2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /***********************\
22 * PHY related functions *
23 \***********************/
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/sort.h>
30 #include <linux/unaligned.h>
40 * DOC: PHY related functions
42 * Here we handle the low-level functions related to baseband
43 * and analog frontend (RF) parts. This is by far the most complex
44 * part of the hw code so make sure you know what you are doing.
46 * Here is a list of what this is all about:
48 * - Channel setting/switching
50 * - Automatic Gain Control (AGC) calibration
52 * - Noise Floor calibration
54 * - I/Q imbalance calibration (QAM correction)
56 * - Calibration due to thermal changes (gain_F)
58 * - Spur noise mitigation
60 * - RF/PHY initialization for the various operating modes and bwmodes
64 * - TX power control per channel/rate/packet type
66 * Also have in mind we never got documentation for most of these
67 * functions, what we have comes mostly from Atheros's code, reverse
68 * engineering and patent docs/presentations etc.
77 * ath5k_hw_radio_revision() - Get the PHY Chip revision
78 * @ah: The &struct ath5k_hw
79 * @band: One of enum nl80211_band
81 * Returns the revision number of a 2GHz, 5GHz or single chip
85 ath5k_hw_radio_revision(struct ath5k_hw
*ah
, enum nl80211_band band
)
92 * Set the radio chip access register
95 case NL80211_BAND_2GHZ
:
96 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_2GHZ
, AR5K_PHY(0));
98 case NL80211_BAND_5GHZ
:
99 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
105 usleep_range(2000, 2500);
107 /* ...wait until PHY is ready and read the selected radio revision */
108 ath5k_hw_reg_write(ah
, 0x00001c16, AR5K_PHY(0x34));
110 for (i
= 0; i
< 8; i
++)
111 ath5k_hw_reg_write(ah
, 0x00010000, AR5K_PHY(0x20));
113 if (ah
->ah_version
== AR5K_AR5210
) {
114 srev
= (ath5k_hw_reg_read(ah
, AR5K_PHY(256)) >> 28) & 0xf;
115 ret
= (u16
)ath5k_hw_bitswap(srev
, 4) + 1;
117 srev
= (ath5k_hw_reg_read(ah
, AR5K_PHY(0x100)) >> 24) & 0xff;
118 ret
= (u16
)ath5k_hw_bitswap(((srev
& 0xf0) >> 4) |
119 ((srev
& 0x0f) << 4), 8);
122 /* Reset to the 5GHz mode */
123 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
129 * ath5k_channel_ok() - Check if a channel is supported by the hw
130 * @ah: The &struct ath5k_hw
131 * @channel: The &struct ieee80211_channel
133 * Note: We don't do any regulatory domain checks here, it's just
137 ath5k_channel_ok(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
)
139 u16 freq
= channel
->center_freq
;
141 /* Check if the channel is in our supported range */
142 if (channel
->band
== NL80211_BAND_2GHZ
) {
143 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_2ghz_min
) &&
144 (freq
<= ah
->ah_capabilities
.cap_range
.range_2ghz_max
))
146 } else if (channel
->band
== NL80211_BAND_5GHZ
)
147 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_5ghz_min
) &&
148 (freq
<= ah
->ah_capabilities
.cap_range
.range_5ghz_max
))
155 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
156 * @ah: The &struct ath5k_hw
157 * @channel: The &struct ieee80211_channel
160 ath5k_hw_chan_has_spur_noise(struct ath5k_hw
*ah
,
161 struct ieee80211_channel
*channel
)
165 if ((ah
->ah_radio
== AR5K_RF5112
) ||
166 (ah
->ah_radio
== AR5K_RF5413
) ||
167 (ah
->ah_radio
== AR5K_RF2413
) ||
168 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
173 if ((channel
->center_freq
% refclk_freq
!= 0) &&
174 ((channel
->center_freq
% refclk_freq
< 10) ||
175 (channel
->center_freq
% refclk_freq
> 22)))
182 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
183 * @ah: The &struct ath5k_hw
184 * @rf_regs: The struct ath5k_rf_reg
186 * @reg_id: RF register ID
187 * @set: Indicate we need to swap data
189 * This is an internal function used to modify RF Banks before
190 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
194 ath5k_hw_rfb_op(struct ath5k_hw
*ah
, const struct ath5k_rf_reg
*rf_regs
,
195 u32 val
, u8 reg_id
, bool set
)
197 const struct ath5k_rf_reg
*rfreg
= NULL
;
198 u8 offset
, bank
, num_bits
, col
, position
;
200 u32 mask
, data
, last_bit
, bits_shifted
, first_bit
;
206 rfb
= ah
->ah_rf_banks
;
208 for (i
= 0; i
< ah
->ah_rf_regs_count
; i
++) {
209 if (rf_regs
[i
].index
== reg_id
) {
215 if (rfb
== NULL
|| rfreg
== NULL
) {
216 ATH5K_PRINTF("Rf register not found!\n");
217 /* should not happen */
222 num_bits
= rfreg
->field
.len
;
223 first_bit
= rfreg
->field
.pos
;
224 col
= rfreg
->field
.col
;
226 /* first_bit is an offset from bank's
227 * start. Since we have all banks on
228 * the same array, we use this offset
229 * to mark each bank's start */
230 offset
= ah
->ah_offset
[bank
];
233 if (!(col
<= 3 && num_bits
<= 32 && first_bit
+ num_bits
<= 319)) {
234 ATH5K_PRINTF("invalid values at offset %u\n", offset
);
238 entry
= ((first_bit
- 1) / 8) + offset
;
239 position
= (first_bit
- 1) % 8;
242 data
= ath5k_hw_bitswap(val
, num_bits
);
244 for (bits_shifted
= 0, bits_left
= num_bits
; bits_left
> 0;
245 position
= 0, entry
++) {
247 last_bit
= (position
+ bits_left
> 8) ? 8 :
248 position
+ bits_left
;
250 mask
= (((1 << last_bit
) - 1) ^ ((1 << position
) - 1)) <<
255 rfb
[entry
] |= ((data
<< position
) << (col
* 8)) & mask
;
256 data
>>= (8 - position
);
258 data
|= (((rfb
[entry
] & mask
) >> (col
* 8)) >> position
)
260 bits_shifted
+= last_bit
- position
;
263 bits_left
-= 8 - position
;
266 data
= set
? 1 : ath5k_hw_bitswap(data
, num_bits
);
272 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
273 * @ah: the &struct ath5k_hw
274 * @channel: the currently set channel upon reset
276 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
277 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
279 * Since delta slope is floating point we split it on its exponent and
280 * mantissa and provide these values on hw.
282 * For more infos i think this patent is related
283 * "http://www.freepatentsonline.com/7184495.html"
286 ath5k_hw_write_ofdm_timings(struct ath5k_hw
*ah
,
287 struct ieee80211_channel
*channel
)
289 /* Get exponent and mantissa and set it */
290 u32 coef_scaled
, coef_exp
, coef_man
,
291 ds_coef_exp
, ds_coef_man
, clock
;
293 BUG_ON(!(ah
->ah_version
== AR5K_AR5212
) ||
294 (channel
->hw_value
== AR5K_MODE_11B
));
297 * ALGO: coef = (5 * clock / carrier_freq) / 2
298 * we scale coef by shifting clock value by 24 for
299 * better precision since we use integers */
300 switch (ah
->ah_bwmode
) {
301 case AR5K_BWMODE_40MHZ
:
304 case AR5K_BWMODE_10MHZ
:
307 case AR5K_BWMODE_5MHZ
:
314 coef_scaled
= ((5 * (clock
<< 24)) / 2) / channel
->center_freq
;
317 * ALGO: coef_exp = 14 - highest set bit position */
318 coef_exp
= ilog2(coef_scaled
);
320 /* Doesn't make sense if it's zero*/
321 if (!coef_scaled
|| !coef_exp
)
324 /* Note: we've shifted coef_scaled by 24 */
325 coef_exp
= 14 - (coef_exp
- 24);
328 /* Get mantissa (significant digits)
329 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
330 coef_man
= coef_scaled
+
331 (1 << (24 - coef_exp
- 1));
333 /* Calculate delta slope coefficient exponent
334 * and mantissa (remove scaling) and set them on hw */
335 ds_coef_man
= coef_man
>> (24 - coef_exp
);
336 ds_coef_exp
= coef_exp
- 16;
338 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
339 AR5K_PHY_TIMING_3_DSC_MAN
, ds_coef_man
);
340 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
341 AR5K_PHY_TIMING_3_DSC_EXP
, ds_coef_exp
);
347 * ath5k_hw_phy_disable() - Disable PHY
348 * @ah: The &struct ath5k_hw
350 int ath5k_hw_phy_disable(struct ath5k_hw
*ah
)
353 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
359 * ath5k_hw_wait_for_synth() - Wait for synth to settle
360 * @ah: The &struct ath5k_hw
361 * @channel: The &struct ieee80211_channel
364 ath5k_hw_wait_for_synth(struct ath5k_hw
*ah
,
365 struct ieee80211_channel
*channel
)
368 * On 5211+ read activation -> rx delay
369 * and use it (100ns steps).
371 if (ah
->ah_version
!= AR5K_AR5210
) {
373 delay
= ath5k_hw_reg_read(ah
, AR5K_PHY_RX_DELAY
) &
375 delay
= (channel
->hw_value
== AR5K_MODE_11B
) ?
376 ((delay
<< 2) / 22) : (delay
/ 10);
377 if (ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
)
379 if (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
)
381 /* XXX: /2 on turbo ? Let's be safe
383 usleep_range(100 + delay
, 100 + (2 * delay
));
385 usleep_range(1000, 1500);
390 /**********************\
391 * RF Gain optimization *
392 \**********************/
395 * DOC: RF Gain optimization
397 * This code is used to optimize RF gain on different environments
398 * (temperature mostly) based on feedback from a power detector.
400 * It's only used on RF5111 and RF5112, later RF chips seem to have
401 * auto adjustment on hw -notice they have a much smaller BANK 7 and
402 * no gain optimization ladder-.
404 * For more infos check out this patent doc
405 * "http://www.freepatentsonline.com/7400691.html"
407 * This paper describes power drops as seen on the receiver due to
409 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
410 * %20of%20Power%20Control.pdf"
412 * And this is the MadWiFi bug entry related to the above
413 * "http://madwifi-project.org/ticket/1659"
414 * with various measurements and diagrams
418 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
419 * @ah: The &struct ath5k_hw
421 int ath5k_hw_rfgain_opt_init(struct ath5k_hw
*ah
)
423 /* Initialize the gain optimization values */
424 switch (ah
->ah_radio
) {
426 ah
->ah_gain
.g_step_idx
= rfgain_opt_5111
.go_default
;
427 ah
->ah_gain
.g_low
= 20;
428 ah
->ah_gain
.g_high
= 35;
429 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
432 ah
->ah_gain
.g_step_idx
= rfgain_opt_5112
.go_default
;
433 ah
->ah_gain
.g_low
= 20;
434 ah
->ah_gain
.g_high
= 85;
435 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
445 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
446 * @ah: The &struct ath5k_hw
448 * Schedules a gain probe check on the next transmitted packet.
449 * That means our next packet is going to be sent with lower
450 * tx power and a Peak to Average Power Detector (PAPD) will try
451 * to measure the gain.
453 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
454 * just after we enable the probe so that we don't mess with
458 ath5k_hw_request_rfgain_probe(struct ath5k_hw
*ah
)
461 /* Skip if gain calibration is inactive or
462 * we already handle a probe request */
463 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_ACTIVE
)
466 /* Send the packet with 2dB below max power as
467 * patent doc suggest */
468 ath5k_hw_reg_write(ah
, AR5K_REG_SM(ah
->ah_txpower
.txp_ofdm
- 4,
469 AR5K_PHY_PAPD_PROBE_TXPOWER
) |
470 AR5K_PHY_PAPD_PROBE_TX_NEXT
, AR5K_PHY_PAPD_PROBE
);
472 ah
->ah_gain
.g_state
= AR5K_RFGAIN_READ_REQUESTED
;
477 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
478 * @ah: The &struct ath5k_hw
480 * Calculate Gain_F measurement correction
481 * based on the current step for RF5112 rev. 2
484 ath5k_hw_rf_gainf_corr(struct ath5k_hw
*ah
)
487 const struct ath5k_gain_opt
*go
;
488 const struct ath5k_gain_opt_step
*g_step
;
489 const struct ath5k_rf_reg
*rf_regs
;
491 /* Only RF5112 Rev. 2 supports it */
492 if ((ah
->ah_radio
!= AR5K_RF5112
) ||
493 (ah
->ah_radio_5ghz_revision
<= AR5K_SREV_RAD_5112A
))
496 go
= &rfgain_opt_5112
;
497 rf_regs
= rf_regs_5112a
;
498 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
500 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
502 if (ah
->ah_rf_banks
== NULL
)
505 ah
->ah_gain
.g_f_corr
= 0;
507 /* No VGA (Variable Gain Amplifier) override, skip */
508 if (ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
, false) != 1)
511 /* Mix gain stepping */
512 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXGAIN_STEP
, false);
514 /* Mix gain override */
515 mix
= g_step
->gos_param
[0];
519 ah
->ah_gain
.g_f_corr
= step
* 2;
522 ah
->ah_gain
.g_f_corr
= (step
- 5) * 2;
525 ah
->ah_gain
.g_f_corr
= step
;
528 ah
->ah_gain
.g_f_corr
= 0;
532 return ah
->ah_gain
.g_f_corr
;
536 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
537 * @ah: The &struct ath5k_hw
539 * Check if current gain_F measurement is in the range of our
540 * power detector windows. If we get a measurement outside range
541 * we know it's not accurate (detectors can't measure anything outside
542 * their detection window) so we must ignore it.
544 * Returns true if readback was O.K. or false on failure
547 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw
*ah
)
549 const struct ath5k_rf_reg
*rf_regs
;
550 u32 step
, mix_ovr
, level
[4];
552 if (ah
->ah_rf_banks
== NULL
)
555 if (ah
->ah_radio
== AR5K_RF5111
) {
557 rf_regs
= rf_regs_5111
;
558 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
560 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_RFGAIN_STEP
,
564 level
[1] = (step
== 63) ? 50 : step
+ 4;
565 level
[2] = (step
!= 63) ? 64 : level
[0];
566 level
[3] = level
[2] + 50;
568 ah
->ah_gain
.g_high
= level
[3] -
569 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN
: -5);
570 ah
->ah_gain
.g_low
= level
[0] +
571 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN
: 0);
574 rf_regs
= rf_regs_5112
;
575 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
577 mix_ovr
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
,
580 level
[0] = level
[2] = 0;
583 level
[1] = level
[3] = 83;
585 level
[1] = level
[3] = 107;
586 ah
->ah_gain
.g_high
= 55;
590 return (ah
->ah_gain
.g_current
>= level
[0] &&
591 ah
->ah_gain
.g_current
<= level
[1]) ||
592 (ah
->ah_gain
.g_current
>= level
[2] &&
593 ah
->ah_gain
.g_current
<= level
[3]);
597 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
598 * @ah: The &struct ath5k_hw
600 * Choose the right target gain based on current gain
601 * and RF gain optimization ladder
604 ath5k_hw_rf_gainf_adjust(struct ath5k_hw
*ah
)
606 const struct ath5k_gain_opt
*go
;
607 const struct ath5k_gain_opt_step
*g_step
;
610 switch (ah
->ah_radio
) {
612 go
= &rfgain_opt_5111
;
615 go
= &rfgain_opt_5112
;
621 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
623 if (ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_high
) {
625 /* Reached maximum */
626 if (ah
->ah_gain
.g_step_idx
== 0)
629 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
630 ah
->ah_gain
.g_target
>= ah
->ah_gain
.g_high
&&
631 ah
->ah_gain
.g_step_idx
> 0;
632 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
633 ah
->ah_gain
.g_target
-= 2 *
634 (go
->go_step
[--(ah
->ah_gain
.g_step_idx
)].gos_gain
-
641 if (ah
->ah_gain
.g_current
<= ah
->ah_gain
.g_low
) {
643 /* Reached minimum */
644 if (ah
->ah_gain
.g_step_idx
== (go
->go_steps_count
- 1))
647 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
648 ah
->ah_gain
.g_target
<= ah
->ah_gain
.g_low
&&
649 ah
->ah_gain
.g_step_idx
< go
->go_steps_count
- 1;
650 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
651 ah
->ah_gain
.g_target
-= 2 *
652 (go
->go_step
[++ah
->ah_gain
.g_step_idx
].gos_gain
-
660 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
661 "ret %d, gain step %u, current gain %u, target gain %u\n",
662 ret
, ah
->ah_gain
.g_step_idx
, ah
->ah_gain
.g_current
,
663 ah
->ah_gain
.g_target
);
669 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
670 * @ah: The &struct ath5k_hw
672 * Main callback for thermal RF gain calibration engine
673 * Check for a new gain reading and schedule an adjustment
676 * Returns one of enum ath5k_rfgain codes
679 ath5k_hw_gainf_calibrate(struct ath5k_hw
*ah
)
682 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
684 if (ah
->ah_rf_banks
== NULL
||
685 ah
->ah_gain
.g_state
== AR5K_RFGAIN_INACTIVE
)
686 return AR5K_RFGAIN_INACTIVE
;
688 /* No check requested, either engine is inactive
689 * or an adjustment is already requested */
690 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_READ_REQUESTED
)
693 /* Read the PAPD (Peak to Average Power Detector)
695 data
= ath5k_hw_reg_read(ah
, AR5K_PHY_PAPD_PROBE
);
697 /* No probe is scheduled, read gain_F measurement */
698 if (!(data
& AR5K_PHY_PAPD_PROBE_TX_NEXT
)) {
699 ah
->ah_gain
.g_current
= data
>> AR5K_PHY_PAPD_PROBE_GAINF_S
;
700 type
= AR5K_REG_MS(data
, AR5K_PHY_PAPD_PROBE_TYPE
);
702 /* If tx packet is CCK correct the gain_F measurement
703 * by cck ofdm gain delta */
704 if (type
== AR5K_PHY_PAPD_PROBE_TYPE_CCK
) {
705 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
)
706 ah
->ah_gain
.g_current
+=
707 ee
->ee_cck_ofdm_gain_delta
;
709 ah
->ah_gain
.g_current
+=
710 AR5K_GAIN_CCK_PROBE_CORR
;
713 /* Further correct gain_F measurement for
715 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
716 ath5k_hw_rf_gainf_corr(ah
);
717 ah
->ah_gain
.g_current
=
718 ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_f_corr
?
719 (ah
->ah_gain
.g_current
- ah
->ah_gain
.g_f_corr
) :
723 /* Check if measurement is ok and if we need
724 * to adjust gain, schedule a gain adjustment,
725 * else switch back to the active state */
726 if (ath5k_hw_rf_check_gainf_readback(ah
) &&
727 AR5K_GAIN_CHECK_ADJUST(&ah
->ah_gain
) &&
728 ath5k_hw_rf_gainf_adjust(ah
)) {
729 ah
->ah_gain
.g_state
= AR5K_RFGAIN_NEED_CHANGE
;
731 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
736 return ah
->ah_gain
.g_state
;
740 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
741 * @ah: The &struct ath5k_hw
742 * @band: One of enum nl80211_band
744 * Write initial RF gain table to set the RF sensitivity.
746 * NOTE: This one works on all RF chips and has nothing to do
747 * with Gain_F calibration
750 ath5k_hw_rfgain_init(struct ath5k_hw
*ah
, enum nl80211_band band
)
752 const struct ath5k_ini_rfgain
*ath5k_rfg
;
753 unsigned int i
, size
, index
;
755 switch (ah
->ah_radio
) {
757 ath5k_rfg
= rfgain_5111
;
758 size
= ARRAY_SIZE(rfgain_5111
);
761 ath5k_rfg
= rfgain_5112
;
762 size
= ARRAY_SIZE(rfgain_5112
);
765 ath5k_rfg
= rfgain_2413
;
766 size
= ARRAY_SIZE(rfgain_2413
);
769 ath5k_rfg
= rfgain_2316
;
770 size
= ARRAY_SIZE(rfgain_2316
);
773 ath5k_rfg
= rfgain_5413
;
774 size
= ARRAY_SIZE(rfgain_5413
);
778 ath5k_rfg
= rfgain_2425
;
779 size
= ARRAY_SIZE(rfgain_2425
);
785 index
= (band
== NL80211_BAND_2GHZ
) ? 1 : 0;
787 for (i
= 0; i
< size
; i
++) {
789 ath5k_hw_reg_write(ah
, ath5k_rfg
[i
].rfg_value
[index
],
790 (u32
)ath5k_rfg
[i
].rfg_register
);
797 /********************\
798 * RF Registers setup *
799 \********************/
802 * ath5k_hw_rfregs_init() - Initialize RF register settings
803 * @ah: The &struct ath5k_hw
804 * @channel: The &struct ieee80211_channel
805 * @mode: One of enum ath5k_driver_mode
807 * Setup RF registers by writing RF buffer on hw. For
808 * more infos on this, check out rfbuffer.h
811 ath5k_hw_rfregs_init(struct ath5k_hw
*ah
,
812 struct ieee80211_channel
*channel
,
815 const struct ath5k_rf_reg
*rf_regs
;
816 const struct ath5k_ini_rfbuffer
*ini_rfb
;
817 const struct ath5k_gain_opt
*go
= NULL
;
818 const struct ath5k_gain_opt_step
*g_step
;
819 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
822 int i
, obdb
= -1, bank
= -1;
824 switch (ah
->ah_radio
) {
826 rf_regs
= rf_regs_5111
;
827 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
829 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5111
);
830 go
= &rfgain_opt_5111
;
833 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
834 rf_regs
= rf_regs_5112a
;
835 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
837 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112a
);
839 rf_regs
= rf_regs_5112
;
840 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
842 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112
);
844 go
= &rfgain_opt_5112
;
847 rf_regs
= rf_regs_2413
;
848 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2413
);
850 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2413
);
853 rf_regs
= rf_regs_2316
;
854 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2316
);
856 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2316
);
859 rf_regs
= rf_regs_5413
;
860 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5413
);
862 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5413
);
865 rf_regs
= rf_regs_2425
;
866 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
868 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2317
);
871 rf_regs
= rf_regs_2425
;
872 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
873 if (ah
->ah_mac_srev
< AR5K_SREV_AR2417
) {
875 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2425
);
878 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2417
);
885 /* If it's the first time we set RF buffer, allocate
886 * ah->ah_rf_banks based on ah->ah_rf_banks_size
888 if (ah
->ah_rf_banks
== NULL
) {
889 ah
->ah_rf_banks
= kmalloc_array(ah
->ah_rf_banks_size
,
892 if (ah
->ah_rf_banks
== NULL
) {
893 ATH5K_ERR(ah
, "out of memory\n");
898 /* Copy values to modify them */
899 rfb
= ah
->ah_rf_banks
;
901 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
902 if (ini_rfb
[i
].rfb_bank
>= AR5K_MAX_RF_BANKS
) {
903 ATH5K_ERR(ah
, "invalid bank\n");
907 /* Bank changed, write down the offset */
908 if (bank
!= ini_rfb
[i
].rfb_bank
) {
909 bank
= ini_rfb
[i
].rfb_bank
;
910 ah
->ah_offset
[bank
] = i
;
913 rfb
[i
] = ini_rfb
[i
].rfb_mode_data
[mode
];
916 /* Set Output and Driver bias current (OB/DB) */
917 if (channel
->band
== NL80211_BAND_2GHZ
) {
919 if (channel
->hw_value
== AR5K_MODE_11B
)
920 ee_mode
= AR5K_EEPROM_MODE_11B
;
922 ee_mode
= AR5K_EEPROM_MODE_11G
;
924 /* For RF511X/RF211X combination we
925 * use b_OB and b_DB parameters stored
926 * in eeprom on ee->ee_ob[ee_mode][0]
928 * For all other chips we use OB/DB for 2GHz
929 * stored in the b/g modal section just like
930 * 802.11a on ee->ee_ob[ee_mode][1] */
931 if ((ah
->ah_radio
== AR5K_RF5111
) ||
932 (ah
->ah_radio
== AR5K_RF5112
))
937 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
938 AR5K_RF_OB_2GHZ
, true);
940 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
941 AR5K_RF_DB_2GHZ
, true);
943 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
944 } else if ((channel
->band
== NL80211_BAND_5GHZ
) ||
945 (ah
->ah_radio
== AR5K_RF5111
)) {
947 /* For 11a, Turbo and XR we need to choose
948 * OB/DB based on frequency range */
949 ee_mode
= AR5K_EEPROM_MODE_11A
;
950 obdb
= channel
->center_freq
>= 5725 ? 3 :
951 (channel
->center_freq
>= 5500 ? 2 :
952 (channel
->center_freq
>= 5260 ? 1 :
953 (channel
->center_freq
> 4000 ? 0 : -1)));
958 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
959 AR5K_RF_OB_5GHZ
, true);
961 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
962 AR5K_RF_DB_5GHZ
, true);
965 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
967 /* Set turbo mode (N/A on RF5413) */
968 if ((ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
) &&
969 (ah
->ah_radio
!= AR5K_RF5413
))
970 ath5k_hw_rfb_op(ah
, rf_regs
, 1, AR5K_RF_TURBO
, false);
972 /* Bank Modifications (chip-specific) */
973 if (ah
->ah_radio
== AR5K_RF5111
) {
975 /* Set gain_F settings according to current step */
976 if (channel
->hw_value
!= AR5K_MODE_11B
) {
978 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_FRAME_CTL
,
979 AR5K_PHY_FRAME_CTL_TX_CLIP
,
980 g_step
->gos_param
[0]);
982 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
983 AR5K_RF_PWD_90
, true);
985 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
986 AR5K_RF_PWD_84
, true);
988 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
989 AR5K_RF_RFGAIN_SEL
, true);
991 /* We programmed gain_F parameters, switch back
993 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
999 ath5k_hw_rfb_op(ah
, rf_regs
, !ee
->ee_xpd
[ee_mode
],
1000 AR5K_RF_PWD_XPD
, true);
1002 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_x_gain
[ee_mode
],
1003 AR5K_RF_XPD_GAIN
, true);
1005 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
1006 AR5K_RF_GAIN_I
, true);
1008 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
1009 AR5K_RF_PLO_SEL
, true);
1011 /* Tweak power detectors for half/quarter rate support */
1012 if (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
||
1013 ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
) {
1016 ath5k_hw_rfb_op(ah
, rf_regs
, 0x1f,
1017 AR5K_RF_WAIT_S
, true);
1019 wait_i
= (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
) ?
1022 ath5k_hw_rfb_op(ah
, rf_regs
, wait_i
,
1023 AR5K_RF_WAIT_I
, true);
1024 ath5k_hw_rfb_op(ah
, rf_regs
, 3,
1025 AR5K_RF_MAX_TIME
, true);
1030 if (ah
->ah_radio
== AR5K_RF5112
) {
1032 /* Set gain_F settings according to current step */
1033 if (channel
->hw_value
!= AR5K_MODE_11B
) {
1035 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[0],
1036 AR5K_RF_MIXGAIN_OVR
, true);
1038 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
1039 AR5K_RF_PWD_138
, true);
1041 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
1042 AR5K_RF_PWD_137
, true);
1044 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
1045 AR5K_RF_PWD_136
, true);
1047 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[4],
1048 AR5K_RF_PWD_132
, true);
1050 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[5],
1051 AR5K_RF_PWD_131
, true);
1053 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[6],
1054 AR5K_RF_PWD_130
, true);
1056 /* We programmed gain_F parameters, switch back
1057 * to active state */
1058 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
1061 /* Bank 6/7 setup */
1063 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
1064 AR5K_RF_XPD_SEL
, true);
1066 if (ah
->ah_radio_5ghz_revision
< AR5K_SREV_RAD_5112A
) {
1067 /* Rev. 1 supports only one xpd */
1068 ath5k_hw_rfb_op(ah
, rf_regs
,
1069 ee
->ee_x_gain
[ee_mode
],
1070 AR5K_RF_XPD_GAIN
, true);
1073 u8
*pdg_curve_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
1074 if (ee
->ee_pd_gains
[ee_mode
] > 1) {
1075 ath5k_hw_rfb_op(ah
, rf_regs
,
1076 pdg_curve_to_idx
[0],
1077 AR5K_RF_PD_GAIN_LO
, true);
1078 ath5k_hw_rfb_op(ah
, rf_regs
,
1079 pdg_curve_to_idx
[1],
1080 AR5K_RF_PD_GAIN_HI
, true);
1082 ath5k_hw_rfb_op(ah
, rf_regs
,
1083 pdg_curve_to_idx
[0],
1084 AR5K_RF_PD_GAIN_LO
, true);
1085 ath5k_hw_rfb_op(ah
, rf_regs
,
1086 pdg_curve_to_idx
[0],
1087 AR5K_RF_PD_GAIN_HI
, true);
1090 /* Lower synth voltage on Rev 2 */
1091 if (ah
->ah_radio
== AR5K_RF5112
&&
1092 (ah
->ah_radio_5ghz_revision
& AR5K_SREV_REV
) > 0) {
1093 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1094 AR5K_RF_HIGH_VC_CP
, true);
1096 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1097 AR5K_RF_MID_VC_CP
, true);
1099 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1100 AR5K_RF_LOW_VC_CP
, true);
1102 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1103 AR5K_RF_PUSH_UP
, true);
1106 /* Decrease power consumption on 5213+ BaseBand */
1107 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
1108 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1109 AR5K_RF_PAD2GND
, true);
1111 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1112 AR5K_RF_XB2_LVL
, true);
1114 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1115 AR5K_RF_XB5_LVL
, true);
1117 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1118 AR5K_RF_PWD_167
, true);
1120 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1121 AR5K_RF_PWD_166
, true);
1125 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
1126 AR5K_RF_GAIN_I
, true);
1128 /* Tweak power detector for half/quarter rates */
1129 if (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
||
1130 ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
) {
1133 pd_delay
= (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
) ?
1136 ath5k_hw_rfb_op(ah
, rf_regs
, pd_delay
,
1137 AR5K_RF_PD_PERIOD_A
, true);
1138 ath5k_hw_rfb_op(ah
, rf_regs
, 0xf,
1139 AR5K_RF_PD_DELAY_A
, true);
1144 if (ah
->ah_radio
== AR5K_RF5413
&&
1145 channel
->band
== NL80211_BAND_2GHZ
) {
1147 ath5k_hw_rfb_op(ah
, rf_regs
, 1, AR5K_RF_DERBY_CHAN_SEL_MODE
,
1150 /* Set optimum value for early revisions (on pci-e chips) */
1151 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
&&
1152 ah
->ah_mac_srev
< AR5K_SREV_AR5413
)
1153 ath5k_hw_rfb_op(ah
, rf_regs
, ath5k_hw_bitswap(6, 3),
1154 AR5K_RF_PWD_ICLOBUF_2G
, true);
1158 /* Write RF banks on hw */
1159 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
1161 ath5k_hw_reg_write(ah
, rfb
[i
], ini_rfb
[i
].rfb_ctrl_register
);
1168 /**************************\
1169 PHY/RF channel functions
1170 \**************************/
1173 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1174 * @channel: The &struct ieee80211_channel
1176 * Map channel frequency to IEEE channel number and convert it
1177 * to an internal channel value used by the RF5110 chipset.
1180 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel
*channel
)
1184 athchan
= (ath5k_hw_bitswap(
1185 (ieee80211_frequency_to_channel(
1186 channel
->center_freq
) - 24) / 2, 5)
1187 << 1) | (1 << 6) | 0x1;
1192 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1193 * @ah: The &struct ath5k_hw
1194 * @channel: The &struct ieee80211_channel
1197 ath5k_hw_rf5110_channel(struct ath5k_hw
*ah
,
1198 struct ieee80211_channel
*channel
)
1203 * Set the channel and wait
1205 data
= ath5k_hw_rf5110_chan2athchan(channel
);
1206 ath5k_hw_reg_write(ah
, data
, AR5K_RF_BUFFER
);
1207 ath5k_hw_reg_write(ah
, 0, AR5K_RF_BUFFER_CONTROL_0
);
1208 usleep_range(1000, 1500);
1214 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1215 * @ieee: IEEE channel number
1216 * @athchan: The &struct ath5k_athchan_2ghz
1218 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1219 * we need to add some offsets and extra flags to the data values we pass
1220 * on to the PHY. So for every 2GHz channel this function gets called
1221 * to do the conversion.
1224 ath5k_hw_rf5111_chan2athchan(unsigned int ieee
,
1225 struct ath5k_athchan_2ghz
*athchan
)
1229 /* Cast this value to catch negative channel numbers (>= -19) */
1230 channel
= (int)ieee
;
1233 * Map 2GHz IEEE channel to 5GHz Atheros channel
1235 if (channel
<= 13) {
1236 athchan
->a2_athchan
= 115 + channel
;
1237 athchan
->a2_flags
= 0x46;
1238 } else if (channel
== 14) {
1239 athchan
->a2_athchan
= 124;
1240 athchan
->a2_flags
= 0x44;
1241 } else if (channel
>= 15 && channel
<= 26) {
1242 athchan
->a2_athchan
= ((channel
- 14) * 4) + 132;
1243 athchan
->a2_flags
= 0x46;
1251 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1252 * @ah: The &struct ath5k_hw
1253 * @channel: The &struct ieee80211_channel
1256 ath5k_hw_rf5111_channel(struct ath5k_hw
*ah
,
1257 struct ieee80211_channel
*channel
)
1259 struct ath5k_athchan_2ghz ath5k_channel_2ghz
;
1260 unsigned int ath5k_channel
=
1261 ieee80211_frequency_to_channel(channel
->center_freq
);
1262 u32 data0
, data1
, clock
;
1266 * Set the channel on the RF5111 radio
1270 if (channel
->band
== NL80211_BAND_2GHZ
) {
1271 /* Map 2GHz channel to 5GHz Atheros channel ID */
1272 ret
= ath5k_hw_rf5111_chan2athchan(
1273 ieee80211_frequency_to_channel(channel
->center_freq
),
1274 &ath5k_channel_2ghz
);
1278 ath5k_channel
= ath5k_channel_2ghz
.a2_athchan
;
1279 data0
= ((ath5k_hw_bitswap(ath5k_channel_2ghz
.a2_flags
, 8) & 0xff)
1283 if (ath5k_channel
< 145 || !(ath5k_channel
& 1)) {
1285 data1
= ((ath5k_hw_bitswap(ath5k_channel
- 24, 8) & 0xff) << 2) |
1286 (clock
<< 1) | (1 << 10) | 1;
1289 data1
= ((ath5k_hw_bitswap((ath5k_channel
- 24) / 2, 8) & 0xff)
1290 << 2) | (clock
<< 1) | (1 << 10) | 1;
1293 ath5k_hw_reg_write(ah
, (data1
& 0xff) | ((data0
& 0xff) << 8),
1295 ath5k_hw_reg_write(ah
, ((data1
>> 8) & 0xff) | (data0
& 0xff00),
1296 AR5K_RF_BUFFER_CONTROL_3
);
1302 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1303 * @ah: The &struct ath5k_hw
1304 * @channel: The &struct ieee80211_channel
1306 * On RF5112/2112 and newer we don't need to do any conversion.
1307 * We pass the frequency value after a few modifications to the
1310 * NOTE: Make sure channel frequency given is within our range or else
1311 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1314 ath5k_hw_rf5112_channel(struct ath5k_hw
*ah
,
1315 struct ieee80211_channel
*channel
)
1317 u32 data
, data0
, data1
, data2
;
1320 data
= data0
= data1
= data2
= 0;
1321 c
= channel
->center_freq
;
1323 /* My guess based on code:
1324 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1325 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1326 * (3040/2). data0 is used to set the PLL divider and data1
1327 * selects synth mode. */
1329 /* Channel 14 and all frequencies with 2Hz spacing
1330 * below/above (non-standard channels) */
1331 if (!((c
- 2224) % 5)) {
1332 /* Same as (c - 2224) / 5 */
1333 data0
= ((2 * (c
- 704)) - 3040) / 10;
1335 /* Channel 1 and all frequencies with 5Hz spacing
1336 * below/above (standard channels without channel 14) */
1337 } else if (!((c
- 2192) % 5)) {
1338 /* Same as (c - 2192) / 5 */
1339 data0
= ((2 * (c
- 672)) - 3040) / 10;
1344 data0
= ath5k_hw_bitswap((data0
<< 2) & 0xff, 8);
1345 /* This is more complex, we have a single synthesizer with
1346 * 4 reference clock settings (?) based on frequency spacing
1347 * and set using data2. LO is at 4800Hz and data0 is again used
1348 * to set some divider.
1350 * NOTE: There is an old atheros presentation at Stanford
1351 * that mentions a method called dual direct conversion
1352 * with 1GHz sliding IF for RF5110. Maybe that's what we
1353 * have here, or an updated version. */
1354 } else if ((c
% 5) != 2 || c
> 5435) {
1355 if (!(c
% 20) && c
>= 5120) {
1356 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
1357 data2
= ath5k_hw_bitswap(3, 2);
1358 } else if (!(c
% 10)) {
1359 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
1360 data2
= ath5k_hw_bitswap(2, 2);
1361 } else if (!(c
% 5)) {
1362 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
1363 data2
= ath5k_hw_bitswap(1, 2);
1367 data0
= ath5k_hw_bitswap((10 * (c
- 2 - 4800)) / 25 + 1, 8);
1368 data2
= ath5k_hw_bitswap(0, 2);
1371 data
= (data0
<< 4) | (data1
<< 1) | (data2
<< 2) | 0x1001;
1373 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1374 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1380 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1381 * @ah: The &struct ath5k_hw
1382 * @channel: The &struct ieee80211_channel
1384 * AR2425/2417 have a different 2GHz RF so code changes
1385 * a little bit from RF5112.
1388 ath5k_hw_rf2425_channel(struct ath5k_hw
*ah
,
1389 struct ieee80211_channel
*channel
)
1391 u32 data
, data0
, data2
;
1394 data
= data0
= data2
= 0;
1395 c
= channel
->center_freq
;
1398 data0
= ath5k_hw_bitswap((c
- 2272), 8);
1401 } else if ((c
% 5) != 2 || c
> 5435) {
1402 if (!(c
% 20) && c
< 5120)
1403 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
1405 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
1407 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
1410 data2
= ath5k_hw_bitswap(1, 2);
1412 data0
= ath5k_hw_bitswap((10 * (c
- 2 - 4800)) / 25 + 1, 8);
1413 data2
= ath5k_hw_bitswap(0, 2);
1416 data
= (data0
<< 4) | data2
<< 2 | 0x1001;
1418 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1419 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1425 * ath5k_hw_channel() - Set a channel on the radio chip
1426 * @ah: The &struct ath5k_hw
1427 * @channel: The &struct ieee80211_channel
1429 * This is the main function called to set a channel on the
1430 * radio chip based on the radio chip version.
1433 ath5k_hw_channel(struct ath5k_hw
*ah
,
1434 struct ieee80211_channel
*channel
)
1438 * Check bounds supported by the PHY (we don't care about regulatory
1439 * restrictions at this point).
1441 if (!ath5k_channel_ok(ah
, channel
)) {
1443 "channel frequency (%u MHz) out of supported "
1445 channel
->center_freq
);
1450 * Set the channel and wait
1452 switch (ah
->ah_radio
) {
1454 ret
= ath5k_hw_rf5110_channel(ah
, channel
);
1457 ret
= ath5k_hw_rf5111_channel(ah
, channel
);
1461 ret
= ath5k_hw_rf2425_channel(ah
, channel
);
1464 ret
= ath5k_hw_rf5112_channel(ah
, channel
);
1471 /* Set JAPAN setting for channel 14 */
1472 if (channel
->center_freq
== 2484) {
1473 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1474 AR5K_PHY_CCKTXCTL_JAPAN
);
1476 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1477 AR5K_PHY_CCKTXCTL_WORLD
);
1480 ah
->ah_current_channel
= channel
;
1491 * DOC: PHY Calibration routines
1493 * Noise floor calibration: When we tell the hardware to
1494 * perform a noise floor calibration by setting the
1495 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1496 * sample-and-hold the minimum noise level seen at the antennas.
1497 * This value is then stored in a ring buffer of recently measured
1498 * noise floor values so we have a moving window of the last few
1499 * samples. The median of the values in the history is then loaded
1500 * into the hardware for its own use for RSSI and CCA measurements.
1501 * This type of calibration doesn't interfere with traffic.
1503 * AGC calibration: When we tell the hardware to perform
1504 * an AGC (Automatic Gain Control) calibration by setting the
1505 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1506 * a calibration on the DC offsets of ADCs. During this period
1507 * rx/tx gets disabled so we have to deal with it on the driver
1510 * I/Q calibration: When we tell the hardware to perform
1511 * an I/Q calibration, it tries to correct I/Q imbalance and
1512 * fix QAM constellation by sampling data from rxed frames.
1513 * It doesn't interfere with traffic.
1515 * For more infos on AGC and I/Q calibration check out patent doc
1520 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1521 * @ah: The &struct ath5k_hw
1524 ath5k_hw_read_measured_noise_floor(struct ath5k_hw
*ah
)
1528 val
= ath5k_hw_reg_read(ah
, AR5K_PHY_NF
);
1529 return sign_extend32(AR5K_REG_MS(val
, AR5K_PHY_NF_MINCCA_PWR
), 8);
1533 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1534 * @ah: The &struct ath5k_hw
1537 ath5k_hw_init_nfcal_hist(struct ath5k_hw
*ah
)
1541 ah
->ah_nfcal_hist
.index
= 0;
1542 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
; i
++)
1543 ah
->ah_nfcal_hist
.nfval
[i
] = AR5K_TUNE_CCA_MAX_GOOD_VALUE
;
1547 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1548 * @ah: The &struct ath5k_hw
1549 * @noise_floor: The NF we got from hw
1551 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw
*ah
, s16 noise_floor
)
1553 struct ath5k_nfcal_hist
*hist
= &ah
->ah_nfcal_hist
;
1554 hist
->index
= (hist
->index
+ 1) & (ATH5K_NF_CAL_HIST_MAX
- 1);
1555 hist
->nfval
[hist
->index
] = noise_floor
;
1558 static int cmps16(const void *a
, const void *b
)
1560 return *(s16
*)a
- *(s16
*)b
;
1564 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1565 * @ah: The &struct ath5k_hw
1568 ath5k_hw_get_median_noise_floor(struct ath5k_hw
*ah
)
1570 s16 sorted_nfval
[ATH5K_NF_CAL_HIST_MAX
];
1573 memcpy(sorted_nfval
, ah
->ah_nfcal_hist
.nfval
, sizeof(sorted_nfval
));
1574 sort(sorted_nfval
, ATH5K_NF_CAL_HIST_MAX
, sizeof(s16
), cmps16
, NULL
);
1575 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
; i
++) {
1576 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1577 "cal %d:%d\n", i
, sorted_nfval
[i
]);
1579 return sorted_nfval
[(ATH5K_NF_CAL_HIST_MAX
- 1) / 2];
1583 * ath5k_hw_update_noise_floor() - Update NF on hardware
1584 * @ah: The &struct ath5k_hw
1586 * This is the main function we call to perform a NF calibration,
1587 * it reads NF from hardware, calculates the median and updates
1591 ath5k_hw_update_noise_floor(struct ath5k_hw
*ah
)
1593 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1598 /* keep last value if calibration hasn't completed */
1599 if (ath5k_hw_reg_read(ah
, AR5K_PHY_AGCCTL
) & AR5K_PHY_AGCCTL_NF
) {
1600 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1601 "NF did not complete in calibration window\n");
1606 ah
->ah_cal_mask
|= AR5K_CALIBRATION_NF
;
1608 ee_mode
= ath5k_eeprom_mode_from_channel(ah
, ah
->ah_current_channel
);
1610 /* completed NF calibration, test threshold */
1611 nf
= ath5k_hw_read_measured_noise_floor(ah
);
1612 threshold
= ee
->ee_noise_floor_thr
[ee_mode
];
1614 if (nf
> threshold
) {
1615 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1616 "noise floor failure detected; "
1617 "read %d, threshold %d\n",
1620 nf
= AR5K_TUNE_CCA_MAX_GOOD_VALUE
;
1623 ath5k_hw_update_nfcal_hist(ah
, nf
);
1624 nf
= ath5k_hw_get_median_noise_floor(ah
);
1626 /* load noise floor (in .5 dBm) so the hardware will use it */
1627 val
= ath5k_hw_reg_read(ah
, AR5K_PHY_NF
) & ~AR5K_PHY_NF_M
;
1628 val
|= (nf
* 2) & AR5K_PHY_NF_M
;
1629 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_NF
);
1631 AR5K_REG_MASKED_BITS(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_NF
,
1632 ~(AR5K_PHY_AGCCTL_NF_EN
| AR5K_PHY_AGCCTL_NF_NOUPDATE
));
1634 ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_NF
,
1638 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1639 * so that we're not capped by the median we just loaded.
1640 * This will be used as the initial value for the next noise
1641 * floor calibration.
1643 val
= (val
& ~AR5K_PHY_NF_M
) | ((-50 * 2) & AR5K_PHY_NF_M
);
1644 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_NF
);
1645 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1646 AR5K_PHY_AGCCTL_NF_EN
|
1647 AR5K_PHY_AGCCTL_NF_NOUPDATE
|
1648 AR5K_PHY_AGCCTL_NF
);
1650 ah
->ah_noise_floor
= nf
;
1652 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_NF
;
1654 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1655 "noise floor calibrated: %d\n", nf
);
1659 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1660 * @ah: The &struct ath5k_hw
1661 * @channel: The &struct ieee80211_channel
1663 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1666 ath5k_hw_rf5110_calibrate(struct ath5k_hw
*ah
,
1667 struct ieee80211_channel
*channel
)
1669 u32 phy_sig
, phy_agc
, phy_sat
, beacon
;
1672 if (!(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
))
1676 * Disable beacons and RX/TX queues, wait
1678 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1679 AR5K_DIAG_SW_DIS_TX_5210
| AR5K_DIAG_SW_DIS_RX_5210
);
1680 beacon
= ath5k_hw_reg_read(ah
, AR5K_BEACON_5210
);
1681 ath5k_hw_reg_write(ah
, beacon
& ~AR5K_BEACON_ENABLE
, AR5K_BEACON_5210
);
1683 usleep_range(2000, 2500);
1686 * Set the channel (with AGC turned off)
1688 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1690 ret
= ath5k_hw_channel(ah
, channel
);
1693 * Activate PHY and wait
1695 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
1696 usleep_range(1000, 1500);
1698 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1704 * Calibrate the radio chip
1707 /* Remember normal state */
1708 phy_sig
= ath5k_hw_reg_read(ah
, AR5K_PHY_SIG
);
1709 phy_agc
= ath5k_hw_reg_read(ah
, AR5K_PHY_AGCCOARSE
);
1710 phy_sat
= ath5k_hw_reg_read(ah
, AR5K_PHY_ADCSAT
);
1712 /* Update radio registers */
1713 ath5k_hw_reg_write(ah
, (phy_sig
& ~(AR5K_PHY_SIG_FIRPWR
)) |
1714 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR
), AR5K_PHY_SIG
);
1716 ath5k_hw_reg_write(ah
, (phy_agc
& ~(AR5K_PHY_AGCCOARSE_HI
|
1717 AR5K_PHY_AGCCOARSE_LO
)) |
1718 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI
) |
1719 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO
), AR5K_PHY_AGCCOARSE
);
1721 ath5k_hw_reg_write(ah
, (phy_sat
& ~(AR5K_PHY_ADCSAT_ICNT
|
1722 AR5K_PHY_ADCSAT_THR
)) |
1723 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT
) |
1724 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR
), AR5K_PHY_ADCSAT
);
1728 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1730 ath5k_hw_reg_write(ah
, AR5K_PHY_RFSTG_DISABLE
, AR5K_PHY_RFSTG
);
1731 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1733 usleep_range(1000, 1500);
1736 * Enable calibration and wait until completion
1738 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_CAL
);
1740 ret
= ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
1741 AR5K_PHY_AGCCTL_CAL
, 0, false);
1743 /* Reset to normal state */
1744 ath5k_hw_reg_write(ah
, phy_sig
, AR5K_PHY_SIG
);
1745 ath5k_hw_reg_write(ah
, phy_agc
, AR5K_PHY_AGCCOARSE
);
1746 ath5k_hw_reg_write(ah
, phy_sat
, AR5K_PHY_ADCSAT
);
1749 ATH5K_ERR(ah
, "calibration timeout (%uMHz)\n",
1750 channel
->center_freq
);
1755 * Re-enable RX/TX and beacons
1757 AR5K_REG_DISABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1758 AR5K_DIAG_SW_DIS_TX_5210
| AR5K_DIAG_SW_DIS_RX_5210
);
1759 ath5k_hw_reg_write(ah
, beacon
, AR5K_BEACON_5210
);
1765 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1766 * @ah: The &struct ath5k_hw
1769 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw
*ah
)
1772 s32 iq_corr
, i_coff
, i_coffd
, q_coff
, q_coffd
;
1775 /* Skip if I/Q calibration is not needed or if it's still running */
1776 if (!ah
->ah_iq_cal_needed
)
1778 else if (ath5k_hw_reg_read(ah
, AR5K_PHY_IQ
) & AR5K_PHY_IQ_RUN
) {
1779 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1780 "I/Q calibration still running");
1784 /* Calibration has finished, get the results and re-run */
1786 /* Work around for empty results which can apparently happen on 5212:
1787 * Read registers up to 10 times until we get both i_pr and q_pwr */
1788 for (i
= 0; i
<= 10; i
++) {
1789 iq_corr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_CORR
);
1790 i_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_I
);
1791 q_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_Q
);
1792 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1793 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr
, i_pwr
, q_pwr
);
1798 i_coffd
= ((i_pwr
>> 1) + (q_pwr
>> 1)) >> 7;
1800 if (ah
->ah_version
== AR5K_AR5211
)
1801 q_coffd
= q_pwr
>> 6;
1803 q_coffd
= q_pwr
>> 7;
1805 /* In case i_coffd became zero, cancel calibration
1806 * not only it's too small, it'll also result a divide
1807 * by zero later on. */
1808 if (i_coffd
== 0 || q_coffd
< 2)
1811 /* Protect against loss of sign bits */
1813 i_coff
= (-iq_corr
) / i_coffd
;
1814 i_coff
= clamp(i_coff
, -32, 31); /* signed 6 bit */
1816 if (ah
->ah_version
== AR5K_AR5211
)
1817 q_coff
= (i_pwr
/ q_coffd
) - 64;
1819 q_coff
= (i_pwr
/ q_coffd
) - 128;
1820 q_coff
= clamp(q_coff
, -16, 15); /* signed 5 bit */
1822 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1823 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1824 i_coff
, q_coff
, i_coffd
, q_coffd
);
1826 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1827 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_Q_I_COFF
, i_coff
);
1828 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_Q_Q_COFF
, q_coff
);
1829 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_ENABLE
);
1831 /* Re-enable calibration -if we don't we'll commit
1832 * the same values again and again */
1833 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
1834 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
1835 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_RUN
);
1841 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1842 * @ah: The &struct ath5k_hw
1843 * @channel: The &struct ieee80211_channel
1845 * The main function we call from above to perform
1846 * a short or full PHY calibration based on RF chip
1847 * and current channel
1850 ath5k_hw_phy_calibrate(struct ath5k_hw
*ah
,
1851 struct ieee80211_channel
*channel
)
1855 if (ah
->ah_radio
== AR5K_RF5110
)
1856 return ath5k_hw_rf5110_calibrate(ah
, channel
);
1858 ret
= ath5k_hw_rf511x_iq_calibrate(ah
);
1860 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1861 "No I/Q correction performed (%uMHz)\n",
1862 channel
->center_freq
);
1864 /* Happens all the time if there is not much
1865 * traffic, consider it normal behaviour. */
1869 /* On full calibration request a PAPD probe for
1870 * gainf calibration if needed */
1871 if ((ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
1872 (ah
->ah_radio
== AR5K_RF5111
||
1873 ah
->ah_radio
== AR5K_RF5112
) &&
1874 channel
->hw_value
!= AR5K_MODE_11B
)
1875 ath5k_hw_request_rfgain_probe(ah
);
1877 /* Update noise floor */
1878 if (!(ah
->ah_cal_mask
& AR5K_CALIBRATION_NF
))
1879 ath5k_hw_update_noise_floor(ah
);
1885 /***************************\
1886 * Spur mitigation functions *
1887 \***************************/
1890 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1891 * @ah: The &struct ath5k_hw
1892 * @channel: The &struct ieee80211_channel
1894 * This function gets called during PHY initialization to
1895 * configure the spur filter for the given channel. Spur is noise
1896 * generated due to "reflection" effects, for more information on this
1897 * method check out patent US7643810
1900 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw
*ah
,
1901 struct ieee80211_channel
*channel
)
1903 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1904 u32 mag_mask
[4] = {0, 0, 0, 0};
1905 u32 pilot_mask
[2] = {0, 0};
1906 /* Note: fbin values are scaled up by 2 */
1907 u16 spur_chan_fbin
, chan_fbin
, symbol_width
, spur_detection_window
;
1908 s32 spur_delta_phase
, spur_freq_sigma_delta
;
1909 s32 spur_offset
, num_symbols_x16
;
1910 u8 num_symbol_offsets
, i
, freq_band
;
1912 /* Convert current frequency to fbin value (the same way channels
1913 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1914 * up by 2 so we can compare it later */
1915 if (channel
->band
== NL80211_BAND_2GHZ
) {
1916 chan_fbin
= (channel
->center_freq
- 2300) * 10;
1917 freq_band
= AR5K_EEPROM_BAND_2GHZ
;
1919 chan_fbin
= (channel
->center_freq
- 4900) * 10;
1920 freq_band
= AR5K_EEPROM_BAND_5GHZ
;
1923 /* Check if any spur_chan_fbin from EEPROM is
1924 * within our current channel's spur detection range */
1925 spur_chan_fbin
= AR5K_EEPROM_NO_SPUR
;
1926 spur_detection_window
= AR5K_SPUR_CHAN_WIDTH
;
1927 /* XXX: Half/Quarter channels ?*/
1928 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
1929 spur_detection_window
*= 2;
1931 for (i
= 0; i
< AR5K_EEPROM_N_SPUR_CHANS
; i
++) {
1932 spur_chan_fbin
= ee
->ee_spur_chans
[i
][freq_band
];
1934 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1935 * so it's zero if we got nothing from EEPROM */
1936 if (spur_chan_fbin
== AR5K_EEPROM_NO_SPUR
) {
1937 spur_chan_fbin
&= AR5K_EEPROM_SPUR_CHAN_MASK
;
1941 if ((chan_fbin
- spur_detection_window
<=
1942 (spur_chan_fbin
& AR5K_EEPROM_SPUR_CHAN_MASK
)) &&
1943 (chan_fbin
+ spur_detection_window
>=
1944 (spur_chan_fbin
& AR5K_EEPROM_SPUR_CHAN_MASK
))) {
1945 spur_chan_fbin
&= AR5K_EEPROM_SPUR_CHAN_MASK
;
1950 /* We need to enable spur filter for this channel */
1951 if (spur_chan_fbin
) {
1952 spur_offset
= spur_chan_fbin
- chan_fbin
;
1955 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1956 * spur_delta_phase -> spur_offset / chip_freq << 11
1957 * Note: Both values have 100Hz resolution
1959 switch (ah
->ah_bwmode
) {
1960 case AR5K_BWMODE_40MHZ
:
1961 /* Both sample_freq and chip_freq are 80MHz */
1962 spur_delta_phase
= (spur_offset
<< 16) / 25;
1963 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1964 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
* 2;
1966 case AR5K_BWMODE_10MHZ
:
1967 /* Both sample_freq and chip_freq are 20MHz (?) */
1968 spur_delta_phase
= (spur_offset
<< 18) / 25;
1969 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1970 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
/ 2;
1972 case AR5K_BWMODE_5MHZ
:
1973 /* Both sample_freq and chip_freq are 10MHz (?) */
1974 spur_delta_phase
= (spur_offset
<< 19) / 25;
1975 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1976 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
/ 4;
1979 if (channel
->band
== NL80211_BAND_5GHZ
) {
1980 /* Both sample_freq and chip_freq are 40MHz */
1981 spur_delta_phase
= (spur_offset
<< 17) / 25;
1982 spur_freq_sigma_delta
=
1983 (spur_delta_phase
>> 10);
1985 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
;
1987 /* sample_freq -> 40MHz chip_freq -> 44MHz
1988 * (for b compatibility) */
1989 spur_delta_phase
= (spur_offset
<< 17) / 25;
1990 spur_freq_sigma_delta
=
1991 (spur_offset
<< 8) / 55;
1993 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
;
1998 /* Calculate pilot and magnitude masks */
2000 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2001 * and divide by symbol_width to find how many symbols we have
2002 * Note: number of symbols is scaled up by 16 */
2003 num_symbols_x16
= ((spur_offset
* 1000) << 4) / symbol_width
;
2005 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2006 if (!(num_symbols_x16
& 0xF))
2008 num_symbol_offsets
= 3;
2011 num_symbol_offsets
= 4;
2013 for (i
= 0; i
< num_symbol_offsets
; i
++) {
2015 /* Calculate pilot mask */
2017 (num_symbols_x16
/ 16) + i
+ 25;
2019 /* Pilot magnitude mask seems to be a way to
2020 * declare the boundaries for our detection
2021 * window or something, it's 2 for the middle
2022 * value(s) where the symbol is expected to be
2023 * and 1 on the boundary values */
2025 (i
== 0 || i
== (num_symbol_offsets
- 1))
2028 if (curr_sym_off
>= 0 && curr_sym_off
<= 32) {
2029 if (curr_sym_off
<= 25)
2030 pilot_mask
[0] |= 1 << curr_sym_off
;
2031 else if (curr_sym_off
>= 27)
2032 pilot_mask
[0] |= 1 << (curr_sym_off
- 1);
2033 } else if (curr_sym_off
>= 33 && curr_sym_off
<= 52)
2034 pilot_mask
[1] |= 1 << (curr_sym_off
- 33);
2036 /* Calculate magnitude mask (for viterbi decoder) */
2037 if (curr_sym_off
>= -1 && curr_sym_off
<= 14)
2039 plt_mag_map
<< (curr_sym_off
+ 1) * 2;
2040 else if (curr_sym_off
>= 15 && curr_sym_off
<= 30)
2042 plt_mag_map
<< (curr_sym_off
- 15) * 2;
2043 else if (curr_sym_off
>= 31 && curr_sym_off
<= 46)
2045 plt_mag_map
<< (curr_sym_off
- 31) * 2;
2046 else if (curr_sym_off
>= 47 && curr_sym_off
<= 53)
2048 plt_mag_map
<< (curr_sym_off
- 47) * 2;
2052 /* Write settings on hw to enable spur filter */
2053 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2054 AR5K_PHY_BIN_MASK_CTL_RATE
, 0xff);
2055 /* XXX: Self correlator also ? */
2056 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
2057 AR5K_PHY_IQ_PILOT_MASK_EN
|
2058 AR5K_PHY_IQ_CHAN_MASK_EN
|
2059 AR5K_PHY_IQ_SPUR_FILT_EN
);
2061 /* Set delta phase and freq sigma delta */
2062 ath5k_hw_reg_write(ah
,
2063 AR5K_REG_SM(spur_delta_phase
,
2064 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE
) |
2065 AR5K_REG_SM(spur_freq_sigma_delta
,
2066 AR5K_PHY_TIMING_11_SPUR_FREQ_SD
) |
2067 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC
,
2068 AR5K_PHY_TIMING_11
);
2070 /* Write pilot masks */
2071 ath5k_hw_reg_write(ah
, pilot_mask
[0], AR5K_PHY_TIMING_7
);
2072 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_8
,
2073 AR5K_PHY_TIMING_8_PILOT_MASK_2
,
2076 ath5k_hw_reg_write(ah
, pilot_mask
[0], AR5K_PHY_TIMING_9
);
2077 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_10
,
2078 AR5K_PHY_TIMING_10_PILOT_MASK_2
,
2081 /* Write magnitude masks */
2082 ath5k_hw_reg_write(ah
, mag_mask
[0], AR5K_PHY_BIN_MASK_1
);
2083 ath5k_hw_reg_write(ah
, mag_mask
[1], AR5K_PHY_BIN_MASK_2
);
2084 ath5k_hw_reg_write(ah
, mag_mask
[2], AR5K_PHY_BIN_MASK_3
);
2085 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2086 AR5K_PHY_BIN_MASK_CTL_MASK_4
,
2089 ath5k_hw_reg_write(ah
, mag_mask
[0], AR5K_PHY_BIN_MASK2_1
);
2090 ath5k_hw_reg_write(ah
, mag_mask
[1], AR5K_PHY_BIN_MASK2_2
);
2091 ath5k_hw_reg_write(ah
, mag_mask
[2], AR5K_PHY_BIN_MASK2_3
);
2092 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK2_4
,
2093 AR5K_PHY_BIN_MASK2_4_MASK_4
,
2096 } else if (ath5k_hw_reg_read(ah
, AR5K_PHY_IQ
) &
2097 AR5K_PHY_IQ_SPUR_FILT_EN
) {
2098 /* Clean up spur mitigation settings and disable filter */
2099 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2100 AR5K_PHY_BIN_MASK_CTL_RATE
, 0);
2101 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_IQ
,
2102 AR5K_PHY_IQ_PILOT_MASK_EN
|
2103 AR5K_PHY_IQ_CHAN_MASK_EN
|
2104 AR5K_PHY_IQ_SPUR_FILT_EN
);
2105 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_11
);
2107 /* Clear pilot masks */
2108 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_7
);
2109 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_8
,
2110 AR5K_PHY_TIMING_8_PILOT_MASK_2
,
2113 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_9
);
2114 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_10
,
2115 AR5K_PHY_TIMING_10_PILOT_MASK_2
,
2118 /* Clear magnitude masks */
2119 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_1
);
2120 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_2
);
2121 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_3
);
2122 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2123 AR5K_PHY_BIN_MASK_CTL_MASK_4
,
2126 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_1
);
2127 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_2
);
2128 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_3
);
2129 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK2_4
,
2130 AR5K_PHY_BIN_MASK2_4_MASK_4
,
2141 * DOC: Antenna control
2143 * Hw supports up to 14 antennas ! I haven't found any card that implements
2144 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2145 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2146 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2148 * We can have a single antenna for RX and multiple antennas for TX.
2149 * RX antenna is our "default" antenna (usually antenna 1) set on
2150 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2151 * (0 for automatic selection, 1 - 14 antenna number).
2153 * We can let hw do all the work doing fast antenna diversity for both
2154 * tx and rx or we can do things manually. Here are the options we have
2155 * (all are bits of STA_ID1 register):
2157 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2158 * control descriptor, use the default antenna to transmit or else use the last
2159 * antenna on which we received an ACK.
2161 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2162 * the antenna on which we got the ACK for that frame.
2164 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2165 * one on the TX descriptor.
2167 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2168 * (ACKs etc), or else use current antenna (the one we just used for TX).
2170 * Using the above we support the following scenarios:
2172 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2174 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2176 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2178 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2180 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2182 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2184 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2186 * Also note that when setting antenna to F on tx descriptor card inverts
2187 * current tx antenna.
2191 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2192 * @ah: The &struct ath5k_hw
2193 * @ant: Antenna number
2196 ath5k_hw_set_def_antenna(struct ath5k_hw
*ah
, u8 ant
)
2198 if (ah
->ah_version
!= AR5K_AR5210
)
2199 ath5k_hw_reg_write(ah
, ant
& 0x7, AR5K_DEFAULT_ANTENNA
);
2203 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
2204 * @ah: The &struct ath5k_hw
2205 * @ee_mode: One of enum ath5k_driver_mode
2206 * @enable: True to enable, false to disable
2209 ath5k_hw_set_fast_div(struct ath5k_hw
*ah
, u8 ee_mode
, bool enable
)
2212 case AR5K_EEPROM_MODE_11G
:
2213 /* XXX: This is set to
2214 * disabled on initvals !!! */
2215 case AR5K_EEPROM_MODE_11A
:
2217 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
2218 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
2220 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
2221 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
2223 case AR5K_EEPROM_MODE_11B
:
2224 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
2225 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
2232 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RESTART
,
2233 AR5K_PHY_RESTART_DIV_GC
, 4);
2235 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_FAST_ANT_DIV
,
2236 AR5K_PHY_FAST_ANT_DIV_EN
);
2238 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RESTART
,
2239 AR5K_PHY_RESTART_DIV_GC
, 0);
2241 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_FAST_ANT_DIV
,
2242 AR5K_PHY_FAST_ANT_DIV_EN
);
2247 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2248 * @ah: The &struct ath5k_hw
2249 * @ee_mode: One of enum ath5k_driver_mode
2251 * Switch table comes from EEPROM and includes information on controlling
2252 * the 2 antenna RX attenuators
2255 ath5k_hw_set_antenna_switch(struct ath5k_hw
*ah
, u8 ee_mode
)
2260 * In case a fixed antenna was set as default
2261 * use the same switch table twice.
2263 if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_A
)
2264 ant0
= ant1
= AR5K_ANT_SWTABLE_A
;
2265 else if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_B
)
2266 ant0
= ant1
= AR5K_ANT_SWTABLE_B
;
2268 ant0
= AR5K_ANT_SWTABLE_A
;
2269 ant1
= AR5K_ANT_SWTABLE_B
;
2272 /* Set antenna idle switch table */
2273 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_ANT_CTL
,
2274 AR5K_PHY_ANT_CTL_SWTABLE_IDLE
,
2275 (ah
->ah_ant_ctl
[ee_mode
][AR5K_ANT_CTL
] |
2276 AR5K_PHY_ANT_CTL_TXRX_EN
));
2278 /* Set antenna switch tables */
2279 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant0
],
2280 AR5K_PHY_ANT_SWITCH_TABLE_0
);
2281 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant1
],
2282 AR5K_PHY_ANT_SWITCH_TABLE_1
);
2286 * ath5k_hw_set_antenna_mode() - Set antenna operating mode
2287 * @ah: The &struct ath5k_hw
2288 * @ant_mode: One of enum ath5k_ant_mode
2291 ath5k_hw_set_antenna_mode(struct ath5k_hw
*ah
, u8 ant_mode
)
2293 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
2294 bool use_def_for_tx
, update_def_on_tx
, use_def_for_rts
, fast_div
;
2295 bool use_def_for_sg
;
2300 /* if channel is not initialized yet we can't set the antennas
2301 * so just store the mode. it will be set on the next reset */
2302 if (channel
== NULL
) {
2303 ah
->ah_ant_mode
= ant_mode
;
2307 def_ant
= ah
->ah_def_ant
;
2309 ee_mode
= ath5k_eeprom_mode_from_channel(ah
, channel
);
2312 case AR5K_ANTMODE_DEFAULT
:
2314 use_def_for_tx
= false;
2315 update_def_on_tx
= false;
2316 use_def_for_rts
= false;
2317 use_def_for_sg
= false;
2320 case AR5K_ANTMODE_FIXED_A
:
2323 use_def_for_tx
= true;
2324 update_def_on_tx
= false;
2325 use_def_for_rts
= true;
2326 use_def_for_sg
= true;
2329 case AR5K_ANTMODE_FIXED_B
:
2332 use_def_for_tx
= true;
2333 update_def_on_tx
= false;
2334 use_def_for_rts
= true;
2335 use_def_for_sg
= true;
2338 case AR5K_ANTMODE_SINGLE_AP
:
2339 def_ant
= 1; /* updated on tx */
2341 use_def_for_tx
= true;
2342 update_def_on_tx
= true;
2343 use_def_for_rts
= true;
2344 use_def_for_sg
= true;
2347 case AR5K_ANTMODE_SECTOR_AP
:
2348 tx_ant
= 1; /* variable */
2349 use_def_for_tx
= false;
2350 update_def_on_tx
= false;
2351 use_def_for_rts
= true;
2352 use_def_for_sg
= false;
2355 case AR5K_ANTMODE_SECTOR_STA
:
2356 tx_ant
= 1; /* variable */
2357 use_def_for_tx
= true;
2358 update_def_on_tx
= false;
2359 use_def_for_rts
= true;
2360 use_def_for_sg
= false;
2363 case AR5K_ANTMODE_DEBUG
:
2366 use_def_for_tx
= false;
2367 update_def_on_tx
= false;
2368 use_def_for_rts
= false;
2369 use_def_for_sg
= false;
2376 ah
->ah_tx_ant
= tx_ant
;
2377 ah
->ah_ant_mode
= ant_mode
;
2378 ah
->ah_def_ant
= def_ant
;
2380 sta_id1
|= use_def_for_tx
? AR5K_STA_ID1_DEFAULT_ANTENNA
: 0;
2381 sta_id1
|= update_def_on_tx
? AR5K_STA_ID1_DESC_ANTENNA
: 0;
2382 sta_id1
|= use_def_for_rts
? AR5K_STA_ID1_RTS_DEF_ANTENNA
: 0;
2383 sta_id1
|= use_def_for_sg
? AR5K_STA_ID1_SELFGEN_DEF_ANT
: 0;
2385 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_ANTENNA_SETTINGS
);
2388 AR5K_REG_ENABLE_BITS(ah
, AR5K_STA_ID1
, sta_id1
);
2390 ath5k_hw_set_antenna_switch(ah
, ee_mode
);
2391 /* Note: set diversity before default antenna
2392 * because it won't work correctly */
2393 ath5k_hw_set_fast_div(ah
, ee_mode
, fast_div
);
2394 ath5k_hw_set_def_antenna(ah
, def_ant
);
2407 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2408 * @target: X value of the middle point
2409 * @x_left: X value of the left point
2410 * @x_right: X value of the right point
2411 * @y_left: Y value of the left point
2412 * @y_right: Y value of the right point
2415 ath5k_get_interpolated_value(s16 target
, s16 x_left
, s16 x_right
,
2416 s16 y_left
, s16 y_right
)
2420 /* Avoid divide by zero and skip interpolation
2421 * if we have the same point */
2422 if ((x_left
== x_right
) || (y_left
== y_right
))
2426 * Since we use ints and not fps, we need to scale up in
2427 * order to get a sane ratio value (or else we 'll eg. get
2428 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2429 * to have some accuracy both for 0.5 and 0.25 steps.
2431 ratio
= ((100 * y_right
- 100 * y_left
) / (x_right
- x_left
));
2433 /* Now scale down to be in range */
2434 result
= y_left
+ (ratio
* (target
- x_left
) / 100);
2440 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2441 * linear PCDAC curve
2442 * @stepL: Left array with y values (pcdac steps)
2443 * @stepR: Right array with y values (pcdac steps)
2444 * @pwrL: Left array with x values (power steps)
2445 * @pwrR: Right array with x values (power steps)
2447 * Since we have the top of the curve and we draw the line below
2448 * until we reach 1 (1 pcdac step) we need to know which point
2449 * (x value) that is so that we don't go below x axis and have negative
2450 * pcdac values when creating the curve, or fill the table with zeros.
2453 ath5k_get_linear_pcdac_min(const u8
*stepL
, const u8
*stepR
,
2454 const s16
*pwrL
, const s16
*pwrR
)
2457 s16 min_pwrL
, min_pwrR
;
2460 /* Some vendors write the same pcdac value twice !!! */
2461 if (stepL
[0] == stepL
[1] || stepR
[0] == stepR
[1])
2462 return max(pwrL
[0], pwrR
[0]);
2464 if (pwrL
[0] == pwrL
[1])
2470 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
2472 stepL
[0], stepL
[1]);
2478 if (pwrR
[0] == pwrR
[1])
2484 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
2486 stepR
[0], stepR
[1]);
2492 /* Keep the right boundary so that it works for both curves */
2493 return max(min_pwrL
, min_pwrR
);
2497 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2498 * @pmin: Minimum power value (xmin)
2499 * @pmax: Maximum power value (xmax)
2500 * @pwr: Array of power steps (x values)
2501 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2502 * @num_points: Number of provided points
2503 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2504 * @type: One of enum ath5k_powertable_type (eeprom.h)
2506 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2507 * Power to PCDAC curve.
2509 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2510 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2511 * PCDAC/PDADC step for each curve is 64 but we can write more than
2512 * one curves on hw so we can go up to 128 (which is the max step we
2513 * can write on the final table).
2515 * We write y values (PCDAC/PDADC steps) on hw.
2518 ath5k_create_power_curve(s16 pmin
, s16 pmax
,
2519 const s16
*pwr
, const u8
*vpd
,
2521 u8
*vpd_table
, u8 type
)
2523 u8 idx
[2] = { 0, 1 };
2524 s16 pwr_i
= 2 * pmin
;
2530 /* We want the whole line, so adjust boundaries
2531 * to cover the entire power range. Note that
2532 * power values are already 0.25dB so no need
2533 * to multiply pwr_i by 2 */
2534 if (type
== AR5K_PWRTABLE_LINEAR_PCDAC
) {
2540 /* Find surrounding turning points (TPs)
2541 * and interpolate between them */
2542 for (i
= 0; (i
<= (u16
) (pmax
- pmin
)) &&
2543 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
2545 /* We passed the right TP, move to the next set of TPs
2546 * if we pass the last TP, extrapolate above using the last
2547 * two TPs for ratio */
2548 if ((pwr_i
> pwr
[idx
[1]]) && (idx
[1] < num_points
- 1)) {
2553 vpd_table
[i
] = (u8
) ath5k_get_interpolated_value(pwr_i
,
2554 pwr
[idx
[0]], pwr
[idx
[1]],
2555 vpd
[idx
[0]], vpd
[idx
[1]]);
2557 /* Increase by 0.5dB
2558 * (0.25 dB units) */
2564 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2565 * for a given channel.
2566 * @ah: The &struct ath5k_hw
2567 * @channel: The &struct ieee80211_channel
2568 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2569 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2571 * Get the surrounding per-channel power calibration piers
2572 * for a given frequency so that we can interpolate between
2573 * them and come up with an appropriate dataset for our current
2577 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw
*ah
,
2578 struct ieee80211_channel
*channel
,
2579 struct ath5k_chan_pcal_info
**pcinfo_l
,
2580 struct ath5k_chan_pcal_info
**pcinfo_r
)
2582 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2583 struct ath5k_chan_pcal_info
*pcinfo
;
2586 u32 target
= channel
->center_freq
;
2591 switch (channel
->hw_value
) {
2592 case AR5K_EEPROM_MODE_11A
:
2593 pcinfo
= ee
->ee_pwr_cal_a
;
2594 mode
= AR5K_EEPROM_MODE_11A
;
2596 case AR5K_EEPROM_MODE_11B
:
2597 pcinfo
= ee
->ee_pwr_cal_b
;
2598 mode
= AR5K_EEPROM_MODE_11B
;
2600 case AR5K_EEPROM_MODE_11G
:
2602 pcinfo
= ee
->ee_pwr_cal_g
;
2603 mode
= AR5K_EEPROM_MODE_11G
;
2606 max
= ee
->ee_n_piers
[mode
] - 1;
2608 /* Frequency is below our calibrated
2609 * range. Use the lowest power curve
2611 if (target
< pcinfo
[0].freq
) {
2616 /* Frequency is above our calibrated
2617 * range. Use the highest power curve
2619 if (target
> pcinfo
[max
].freq
) {
2620 idx_l
= idx_r
= max
;
2624 /* Frequency is inside our calibrated
2625 * channel range. Pick the surrounding
2626 * calibration piers so that we can
2628 for (i
= 0; i
<= max
; i
++) {
2630 /* Frequency matches one of our calibration
2631 * piers, no need to interpolate, just use
2632 * that calibration pier */
2633 if (pcinfo
[i
].freq
== target
) {
2638 /* We found a calibration pier that's above
2639 * frequency, use this pier and the previous
2640 * one to interpolate */
2641 if (target
< pcinfo
[i
].freq
) {
2649 *pcinfo_l
= &pcinfo
[idx_l
];
2650 *pcinfo_r
= &pcinfo
[idx_r
];
2654 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2656 * @ah: The &struct ath5k_hw *ah,
2657 * @channel: The &struct ieee80211_channel
2658 * @rates: The &struct ath5k_rate_pcal_info to fill
2660 * Get the surrounding per-rate power calibration data
2661 * for a given frequency and interpolate between power
2662 * values to set max target power supported by hw for
2663 * each rate on this frequency.
2666 ath5k_get_rate_pcal_data(struct ath5k_hw
*ah
,
2667 struct ieee80211_channel
*channel
,
2668 struct ath5k_rate_pcal_info
*rates
)
2670 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2671 struct ath5k_rate_pcal_info
*rpinfo
;
2674 u32 target
= channel
->center_freq
;
2679 switch (channel
->hw_value
) {
2681 rpinfo
= ee
->ee_rate_tpwr_a
;
2682 mode
= AR5K_EEPROM_MODE_11A
;
2685 rpinfo
= ee
->ee_rate_tpwr_b
;
2686 mode
= AR5K_EEPROM_MODE_11B
;
2690 rpinfo
= ee
->ee_rate_tpwr_g
;
2691 mode
= AR5K_EEPROM_MODE_11G
;
2694 max
= ee
->ee_rate_target_pwr_num
[mode
] - 1;
2696 /* Get the surrounding calibration
2697 * piers - same as above */
2698 if (target
< rpinfo
[0].freq
) {
2703 if (target
> rpinfo
[max
].freq
) {
2704 idx_l
= idx_r
= max
;
2708 for (i
= 0; i
<= max
; i
++) {
2710 if (rpinfo
[i
].freq
== target
) {
2715 if (target
< rpinfo
[i
].freq
) {
2723 /* Now interpolate power value, based on the frequency */
2724 rates
->freq
= target
;
2726 rates
->target_power_6to24
=
2727 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2729 rpinfo
[idx_l
].target_power_6to24
,
2730 rpinfo
[idx_r
].target_power_6to24
);
2732 rates
->target_power_36
=
2733 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2735 rpinfo
[idx_l
].target_power_36
,
2736 rpinfo
[idx_r
].target_power_36
);
2738 rates
->target_power_48
=
2739 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2741 rpinfo
[idx_l
].target_power_48
,
2742 rpinfo
[idx_r
].target_power_48
);
2744 rates
->target_power_54
=
2745 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2747 rpinfo
[idx_l
].target_power_54
,
2748 rpinfo
[idx_r
].target_power_54
);
2752 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2753 * @ah: the &struct ath5k_hw
2754 * @channel: The &struct ieee80211_channel
2756 * Get the max edge power for this channel if
2757 * we have such data from EEPROM's Conformance Test
2758 * Limits (CTL), and limit max power if needed.
2761 ath5k_get_max_ctl_power(struct ath5k_hw
*ah
,
2762 struct ieee80211_channel
*channel
)
2764 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
2765 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2766 struct ath5k_edge_power
*rep
= ee
->ee_ctl_pwr
;
2767 u8
*ctl_val
= ee
->ee_ctl
;
2768 s16 max_chan_pwr
= ah
->ah_txpower
.txp_max_pwr
/ 4;
2773 u32 target
= channel
->center_freq
;
2775 ctl_mode
= ath_regd_get_band_ctl(regulatory
, channel
->band
);
2777 switch (channel
->hw_value
) {
2779 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
2780 ctl_mode
|= AR5K_CTL_TURBO
;
2782 ctl_mode
|= AR5K_CTL_11A
;
2785 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
2786 ctl_mode
|= AR5K_CTL_TURBOG
;
2788 ctl_mode
|= AR5K_CTL_11G
;
2791 ctl_mode
|= AR5K_CTL_11B
;
2797 for (i
= 0; i
< ee
->ee_ctls
; i
++) {
2798 if (ctl_val
[i
] == ctl_mode
) {
2804 /* If we have a CTL dataset available grab it and find the
2805 * edge power for our frequency */
2806 if (ctl_idx
== 0xFF)
2809 /* Edge powers are sorted by frequency from lower
2810 * to higher. Each CTL corresponds to 8 edge power
2812 rep_idx
= ctl_idx
* AR5K_EEPROM_N_EDGES
;
2814 /* Don't do boundaries check because we
2815 * might have more that one bands defined
2818 /* Get the edge power that's closer to our
2820 for (i
= 0; i
< AR5K_EEPROM_N_EDGES
; i
++) {
2822 if (target
<= rep
[rep_idx
].freq
)
2823 edge_pwr
= (s16
) rep
[rep_idx
].edge
;
2827 ah
->ah_txpower
.txp_max_pwr
= 4 * min(edge_pwr
, max_chan_pwr
);
2832 * Power to PCDAC table functions
2836 * DOC: Power to PCDAC table functions
2838 * For RF5111 we have an XPD -eXternal Power Detector- curve
2839 * for each calibrated channel. Each curve has 0,5dB Power steps
2840 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2841 * exponential function. To recreate the curve we read 11 points
2842 * from eeprom (eeprom.c) and interpolate here.
2844 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2845 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2846 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2847 * power steps on x axis and PCDAC steps on y axis and looks like a
2848 * linear function. To recreate the curve and pass the power values
2849 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2850 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2851 * and interpolate here.
2853 * For a given channel we get the calibrated points (piers) for it or
2854 * -if we don't have calibration data for this specific channel- from the
2855 * available surrounding channels we have calibration data for, after we do a
2856 * linear interpolation between them. Then since we have our calibrated points
2857 * for this channel, we do again a linear interpolation between them to get the
2860 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2864 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2865 * @ah: The &struct ath5k_hw
2866 * @table_min: Minimum power (x min)
2867 * @table_max: Maximum power (x max)
2869 * No further processing is needed for RF5111, the only thing we have to
2870 * do is fill the values below and above calibration range since eeprom data
2871 * may not cover the entire PCDAC table.
2874 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw
*ah
, s16
* table_min
,
2877 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
2878 u8
*pcdac_tmp
= ah
->ah_txpower
.tmpL
[0];
2879 u8 pcdac_0
, pcdac_n
, pcdac_i
, pwr_idx
, i
;
2880 s16 min_pwr
, max_pwr
;
2882 /* Get table boundaries */
2883 min_pwr
= table_min
[0];
2884 pcdac_0
= pcdac_tmp
[0];
2886 max_pwr
= table_max
[0];
2887 pcdac_n
= pcdac_tmp
[table_max
[0] - table_min
[0]];
2889 /* Extrapolate below minimum using pcdac_0 */
2891 for (i
= 0; i
< min_pwr
; i
++)
2892 pcdac_out
[pcdac_i
++] = pcdac_0
;
2894 /* Copy values from pcdac_tmp */
2896 for (i
= 0; pwr_idx
<= max_pwr
&&
2897 pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
; i
++) {
2898 pcdac_out
[pcdac_i
++] = pcdac_tmp
[i
];
2902 /* Extrapolate above maximum */
2903 while (pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
)
2904 pcdac_out
[pcdac_i
++] = pcdac_n
;
2909 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2910 * @ah: The &struct ath5k_hw
2911 * @table_min: Minimum power (x min)
2912 * @table_max: Maximum power (x max)
2913 * @pdcurves: Number of pd curves
2915 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2916 * RFX112 can have up to 2 curves (one for low txpower range and one for
2917 * higher txpower range). We need to put them both on pcdac_out and place
2918 * them in the correct location. In case we only have one curve available
2919 * just fit it on pcdac_out (it's supposed to cover the entire range of
2920 * available pwr levels since it's always the higher power curve). Extrapolate
2921 * below and above final table if needed.
2924 ath5k_combine_linear_pcdac_curves(struct ath5k_hw
*ah
, s16
* table_min
,
2925 s16
*table_max
, u8 pdcurves
)
2927 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
2934 s16 mid_pwr_idx
= 0;
2935 /* Edge flag turns on the 7nth bit on the PCDAC
2936 * to declare the higher power curve (force values
2937 * to be greater than 64). If we only have one curve
2938 * we don't need to set this, if we have 2 curves and
2939 * fill the table backwards this can also be used to
2940 * switch from higher power curve to lower power curve */
2944 /* When we have only one curve available
2945 * that's the higher power curve. If we have
2946 * two curves the first is the high power curve
2947 * and the next is the low power curve. */
2949 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1];
2950 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
2951 mid_pwr_idx
= table_max
[1] - table_min
[1] - 1;
2952 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
2954 /* If table size goes beyond 31.5dB, keep the
2955 * upper 31.5dB range when setting tx power.
2956 * Note: 126 = 31.5 dB in quarter dB steps */
2957 if (table_max
[0] - table_min
[1] > 126)
2958 min_pwr_idx
= table_max
[0] - 126;
2960 min_pwr_idx
= table_min
[1];
2962 /* Since we fill table backwards
2963 * start from high power curve */
2964 pcdac_tmp
= pcdac_high_pwr
;
2968 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1]; /* Zeroed */
2969 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
2970 min_pwr_idx
= table_min
[0];
2971 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
2972 pcdac_tmp
= pcdac_high_pwr
;
2976 /* This is used when setting tx power*/
2977 ah
->ah_txpower
.txp_min_idx
= min_pwr_idx
/ 2;
2979 /* Fill Power to PCDAC table backwards */
2981 for (i
= 63; i
>= 0; i
--) {
2982 /* Entering lower power range, reset
2983 * edge flag and set pcdac_tmp to lower
2985 if (edge_flag
== 0x40 &&
2986 (2 * pwr
<= (table_max
[1] - table_min
[0]) || pwr
== 0)) {
2988 pcdac_tmp
= pcdac_low_pwr
;
2989 pwr
= mid_pwr_idx
/ 2;
2992 /* Don't go below 1, extrapolate below if we have
2993 * already switched to the lower power curve -or
2994 * we only have one curve and edge_flag is zero
2996 if (pcdac_tmp
[pwr
] < 1 && (edge_flag
== 0x00)) {
2998 pcdac_out
[i
] = pcdac_out
[i
+ 1];
3004 pcdac_out
[i
] = pcdac_tmp
[pwr
] | edge_flag
;
3006 /* Extrapolate above if pcdac is greater than
3007 * 126 -this can happen because we OR pcdac_out
3008 * value with edge_flag on high power curve */
3009 if (pcdac_out
[i
] > 126)
3012 /* Decrease by a 0.5dB step */
3018 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3019 * @ah: The &struct ath5k_hw
3022 ath5k_write_pcdac_table(struct ath5k_hw
*ah
)
3024 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
3028 * Write TX power values
3030 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
3031 ath5k_hw_reg_write(ah
,
3032 (((pcdac_out
[2 * i
+ 0] << 8 | 0xff) & 0xffff) << 0) |
3033 (((pcdac_out
[2 * i
+ 1] << 8 | 0xff) & 0xffff) << 16),
3034 AR5K_PHY_PCDAC_TXPOWER(i
));
3040 * Power to PDADC table functions
3044 * DOC: Power to PDADC table functions
3046 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3047 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3048 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3049 * PDADC steps on y axis and looks like an exponential function like the
3052 * To recreate the curves we read the points from eeprom (eeprom.c)
3053 * and interpolate here. Note that in most cases only 2 (higher and lower)
3054 * curves are used (like RF5112) but vendors have the opportunity to include
3055 * all 4 curves on eeprom. The final curve (higher power) has an extra
3056 * point for better accuracy like RF5112.
3058 * The process is similar to what we do above for RF5111/5112
3062 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3063 * @ah: The &struct ath5k_hw
3064 * @pwr_min: Minimum power (x min)
3065 * @pwr_max: Maximum power (x max)
3066 * @pdcurves: Number of available curves
3068 * Combine the various pd curves and create the final Power to PDADC table
3069 * We can have up to 4 pd curves, we need to do a similar process
3070 * as we do for RF5112. This time we don't have an edge_flag but we
3071 * set the gain boundaries on a separate register.
3074 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw
*ah
,
3075 s16
*pwr_min
, s16
*pwr_max
, u8 pdcurves
)
3077 u8 gain_boundaries
[AR5K_EEPROM_N_PD_GAINS
];
3078 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
3081 u8 pdadc_i
, pdadc_n
, pwr_step
, pdg
, max_idx
, table_size
;
3084 /* Note: Register value is initialized on initvals
3085 * there is no feedback from hw.
3086 * XXX: What about pd_gain_overlap from EEPROM ? */
3087 pd_gain_overlap
= (u8
) ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG5
) &
3088 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
;
3090 /* Create final PDADC table */
3091 for (pdg
= 0, pdadc_i
= 0; pdg
< pdcurves
; pdg
++) {
3092 pdadc_tmp
= ah
->ah_txpower
.tmpL
[pdg
];
3094 if (pdg
== pdcurves
- 1)
3095 /* 2 dB boundary stretch for last
3096 * (higher power) curve */
3097 gain_boundaries
[pdg
] = pwr_max
[pdg
] + 4;
3099 /* Set gain boundary in the middle
3100 * between this curve and the next one */
3101 gain_boundaries
[pdg
] =
3102 (pwr_max
[pdg
] + pwr_min
[pdg
+ 1]) / 2;
3104 /* Sanity check in case our 2 db stretch got out of
3106 if (gain_boundaries
[pdg
] > AR5K_TUNE_MAX_TXPOWER
)
3107 gain_boundaries
[pdg
] = AR5K_TUNE_MAX_TXPOWER
;
3109 /* For the first curve (lower power)
3110 * start from 0 dB */
3114 /* For the other curves use the gain overlap */
3115 pdadc_0
= (gain_boundaries
[pdg
- 1] - pwr_min
[pdg
]) -
3118 /* Force each power step to be at least 0.5 dB */
3119 if ((pdadc_tmp
[1] - pdadc_tmp
[0]) > 1)
3120 pwr_step
= pdadc_tmp
[1] - pdadc_tmp
[0];
3124 /* If pdadc_0 is negative, we need to extrapolate
3125 * below this pdgain by a number of pwr_steps */
3126 while ((pdadc_0
< 0) && (pdadc_i
< 128)) {
3127 s16 tmp
= pdadc_tmp
[0] + pdadc_0
* pwr_step
;
3128 pdadc_out
[pdadc_i
++] = (tmp
< 0) ? 0 : (u8
) tmp
;
3132 /* Set last pwr level, using gain boundaries */
3133 pdadc_n
= gain_boundaries
[pdg
] + pd_gain_overlap
- pwr_min
[pdg
];
3134 /* Limit it to be inside pwr range */
3135 table_size
= pwr_max
[pdg
] - pwr_min
[pdg
];
3136 max_idx
= min(pdadc_n
, table_size
);
3138 /* Fill pdadc_out table */
3139 while (pdadc_0
< max_idx
&& pdadc_i
< 128)
3140 pdadc_out
[pdadc_i
++] = pdadc_tmp
[pdadc_0
++];
3142 /* Need to extrapolate above this pdgain? */
3143 if (pdadc_n
<= max_idx
)
3146 /* Force each power step to be at least 0.5 dB */
3147 if ((pdadc_tmp
[table_size
- 1] - pdadc_tmp
[table_size
- 2]) > 1)
3148 pwr_step
= pdadc_tmp
[table_size
- 1] -
3149 pdadc_tmp
[table_size
- 2];
3153 /* Extrapolate above */
3154 while ((pdadc_0
< (s16
) pdadc_n
) &&
3155 (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2)) {
3156 s16 tmp
= pdadc_tmp
[table_size
- 1] +
3157 (pdadc_0
- max_idx
) * pwr_step
;
3158 pdadc_out
[pdadc_i
++] = (tmp
> 127) ? 127 : (u8
) tmp
;
3163 while (pdg
< AR5K_EEPROM_N_PD_GAINS
) {
3164 gain_boundaries
[pdg
] = gain_boundaries
[pdg
- 1];
3168 while (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2) {
3169 pdadc_out
[pdadc_i
] = pdadc_out
[pdadc_i
- 1];
3173 /* Set gain boundaries */
3174 ath5k_hw_reg_write(ah
,
3175 AR5K_REG_SM(pd_gain_overlap
,
3176 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
) |
3177 AR5K_REG_SM(gain_boundaries
[0],
3178 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1
) |
3179 AR5K_REG_SM(gain_boundaries
[1],
3180 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2
) |
3181 AR5K_REG_SM(gain_boundaries
[2],
3182 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3
) |
3183 AR5K_REG_SM(gain_boundaries
[3],
3184 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4
),
3187 /* Used for setting rate power table */
3188 ah
->ah_txpower
.txp_min_idx
= pwr_min
[0];
3193 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3194 * @ah: The &struct ath5k_hw
3195 * @ee_mode: One of enum ath5k_driver_mode
3198 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw
*ah
, u8 ee_mode
)
3200 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
3201 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
3202 u8
*pdg_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
3203 u8 pdcurves
= ee
->ee_pd_gains
[ee_mode
];
3207 /* Select the right pdgain curves */
3209 /* Clear current settings */
3210 reg
= ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG1
);
3211 reg
&= ~(AR5K_PHY_TPC_RG1_PDGAIN_1
|
3212 AR5K_PHY_TPC_RG1_PDGAIN_2
|
3213 AR5K_PHY_TPC_RG1_PDGAIN_3
|
3214 AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
3217 * Use pd_gains curve from eeprom
3219 * This overrides the default setting from initvals
3220 * in case some vendors (e.g. Zcomax) don't use the default
3221 * curves. If we don't honor their settings we 'll get a
3222 * 5dB (1 * gain overlap ?) drop.
3224 reg
|= AR5K_REG_SM(pdcurves
, AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
3228 reg
|= AR5K_REG_SM(pdg_to_idx
[2], AR5K_PHY_TPC_RG1_PDGAIN_3
);
3231 reg
|= AR5K_REG_SM(pdg_to_idx
[1], AR5K_PHY_TPC_RG1_PDGAIN_2
);
3234 reg
|= AR5K_REG_SM(pdg_to_idx
[0], AR5K_PHY_TPC_RG1_PDGAIN_1
);
3237 ath5k_hw_reg_write(ah
, reg
, AR5K_PHY_TPC_RG1
);
3240 * Write TX power values
3242 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
3243 u32 val
= get_unaligned_le32(&pdadc_out
[4 * i
]);
3244 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_PDADC_TXPOWER(i
));
3250 * Common code for PCDAC/PDADC tables
3254 * ath5k_setup_channel_powertable() - Set up power table for this channel
3255 * @ah: The &struct ath5k_hw
3256 * @channel: The &struct ieee80211_channel
3257 * @ee_mode: One of enum ath5k_driver_mode
3258 * @type: One of enum ath5k_powertable_type (eeprom.h)
3260 * This is the main function that uses all of the above
3261 * to set PCDAC/PDADC table on hw for the current channel.
3262 * This table is used for tx power calibration on the baseband,
3263 * without it we get weird tx power levels and in some cases
3264 * distorted spectral mask
3267 ath5k_setup_channel_powertable(struct ath5k_hw
*ah
,
3268 struct ieee80211_channel
*channel
,
3269 u8 ee_mode
, u8 type
)
3271 struct ath5k_pdgain_info
*pdg_L
, *pdg_R
;
3272 struct ath5k_chan_pcal_info
*pcinfo_L
;
3273 struct ath5k_chan_pcal_info
*pcinfo_R
;
3274 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
3275 u8
*pdg_curve_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
3276 s16 table_min
[AR5K_EEPROM_N_PD_GAINS
];
3277 s16 table_max
[AR5K_EEPROM_N_PD_GAINS
];
3280 u32 target
= channel
->center_freq
;
3283 /* Get surrounding freq piers for this channel */
3284 ath5k_get_chan_pcal_surrounding_piers(ah
, channel
,
3288 /* Loop over pd gain curves on
3289 * surrounding freq piers by index */
3290 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[ee_mode
]; pdg
++) {
3292 /* Fill curves in reverse order
3293 * from lower power (max gain)
3294 * to higher power. Use curve -> idx
3295 * backmapping we did on eeprom init */
3296 u8 idx
= pdg_curve_to_idx
[pdg
];
3298 /* Grab the needed curves by index */
3299 pdg_L
= &pcinfo_L
->pd_curves
[idx
];
3300 pdg_R
= &pcinfo_R
->pd_curves
[idx
];
3302 /* Initialize the temp tables */
3303 tmpL
= ah
->ah_txpower
.tmpL
[pdg
];
3304 tmpR
= ah
->ah_txpower
.tmpR
[pdg
];
3306 /* Set curve's x boundaries and create
3307 * curves so that they cover the same
3308 * range (if we don't do that one table
3309 * will have values on some range and the
3310 * other one won't have any so interpolation
3312 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
3313 pdg_R
->pd_pwr
[0]) / 2;
3315 table_max
[pdg
] = max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
3316 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]) / 2;
3318 /* Now create the curves on surrounding channels
3319 * and interpolate if needed to get the final
3320 * curve for this gain on this channel */
3322 case AR5K_PWRTABLE_LINEAR_PCDAC
:
3323 /* Override min/max so that we don't loose
3324 * accuracy (don't divide by 2) */
3325 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
3329 max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
3330 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]);
3332 /* Override minimum so that we don't get
3333 * out of bounds while extrapolating
3334 * below. Don't do this when we have 2
3335 * curves and we are on the high power curve
3336 * because table_min is ok in this case */
3337 if (!(ee
->ee_pd_gains
[ee_mode
] > 1 && pdg
== 0)) {
3340 ath5k_get_linear_pcdac_min(pdg_L
->pd_step
,
3345 /* Don't go too low because we will
3346 * miss the upper part of the curve.
3347 * Note: 126 = 31.5dB (max power supported)
3348 * in 0.25dB units */
3349 if (table_max
[pdg
] - table_min
[pdg
] > 126)
3350 table_min
[pdg
] = table_max
[pdg
] - 126;
3354 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
3355 case AR5K_PWRTABLE_PWR_TO_PDADC
:
3357 ath5k_create_power_curve(table_min
[pdg
],
3361 pdg_L
->pd_points
, tmpL
, type
);
3363 /* We are in a calibration
3364 * pier, no need to interpolate
3365 * between freq piers */
3366 if (pcinfo_L
== pcinfo_R
)
3369 ath5k_create_power_curve(table_min
[pdg
],
3373 pdg_R
->pd_points
, tmpR
, type
);
3379 /* Interpolate between curves
3380 * of surrounding freq piers to
3381 * get the final curve for this
3382 * pd gain. Re-use tmpL for interpolation
3384 for (i
= 0; (i
< (u16
) (table_max
[pdg
] - table_min
[pdg
])) &&
3385 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
3386 tmpL
[i
] = (u8
) ath5k_get_interpolated_value(target
,
3387 (s16
) pcinfo_L
->freq
,
3388 (s16
) pcinfo_R
->freq
,
3394 /* Now we have a set of curves for this
3395 * channel on tmpL (x range is table_max - table_min
3396 * and y values are tmpL[pdg][]) sorted in the same
3397 * order as EEPROM (because we've used the backmapping).
3398 * So for RF5112 it's from higher power to lower power
3399 * and for RF2413 it's from lower power to higher power.
3400 * For RF5111 we only have one curve. */
3402 /* Fill min and max power levels for this
3403 * channel by interpolating the values on
3404 * surrounding channels to complete the dataset */
3405 ah
->ah_txpower
.txp_min_pwr
= ath5k_get_interpolated_value(target
,
3406 (s16
) pcinfo_L
->freq
,
3407 (s16
) pcinfo_R
->freq
,
3408 pcinfo_L
->min_pwr
, pcinfo_R
->min_pwr
);
3410 ah
->ah_txpower
.txp_max_pwr
= ath5k_get_interpolated_value(target
,
3411 (s16
) pcinfo_L
->freq
,
3412 (s16
) pcinfo_R
->freq
,
3413 pcinfo_L
->max_pwr
, pcinfo_R
->max_pwr
);
3415 /* Fill PCDAC/PDADC table */
3417 case AR5K_PWRTABLE_LINEAR_PCDAC
:
3418 /* For RF5112 we can have one or two curves
3419 * and each curve covers a certain power lvl
3420 * range so we need to do some more processing */
3421 ath5k_combine_linear_pcdac_curves(ah
, table_min
, table_max
,
3422 ee
->ee_pd_gains
[ee_mode
]);
3424 /* Set txp.offset so that we can
3425 * match max power value with max
3427 ah
->ah_txpower
.txp_offset
= 64 - (table_max
[0] / 2);
3429 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
3430 /* We are done for RF5111 since it has only
3431 * one curve, just fit the curve on the table */
3432 ath5k_fill_pwr_to_pcdac_table(ah
, table_min
, table_max
);
3434 /* No rate powertable adjustment for RF5111 */
3435 ah
->ah_txpower
.txp_min_idx
= 0;
3436 ah
->ah_txpower
.txp_offset
= 0;
3438 case AR5K_PWRTABLE_PWR_TO_PDADC
:
3439 /* Set PDADC boundaries and fill
3440 * final PDADC table */
3441 ath5k_combine_pwr_to_pdadc_curves(ah
, table_min
, table_max
,
3442 ee
->ee_pd_gains
[ee_mode
]);
3444 /* Set txp.offset, note that table_min
3445 * can be negative */
3446 ah
->ah_txpower
.txp_offset
= table_min
[0];
3452 ah
->ah_txpower
.txp_setup
= true;
3458 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3459 * @ah: The &struct ath5k_hw
3460 * @ee_mode: One of enum ath5k_driver_mode
3461 * @type: One of enum ath5k_powertable_type (eeprom.h)
3464 ath5k_write_channel_powertable(struct ath5k_hw
*ah
, u8 ee_mode
, u8 type
)
3466 if (type
== AR5K_PWRTABLE_PWR_TO_PDADC
)
3467 ath5k_write_pwr_to_pdadc_table(ah
, ee_mode
);
3469 ath5k_write_pcdac_table(ah
);
3474 * DOC: Per-rate tx power setting
3476 * This is the code that sets the desired tx power limit (below
3477 * maximum) on hw for each rate (we also have TPC that sets
3478 * power per packet type). We do that by providing an index on the
3479 * PCDAC/PDADC table we set up above, for each rate.
3481 * For now we only limit txpower based on maximum tx power
3482 * supported by hw (what's inside rate_info) + conformance test
3483 * limits. We need to limit this even more, based on regulatory domain
3484 * etc to be safe. Normally this is done from above so we don't care
3485 * here, all we care is that the tx power we set will be O.K.
3486 * for the hw (e.g. won't create noise on PA etc).
3488 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3489 * x values) and is indexed as follows:
3490 * rates[0] - rates[7] -> OFDM rates
3491 * rates[8] - rates[14] -> CCK rates
3492 * rates[15] -> XR rates (they all have the same power)
3496 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3497 * @ah: The &struct ath5k_hw
3498 * @max_pwr: The maximum tx power requested in 0.5dB steps
3499 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3500 * @ee_mode: One of enum ath5k_driver_mode
3503 ath5k_setup_rate_powertable(struct ath5k_hw
*ah
, u16 max_pwr
,
3504 struct ath5k_rate_pcal_info
*rate_info
,
3509 s16 rate_idx_scaled
= 0;
3511 /* max_pwr is power level we got from driver/user in 0.5dB
3512 * units, switch to 0.25dB units so we can compare */
3514 max_pwr
= min(max_pwr
, (u16
) ah
->ah_txpower
.txp_max_pwr
) / 2;
3516 /* apply rate limits */
3517 rates
= ah
->ah_txpower
.txp_rates_power_table
;
3519 /* OFDM rates 6 to 24Mb/s */
3520 for (i
= 0; i
< 5; i
++)
3521 rates
[i
] = min(max_pwr
, rate_info
->target_power_6to24
);
3523 /* Rest OFDM rates */
3524 rates
[5] = min(rates
[0], rate_info
->target_power_36
);
3525 rates
[6] = min(rates
[0], rate_info
->target_power_48
);
3526 rates
[7] = min(rates
[0], rate_info
->target_power_54
);
3530 rates
[8] = min(rates
[0], rate_info
->target_power_6to24
);
3532 rates
[9] = min(rates
[0], rate_info
->target_power_36
);
3534 rates
[10] = min(rates
[0], rate_info
->target_power_36
);
3536 rates
[11] = min(rates
[0], rate_info
->target_power_48
);
3538 rates
[12] = min(rates
[0], rate_info
->target_power_48
);
3540 rates
[13] = min(rates
[0], rate_info
->target_power_54
);
3542 rates
[14] = min(rates
[0], rate_info
->target_power_54
);
3545 rates
[15] = min(rates
[0], rate_info
->target_power_6to24
);
3547 /* CCK rates have different peak to average ratio
3548 * so we have to tweak their power so that gainf
3549 * correction works ok. For this we use OFDM to
3550 * CCK delta from eeprom */
3551 if ((ee_mode
== AR5K_EEPROM_MODE_11G
) &&
3552 (ah
->ah_phy_revision
< AR5K_SREV_PHY_5212A
))
3553 for (i
= 8; i
<= 15; i
++)
3554 rates
[i
] -= ah
->ah_txpower
.txp_cck_ofdm_gainf_delta
;
3556 /* Save min/max and current tx power for this channel
3559 * Note: We use rates[0] for current tx power because
3560 * it covers most of the rates, in most cases. It's our
3561 * tx power limit and what the user expects to see. */
3562 ah
->ah_txpower
.txp_min_pwr
= 2 * rates
[7];
3563 ah
->ah_txpower
.txp_cur_pwr
= 2 * rates
[0];
3565 /* Set max txpower for correct OFDM operation on all rates
3566 * -that is the txpower for 54Mbit-, it's used for the PAPD
3567 * gain probe and it's in 0.5dB units */
3568 ah
->ah_txpower
.txp_ofdm
= rates
[7];
3570 /* Now that we have all rates setup use table offset to
3571 * match the power range set by user with the power indices
3572 * on PCDAC/PDADC table */
3573 for (i
= 0; i
< 16; i
++) {
3574 rate_idx_scaled
= rates
[i
] + ah
->ah_txpower
.txp_offset
;
3575 /* Don't get out of bounds */
3576 if (rate_idx_scaled
> 63)
3577 rate_idx_scaled
= 63;
3578 if (rate_idx_scaled
< 0)
3579 rate_idx_scaled
= 0;
3580 rates
[i
] = rate_idx_scaled
;
3586 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3587 * @ah: The &struct ath5k_hw
3588 * @channel: The &struct ieee80211_channel
3589 * @txpower: Requested tx power in 0.5dB steps
3591 * Combines all of the above to set the requested tx power limit
3595 ath5k_hw_txpower(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
,
3598 struct ath5k_rate_pcal_info rate_info
;
3599 struct ieee80211_channel
*curr_channel
= ah
->ah_current_channel
;
3604 if (txpower
> AR5K_TUNE_MAX_TXPOWER
) {
3605 ATH5K_ERR(ah
, "invalid tx power: %u\n", txpower
);
3609 ee_mode
= ath5k_eeprom_mode_from_channel(ah
, channel
);
3611 /* Initialize TX power table */
3612 switch (ah
->ah_radio
) {
3617 type
= AR5K_PWRTABLE_PWR_TO_PCDAC
;
3620 type
= AR5K_PWRTABLE_LINEAR_PCDAC
;
3627 type
= AR5K_PWRTABLE_PWR_TO_PDADC
;
3634 * If we don't change channel/mode skip tx powertable calculation
3635 * and use the cached one.
3637 if (!ah
->ah_txpower
.txp_setup
||
3638 (channel
->hw_value
!= curr_channel
->hw_value
) ||
3639 (channel
->center_freq
!= curr_channel
->center_freq
)) {
3640 /* Reset TX power values but preserve requested
3641 * tx power from above */
3642 int requested_txpower
= ah
->ah_txpower
.txp_requested
;
3644 memset(&ah
->ah_txpower
, 0, sizeof(ah
->ah_txpower
));
3646 /* Restore TPC setting and requested tx power */
3647 ah
->ah_txpower
.txp_tpc
= AR5K_TUNE_TPC_TXPOWER
;
3649 ah
->ah_txpower
.txp_requested
= requested_txpower
;
3651 /* Calculate the powertable */
3652 ret
= ath5k_setup_channel_powertable(ah
, channel
,
3658 /* Write table on hw */
3659 ath5k_write_channel_powertable(ah
, ee_mode
, type
);
3661 /* Limit max power if we have a CTL available */
3662 ath5k_get_max_ctl_power(ah
, channel
);
3664 /* FIXME: Antenna reduction stuff */
3666 /* FIXME: Limit power on turbo modes */
3668 /* FIXME: TPC scale reduction */
3670 /* Get surrounding channels for per-rate power table
3672 ath5k_get_rate_pcal_data(ah
, channel
, &rate_info
);
3674 /* Setup rate power table */
3675 ath5k_setup_rate_powertable(ah
, txpower
, &rate_info
, ee_mode
);
3677 /* Write rate power table on hw */
3678 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(3, 24) |
3679 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3680 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1
);
3682 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(7, 24) |
3683 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3684 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2
);
3686 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(10, 24) |
3687 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3688 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3
);
3690 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(14, 24) |
3691 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3692 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4
);
3694 /* FIXME: TPC support */
3695 if (ah
->ah_txpower
.txp_tpc
) {
3696 ath5k_hw_reg_write(ah
, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE
|
3697 AR5K_TUNE_MAX_TXPOWER
, AR5K_PHY_TXPOWER_RATE_MAX
);
3699 ath5k_hw_reg_write(ah
,
3700 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_ACK
) |
3701 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CTS
) |
3702 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CHIRP
),
3705 ath5k_hw_reg_write(ah
, AR5K_TUNE_MAX_TXPOWER
,
3706 AR5K_PHY_TXPOWER_RATE_MAX
);
3713 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3714 * @ah: The &struct ath5k_hw
3715 * @txpower: The requested tx power limit in 0.5dB steps
3717 * This function provides access to ath5k_hw_txpower to the driver in
3718 * case user or an application changes it while PHY is running.
3721 ath5k_hw_set_txpower_limit(struct ath5k_hw
*ah
, u8 txpower
)
3723 ATH5K_DBG(ah
, ATH5K_DEBUG_TXPOWER
,
3724 "changing txpower to %d\n", txpower
);
3726 return ath5k_hw_txpower(ah
, ah
->ah_current_channel
, txpower
);
3735 * ath5k_hw_phy_init() - Initialize PHY
3736 * @ah: The &struct ath5k_hw
3737 * @channel: The @struct ieee80211_channel
3738 * @mode: One of enum ath5k_driver_mode
3739 * @fast: Try a fast channel switch instead
3741 * This is the main function used during reset to initialize PHY
3742 * or do a fast channel change if possible.
3744 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3745 * warm reset state !
3748 ath5k_hw_phy_init(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
,
3751 struct ieee80211_channel
*curr_channel
;
3757 * Sanity check for fast flag
3758 * Don't try fast channel change when changing modulation
3759 * mode/band. We check for chip compatibility on
3762 curr_channel
= ah
->ah_current_channel
;
3763 if (fast
&& (channel
->hw_value
!= curr_channel
->hw_value
))
3767 * On fast channel change we only set the synth parameters
3768 * while PHY is running, enable calibration and skip the rest.
3771 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_RFBUS_REQ
,
3772 AR5K_PHY_RFBUS_REQ_REQUEST
);
3773 for (i
= 0; i
< 100; i
++) {
3774 if (ath5k_hw_reg_read(ah
, AR5K_PHY_RFBUS_GRANT
))
3782 /* Set channel and wait for synth */
3783 ret
= ath5k_hw_channel(ah
, channel
);
3787 ath5k_hw_wait_for_synth(ah
, channel
);
3793 * Note: We need to do that before we set
3794 * RF buffer settings on 5211/5212+ so that we
3795 * properly set curve indices.
3797 ret
= ath5k_hw_txpower(ah
, channel
, ah
->ah_txpower
.txp_requested
?
3798 ah
->ah_txpower
.txp_requested
* 2 :
3799 AR5K_TUNE_MAX_TXPOWER
);
3803 /* Write OFDM timings on 5212*/
3804 if (ah
->ah_version
== AR5K_AR5212
&&
3805 channel
->hw_value
!= AR5K_MODE_11B
) {
3807 ret
= ath5k_hw_write_ofdm_timings(ah
, channel
);
3811 /* Spur info is available only from EEPROM versions
3812 * greater than 5.3, but the EEPROM routines will use
3813 * static values for older versions */
3814 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
)
3815 ath5k_hw_set_spur_mitigation_filter(ah
,
3819 /* If we used fast channel switching
3820 * we are done, release RF bus and
3821 * fire up NF calibration.
3823 * Note: Only NF calibration due to
3824 * channel change, not AGC calibration
3825 * since AGC is still running !
3829 * Release RF Bus grant
3831 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_RFBUS_REQ
,
3832 AR5K_PHY_RFBUS_REQ_REQUEST
);
3835 * Start NF calibration
3837 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
3838 AR5K_PHY_AGCCTL_NF
);
3844 * For 5210 we do all initialization using
3845 * initvals, so we don't have to modify
3846 * any settings (5210 also only supports
3849 if (ah
->ah_version
!= AR5K_AR5210
) {
3852 * Write initial RF gain settings
3853 * This should work for both 5111/5112
3855 ret
= ath5k_hw_rfgain_init(ah
, channel
->band
);
3859 usleep_range(1000, 1500);
3864 ret
= ath5k_hw_rfregs_init(ah
, channel
, mode
);
3868 /*Enable/disable 802.11b mode on 5111
3869 (enable 2111 frequency converter + CCK)*/
3870 if (ah
->ah_radio
== AR5K_RF5111
) {
3871 if (mode
== AR5K_MODE_11B
)
3872 AR5K_REG_ENABLE_BITS(ah
, AR5K_TXCFG
,
3875 AR5K_REG_DISABLE_BITS(ah
, AR5K_TXCFG
,
3879 } else if (ah
->ah_version
== AR5K_AR5210
) {
3880 usleep_range(1000, 1500);
3881 /* Disable phy and wait */
3882 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
3883 usleep_range(1000, 1500);
3886 /* Set channel on PHY */
3887 ret
= ath5k_hw_channel(ah
, channel
);
3892 * Enable the PHY and wait until completion
3893 * This includes BaseBand and Synthesizer
3896 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
3898 ath5k_hw_wait_for_synth(ah
, channel
);
3901 * Perform ADC test to see if baseband is ready
3902 * Set tx hold and check adc test register
3904 phy_tst1
= ath5k_hw_reg_read(ah
, AR5K_PHY_TST1
);
3905 ath5k_hw_reg_write(ah
, AR5K_PHY_TST1_TXHOLD
, AR5K_PHY_TST1
);
3906 for (i
= 0; i
<= 20; i
++) {
3907 if (!(ath5k_hw_reg_read(ah
, AR5K_PHY_ADC_TEST
) & 0x10))
3909 usleep_range(200, 250);
3911 ath5k_hw_reg_write(ah
, phy_tst1
, AR5K_PHY_TST1
);
3914 * Start automatic gain control calibration
3916 * During AGC calibration RX path is re-routed to
3917 * a power detector so we don't receive anything.
3919 * This method is used to calibrate some static offsets
3920 * used together with on-the fly I/Q calibration (the
3921 * one performed via ath5k_hw_phy_calibrate), which doesn't
3922 * interrupt rx path.
3924 * While rx path is re-routed to the power detector we also
3925 * start a noise floor calibration to measure the
3926 * card's noise floor (the noise we measure when we are not
3927 * transmitting or receiving anything).
3929 * If we are in a noisy environment, AGC calibration may time
3930 * out and/or noise floor calibration might timeout.
3932 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
3933 AR5K_PHY_AGCCTL_CAL
| AR5K_PHY_AGCCTL_NF
);
3935 /* At the same time start I/Q calibration for QAM constellation
3936 * -no need for CCK- */
3937 ah
->ah_iq_cal_needed
= false;
3938 if (!(mode
== AR5K_MODE_11B
)) {
3939 ah
->ah_iq_cal_needed
= true;
3940 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
3941 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
3942 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
3946 /* Wait for gain calibration to finish (we check for I/Q calibration
3947 * during ath5k_phy_calibrate) */
3948 if (ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
3949 AR5K_PHY_AGCCTL_CAL
, 0, false)) {
3950 ATH5K_ERR(ah
, "gain calibration timeout (%uMHz)\n",
3951 channel
->center_freq
);
3954 /* Restore antenna mode */
3955 ath5k_hw_set_antenna_mode(ah
, ah
->ah_ant_mode
);