accel/ivpu: Move recovery work to system_unbound_wq
[drm/drm-misc.git] / drivers / net / wireless / ath / ath9k / eeprom.c
blobdf58dc02e104fe9767ec6c659fc35f95acbf717d
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21 REG_WRITE(ah, reg, val);
23 if (ah->config.analog_shiftreg)
24 udelay(100);
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 u32 shift, u32 val)
30 REG_RMW(ah, reg, ((val << shift) & mask), mask);
32 if (ah->config.analog_shiftreg)
33 udelay(100);
36 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
37 int16_t targetLeft, int16_t targetRight)
39 int16_t rv;
41 if (srcRight == srcLeft) {
42 rv = targetLeft;
43 } else {
44 rv = (int16_t) (((target - srcLeft) * targetRight +
45 (srcRight - target) * targetLeft) /
46 (srcRight - srcLeft));
48 return rv;
51 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
52 u16 *indexL, u16 *indexR)
54 u16 i;
56 if (target <= pList[0]) {
57 *indexL = *indexR = 0;
58 return true;
60 if (target >= pList[listSize - 1]) {
61 *indexL = *indexR = (u16) (listSize - 1);
62 return true;
65 for (i = 0; i < listSize - 1; i++) {
66 if (pList[i] == target) {
67 *indexL = *indexR = i;
68 return true;
70 if (target < pList[i + 1]) {
71 *indexL = i;
72 *indexR = (u16) (i + 1);
73 return false;
76 return false;
79 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
80 int eep_start_loc, int size)
82 int i = 0, j, addr;
83 u32 addrdata[8];
84 u32 data[8];
86 for (addr = 0; addr < size; addr++) {
87 addrdata[i] = AR5416_EEPROM_OFFSET +
88 ((addr + eep_start_loc) << AR5416_EEPROM_S);
89 i++;
90 if (i == 8) {
91 REG_READ_MULTI(ah, addrdata, data, i);
93 for (j = 0; j < i; j++) {
94 *eep_data = data[j];
95 eep_data++;
97 i = 0;
101 if (i != 0) {
102 REG_READ_MULTI(ah, addrdata, data, i);
104 for (j = 0; j < i; j++) {
105 *eep_data = data[j];
106 eep_data++;
111 static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
112 off_t offset, u16 *data)
114 if (offset >= blob_size)
115 return false;
117 *data = blob[offset];
118 return true;
121 static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
122 off_t offset, u16 *data)
124 return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
125 eeprom_blob->size / sizeof(u16),
126 offset, data);
129 static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
130 u16 *data)
132 return ath9k_hw_nvram_read_array(ah->nvmem_blob,
133 ah->nvmem_blob_len / sizeof(u16),
134 offset, data);
137 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
139 struct ath_common *common = ath9k_hw_common(ah);
140 bool ret;
142 if (ah->nvmem_blob)
143 ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
144 else if (ah->eeprom_blob)
145 ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
146 else
147 ret = common->bus_ops->eeprom_read(common, off, data);
149 if (!ret)
150 ath_dbg(common, EEPROM,
151 "unable to read eeprom region at offset %u\n", off);
153 return ret;
156 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
158 u16 magic;
159 u16 *eepdata;
160 int i;
161 bool needs_byteswap = false;
162 struct ath_common *common = ath9k_hw_common(ah);
164 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
165 ath_err(common, "Reading Magic # failed\n");
166 return -EIO;
169 if (swab16(magic) == AR5416_EEPROM_MAGIC) {
170 needs_byteswap = true;
171 ath_dbg(common, EEPROM,
172 "EEPROM needs byte-swapping to correct endianness.\n");
173 } else if (magic != AR5416_EEPROM_MAGIC) {
174 if (ath9k_hw_use_flash(ah)) {
175 ath_dbg(common, EEPROM,
176 "Ignoring invalid EEPROM magic (0x%04x).\n",
177 magic);
178 } else {
179 ath_err(common,
180 "Invalid EEPROM magic (0x%04x).\n", magic);
181 return -EINVAL;
185 if (needs_byteswap) {
186 if (ah->ah_flags & AH_NO_EEP_SWAP) {
187 ath_info(common,
188 "Ignoring endianness difference in EEPROM magic bytes.\n");
189 } else {
190 eepdata = (u16 *)(&ah->eeprom);
192 for (i = 0; i < size; i++)
193 eepdata[i] = swab16(eepdata[i]);
197 if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
198 *swap_needed = true;
199 ath_dbg(common, EEPROM,
200 "Big Endian EEPROM detected according to EEPMISC register.\n");
201 } else {
202 *swap_needed = false;
205 return 0;
208 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
210 u32 i, sum = 0;
211 u16 *eepdata = (u16 *)(&ah->eeprom);
212 struct ath_common *common = ath9k_hw_common(ah);
214 for (i = 0; i < size; i++)
215 sum ^= eepdata[i];
217 if (sum != 0xffff) {
218 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
219 return false;
222 return true;
225 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
227 struct ath_common *common = ath9k_hw_common(ah);
229 if (ah->eep_ops->get_eeprom_ver(ah) != version ||
230 ah->eep_ops->get_eeprom_rev(ah) < minrev) {
231 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
232 ah->eep_ops->get_eeprom_ver(ah),
233 ah->eep_ops->get_eeprom_rev(ah));
234 return false;
237 return true;
240 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
241 u8 *pVpdList, u16 numIntercepts,
242 u8 *pRetVpdList)
244 u16 i, k;
245 u8 currPwr = pwrMin;
246 u16 idxL = 0, idxR = 0;
248 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
249 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
250 numIntercepts, &(idxL),
251 &(idxR));
252 if (idxR < 1)
253 idxR = 1;
254 if (idxL == numIntercepts - 1)
255 idxL = (u16) (numIntercepts - 2);
256 if (pPwrList[idxL] == pPwrList[idxR])
257 k = pVpdList[idxL];
258 else
259 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
260 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
261 (pPwrList[idxR] - pPwrList[idxL]));
262 pRetVpdList[i] = (u8) k;
263 currPwr += 2;
267 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
268 struct ath9k_channel *chan,
269 struct cal_target_power_leg *powInfo,
270 u16 numChannels,
271 struct cal_target_power_leg *pNewPower,
272 u16 numRates, bool isExtTarget)
274 struct chan_centers centers;
275 u16 clo, chi;
276 int i;
277 int matchIndex = -1, lowIndex = -1;
278 u16 freq;
280 ath9k_hw_get_channel_centers(ah, chan, &centers);
281 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
283 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
284 IS_CHAN_2GHZ(chan))) {
285 matchIndex = 0;
286 } else {
287 for (i = 0; (i < numChannels) &&
288 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
289 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
290 IS_CHAN_2GHZ(chan))) {
291 matchIndex = i;
292 break;
293 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
294 IS_CHAN_2GHZ(chan)) && i > 0 &&
295 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
296 IS_CHAN_2GHZ(chan))) {
297 lowIndex = i - 1;
298 break;
301 if ((matchIndex == -1) && (lowIndex == -1))
302 matchIndex = i - 1;
305 if (matchIndex != -1) {
306 *pNewPower = powInfo[matchIndex];
307 } else {
308 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
309 IS_CHAN_2GHZ(chan));
310 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
311 IS_CHAN_2GHZ(chan));
313 for (i = 0; i < numRates; i++) {
314 pNewPower->tPow2x[i] =
315 (u8)ath9k_hw_interpolate(freq, clo, chi,
316 powInfo[lowIndex].tPow2x[i],
317 powInfo[lowIndex + 1].tPow2x[i]);
322 void ath9k_hw_get_target_powers(struct ath_hw *ah,
323 struct ath9k_channel *chan,
324 struct cal_target_power_ht *powInfo,
325 u16 numChannels,
326 struct cal_target_power_ht *pNewPower,
327 u16 numRates, bool isHt40Target)
329 struct chan_centers centers;
330 u16 clo, chi;
331 int i;
332 int matchIndex = -1, lowIndex = -1;
333 u16 freq;
335 ath9k_hw_get_channel_centers(ah, chan, &centers);
336 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
338 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
339 matchIndex = 0;
340 } else {
341 for (i = 0; (i < numChannels) &&
342 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
343 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
344 IS_CHAN_2GHZ(chan))) {
345 matchIndex = i;
346 break;
347 } else
348 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
349 IS_CHAN_2GHZ(chan)) && i > 0 &&
350 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
351 IS_CHAN_2GHZ(chan))) {
352 lowIndex = i - 1;
353 break;
356 if ((matchIndex == -1) && (lowIndex == -1))
357 matchIndex = i - 1;
360 if (matchIndex != -1) {
361 *pNewPower = powInfo[matchIndex];
362 } else {
363 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
364 IS_CHAN_2GHZ(chan));
365 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
366 IS_CHAN_2GHZ(chan));
368 for (i = 0; i < numRates; i++) {
369 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
370 clo, chi,
371 powInfo[lowIndex].tPow2x[i],
372 powInfo[lowIndex + 1].tPow2x[i]);
377 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
378 bool is2GHz, int num_band_edges)
380 u16 twiceMaxEdgePower = MAX_RATE_POWER;
381 int i;
383 for (i = 0; (i < num_band_edges) &&
384 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
385 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
386 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
387 break;
388 } else if ((i > 0) &&
389 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
390 is2GHz))) {
391 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
392 is2GHz) < freq &&
393 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
394 twiceMaxEdgePower =
395 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
397 break;
401 return twiceMaxEdgePower;
404 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
405 u8 antenna_reduction)
407 u16 reduction = antenna_reduction;
410 * Reduce scaled Power by number of chains active
411 * to get the per chain tx power level.
413 switch (ar5416_get_ntxchains(ah->txchainmask)) {
414 case 1:
415 break;
416 case 2:
417 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
418 break;
419 case 3:
420 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
421 break;
424 if (power_limit > reduction)
425 power_limit -= reduction;
426 else
427 power_limit = 0;
429 return min_t(u16, power_limit, MAX_RATE_POWER);
432 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
434 struct ath_common *common = ath9k_hw_common(ah);
435 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
437 switch (ar5416_get_ntxchains(ah->txchainmask)) {
438 case 1:
439 break;
440 case 2:
441 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
442 break;
443 case 3:
444 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
445 break;
446 default:
447 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
448 break;
452 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
453 struct ath9k_channel *chan,
454 void *pRawDataSet,
455 u8 *bChans, u16 availPiers,
456 u16 tPdGainOverlap,
457 u16 *pPdGainBoundaries, u8 *pPDADCValues,
458 u16 numXpdGains)
460 int i, j, k;
461 int16_t ss;
462 u16 idxL = 0, idxR = 0, numPiers;
463 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
464 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
465 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
466 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
467 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
468 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
470 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
471 u8 minPwrT4[AR5416_NUM_PD_GAINS];
472 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
473 int16_t vpdStep;
474 int16_t tmpVal;
475 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
476 bool match;
477 int16_t minDelta = 0;
478 struct chan_centers centers;
479 int pdgain_boundary_default;
480 struct cal_data_per_freq *data_def = pRawDataSet;
481 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
482 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
483 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
484 int intercepts;
486 if (AR_SREV_9287(ah))
487 intercepts = AR9287_PD_GAIN_ICEPTS;
488 else
489 intercepts = AR5416_PD_GAIN_ICEPTS;
491 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
492 ath9k_hw_get_channel_centers(ah, chan, &centers);
494 for (numPiers = 0; numPiers < availPiers; numPiers++) {
495 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
496 break;
499 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
500 IS_CHAN_2GHZ(chan)),
501 bChans, numPiers, &idxL, &idxR);
503 if (match) {
504 if (AR_SREV_9287(ah)) {
505 for (i = 0; i < numXpdGains; i++) {
506 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
507 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
508 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
509 data_9287[idxL].pwrPdg[i],
510 data_9287[idxL].vpdPdg[i],
511 intercepts,
512 vpdTableI[i]);
514 } else if (eeprom_4k) {
515 for (i = 0; i < numXpdGains; i++) {
516 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
517 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
518 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
519 data_4k[idxL].pwrPdg[i],
520 data_4k[idxL].vpdPdg[i],
521 intercepts,
522 vpdTableI[i]);
524 } else {
525 for (i = 0; i < numXpdGains; i++) {
526 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
527 maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
528 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
529 data_def[idxL].pwrPdg[i],
530 data_def[idxL].vpdPdg[i],
531 intercepts,
532 vpdTableI[i]);
535 } else {
536 for (i = 0; i < numXpdGains; i++) {
537 if (AR_SREV_9287(ah)) {
538 pVpdL = data_9287[idxL].vpdPdg[i];
539 pPwrL = data_9287[idxL].pwrPdg[i];
540 pVpdR = data_9287[idxR].vpdPdg[i];
541 pPwrR = data_9287[idxR].pwrPdg[i];
542 } else if (eeprom_4k) {
543 pVpdL = data_4k[idxL].vpdPdg[i];
544 pPwrL = data_4k[idxL].pwrPdg[i];
545 pVpdR = data_4k[idxR].vpdPdg[i];
546 pPwrR = data_4k[idxR].pwrPdg[i];
547 } else {
548 pVpdL = data_def[idxL].vpdPdg[i];
549 pPwrL = data_def[idxL].pwrPdg[i];
550 pVpdR = data_def[idxR].vpdPdg[i];
551 pPwrR = data_def[idxR].pwrPdg[i];
554 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
556 maxPwrT4[i] =
557 min(pPwrL[intercepts - 1],
558 pPwrR[intercepts - 1]);
561 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
562 pPwrL, pVpdL,
563 intercepts,
564 vpdTableL[i]);
565 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
566 pPwrR, pVpdR,
567 intercepts,
568 vpdTableR[i]);
570 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
571 vpdTableI[i][j] =
572 (u8)(ath9k_hw_interpolate((u16)
573 FREQ2FBIN(centers.
574 synth_center,
575 IS_CHAN_2GHZ
576 (chan)),
577 bChans[idxL], bChans[idxR],
578 vpdTableL[i][j], vpdTableR[i][j]));
583 k = 0;
585 for (i = 0; i < numXpdGains; i++) {
586 if (i == (numXpdGains - 1))
587 pPdGainBoundaries[i] =
588 (u16)(maxPwrT4[i] / 2);
589 else
590 pPdGainBoundaries[i] =
591 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
593 pPdGainBoundaries[i] =
594 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
596 minDelta = 0;
598 if (i == 0) {
599 if (AR_SREV_9280_20_OR_LATER(ah))
600 ss = (int16_t)(0 - (minPwrT4[i] / 2));
601 else
602 ss = 0;
603 } else {
604 ss = (int16_t)((pPdGainBoundaries[i - 1] -
605 (minPwrT4[i] / 2)) -
606 tPdGainOverlap + 1 + minDelta);
608 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
609 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
611 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
612 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
613 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
614 ss++;
617 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
618 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
619 (minPwrT4[i] / 2));
620 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
621 tgtIndex : sizeCurrVpdTable;
623 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
624 pPDADCValues[k++] = vpdTableI[i][ss++];
627 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
628 vpdTableI[i][sizeCurrVpdTable - 2]);
629 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
631 if (tgtIndex >= maxIndex) {
632 while ((ss <= tgtIndex) &&
633 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
634 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
635 (ss - maxIndex + 1) * vpdStep));
636 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
637 255 : tmpVal);
638 ss++;
643 if (eeprom_4k)
644 pdgain_boundary_default = 58;
645 else
646 pdgain_boundary_default = pPdGainBoundaries[i - 1];
648 while (i < AR5416_PD_GAINS_IN_MASK) {
649 pPdGainBoundaries[i] = pdgain_boundary_default;
650 i++;
653 while (k < AR5416_NUM_PDADC_VALUES) {
654 pPDADCValues[k] = pPDADCValues[k - 1];
655 k++;
659 int ath9k_hw_eeprom_init(struct ath_hw *ah)
661 if (AR_SREV_9300_20_OR_LATER(ah))
662 ah->eep_ops = &eep_ar9300_ops;
663 else if (AR_SREV_9287(ah)) {
664 ah->eep_ops = &eep_ar9287_ops;
665 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
666 ah->eep_ops = &eep_4k_ops;
667 } else {
668 ah->eep_ops = &eep_def_ops;
671 if (!ah->eep_ops->fill_eeprom(ah))
672 return -EIO;
674 return ah->eep_ops->check_eeprom(ah);