2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/unaligned.h>
19 #include "ar9002_phy.h"
21 static void ath9k_get_txgain_index(struct ath_hw
*ah
,
22 struct ath9k_channel
*chan
,
23 struct calDataPerFreqOpLoop
*rawDatasetOpLoop
,
24 u8
*calChans
, u16 availPiers
, u8
*pwr
, u8
*pcdacIdx
)
27 u16 idxL
= 0, idxR
= 0, numPiers
;
29 struct chan_centers centers
;
31 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
33 for (numPiers
= 0; numPiers
< availPiers
; numPiers
++)
34 if (calChans
[numPiers
] == AR5416_BCHAN_UNUSED
)
37 match
= ath9k_hw_get_lower_upper_index(
38 (u8
)FREQ2FBIN(centers
.synth_center
, IS_CHAN_2GHZ(chan
)),
39 calChans
, numPiers
, &idxL
, &idxR
);
41 pcdac
= rawDatasetOpLoop
[idxL
].pcdac
[0][0];
42 *pwr
= rawDatasetOpLoop
[idxL
].pwrPdg
[0][0];
44 pcdac
= rawDatasetOpLoop
[idxR
].pcdac
[0][0];
45 *pwr
= (rawDatasetOpLoop
[idxL
].pwrPdg
[0][0] +
46 rawDatasetOpLoop
[idxR
].pwrPdg
[0][0])/2;
49 while (pcdac
> ah
->originalGain
[i
] &&
50 i
< (AR9280_TX_GAIN_TABLE_SIZE
- 1))
56 static void ath9k_olc_get_pdadcs(struct ath_hw
*ah
,
64 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL6_0
,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE
, 3);
66 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL6_1
,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE
, 3);
69 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL7
,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN
, initTxGain
);
73 for (i
= 0; i
< AR5416_NUM_PDADC_VALUES
; i
++)
75 pPDADCValues
[i
] = 0x0;
77 pPDADCValues
[i
] = 0xFF;
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw
*ah
)
82 u16 version
= le16_to_cpu(ah
->eeprom
.def
.baseEepHeader
.version
);
84 return (version
& AR5416_EEP_VER_MAJOR_MASK
) >>
85 AR5416_EEP_VER_MAJOR_SHIFT
;
88 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw
*ah
)
90 u16 version
= le16_to_cpu(ah
->eeprom
.def
.baseEepHeader
.version
);
92 return version
& AR5416_EEP_VER_MINOR_MASK
;
95 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
97 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw
*ah
)
99 u16
*eep_data
= (u16
*)&ah
->eeprom
.def
;
100 int addr
, ar5416_eep_start_loc
= 0x100;
102 for (addr
= 0; addr
< SIZE_EEPROM_DEF
; addr
++) {
103 if (!ath9k_hw_nvram_read(ah
, addr
+ ar5416_eep_start_loc
,
111 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw
*ah
)
113 u16
*eep_data
= (u16
*)&ah
->eeprom
.def
;
115 ath9k_hw_usb_gen_fill_eeprom(ah
, eep_data
,
116 0x100, SIZE_EEPROM_DEF
);
120 static bool ath9k_hw_def_fill_eeprom(struct ath_hw
*ah
)
122 struct ath_common
*common
= ath9k_hw_common(ah
);
124 if (!ath9k_hw_use_flash(ah
)) {
125 ath_dbg(common
, EEPROM
, "Reading from EEPROM, not flash\n");
128 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
129 return __ath9k_hw_usb_def_fill_eeprom(ah
);
131 return __ath9k_hw_def_fill_eeprom(ah
);
134 #ifdef CONFIG_ATH9K_COMMON_DEBUG
135 static u32
ath9k_def_dump_modal_eeprom(char *buf
, u32 len
, u32 size
,
136 struct modal_eep_header
*modal_hdr
)
138 PR_EEP("Chain0 Ant. Control", le32_to_cpu(modal_hdr
->antCtrlChain
[0]));
139 PR_EEP("Chain1 Ant. Control", le32_to_cpu(modal_hdr
->antCtrlChain
[1]));
140 PR_EEP("Chain2 Ant. Control", le32_to_cpu(modal_hdr
->antCtrlChain
[2]));
141 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr
->antCtrlCommon
));
142 PR_EEP("Chain0 Ant. Gain", modal_hdr
->antennaGainCh
[0]);
143 PR_EEP("Chain1 Ant. Gain", modal_hdr
->antennaGainCh
[1]);
144 PR_EEP("Chain2 Ant. Gain", modal_hdr
->antennaGainCh
[2]);
145 PR_EEP("Switch Settle", modal_hdr
->switchSettling
);
146 PR_EEP("Chain0 TxRxAtten", modal_hdr
->txRxAttenCh
[0]);
147 PR_EEP("Chain1 TxRxAtten", modal_hdr
->txRxAttenCh
[1]);
148 PR_EEP("Chain2 TxRxAtten", modal_hdr
->txRxAttenCh
[2]);
149 PR_EEP("Chain0 RxTxMargin", modal_hdr
->rxTxMarginCh
[0]);
150 PR_EEP("Chain1 RxTxMargin", modal_hdr
->rxTxMarginCh
[1]);
151 PR_EEP("Chain2 RxTxMargin", modal_hdr
->rxTxMarginCh
[2]);
152 PR_EEP("ADC Desired size", modal_hdr
->adcDesiredSize
);
153 PR_EEP("PGA Desired size", modal_hdr
->pgaDesiredSize
);
154 PR_EEP("Chain0 xlna Gain", modal_hdr
->xlnaGainCh
[0]);
155 PR_EEP("Chain1 xlna Gain", modal_hdr
->xlnaGainCh
[1]);
156 PR_EEP("Chain2 xlna Gain", modal_hdr
->xlnaGainCh
[2]);
157 PR_EEP("txEndToXpaOff", modal_hdr
->txEndToXpaOff
);
158 PR_EEP("txEndToRxOn", modal_hdr
->txEndToRxOn
);
159 PR_EEP("txFrameToXpaOn", modal_hdr
->txFrameToXpaOn
);
160 PR_EEP("CCA Threshold)", modal_hdr
->thresh62
);
161 PR_EEP("Chain0 NF Threshold", modal_hdr
->noiseFloorThreshCh
[0]);
162 PR_EEP("Chain1 NF Threshold", modal_hdr
->noiseFloorThreshCh
[1]);
163 PR_EEP("Chain2 NF Threshold", modal_hdr
->noiseFloorThreshCh
[2]);
164 PR_EEP("xpdGain", modal_hdr
->xpdGain
);
165 PR_EEP("External PD", modal_hdr
->xpd
);
166 PR_EEP("Chain0 I Coefficient", modal_hdr
->iqCalICh
[0]);
167 PR_EEP("Chain1 I Coefficient", modal_hdr
->iqCalICh
[1]);
168 PR_EEP("Chain2 I Coefficient", modal_hdr
->iqCalICh
[2]);
169 PR_EEP("Chain0 Q Coefficient", modal_hdr
->iqCalQCh
[0]);
170 PR_EEP("Chain1 Q Coefficient", modal_hdr
->iqCalQCh
[1]);
171 PR_EEP("Chain2 Q Coefficient", modal_hdr
->iqCalQCh
[2]);
172 PR_EEP("pdGainOverlap", modal_hdr
->pdGainOverlap
);
173 PR_EEP("Chain0 OutputBias", modal_hdr
->ob
);
174 PR_EEP("Chain0 DriverBias", modal_hdr
->db
);
175 PR_EEP("xPA Bias Level", modal_hdr
->xpaBiasLvl
);
176 PR_EEP("2chain pwr decrease", modal_hdr
->pwrDecreaseFor2Chain
);
177 PR_EEP("3chain pwr decrease", modal_hdr
->pwrDecreaseFor3Chain
);
178 PR_EEP("txFrameToDataStart", modal_hdr
->txFrameToDataStart
);
179 PR_EEP("txFrameToPaOn", modal_hdr
->txFrameToPaOn
);
180 PR_EEP("HT40 Power Inc.", modal_hdr
->ht40PowerIncForPdadc
);
181 PR_EEP("Chain0 bswAtten", modal_hdr
->bswAtten
[0]);
182 PR_EEP("Chain1 bswAtten", modal_hdr
->bswAtten
[1]);
183 PR_EEP("Chain2 bswAtten", modal_hdr
->bswAtten
[2]);
184 PR_EEP("Chain0 bswMargin", modal_hdr
->bswMargin
[0]);
185 PR_EEP("Chain1 bswMargin", modal_hdr
->bswMargin
[1]);
186 PR_EEP("Chain2 bswMargin", modal_hdr
->bswMargin
[2]);
187 PR_EEP("HT40 Switch Settle", modal_hdr
->swSettleHt40
);
188 PR_EEP("Chain0 xatten2Db", modal_hdr
->xatten2Db
[0]);
189 PR_EEP("Chain1 xatten2Db", modal_hdr
->xatten2Db
[1]);
190 PR_EEP("Chain2 xatten2Db", modal_hdr
->xatten2Db
[2]);
191 PR_EEP("Chain0 xatten2Margin", modal_hdr
->xatten2Margin
[0]);
192 PR_EEP("Chain1 xatten2Margin", modal_hdr
->xatten2Margin
[1]);
193 PR_EEP("Chain2 xatten2Margin", modal_hdr
->xatten2Margin
[2]);
194 PR_EEP("Chain1 OutputBias", modal_hdr
->ob_ch1
);
195 PR_EEP("Chain1 DriverBias", modal_hdr
->db_ch1
);
196 PR_EEP("LNA Control", modal_hdr
->lna_ctl
);
197 PR_EEP("XPA Bias Freq0", le16_to_cpu(modal_hdr
->xpaBiasLvlFreq
[0]));
198 PR_EEP("XPA Bias Freq1", le16_to_cpu(modal_hdr
->xpaBiasLvlFreq
[1]));
199 PR_EEP("XPA Bias Freq2", le16_to_cpu(modal_hdr
->xpaBiasLvlFreq
[2]));
204 static u32
ath9k_hw_def_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
205 u8
*buf
, u32 len
, u32 size
)
207 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
208 struct base_eep_header
*pBase
= &eep
->baseEepHeader
;
209 u32 binBuildNumber
= le32_to_cpu(pBase
->binBuildNumber
);
211 if (!dump_base_hdr
) {
212 len
+= scnprintf(buf
+ len
, size
- len
,
213 "%20s :\n", "2GHz modal Header");
214 len
= ath9k_def_dump_modal_eeprom(buf
, len
, size
,
215 &eep
->modalHeader
[0]);
216 len
+= scnprintf(buf
+ len
, size
- len
,
217 "%20s :\n", "5GHz modal Header");
218 len
= ath9k_def_dump_modal_eeprom(buf
, len
, size
,
219 &eep
->modalHeader
[1]);
223 PR_EEP("Major Version", ath9k_hw_def_get_eeprom_ver(ah
));
224 PR_EEP("Minor Version", ath9k_hw_def_get_eeprom_rev(ah
));
225 PR_EEP("Checksum", le16_to_cpu(pBase
->checksum
));
226 PR_EEP("Length", le16_to_cpu(pBase
->length
));
227 PR_EEP("RegDomain1", le16_to_cpu(pBase
->regDmn
[0]));
228 PR_EEP("RegDomain2", le16_to_cpu(pBase
->regDmn
[1]));
229 PR_EEP("TX Mask", pBase
->txMask
);
230 PR_EEP("RX Mask", pBase
->rxMask
);
231 PR_EEP("Allow 5GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11A
));
232 PR_EEP("Allow 2GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11G
));
233 PR_EEP("Disable 2GHz HT20", !!(pBase
->opCapFlags
&
234 AR5416_OPFLAGS_N_2G_HT20
));
235 PR_EEP("Disable 2GHz HT40", !!(pBase
->opCapFlags
&
236 AR5416_OPFLAGS_N_2G_HT40
));
237 PR_EEP("Disable 5Ghz HT20", !!(pBase
->opCapFlags
&
238 AR5416_OPFLAGS_N_5G_HT20
));
239 PR_EEP("Disable 5Ghz HT40", !!(pBase
->opCapFlags
&
240 AR5416_OPFLAGS_N_5G_HT40
));
241 PR_EEP("Big Endian", !!(pBase
->eepMisc
& AR5416_EEPMISC_BIG_ENDIAN
));
242 PR_EEP("Cal Bin Major Ver", (binBuildNumber
>> 24) & 0xFF);
243 PR_EEP("Cal Bin Minor Ver", (binBuildNumber
>> 16) & 0xFF);
244 PR_EEP("Cal Bin Build", (binBuildNumber
>> 8) & 0xFF);
245 PR_EEP("OpenLoop Power Ctrl", pBase
->openLoopPwrCntl
);
247 len
+= scnprintf(buf
+ len
, size
- len
, "%20s : %pM\n", "MacAddress",
257 static u32
ath9k_hw_def_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
258 u8
*buf
, u32 len
, u32 size
)
264 static int ath9k_hw_def_check_eeprom(struct ath_hw
*ah
)
266 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
267 struct ath_common
*common
= ath9k_hw_common(ah
);
272 err
= ath9k_hw_nvram_swap_data(ah
, &need_swap
, SIZE_EEPROM_DEF
);
277 el
= swab16((__force u16
)eep
->baseEepHeader
.length
);
279 el
= le16_to_cpu(eep
->baseEepHeader
.length
);
281 el
= min(el
/ sizeof(u16
), SIZE_EEPROM_DEF
);
282 if (!ath9k_hw_nvram_validate_checksum(ah
, el
))
288 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.length
);
289 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.checksum
);
290 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.version
);
291 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.regDmn
[0]);
292 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.regDmn
[1]);
293 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.rfSilent
);
294 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.blueToothOptions
);
295 EEPROM_FIELD_SWAB16(eep
->baseEepHeader
.deviceCap
);
297 for (j
= 0; j
< ARRAY_SIZE(eep
->modalHeader
); j
++) {
298 struct modal_eep_header
*pModal
=
299 &eep
->modalHeader
[j
];
300 EEPROM_FIELD_SWAB32(pModal
->antCtrlCommon
);
302 for (i
= 0; i
< AR5416_MAX_CHAINS
; i
++)
303 EEPROM_FIELD_SWAB32(pModal
->antCtrlChain
[i
]);
305 for (i
= 0; i
< 3; i
++)
306 EEPROM_FIELD_SWAB16(pModal
->xpaBiasLvlFreq
[i
]);
308 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++)
310 pModal
->spurChans
[i
].spurChan
);
314 if (!ath9k_hw_nvram_check_version(ah
, AR5416_EEP_VER
,
315 AR5416_EEP_NO_BACK_VER
))
318 /* Enable fixup for AR_AN_TOP2 if necessary */
319 if ((ah
->hw_version
.devid
== AR9280_DEVID_PCI
) &&
320 ((le16_to_cpu(eep
->baseEepHeader
.version
) & 0xff) > 0x0a) &&
321 (eep
->baseEepHeader
.pwdclkind
== 0))
322 ah
->need_an_top2_fixup
= true;
324 if ((common
->bus_ops
->ath_bus_type
== ATH_USB
) &&
326 eep
->modalHeader
[0].xpaBiasLvl
= 0;
331 #undef SIZE_EEPROM_DEF
333 static u32
ath9k_hw_def_get_eeprom(struct ath_hw
*ah
,
334 enum eeprom_param param
)
336 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
337 struct modal_eep_header
*pModal
= eep
->modalHeader
;
338 struct base_eep_header
*pBase
= &eep
->baseEepHeader
;
343 return pModal
[0].noiseFloorThreshCh
[0];
345 return pModal
[1].noiseFloorThreshCh
[0];
347 return get_unaligned_be16(pBase
->macAddr
);
349 return get_unaligned_be16(pBase
->macAddr
+ 2);
351 return get_unaligned_be16(pBase
->macAddr
+ 4);
353 return le16_to_cpu(pBase
->regDmn
[0]);
355 return le16_to_cpu(pBase
->deviceCap
);
357 return pBase
->opCapFlags
;
359 return le16_to_cpu(pBase
->rfSilent
);
369 return pBase
->txMask
;
371 return pBase
->rxMask
;
373 return pBase
->fastClk5g
;
374 case EEP_RXGAIN_TYPE
:
375 return pBase
->rxGainType
;
376 case EEP_TXGAIN_TYPE
:
377 return pBase
->txGainType
;
379 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_19
)
380 return pBase
->openLoopPwrCntl
? true : false;
383 case EEP_RC_CHAIN_MASK
:
384 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_19
)
385 return pBase
->rcChainMask
;
388 case EEP_DAC_HPWR_5G
:
389 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_20
)
390 return pBase
->dacHiPwrMode_5G
;
394 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_22
)
395 return pBase
->frac_n_5g
;
398 case EEP_PWR_TABLE_OFFSET
:
399 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_21
)
400 return pBase
->pwr_table_offset
;
402 return AR5416_PWR_TABLE_OFFSET_DB
;
403 case EEP_ANTENNA_GAIN_2G
:
406 case EEP_ANTENNA_GAIN_5G
:
407 return max_t(u8
, max_t(u8
,
408 pModal
[band
].antennaGainCh
[0],
409 pModal
[band
].antennaGainCh
[1]),
410 pModal
[band
].antennaGainCh
[2]);
416 static void ath9k_hw_def_set_gain(struct ath_hw
*ah
,
417 struct modal_eep_header
*pModal
,
418 struct ar5416_eeprom_def
*eep
,
419 u8 txRxAttenLocal
, int regChainOffset
, int i
)
421 ENABLE_REG_RMW_BUFFER(ah
);
422 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_3
) {
423 txRxAttenLocal
= pModal
->txRxAttenCh
[i
];
425 if (AR_SREV_9280_20_OR_LATER(ah
)) {
426 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
427 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
,
428 pModal
->bswMargin
[i
]);
429 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
430 AR_PHY_GAIN_2GHZ_XATTEN1_DB
,
431 pModal
->bswAtten
[i
]);
432 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
433 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN
,
434 pModal
->xatten2Margin
[i
]);
435 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
436 AR_PHY_GAIN_2GHZ_XATTEN2_DB
,
437 pModal
->xatten2Db
[i
]);
439 REG_RMW(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
440 SM(pModal
-> bswMargin
[i
], AR_PHY_GAIN_2GHZ_BSW_MARGIN
),
441 AR_PHY_GAIN_2GHZ_BSW_MARGIN
);
442 REG_RMW(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
443 SM(pModal
->bswAtten
[i
], AR_PHY_GAIN_2GHZ_BSW_ATTEN
),
444 AR_PHY_GAIN_2GHZ_BSW_ATTEN
);
448 if (AR_SREV_9280_20_OR_LATER(ah
)) {
450 AR_PHY_RXGAIN
+ regChainOffset
,
451 AR9280_PHY_RXGAIN_TXRX_ATTEN
, txRxAttenLocal
);
453 AR_PHY_RXGAIN
+ regChainOffset
,
454 AR9280_PHY_RXGAIN_TXRX_MARGIN
, pModal
->rxTxMarginCh
[i
]);
456 REG_RMW(ah
, AR_PHY_RXGAIN
+ regChainOffset
,
457 SM(txRxAttenLocal
, AR_PHY_RXGAIN_TXRX_ATTEN
),
458 AR_PHY_RXGAIN_TXRX_ATTEN
);
459 REG_RMW(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
460 SM(pModal
->rxTxMarginCh
[i
], AR_PHY_GAIN_2GHZ_RXTX_MARGIN
),
461 AR_PHY_GAIN_2GHZ_RXTX_MARGIN
);
463 REG_RMW_BUFFER_FLUSH(ah
);
466 static void ath9k_hw_def_set_board_values(struct ath_hw
*ah
,
467 struct ath9k_channel
*chan
)
469 struct modal_eep_header
*pModal
;
470 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
471 int i
, regChainOffset
;
475 pModal
= &(eep
->modalHeader
[IS_CHAN_2GHZ(chan
)]);
476 txRxAttenLocal
= IS_CHAN_2GHZ(chan
) ? 23 : 44;
477 antCtrlCommon
= le32_to_cpu(pModal
->antCtrlCommon
);
479 REG_WRITE(ah
, AR_PHY_SWITCH_COM
, antCtrlCommon
& 0xffff);
481 for (i
= 0; i
< AR5416_MAX_CHAINS
; i
++) {
482 if (AR_SREV_9280(ah
)) {
487 if ((ah
->rxchainmask
== 5 || ah
->txchainmask
== 5) && (i
!= 0))
488 regChainOffset
= (i
== 1) ? 0x2000 : 0x1000;
490 regChainOffset
= i
* 0x1000;
492 REG_WRITE(ah
, AR_PHY_SWITCH_CHAIN_0
+ regChainOffset
,
493 le32_to_cpu(pModal
->antCtrlChain
[i
]));
495 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
,
496 (REG_READ(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
) &
497 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
|
498 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
)) |
499 SM(pModal
->iqCalICh
[i
],
500 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
) |
501 SM(pModal
->iqCalQCh
[i
],
502 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
));
504 ath9k_hw_def_set_gain(ah
, pModal
, eep
, txRxAttenLocal
,
508 if (AR_SREV_9280_20_OR_LATER(ah
)) {
509 if (IS_CHAN_2GHZ(chan
)) {
510 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH0
,
512 AR_AN_RF2G1_CH0_OB_S
,
514 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH0
,
516 AR_AN_RF2G1_CH0_DB_S
,
518 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH1
,
520 AR_AN_RF2G1_CH1_OB_S
,
522 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH1
,
524 AR_AN_RF2G1_CH1_DB_S
,
527 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH0
,
529 AR_AN_RF5G1_CH0_OB5_S
,
531 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH0
,
533 AR_AN_RF5G1_CH0_DB5_S
,
535 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH1
,
537 AR_AN_RF5G1_CH1_OB5_S
,
539 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH1
,
541 AR_AN_RF5G1_CH1_DB5_S
,
544 ath9k_hw_analog_shift_rmw(ah
, AR_AN_TOP2
,
545 AR_AN_TOP2_XPABIAS_LVL
,
546 AR_AN_TOP2_XPABIAS_LVL_S
,
548 ath9k_hw_analog_shift_rmw(ah
, AR_AN_TOP2
,
549 AR_AN_TOP2_LOCALBIAS
,
550 AR_AN_TOP2_LOCALBIAS_S
,
552 LNA_CTL_LOCAL_BIAS
));
553 REG_RMW_FIELD(ah
, AR_PHY_XPA_CFG
, AR_PHY_FORCE_XPA_CFG
,
554 !!(pModal
->lna_ctl
& LNA_CTL_FORCE_XPA
));
557 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
, AR_PHY_SETTLING_SWITCH
,
558 pModal
->switchSettling
);
559 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
, AR_PHY_DESIRED_SZ_ADC
,
560 pModal
->adcDesiredSize
);
562 if (!AR_SREV_9280_20_OR_LATER(ah
))
563 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
,
564 AR_PHY_DESIRED_SZ_PGA
,
565 pModal
->pgaDesiredSize
);
567 REG_WRITE(ah
, AR_PHY_RF_CTL4
,
568 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAA_OFF
)
569 | SM(pModal
->txEndToXpaOff
,
570 AR_PHY_RF_CTL4_TX_END_XPAB_OFF
)
571 | SM(pModal
->txFrameToXpaOn
,
572 AR_PHY_RF_CTL4_FRAME_XPAA_ON
)
573 | SM(pModal
->txFrameToXpaOn
,
574 AR_PHY_RF_CTL4_FRAME_XPAB_ON
));
576 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
, AR_PHY_TX_END_TO_A2_RX_ON
,
577 pModal
->txEndToRxOn
);
579 if (AR_SREV_9280_20_OR_LATER(ah
)) {
580 REG_RMW_FIELD(ah
, AR_PHY_CCA
, AR9280_PHY_CCA_THRESH62
,
582 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA0
,
583 AR_PHY_EXT_CCA0_THRESH62
,
586 REG_RMW_FIELD(ah
, AR_PHY_CCA
, AR_PHY_CCA_THRESH62
,
588 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA
,
589 AR_PHY_EXT_CCA_THRESH62
,
593 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_2
) {
594 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
,
595 AR_PHY_TX_END_DATA_START
,
596 pModal
->txFrameToDataStart
);
597 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
, AR_PHY_TX_END_PA_ON
,
598 pModal
->txFrameToPaOn
);
601 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_3
) {
602 if (IS_CHAN_HT40(chan
))
603 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
604 AR_PHY_SETTLING_SWITCH
,
605 pModal
->swSettleHt40
);
608 if (AR_SREV_9280_20_OR_LATER(ah
) &&
609 ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_19
)
610 REG_RMW_FIELD(ah
, AR_PHY_CCK_TX_CTRL
,
611 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK
,
615 if (AR_SREV_9280_20(ah
) &&
616 ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_20
) {
617 if (IS_CHAN_2GHZ(chan
))
618 REG_RMW_FIELD(ah
, AR_AN_TOP1
, AR_AN_TOP1_DACIPMODE
,
619 eep
->baseEepHeader
.dacLpMode
);
620 else if (eep
->baseEepHeader
.dacHiPwrMode_5G
)
621 REG_RMW_FIELD(ah
, AR_AN_TOP1
, AR_AN_TOP1_DACIPMODE
, 0);
623 REG_RMW_FIELD(ah
, AR_AN_TOP1
, AR_AN_TOP1_DACIPMODE
,
624 eep
->baseEepHeader
.dacLpMode
);
628 REG_RMW_FIELD(ah
, AR_PHY_FRAME_CTL
, AR_PHY_FRAME_CTL_TX_CLIP
,
629 pModal
->miscBits
>> 2);
631 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL9
,
632 AR_PHY_TX_DESIRED_SCALE_CCK
,
633 eep
->baseEepHeader
.desiredScaleCCK
);
637 static void ath9k_hw_def_set_addac(struct ath_hw
*ah
,
638 struct ath9k_channel
*chan
)
640 #define XPA_LVL_FREQ(cnt) (le16_to_cpu(pModal->xpaBiasLvlFreq[cnt]))
641 struct modal_eep_header
*pModal
;
642 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
645 if (ah
->hw_version
.macVersion
!= AR_SREV_VERSION_9160
)
648 if (ah
->eep_ops
->get_eeprom_rev(ah
) < AR5416_EEP_MINOR_VER_7
)
651 pModal
= &(eep
->modalHeader
[IS_CHAN_2GHZ(chan
)]);
653 if (pModal
->xpaBiasLvl
!= 0xff) {
654 biaslevel
= pModal
->xpaBiasLvl
;
656 u16 resetFreqBin
, freqBin
, freqCount
= 0;
657 struct chan_centers centers
;
659 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
661 resetFreqBin
= FREQ2FBIN(centers
.synth_center
,
663 freqBin
= XPA_LVL_FREQ(0) & 0xff;
664 biaslevel
= (u8
) (XPA_LVL_FREQ(0) >> 14);
668 while (freqCount
< 3) {
669 if (XPA_LVL_FREQ(freqCount
) == 0x0)
672 freqBin
= XPA_LVL_FREQ(freqCount
) & 0xff;
673 if (resetFreqBin
>= freqBin
)
674 biaslevel
= (u8
)(XPA_LVL_FREQ(freqCount
) >> 14);
681 if (IS_CHAN_2GHZ(chan
)) {
682 INI_RA(&ah
->iniAddac
, 7, 1) = (INI_RA(&ah
->iniAddac
,
683 7, 1) & (~0x18)) | biaslevel
<< 3;
685 INI_RA(&ah
->iniAddac
, 6, 1) = (INI_RA(&ah
->iniAddac
,
686 6, 1) & (~0xc0)) | biaslevel
<< 6;
691 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw
*ah
,
694 u16 pdGainOverlap_t2
,
695 int8_t pwr_table_offset
,
701 /* Prior to writing the boundaries or the pdadc vs. power table
702 * into the chip registers the default starting point on the pdadc
703 * vs. power table needs to be checked and the curve boundaries
704 * adjusted accordingly
706 if (AR_SREV_9280_20_OR_LATER(ah
)) {
709 if (AR5416_PWR_TABLE_OFFSET_DB
!= pwr_table_offset
) {
710 /* get the difference in dB */
711 *diff
= (u16
)(pwr_table_offset
- AR5416_PWR_TABLE_OFFSET_DB
);
712 /* get the number of half dB steps */
714 /* change the original gain boundary settings
715 * by the number of half dB steps
717 for (k
= 0; k
< numXpdGain
; k
++)
718 gb
[k
] = (u16
)(gb
[k
] - *diff
);
720 /* Because of a hardware limitation, ensure the gain boundary
721 * is not larger than (63 - overlap)
723 gb_limit
= (u16
)(MAX_RATE_POWER
- pdGainOverlap_t2
);
725 for (k
= 0; k
< numXpdGain
; k
++)
726 gb
[k
] = (u16
)min(gb_limit
, gb
[k
]);
732 static void ath9k_adjust_pdadc_values(struct ath_hw
*ah
,
733 int8_t pwr_table_offset
,
737 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
740 /* If this is a board that has a pwrTableOffset that differs from
741 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
742 * pdadc vs pwr table needs to be adjusted prior to writing to the
745 if (AR_SREV_9280_20_OR_LATER(ah
)) {
746 if (AR5416_PWR_TABLE_OFFSET_DB
!= pwr_table_offset
) {
747 /* shift the table to start at the new offset */
748 for (k
= 0; k
< (u16
)NUM_PDADC(diff
); k
++ ) {
749 pdadcValues
[k
] = pdadcValues
[k
+ diff
];
752 /* fill the back of the table */
753 for (k
= (u16
)NUM_PDADC(diff
); k
< NUM_PDADC(0); k
++) {
754 pdadcValues
[k
] = pdadcValues
[NUM_PDADC(diff
)];
761 static void ath9k_hw_set_def_power_cal_table(struct ath_hw
*ah
,
762 struct ath9k_channel
*chan
)
764 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
765 #define SM_PDGAIN_B(x, y) \
766 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
767 struct ath_common
*common
= ath9k_hw_common(ah
);
768 struct ar5416_eeprom_def
*pEepData
= &ah
->eeprom
.def
;
769 struct cal_data_per_freq
*pRawDataset
;
770 u8
*pCalBChans
= NULL
;
771 u16 pdGainOverlap_t2
;
772 static u8 pdadcValues
[AR5416_NUM_PDADC_VALUES
];
773 u16 gainBoundaries
[AR5416_PD_GAINS_IN_MASK
];
776 u16 numXpdGain
, xpdMask
;
777 u16 xpdGainValues
[AR5416_NUM_PD_GAINS
] = { 0, 0, 0, 0 };
778 u32 reg32
, regOffset
, regChainOffset
;
780 int8_t pwr_table_offset
;
782 modalIdx
= IS_CHAN_2GHZ(chan
) ? 1 : 0;
783 xpdMask
= pEepData
->modalHeader
[modalIdx
].xpdGain
;
785 pwr_table_offset
= ah
->eep_ops
->get_eeprom(ah
, EEP_PWR_TABLE_OFFSET
);
787 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_2
) {
789 pEepData
->modalHeader
[modalIdx
].pdGainOverlap
;
791 pdGainOverlap_t2
= (u16
)(MS(REG_READ(ah
, AR_PHY_TPCRG5
),
792 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
));
795 if (IS_CHAN_2GHZ(chan
)) {
796 pCalBChans
= pEepData
->calFreqPier2G
;
797 numPiers
= AR5416_NUM_2G_CAL_PIERS
;
799 pCalBChans
= pEepData
->calFreqPier5G
;
800 numPiers
= AR5416_NUM_5G_CAL_PIERS
;
803 if (OLC_FOR_AR9280_20_LATER(ah
) && IS_CHAN_2GHZ(chan
)) {
804 pRawDataset
= pEepData
->calPierData2G
[0];
805 ah
->initPDADC
= ((struct calDataPerFreqOpLoop
*)
806 pRawDataset
)->vpdPdg
[0][0];
811 for (i
= 1; i
<= AR5416_PD_GAINS_IN_MASK
; i
++) {
812 if ((xpdMask
>> (AR5416_PD_GAINS_IN_MASK
- i
)) & 1) {
813 if (numXpdGain
>= AR5416_NUM_PD_GAINS
)
815 xpdGainValues
[numXpdGain
] =
816 (u16
)(AR5416_PD_GAINS_IN_MASK
- i
);
821 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
822 (numXpdGain
- 1) & 0x3);
823 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_1
,
825 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_2
,
827 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_3
,
830 for (i
= 0; i
< AR5416_MAX_CHAINS
; i
++) {
831 if ((ah
->rxchainmask
== 5 || ah
->txchainmask
== 5) &&
833 regChainOffset
= (i
== 1) ? 0x2000 : 0x1000;
835 regChainOffset
= i
* 0x1000;
837 if (pEepData
->baseEepHeader
.txMask
& (1 << i
)) {
838 if (IS_CHAN_2GHZ(chan
))
839 pRawDataset
= pEepData
->calPierData2G
[i
];
841 pRawDataset
= pEepData
->calPierData5G
[i
];
844 if (OLC_FOR_AR9280_20_LATER(ah
)) {
848 ath9k_get_txgain_index(ah
, chan
,
849 (struct calDataPerFreqOpLoop
*)pRawDataset
,
850 pCalBChans
, numPiers
, &txPower
, &pcdacIdx
);
851 ath9k_olc_get_pdadcs(ah
, pcdacIdx
,
852 txPower
/2, pdadcValues
);
854 ath9k_hw_get_gain_boundaries_pdadcs(ah
,
856 pCalBChans
, numPiers
,
863 diff
= ath9k_change_gain_boundary_setting(ah
,
870 ENABLE_REGWRITE_BUFFER(ah
);
872 if (OLC_FOR_AR9280_20_LATER(ah
)) {
874 AR_PHY_TPCRG5
+ regChainOffset
,
876 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
) |
877 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
878 SM_PD_GAIN(3) | SM_PD_GAIN(4));
881 AR_PHY_TPCRG5
+ regChainOffset
,
883 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
)|
890 ath9k_adjust_pdadc_values(ah
, pwr_table_offset
,
893 regOffset
= AR_PHY_BASE
+ (672 << 2) + regChainOffset
;
894 for (j
= 0; j
< 32; j
++) {
895 reg32
= get_unaligned_le32(&pdadcValues
[4 * j
]);
896 REG_WRITE(ah
, regOffset
, reg32
);
898 ath_dbg(common
, EEPROM
,
899 "PDADC (%d,%4x): %4.4x %8.8x\n",
900 i
, regChainOffset
, regOffset
,
902 ath_dbg(common
, EEPROM
,
903 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
904 i
, 4 * j
, pdadcValues
[4 * j
],
905 4 * j
+ 1, pdadcValues
[4 * j
+ 1],
906 4 * j
+ 2, pdadcValues
[4 * j
+ 2],
907 4 * j
+ 3, pdadcValues
[4 * j
+ 3]);
911 REGWRITE_BUFFER_FLUSH(ah
);
919 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw
*ah
,
920 struct ath9k_channel
*chan
,
923 u16 antenna_reduction
,
926 struct ar5416_eeprom_def
*pEepData
= &ah
->eeprom
.def
;
927 u16 twiceMaxEdgePower
;
929 struct cal_ctl_data
*rep
;
930 struct cal_target_power_leg targetPowerOfdm
, targetPowerCck
= {
933 struct cal_target_power_leg targetPowerOfdmExt
= {
934 0, { 0, 0, 0, 0} }, targetPowerCckExt
= {
937 struct cal_target_power_ht targetPowerHt20
, targetPowerHt40
= {
940 u16 scaledPower
= 0, minCtlPower
;
941 static const u16 ctlModesFor11a
[] = {
942 CTL_11A
, CTL_5GHT20
, CTL_11A_EXT
, CTL_5GHT40
944 static const u16 ctlModesFor11g
[] = {
945 CTL_11B
, CTL_11G
, CTL_2GHT20
,
946 CTL_11B_EXT
, CTL_11G_EXT
, CTL_2GHT40
951 struct chan_centers centers
;
953 u16 twiceMinEdgePower
;
955 tx_chainmask
= ah
->txchainmask
;
957 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
959 scaledPower
= ath9k_hw_get_scaled_power(ah
, powerLimit
,
962 if (IS_CHAN_2GHZ(chan
)) {
963 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
) -
964 SUB_NUM_CTL_MODES_AT_2G_40
;
965 pCtlMode
= ctlModesFor11g
;
967 ath9k_hw_get_legacy_target_powers(ah
, chan
,
968 pEepData
->calTargetPowerCck
,
969 AR5416_NUM_2G_CCK_TARGET_POWERS
,
970 &targetPowerCck
, 4, false);
971 ath9k_hw_get_legacy_target_powers(ah
, chan
,
972 pEepData
->calTargetPower2G
,
973 AR5416_NUM_2G_20_TARGET_POWERS
,
974 &targetPowerOfdm
, 4, false);
975 ath9k_hw_get_target_powers(ah
, chan
,
976 pEepData
->calTargetPower2GHT20
,
977 AR5416_NUM_2G_20_TARGET_POWERS
,
978 &targetPowerHt20
, 8, false);
980 if (IS_CHAN_HT40(chan
)) {
981 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
);
982 ath9k_hw_get_target_powers(ah
, chan
,
983 pEepData
->calTargetPower2GHT40
,
984 AR5416_NUM_2G_40_TARGET_POWERS
,
985 &targetPowerHt40
, 8, true);
986 ath9k_hw_get_legacy_target_powers(ah
, chan
,
987 pEepData
->calTargetPowerCck
,
988 AR5416_NUM_2G_CCK_TARGET_POWERS
,
989 &targetPowerCckExt
, 4, true);
990 ath9k_hw_get_legacy_target_powers(ah
, chan
,
991 pEepData
->calTargetPower2G
,
992 AR5416_NUM_2G_20_TARGET_POWERS
,
993 &targetPowerOfdmExt
, 4, true);
996 numCtlModes
= ARRAY_SIZE(ctlModesFor11a
) -
997 SUB_NUM_CTL_MODES_AT_5G_40
;
998 pCtlMode
= ctlModesFor11a
;
1000 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1001 pEepData
->calTargetPower5G
,
1002 AR5416_NUM_5G_20_TARGET_POWERS
,
1003 &targetPowerOfdm
, 4, false);
1004 ath9k_hw_get_target_powers(ah
, chan
,
1005 pEepData
->calTargetPower5GHT20
,
1006 AR5416_NUM_5G_20_TARGET_POWERS
,
1007 &targetPowerHt20
, 8, false);
1009 if (IS_CHAN_HT40(chan
)) {
1010 numCtlModes
= ARRAY_SIZE(ctlModesFor11a
);
1011 ath9k_hw_get_target_powers(ah
, chan
,
1012 pEepData
->calTargetPower5GHT40
,
1013 AR5416_NUM_5G_40_TARGET_POWERS
,
1014 &targetPowerHt40
, 8, true);
1015 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1016 pEepData
->calTargetPower5G
,
1017 AR5416_NUM_5G_20_TARGET_POWERS
,
1018 &targetPowerOfdmExt
, 4, true);
1022 for (ctlMode
= 0; ctlMode
< numCtlModes
; ctlMode
++) {
1023 bool isHt40CtlMode
= (pCtlMode
[ctlMode
] == CTL_5GHT40
) ||
1024 (pCtlMode
[ctlMode
] == CTL_2GHT40
);
1026 freq
= centers
.synth_center
;
1027 else if (pCtlMode
[ctlMode
] & EXT_ADDITIVE
)
1028 freq
= centers
.ext_center
;
1030 freq
= centers
.ctl_center
;
1032 twiceMaxEdgePower
= MAX_RATE_POWER
;
1034 for (i
= 0; (i
< AR5416_NUM_CTLS
) && pEepData
->ctlIndex
[i
]; i
++) {
1035 if ((((cfgCtl
& ~CTL_MODE_M
) |
1036 (pCtlMode
[ctlMode
] & CTL_MODE_M
)) ==
1037 pEepData
->ctlIndex
[i
]) ||
1038 (((cfgCtl
& ~CTL_MODE_M
) |
1039 (pCtlMode
[ctlMode
] & CTL_MODE_M
)) ==
1040 ((pEepData
->ctlIndex
[i
] & CTL_MODE_M
) | SD_NO_CTL
))) {
1041 rep
= &(pEepData
->ctlData
[i
]);
1043 twiceMinEdgePower
= ath9k_hw_get_max_edge_power(freq
,
1044 rep
->ctlEdges
[ar5416_get_ntxchains(tx_chainmask
) - 1],
1045 IS_CHAN_2GHZ(chan
), AR5416_NUM_BAND_EDGES
);
1047 if ((cfgCtl
& ~CTL_MODE_M
) == SD_NO_CTL
) {
1048 twiceMaxEdgePower
= min(twiceMaxEdgePower
,
1051 twiceMaxEdgePower
= twiceMinEdgePower
;
1057 minCtlPower
= min(twiceMaxEdgePower
, scaledPower
);
1059 switch (pCtlMode
[ctlMode
]) {
1061 for (i
= 0; i
< ARRAY_SIZE(targetPowerCck
.tPow2x
); i
++) {
1062 targetPowerCck
.tPow2x
[i
] =
1063 min((u16
)targetPowerCck
.tPow2x
[i
],
1069 for (i
= 0; i
< ARRAY_SIZE(targetPowerOfdm
.tPow2x
); i
++) {
1070 targetPowerOfdm
.tPow2x
[i
] =
1071 min((u16
)targetPowerOfdm
.tPow2x
[i
],
1077 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++) {
1078 targetPowerHt20
.tPow2x
[i
] =
1079 min((u16
)targetPowerHt20
.tPow2x
[i
],
1084 targetPowerCckExt
.tPow2x
[0] = min((u16
)
1085 targetPowerCckExt
.tPow2x
[0],
1090 targetPowerOfdmExt
.tPow2x
[0] = min((u16
)
1091 targetPowerOfdmExt
.tPow2x
[0],
1096 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
1097 targetPowerHt40
.tPow2x
[i
] =
1098 min((u16
)targetPowerHt40
.tPow2x
[i
],
1107 ratesArray
[rate6mb
] = ratesArray
[rate9mb
] = ratesArray
[rate12mb
] =
1108 ratesArray
[rate18mb
] = ratesArray
[rate24mb
] =
1109 targetPowerOfdm
.tPow2x
[0];
1110 ratesArray
[rate36mb
] = targetPowerOfdm
.tPow2x
[1];
1111 ratesArray
[rate48mb
] = targetPowerOfdm
.tPow2x
[2];
1112 ratesArray
[rate54mb
] = targetPowerOfdm
.tPow2x
[3];
1113 ratesArray
[rateXr
] = targetPowerOfdm
.tPow2x
[0];
1115 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++)
1116 ratesArray
[rateHt20_0
+ i
] = targetPowerHt20
.tPow2x
[i
];
1118 if (IS_CHAN_2GHZ(chan
)) {
1119 ratesArray
[rate1l
] = targetPowerCck
.tPow2x
[0];
1120 ratesArray
[rate2s
] = ratesArray
[rate2l
] =
1121 targetPowerCck
.tPow2x
[1];
1122 ratesArray
[rate5_5s
] = ratesArray
[rate5_5l
] =
1123 targetPowerCck
.tPow2x
[2];
1124 ratesArray
[rate11s
] = ratesArray
[rate11l
] =
1125 targetPowerCck
.tPow2x
[3];
1127 if (IS_CHAN_HT40(chan
)) {
1128 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
1129 ratesArray
[rateHt40_0
+ i
] =
1130 targetPowerHt40
.tPow2x
[i
];
1132 ratesArray
[rateDupOfdm
] = targetPowerHt40
.tPow2x
[0];
1133 ratesArray
[rateDupCck
] = targetPowerHt40
.tPow2x
[0];
1134 ratesArray
[rateExtOfdm
] = targetPowerOfdmExt
.tPow2x
[0];
1135 if (IS_CHAN_2GHZ(chan
)) {
1136 ratesArray
[rateExtCck
] =
1137 targetPowerCckExt
.tPow2x
[0];
1142 static void ath9k_hw_def_set_txpower(struct ath_hw
*ah
,
1143 struct ath9k_channel
*chan
,
1145 u8 twiceAntennaReduction
,
1146 u8 powerLimit
, bool test
)
1148 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1149 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1150 struct ar5416_eeprom_def
*pEepData
= &ah
->eeprom
.def
;
1151 struct modal_eep_header
*pModal
=
1152 &(pEepData
->modalHeader
[IS_CHAN_2GHZ(chan
)]);
1153 int16_t ratesArray
[Ar5416RateSize
];
1154 u8 ht40PowerIncForPdadc
= 2;
1155 int i
, cck_ofdm_delta
= 0;
1157 memset(ratesArray
, 0, sizeof(ratesArray
));
1159 if (ath9k_hw_def_get_eeprom_rev(ah
) >= AR5416_EEP_MINOR_VER_2
)
1160 ht40PowerIncForPdadc
= pModal
->ht40PowerIncForPdadc
;
1162 ath9k_hw_set_def_power_per_rate_table(ah
, chan
,
1163 &ratesArray
[0], cfgCtl
,
1164 twiceAntennaReduction
,
1167 ath9k_hw_set_def_power_cal_table(ah
, chan
);
1169 regulatory
->max_power_level
= 0;
1170 for (i
= 0; i
< ARRAY_SIZE(ratesArray
); i
++) {
1171 if (ratesArray
[i
] > MAX_RATE_POWER
)
1172 ratesArray
[i
] = MAX_RATE_POWER
;
1173 if (ratesArray
[i
] > regulatory
->max_power_level
)
1174 regulatory
->max_power_level
= ratesArray
[i
];
1177 ath9k_hw_update_regulatory_maxpower(ah
);
1182 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1183 for (i
= 0; i
< Ar5416RateSize
; i
++) {
1184 int8_t pwr_table_offset
;
1186 pwr_table_offset
= ah
->eep_ops
->get_eeprom(ah
,
1187 EEP_PWR_TABLE_OFFSET
);
1188 ratesArray
[i
] -= pwr_table_offset
* 2;
1192 ENABLE_REGWRITE_BUFFER(ah
);
1194 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
1195 ATH9K_POW_SM(ratesArray
[rate18mb
], 24)
1196 | ATH9K_POW_SM(ratesArray
[rate12mb
], 16)
1197 | ATH9K_POW_SM(ratesArray
[rate9mb
], 8)
1198 | ATH9K_POW_SM(ratesArray
[rate6mb
], 0));
1199 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
1200 ATH9K_POW_SM(ratesArray
[rate54mb
], 24)
1201 | ATH9K_POW_SM(ratesArray
[rate48mb
], 16)
1202 | ATH9K_POW_SM(ratesArray
[rate36mb
], 8)
1203 | ATH9K_POW_SM(ratesArray
[rate24mb
], 0));
1205 if (IS_CHAN_2GHZ(chan
)) {
1206 if (OLC_FOR_AR9280_20_LATER(ah
)) {
1208 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
1209 ATH9K_POW_SM(RT_AR_DELTA(rate2s
), 24)
1210 | ATH9K_POW_SM(RT_AR_DELTA(rate2l
), 16)
1211 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
1212 | ATH9K_POW_SM(RT_AR_DELTA(rate1l
), 0));
1213 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
1214 ATH9K_POW_SM(RT_AR_DELTA(rate11s
), 24)
1215 | ATH9K_POW_SM(RT_AR_DELTA(rate11l
), 16)
1216 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s
), 8)
1217 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l
), 0));
1219 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
1220 ATH9K_POW_SM(ratesArray
[rate2s
], 24)
1221 | ATH9K_POW_SM(ratesArray
[rate2l
], 16)
1222 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
1223 | ATH9K_POW_SM(ratesArray
[rate1l
], 0));
1224 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
1225 ATH9K_POW_SM(ratesArray
[rate11s
], 24)
1226 | ATH9K_POW_SM(ratesArray
[rate11l
], 16)
1227 | ATH9K_POW_SM(ratesArray
[rate5_5s
], 8)
1228 | ATH9K_POW_SM(ratesArray
[rate5_5l
], 0));
1232 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE5
,
1233 ATH9K_POW_SM(ratesArray
[rateHt20_3
], 24)
1234 | ATH9K_POW_SM(ratesArray
[rateHt20_2
], 16)
1235 | ATH9K_POW_SM(ratesArray
[rateHt20_1
], 8)
1236 | ATH9K_POW_SM(ratesArray
[rateHt20_0
], 0));
1237 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE6
,
1238 ATH9K_POW_SM(ratesArray
[rateHt20_7
], 24)
1239 | ATH9K_POW_SM(ratesArray
[rateHt20_6
], 16)
1240 | ATH9K_POW_SM(ratesArray
[rateHt20_5
], 8)
1241 | ATH9K_POW_SM(ratesArray
[rateHt20_4
], 0));
1243 if (IS_CHAN_HT40(chan
)) {
1244 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
1245 ATH9K_POW_SM(ratesArray
[rateHt40_3
] +
1246 ht40PowerIncForPdadc
, 24)
1247 | ATH9K_POW_SM(ratesArray
[rateHt40_2
] +
1248 ht40PowerIncForPdadc
, 16)
1249 | ATH9K_POW_SM(ratesArray
[rateHt40_1
] +
1250 ht40PowerIncForPdadc
, 8)
1251 | ATH9K_POW_SM(ratesArray
[rateHt40_0
] +
1252 ht40PowerIncForPdadc
, 0));
1253 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
1254 ATH9K_POW_SM(ratesArray
[rateHt40_7
] +
1255 ht40PowerIncForPdadc
, 24)
1256 | ATH9K_POW_SM(ratesArray
[rateHt40_6
] +
1257 ht40PowerIncForPdadc
, 16)
1258 | ATH9K_POW_SM(ratesArray
[rateHt40_5
] +
1259 ht40PowerIncForPdadc
, 8)
1260 | ATH9K_POW_SM(ratesArray
[rateHt40_4
] +
1261 ht40PowerIncForPdadc
, 0));
1262 if (OLC_FOR_AR9280_20_LATER(ah
)) {
1263 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
1264 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
1265 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck
), 16)
1266 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
1267 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck
), 0));
1269 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
1270 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
1271 | ATH9K_POW_SM(ratesArray
[rateExtCck
], 16)
1272 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
1273 | ATH9K_POW_SM(ratesArray
[rateDupCck
], 0));
1277 REG_WRITE(ah
, AR_PHY_POWER_TX_SUB
,
1278 ATH9K_POW_SM(pModal
->pwrDecreaseFor3Chain
, 6)
1279 | ATH9K_POW_SM(pModal
->pwrDecreaseFor2Chain
, 0));
1281 /* TPC initializations */
1282 if (ah
->tpc_enabled
) {
1285 ht40_delta
= (IS_CHAN_HT40(chan
)) ? ht40PowerIncForPdadc
: 0;
1286 ar5008_hw_init_rate_txpower(ah
, ratesArray
, chan
, ht40_delta
);
1288 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE_MAX
,
1289 MAX_RATE_POWER
| AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE
);
1292 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE_MAX
, MAX_RATE_POWER
);
1295 REGWRITE_BUFFER_FLUSH(ah
);
1298 static u16
ath9k_hw_def_get_spur_channel(struct ath_hw
*ah
, u16 i
, bool is2GHz
)
1300 __le16 spch
= ah
->eeprom
.def
.modalHeader
[is2GHz
].spurChans
[i
].spurChan
;
1302 return le16_to_cpu(spch
);
1305 static u8
ath9k_hw_def_get_eepmisc(struct ath_hw
*ah
)
1307 return ah
->eeprom
.def
.baseEepHeader
.eepMisc
;
1310 const struct eeprom_ops eep_def_ops
= {
1311 .check_eeprom
= ath9k_hw_def_check_eeprom
,
1312 .get_eeprom
= ath9k_hw_def_get_eeprom
,
1313 .fill_eeprom
= ath9k_hw_def_fill_eeprom
,
1314 .dump_eeprom
= ath9k_hw_def_dump_eeprom
,
1315 .get_eeprom_ver
= ath9k_hw_def_get_eeprom_ver
,
1316 .get_eeprom_rev
= ath9k_hw_def_get_eeprom_rev
,
1317 .set_board_values
= ath9k_hw_def_set_board_values
,
1318 .set_addac
= ath9k_hw_def_set_addac
,
1319 .set_txpower
= ath9k_hw_def_set_txpower
,
1320 .get_spur_channel
= ath9k_hw_def_get_spur_channel
,
1321 .get_eepmisc
= ath9k_hw_def_get_eepmisc