate enough interrupts to meet our
2287 * calibration interval requirements, if necessary:
2288 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2292 ath5k_schedule_rx(struct ath5k_hw
*ah
)
2294 ah
->rx_pending
= true;
2295 tasklet_schedule(&ah
->rxtq
);
2299 ath5k_schedule_tx(struct ath5k_hw
*ah
)
2301 ah
->tx_pending
= true;
2302 tasklet_schedule(&ah
->txtq
);
2306 ath5k_intr(int irq
, void *dev_id
)
2308 struct ath5k_hw
*ah
= dev_id
;
2309 enum ath5k_int status
;
2310 unsigned int counter
= 1000;
2314 * If hw is not ready (or detached) and we get an
2315 * interrupt, or if we have no interrupts pending
2316 * (that means it's not for us) skip it.
2318 * NOTE: Group 0/1 PCI interface registers are not
2319 * supported on WiSOCs, so we can't check for pending
2320 * interrupts (ISR belongs to another register group
2323 if (unlikely(test_bit(ATH_STAT_INVALID
, ah
->status
) ||
2324 ((ath5k_get_bus_type(ah
) != ATH_AHB
) &&
2325 !ath5k_hw_is_intr_pending(ah
))))
2330 ath5k_hw_get_isr(ah
, &status
); /* NB: clears IRQ too */
2332 ATH5K_DBG(ah
, ATH5K_DEBUG_INTR
, "status 0x%x/0x%x\n",
2336 * Fatal hw error -> Log and reset
2338 * Fatal errors are unrecoverable so we have to
2339 * reset the card. These errors include bus and
2342 if (unlikely(status
& AR5K_INT_FATAL
)) {
2344 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2345 "fatal int, resetting\n");
2346 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2349 * RX Overrun -> Count and reset if needed
2351 * Receive buffers are full. Either the bus is busy or
2352 * the CPU is not fast enough to process all received
2355 } else if (unlikely(status
& AR5K_INT_RXORN
)) {
2358 * Older chipsets need a reset to come out of this
2359 * condition, but we treat it as RX for newer chips.
2360 * We don't know exactly which versions need a reset
2361 * this guess is copied from the HAL.
2363 ah
->stats
.rxorn_intr
++;
2365 if (ah
->ah_mac_srev
< AR5K_SREV_AR5212
) {
2366 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2367 "rx overrun, resetting\n");
2368 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2370 ath5k_schedule_rx(ah
);
2374 /* Software Beacon Alert -> Schedule beacon tasklet */
2375 if (status
& AR5K_INT_SWBA
)
2376 tasklet_hi_schedule(&ah
->beacontq
);
2379 * No more RX descriptors -> Just count
2381 * NB: the hardware should re-read the link when
2382 * RXE bit is written, but it doesn't work at
2383 * least on older hardware revs.
2385 if (status
& AR5K_INT_RXEOL
)
2386 ah
->stats
.rxeol_intr
++;
2389 /* TX Underrun -> Bump tx trigger level */
2390 if (status
& AR5K_INT_TXURN
)
2391 ath5k_hw_update_tx_triglevel(ah
, true);
2393 /* RX -> Schedule rx tasklet */
2394 if (status
& (AR5K_INT_RXOK
| AR5K_INT_RXERR
))
2395 ath5k_schedule_rx(ah
);
2397 /* TX -> Schedule tx tasklet */
2398 if (status
& (AR5K_INT_TXOK
2402 ath5k_schedule_tx(ah
);
2404 /* Missed beacon -> TODO
2405 if (status & AR5K_INT_BMISS)
2408 /* MIB event -> Update counters and notify ANI */
2409 if (status
& AR5K_INT_MIB
) {
2410 ah
->stats
.mib_intr
++;
2411 ath5k_hw_update_mib_counters(ah
);
2412 ath5k_ani_mib_intr(ah
);
2415 /* GPIO -> Notify RFKill layer */
2416 if (status
& AR5K_INT_GPIO
)
2417 tasklet_schedule(&ah
->rf_kill
.toggleq
);
2421 if (ath5k_get_bus_type(ah
) == ATH_AHB
)
2424 } while (ath5k_hw_is_intr_pending(ah
) && --counter
> 0);
2427 * Until we handle rx/tx interrupts mask them on IMR
2429 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2430 * and unset after we 've handled the interrupts.
2432 if (ah
->rx_pending
|| ah
->tx_pending
)
2433 ath5k_set_current_imask(ah
);
2435 if (unlikely(!counter
))
2436 ATH5K_WARN(ah
, "too many interrupts, giving up for now\n");
2438 /* Fire up calibration poll */
2439 ath5k_intr_calibration_poll(ah
);
2445 * Periodically recalibrate the PHY to account
2446 * for temperature/environment changes.
2449 ath5k_calibrate_work(struct work_struct
*work
)
2451 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2454 /* Should we run a full calibration ? */
2455 if (time_is_before_eq_jiffies(ah
->ah_cal_next_full
)) {
2457 ah
->ah_cal_next_full
= jiffies
+
2458 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2459 ah
->ah_cal_mask
|= AR5K_CALIBRATION_FULL
;
2461 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
2462 "running full calibration\n");
2464 if (ath5k_hw_gainf_calibrate(ah
) == AR5K_RFGAIN_NEED_CHANGE
) {
2466 * Rfgain is out of bounds, reset the chip
2467 * to load new gain values.
2469 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2470 "got new rfgain, resetting\n");
2471 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2474 ah
->ah_cal_mask
|= AR5K_CALIBRATION_SHORT
;
2477 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
, "channel %u/%x\n",
2478 ieee80211_frequency_to_channel(ah
->curchan
->center_freq
),
2479 ah
->curchan
->hw_value
);
2481 if (ath5k_hw_phy_calibrate(ah
, ah
->curchan
))
2482 ATH5K_ERR(ah
, "calibration of channel %u failed\n",
2483 ieee80211_frequency_to_channel(
2484 ah
->curchan
->center_freq
));
2486 /* Clear calibration flags */
2487 if (ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
)
2488 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_FULL
;
2489 else if (ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)
2490 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_SHORT
;
2495 ath5k_tasklet_ani(struct tasklet_struct
*t
)
2497 struct ath5k_hw
*ah
= from_tasklet(ah
, t
, ani_tasklet
);
2499 ah
->ah_cal_mask
|= AR5K_CALIBRATION_ANI
;
2500 ath5k_ani_calibration(ah
);
2501 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_ANI
;
2506 ath5k_tx_complete_poll_work(struct work_struct
*work
)
2508 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2509 tx_complete_work
.work
);
2510 struct ath5k_txq
*txq
;
2512 bool needreset
= false;
2514 if (!test_bit(ATH_STAT_STARTED
, ah
->status
))
2517 mutex_lock(&ah
->lock
);
2519 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
2520 if (ah
->txqs
[i
].setup
) {
2522 spin_lock_bh(&txq
->lock
);
2523 if (txq
->txq_len
> 1) {
2524 if (txq
->txq_poll_mark
) {
2525 ATH5K_DBG(ah
, ATH5K_DEBUG_XMIT
,
2526 "TX queue stuck %d\n",
2530 spin_unlock_bh(&txq
->lock
);
2533 txq
->txq_poll_mark
= true;
2536 spin_unlock_bh(&txq
->lock
);
2541 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2542 "TX queues stuck, resetting\n");
2543 ath5k_reset(ah
, NULL
, true);
2546 mutex_unlock(&ah
->lock
);
2548 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2549 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2553 /*************************\
2554 * Initialization routines *
2555 \*************************/
2557 static const struct ieee80211_iface_limit if_limits
[] = {
2558 { .max
= 2048, .types
= BIT(NL80211_IFTYPE_STATION
) },
2559 { .max
= 4, .types
=
2560 #ifdef CONFIG_MAC80211_MESH
2561 BIT(NL80211_IFTYPE_MESH_POINT
) |
2563 BIT(NL80211_IFTYPE_AP
) },
2566 static const struct ieee80211_iface_combination if_comb
= {
2567 .limits
= if_limits
,
2568 .n_limits
= ARRAY_SIZE(if_limits
),
2569 .max_interfaces
= 2048,
2570 .num_different_channels
= 1,
2574 ath5k_init_ah(struct ath5k_hw
*ah
, const struct ath_bus_ops
*bus_ops
)
2576 struct ieee80211_hw
*hw
= ah
->hw
;
2577 struct ath_common
*common
;
2581 /* Initialize driver private data */
2582 SET_IEEE80211_DEV(hw
, ah
->dev
);
2583 ieee80211_hw_set(hw
, SUPPORTS_RC_TABLE
);
2584 ieee80211_hw_set(hw
, REPORTS_TX_ACK_STATUS
);
2585 ieee80211_hw_set(hw
, MFP_CAPABLE
);
2586 ieee80211_hw_set(hw
, SIGNAL_DBM
);
2587 ieee80211_hw_set(hw
, RX_INCLUDES_FCS
);
2588 ieee80211_hw_set(hw
, HOST_BROADCAST_PS_BUFFERING
);
2590 hw
->wiphy
->interface_modes
=
2591 BIT(NL80211_IFTYPE_AP
) |
2592 BIT(NL80211_IFTYPE_STATION
) |
2593 BIT(NL80211_IFTYPE_ADHOC
) |
2594 BIT(NL80211_IFTYPE_MESH_POINT
);
2596 hw
->wiphy
->iface_combinations
= &if_comb
;
2597 hw
->wiphy
->n_iface_combinations
= 1;
2599 /* SW support for IBSS_RSN is provided by mac80211 */
2600 hw
->wiphy
->flags
|= WIPHY_FLAG_IBSS_RSN
;
2602 hw
->wiphy
->flags
|= WIPHY_FLAG_SUPPORTS_5_10_MHZ
;
2604 /* both antennas can be configured as RX or TX */
2605 hw
->wiphy
->available_antennas_tx
= 0x3;
2606 hw
->wiphy
->available_antennas_rx
= 0x3;
2608 hw
->extra_tx_headroom
= 2;
2610 wiphy_ext_feature_set(hw
->wiphy
, NL80211_EXT_FEATURE_CQM_RSSI_LIST
);
2613 * Mark the device as detached to avoid processing
2614 * interrupts until setup is complete.
2616 __set_bit(ATH_STAT_INVALID
, ah
->status
);
2618 ah
->opmode
= NL80211_IFTYPE_STATION
;
2620 mutex_init(&ah
->lock
);
2621 spin_lock_init(&ah
->rxbuflock
);
2622 spin_lock_init(&ah
->txbuflock
);
2623 spin_lock_init(&ah
->block
);
2624 spin_lock_init(&ah
->irqlock
);
2626 /* Setup interrupt handler */
2627 ret
= request_irq(ah
->irq
, ath5k_intr
, IRQF_SHARED
, "ath", ah
);
2629 ATH5K_ERR(ah
, "request_irq failed\n");
2633 common
= ath5k_hw_common(ah
);
2634 common
->ops
= &ath5k_common_ops
;
2635 common
->bus_ops
= bus_ops
;
2639 common
->clockrate
= 40;
2642 * Cache line size is used to size and align various
2643 * structures used to communicate with the hardware.
2645 ath5k_read_cachesize(common
, &csz
);
2646 common
->cachelsz
= csz
<< 2; /* convert to bytes */
2648 spin_lock_init(&common
->cc_lock
);
2650 /* Initialize device */
2651 ret
= ath5k_hw_init(ah
);
2655 /* Set up multi-rate retry capabilities */
2656 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
2658 hw
->max_rate_tries
= max(AR5K_INIT_RETRY_SHORT
,
2659 AR5K_INIT_RETRY_LONG
);
2662 hw
->vif_data_size
= sizeof(struct ath5k_vif
);
2664 /* Finish private driver data initialization */
2665 ret
= ath5k_init(hw
);
2669 ATH5K_INFO(ah
, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2670 ath5k_chip_name(AR5K_VERSION_MAC
, ah
->ah_mac_srev
),
2672 ah
->ah_phy_revision
);
2674 if (!ah
->ah_single_chip
) {
2675 /* Single chip radio (!RF5111) */
2676 if (ah
->ah_radio_5ghz_revision
&&
2677 !ah
->ah_radio_2ghz_revision
) {
2678 /* No 5GHz support -> report 2GHz radio */
2679 if (!test_bit(AR5K_MODE_11A
,
2680 ah
->ah_capabilities
.cap_mode
)) {
2681 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2682 ath5k_chip_name(AR5K_VERSION_RAD
,
2683 ah
->ah_radio_5ghz_revision
),
2684 ah
->ah_radio_5ghz_revision
);
2685 /* No 2GHz support (5110 and some
2686 * 5GHz only cards) -> report 5GHz radio */
2687 } else if (!test_bit(AR5K_MODE_11B
,
2688 ah
->ah_capabilities
.cap_mode
)) {
2689 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2690 ath5k_chip_name(AR5K_VERSION_RAD
,
2691 ah
->ah_radio_5ghz_revision
),
2692 ah
->ah_radio_5ghz_revision
);
2693 /* Multiband radio */
2695 ATH5K_INFO(ah
, "RF%s multiband radio found"
2697 ath5k_chip_name(AR5K_VERSION_RAD
,
2698 ah
->ah_radio_5ghz_revision
),
2699 ah
->ah_radio_5ghz_revision
);
2702 /* Multi chip radio (RF5111 - RF2111) ->
2703 * report both 2GHz/5GHz radios */
2704 else if (ah
->ah_radio_5ghz_revision
&&
2705 ah
->ah_radio_2ghz_revision
) {
2706 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2707 ath5k_chip_name(AR5K_VERSION_RAD
,
2708 ah
->ah_radio_5ghz_revision
),
2709 ah
->ah_radio_5ghz_revision
);
2710 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2711 ath5k_chip_name(AR5K_VERSION_RAD
,
2712 ah
->ah_radio_2ghz_revision
),
2713 ah
->ah_radio_2ghz_revision
);
2717 ath5k_debug_init_device(ah
);
2719 /* ready to process interrupts */
2720 __clear_bit(ATH_STAT_INVALID
, ah
->status
);
2724 ath5k_hw_deinit(ah
);
2726 free_irq(ah
->irq
, ah
);
2732 ath5k_stop_locked(struct ath5k_hw
*ah
)
2735 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "invalid %u\n",
2736 test_bit(ATH_STAT_INVALID
, ah
->status
));
2739 * Shutdown the hardware and driver:
2740 * stop output from above
2741 * disable interrupts
2743 * turn off the radio
2744 * clear transmit machinery
2745 * clear receive machinery
2746 * drain and release tx queues
2747 * reclaim beacon resources
2748 * power down hardware
2750 * Note that some of this work is not possible if the
2751 * hardware is gone (invalid).
2753 ieee80211_stop_queues(ah
->hw
);
2755 if (!test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2757 ath5k_hw_set_imr(ah
, 0);
2758 synchronize_irq(ah
->irq
);
2760 ath5k_hw_dma_stop(ah
);
2761 ath5k_drain_tx_buffs(ah
);
2762 ath5k_hw_phy_disable(ah
);
2768 int ath5k_start(struct ieee80211_hw
*hw
)
2770 struct ath5k_hw
*ah
= hw
->priv
;
2771 struct ath_common
*common
= ath5k_hw_common(ah
);
2774 mutex_lock(&ah
->lock
);
2776 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "mode %d\n", ah
->opmode
);
2779 * Stop anything previously setup. This is safe
2780 * no matter this is the first time through or not.
2782 ath5k_stop_locked(ah
);
2785 * The basic interface to setting the hardware in a good
2786 * state is ``reset''. On return the hardware is known to
2787 * be powered up and with interrupts disabled. This must
2788 * be followed by initialization of the appropriate bits
2789 * and then setup of the interrupt mask.
2791 ah
->curchan
= ah
->hw
->conf
.chandef
.chan
;
2792 ah
->imask
= AR5K_INT_RXOK
2802 ret
= ath5k_reset(ah
, NULL
, false);
2806 if (!ath5k_modparam_no_hw_rfkill_switch
)
2807 ath5k_rfkill_hw_start(ah
);
2810 * Reset the key cache since some parts do not reset the
2811 * contents on initial power up or resume from suspend.
2813 for (i
= 0; i
< common
->keymax
; i
++)
2814 ath_hw_keyreset(common
, (u16
) i
);
2816 /* Use higher rates for acks instead of base
2818 ah
->ah_ack_bitrate_high
= true;
2820 for (i
= 0; i
< ARRAY_SIZE(ah
->bslot
); i
++)
2821 ah
->bslot
[i
] = NULL
;
2825 mutex_unlock(&ah
->lock
);
2827 set_bit(ATH_STAT_STARTED
, ah
->status
);
2828 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2829 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2834 static void ath5k_stop_tasklets(struct ath5k_hw
*ah
)
2836 ah
->rx_pending
= false;
2837 ah
->tx_pending
= false;
2838 tasklet_kill(&ah
->rxtq
);
2839 tasklet_kill(&ah
->txtq
);
2840 tasklet_kill(&ah
->beacontq
);
2841 tasklet_kill(&ah
->ani_tasklet
);
2845 * Stop the device, grabbing the top-level lock to protect
2846 * against concurrent entry through ath5k_init (which can happen
2847 * if another thread does a system call and the thread doing the
2848 * stop is preempted).
2850 void ath5k_stop(struct ieee80211_hw
*hw
, bool suspend
)
2852 struct ath5k_hw
*ah
= hw
->priv
;
2855 mutex_lock(&ah
->lock
);
2856 ret
= ath5k_stop_locked(ah
);
2857 if (ret
== 0 && !test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2859 * Don't set the card in full sleep mode!
2861 * a) When the device is in this state it must be carefully
2862 * woken up or references to registers in the PCI clock
2863 * domain may freeze the bus (and system). This varies
2864 * by chip and is mostly an issue with newer parts
2865 * (madwifi sources mentioned srev >= 0x78) that go to
2866 * sleep more quickly.
2868 * b) On older chips full sleep results a weird behaviour
2869 * during wakeup. I tested various cards with srev < 0x78
2870 * and they don't wake up after module reload, a second
2871 * module reload is needed to bring the card up again.
2873 * Until we figure out what's going on don't enable
2874 * full chip reset on any chip (this is what Legacy HAL
2875 * and Sam's HAL do anyway). Instead Perform a full reset
2876 * on the device (same as initial state after attach) and
2877 * leave it idle (keep MAC/BB on warm reset) */
2878 ret
= ath5k_hw_on_hold(ah
);
2880 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2881 "putting device to sleep\n");
2884 mutex_unlock(&ah
->lock
);
2886 ath5k_stop_tasklets(ah
);
2888 clear_bit(ATH_STAT_STARTED
, ah
->status
);
2889 cancel_delayed_work_sync(&ah
->tx_complete_work
);
2891 if (!ath5k_modparam_no_hw_rfkill_switch
)
2892 ath5k_rfkill_hw_stop(ah
);
2896 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2897 * and change to the given channel.
2899 * This should be called with ah->lock.
2902 ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
2905 struct ath_common
*common
= ath5k_hw_common(ah
);
2907 bool fast
= chan
&& modparam_fastchanswitch
? 1 : 0;
2909 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "resetting\n");
2911 __set_bit(ATH_STAT_RESET
, ah
->status
);
2913 ath5k_hw_set_imr(ah
, 0);
2914 synchronize_irq(ah
->irq
);
2915 ath5k_stop_tasklets(ah
);
2917 /* Save ani mode and disable ANI during
2918 * reset. If we don't we might get false
2919 * PHY error interrupts. */
2920 ani_mode
= ah
->ani_state
.ani_mode
;
2921 ath5k_ani_init(ah
, ATH5K_ANI_MODE_OFF
);
2923 /* We are going to empty hw queues
2924 * so we should also free any remaining
2926 ath5k_drain_tx_buffs(ah
);
2929 ath5k_hw_stop_rx_pcu(ah
);
2933 * Note: If DMA didn't stop continue
2934 * since only a reset will fix it.
2936 ret
= ath5k_hw_dma_stop(ah
);
2938 /* RF Bus grant won't work if we have pending
2942 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2943 "DMA didn't stop, falling back to normal reset\n");
2950 ret
= ath5k_hw_reset(ah
, ah
->opmode
, ah
->curchan
, fast
, skip_pcu
);
2952 ATH5K_ERR(ah
, "can't reset hardware (%d)\n", ret
);
2956 ret
= ath5k_rx_start(ah
);
2958 ATH5K_ERR(ah
, "can't start recv logic\n");
2962 ath5k_ani_init(ah
, ani_mode
);
2965 * Set calibration intervals
2967 * Note: We don't need to run calibration imediately
2968 * since some initial calibration is done on reset
2969 * even for fast channel switching. Also on scanning
2970 * this will get set again and again and it won't get
2971 * executed unless we connect somewhere and spend some
2972 * time on the channel (that's what calibration needs
2973 * anyway to be accurate).
2975 ah
->ah_cal_next_full
= jiffies
+
2976 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2977 ah
->ah_cal_next_ani
= jiffies
+
2978 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2979 ah
->ah_cal_next_short
= jiffies
+
2980 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2982 ewma_beacon_rssi_init(&ah
->ah_beacon_rssi_avg
);
2984 /* clear survey data and cycle counters */
2985 memset(&ah
->survey
, 0, sizeof(ah
->survey
));
2986 spin_lock_bh(&common
->cc_lock
);
2987 ath_hw_cycle_counters_update(common
);
2988 memset(&common
->cc_survey
, 0, sizeof(common
->cc_survey
));
2989 memset(&common
->cc_ani
, 0, sizeof(common
->cc_ani
));
2990 spin_unlock_bh(&common
->cc_lock
);
2993 * Change channels and update the h/w rate map if we're switching;
2994 * e.g. 11a to 11b/g.
2996 * We may be doing a reset in response to an ioctl that changes the
2997 * channel so update any state that might change as a result.
3001 /* ath5k_chan_change(ah, c); */
3003 __clear_bit(ATH_STAT_RESET
, ah
->status
);
3005 ath5k_beacon_config(ah
);
3006 /* intrs are enabled by ath5k_beacon_config */
3008 ieee80211_wake_queues(ah
->hw
);
3015 static void ath5k_reset_work(struct work_struct
*work
)
3017 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
3020 mutex_lock(&ah
->lock
);
3021 ath5k_reset(ah
, NULL
, true);
3022 mutex_unlock(&ah
->lock
);
3026 ath5k_init(struct ieee80211_hw
*hw
)
3029 struct ath5k_hw
*ah
= hw
->priv
;
3030 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
3031 struct ath5k_txq
*txq
;
3032 u8 mac
[ETH_ALEN
] = {};
3037 * Collect the channel list. The 802.11 layer
3038 * is responsible for filtering this list based
3039 * on settings like the phy mode and regulatory
3040 * domain restrictions.
3042 ret
= ath5k_setup_bands(hw
);
3044 ATH5K_ERR(ah
, "can't get channels\n");
3049 * Allocate tx+rx descriptors and populate the lists.
3051 ret
= ath5k_desc_alloc(ah
);
3053 ATH5K_ERR(ah
, "can't allocate descriptors\n");
3058 * Allocate hardware transmit queues: one queue for
3059 * beacon frames and one data queue for each QoS
3060 * priority. Note that hw functions handle resetting
3061 * these queues at the needed time.
3063 ret
= ath5k_beaconq_setup(ah
);
3065 ATH5K_ERR(ah
, "can't setup a beacon xmit queue\n");
3069 ah
->cabq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_CAB
, 0);
3070 if (IS_ERR(ah
->cabq
)) {
3071 ATH5K_ERR(ah
, "can't setup cab queue\n");
3072 ret
= PTR_ERR(ah
->cabq
);
3076 /* 5211 and 5212 usually support 10 queues but we better rely on the
3077 * capability information */
3078 if (ah
->ah_capabilities
.cap_queues
.q_tx_num
>= 6) {
3079 /* This order matches mac80211's queue priority, so we can
3080 * directly use the mac80211 queue number without any mapping */
3081 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VO
);
3083 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3087 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VI
);
3089 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3093 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
3095 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3099 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BK
);
3101 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3107 /* older hardware (5210) can only support one data queue */
3108 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
3110 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3117 tasklet_setup(&ah
->rxtq
, ath5k_tasklet_rx
);
3118 tasklet_setup(&ah
->txtq
, ath5k_tasklet_tx
);
3119 tasklet_setup(&ah
->beacontq
, ath5k_tasklet_beacon
);
3120 tasklet_setup(&ah
->ani_tasklet
, ath5k_tasklet_ani
);
3122 INIT_WORK(&ah
->reset_work
, ath5k_reset_work
);
3123 INIT_WORK(&ah
->calib_work
, ath5k_calibrate_work
);
3124 INIT_DELAYED_WORK(&ah
->tx_complete_work
, ath5k_tx_complete_poll_work
);
3126 ret
= ath5k_hw_common(ah
)->bus_ops
->eeprom_read_mac(ah
, mac
);
3128 ATH5K_ERR(ah
, "unable to read address from EEPROM\n");
3132 SET_IEEE80211_PERM_ADDR(hw
, mac
);
3133 /* All MAC address bits matter for ACKs */
3134 ath5k_update_bssid_mask_and_opmode(ah
, NULL
);
3136 regulatory
->current_rd
= ah
->ah_capabilities
.cap_eeprom
.ee_regdomain
;
3137 ret
= ath_regd_init(regulatory
, hw
->wiphy
, ath5k_reg_notifier
);
3139 ATH5K_ERR(ah
, "can't initialize regulatory system\n");
3143 ret
= ieee80211_register_hw(hw
);
3145 ATH5K_ERR(ah
, "can't register ieee80211 hw\n");
3149 if (!ath_is_world_regd(regulatory
))
3150 regulatory_hint(hw
->wiphy
, regulatory
->alpha2
);
3152 ath5k_init_leds(ah
);
3154 ath5k_sysfs_register(ah
);
3158 ath5k_txq_release(ah
);
3160 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
3162 ath5k_desc_free(ah
);
3168 ath5k_deinit_ah(struct ath5k_hw
*ah
)
3170 struct ieee80211_hw
*hw
= ah
->hw
;
3173 * NB: the order of these is important:
3174 * o call the 802.11 layer before detaching ath5k_hw to
3175 * ensure callbacks into the driver to delete global
3176 * key cache entries can be handled
3177 * o reclaim the tx queue data structures after calling
3178 * the 802.11 layer as we'll get called back to reclaim
3179 * node state and potentially want to use them
3180 * o to cleanup the tx queues the hal is called, so detach
3182 * XXX: ??? detach ath5k_hw ???
3183 * Other than that, it's straightforward...
3185 ieee80211_unregister_hw(hw
);
3186 ath5k_desc_free(ah
);
3187 ath5k_txq_release(ah
);
3188 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
3189 ath5k_unregister_leds(ah
);
3191 ath5k_sysfs_unregister(ah
);
3193 * NB: can't reclaim these until after ieee80211_ifdetach
3194 * returns because we'll get called back to reclaim node
3195 * state and potentially want to use them.
3197 ath5k_hw_deinit(ah
);
3198 free_irq(ah
->irq
, ah
);
3202 ath5k_any_vif_assoc(struct ath5k_hw
*ah
)
3204 struct ath5k_vif_iter_data iter_data
;
3205 iter_data
.hw_macaddr
= NULL
;
3206 iter_data
.any_assoc
= false;
3207 iter_data
.need_set_hw_addr
= false;
3208 iter_data
.found_active
= true;
3210 ieee80211_iterate_active_interfaces_atomic(
3211 ah
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
3212 ath5k_vif_iter
, &iter_data
);
3213 return iter_data
.any_assoc
;
3217 ath5k_set_beacon_filter(struct ieee80211_hw
*hw
, bool enable
)
3219 struct ath5k_hw
*ah
= hw
->priv
;
3221 rfilt
= ath5k_hw_get_rx_filter(ah
);
3223 rfilt
|= AR5K_RX_FILTER_BEACON
;
3225 rfilt
&= ~AR5K_RX_FILTER_BEACON
;
3226 ath5k_hw_set_rx_filter(ah
, rfilt
);
3227 ah
->filter_flags
= rfilt
;
3230 void _ath5k_printk(const struct ath5k_hw
*ah
, const char *level
,
3231 const char *fmt
, ...)
3233 struct va_format vaf
;
3236 va_start(args
, fmt
);
3242 printk("%s" pr_fmt("%s: %pV"),
3243 level
, wiphy_name(ah
->hw
->wiphy
), &vaf
);
3245 printk("%s" pr_fmt("%pV"), level
, &vaf
);