2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <linux/unaligned.h>
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
33 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_LICENSE("Dual BSD/GPL");
39 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
41 struct ath_common
*common
= ath9k_hw_common(ah
);
42 struct ath9k_channel
*chan
= ah
->curchan
;
43 unsigned int clockrate
;
45 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
46 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
))
48 else if (!chan
) /* should really check for CCK instead */
49 clockrate
= ATH9K_CLOCK_RATE_CCK
;
50 else if (IS_CHAN_2GHZ(chan
))
51 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
52 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
53 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
55 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
58 if (IS_CHAN_HT40(chan
))
60 if (IS_CHAN_HALF_RATE(chan
))
62 if (IS_CHAN_QUARTER_RATE(chan
))
66 common
->clockrate
= clockrate
;
69 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
71 struct ath_common
*common
= ath9k_hw_common(ah
);
73 return usecs
* common
->clockrate
;
76 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
80 BUG_ON(timeout
< AH_TIME_QUANTUM
);
82 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
83 if ((REG_READ(ah
, reg
) & mask
) == val
)
86 udelay(AH_TIME_QUANTUM
);
89 ath_dbg(ath9k_hw_common(ah
), ANY
,
90 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
95 EXPORT_SYMBOL(ath9k_hw_wait
);
97 void ath9k_hw_synth_delay(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
102 if (IS_CHAN_HALF_RATE(chan
))
104 else if (IS_CHAN_QUARTER_RATE(chan
))
107 udelay(hw_delay
+ BASE_ACTIVATE_DELAY
);
110 void ath9k_hw_write_array(struct ath_hw
*ah
, const struct ar5416IniArray
*array
,
111 int column
, unsigned int *writecnt
)
115 ENABLE_REGWRITE_BUFFER(ah
);
116 for (r
= 0; r
< array
->ia_rows
; r
++) {
117 REG_WRITE(ah
, INI_RA(array
, r
, 0),
118 INI_RA(array
, r
, column
));
121 REGWRITE_BUFFER_FLUSH(ah
);
124 void ath9k_hw_read_array(struct ath_hw
*ah
, u32 array
[][2], int size
)
126 u32
*tmp_reg_list
, *tmp_data
;
129 tmp_reg_list
= kmalloc_array(size
, sizeof(u32
), GFP_KERNEL
);
131 dev_err(ah
->dev
, "%s: tmp_reg_list: alloc filed\n", __func__
);
135 tmp_data
= kmalloc_array(size
, sizeof(u32
), GFP_KERNEL
);
137 dev_err(ah
->dev
, "%s tmp_data: alloc filed\n", __func__
);
141 for (i
= 0; i
< size
; i
++)
142 tmp_reg_list
[i
] = array
[i
][0];
144 REG_READ_MULTI(ah
, tmp_reg_list
, tmp_data
, size
);
146 for (i
= 0; i
< size
; i
++)
147 array
[i
][1] = tmp_data
[i
];
154 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
159 for (i
= 0, retval
= 0; i
< n
; i
++) {
160 retval
= (retval
<< 1) | (val
& 1);
166 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
168 u32 frameLen
, u16 rateix
,
171 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
177 case WLAN_RC_PHY_CCK
:
178 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
181 numBits
= frameLen
<< 3;
182 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
184 case WLAN_RC_PHY_OFDM
:
185 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
187 ((kbps
>> 2) * OFDM_SYMBOL_TIME_QUARTER
) / 1000;
188 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
189 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
190 txTime
= OFDM_SIFS_TIME_QUARTER
191 + OFDM_PREAMBLE_TIME_QUARTER
192 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
193 } else if (ah
->curchan
&&
194 IS_CHAN_HALF_RATE(ah
->curchan
)) {
196 ((kbps
>> 1) * OFDM_SYMBOL_TIME_HALF
) / 1000;
197 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
198 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
199 txTime
= OFDM_SIFS_TIME_HALF
+
200 OFDM_PREAMBLE_TIME_HALF
201 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
203 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
204 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
205 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
206 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
207 + (numSymbols
* OFDM_SYMBOL_TIME
);
211 ath_err(ath9k_hw_common(ah
),
212 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
219 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
221 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
222 struct ath9k_channel
*chan
,
223 struct chan_centers
*centers
)
227 if (!IS_CHAN_HT40(chan
)) {
228 centers
->ctl_center
= centers
->ext_center
=
229 centers
->synth_center
= chan
->channel
;
233 if (IS_CHAN_HT40PLUS(chan
)) {
234 centers
->synth_center
=
235 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
238 centers
->synth_center
=
239 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
243 centers
->ctl_center
=
244 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
245 /* 25 MHz spacing is supported by hw but not on upper layers */
246 centers
->ext_center
=
247 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
254 static bool ath9k_hw_read_revisions(struct ath_hw
*ah
)
259 if (ah
->get_mac_revision
)
260 ah
->hw_version
.macRev
= ah
->get_mac_revision();
262 switch (ah
->hw_version
.devid
) {
263 case AR5416_AR9100_DEVID
:
264 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
266 case AR9300_DEVID_AR9330
:
267 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9330
;
268 if (!ah
->get_mac_revision
) {
269 val
= REG_READ(ah
, AR_SREV(ah
));
270 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
273 case AR9300_DEVID_AR9340
:
274 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9340
;
276 case AR9300_DEVID_QCA955X
:
277 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9550
;
279 case AR9300_DEVID_AR953X
:
280 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9531
;
282 case AR9300_DEVID_QCA956X
:
283 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9561
;
287 srev
= REG_READ(ah
, AR_SREV(ah
));
290 ath_err(ath9k_hw_common(ah
),
291 "Failed to read SREV register");
295 val
= srev
& AR_SREV_ID(ah
);
299 ah
->hw_version
.macVersion
=
300 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
301 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
303 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
304 ah
->is_pciexpress
= true;
306 ah
->is_pciexpress
= (val
&
307 AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
309 if (!AR_SREV_9100(ah
))
310 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
312 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
314 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
315 ah
->is_pciexpress
= true;
321 /************************************/
322 /* HW Attach, Detach, Init Routines */
323 /************************************/
325 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
327 if (!AR_SREV_5416(ah
))
330 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
331 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
332 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
333 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
334 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
335 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
336 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
337 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
338 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
340 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
343 /* This should work for all families including legacy */
344 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
346 struct ath_common
*common
= ath9k_hw_common(ah
);
347 u32 regAddr
[2] = { AR_STA_ID0
};
349 static const u32 patternData
[4] = {
350 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
354 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
356 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
360 for (i
= 0; i
< loop_max
; i
++) {
361 u32 addr
= regAddr
[i
];
364 regHold
[i
] = REG_READ(ah
, addr
);
365 for (j
= 0; j
< 0x100; j
++) {
366 wrData
= (j
<< 16) | j
;
367 REG_WRITE(ah
, addr
, wrData
);
368 rdData
= REG_READ(ah
, addr
);
369 if (rdData
!= wrData
) {
371 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
372 addr
, wrData
, rdData
);
376 for (j
= 0; j
< 4; j
++) {
377 wrData
= patternData
[j
];
378 REG_WRITE(ah
, addr
, wrData
);
379 rdData
= REG_READ(ah
, addr
);
380 if (wrData
!= rdData
) {
382 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
383 addr
, wrData
, rdData
);
387 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
394 static void ath9k_hw_init_config(struct ath_hw
*ah
)
396 struct ath_common
*common
= ath9k_hw_common(ah
);
398 ah
->config
.dma_beacon_response_time
= 1;
399 ah
->config
.sw_beacon_response_time
= 6;
400 ah
->config
.cwm_ignore_extcca
= false;
401 ah
->config
.analog_shiftreg
= 1;
403 ah
->config
.rx_intr_mitigation
= true;
405 if (AR_SREV_9300_20_OR_LATER(ah
)) {
406 ah
->config
.rimt_last
= 500;
407 ah
->config
.rimt_first
= 2000;
409 ah
->config
.rimt_last
= 250;
410 ah
->config
.rimt_first
= 700;
413 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
414 ah
->config
.pll_pwrsave
= 7;
417 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
418 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
419 * This means we use it for all AR5416 devices, and the few
420 * minor PCI AR9280 devices out there.
422 * Serialization is required because these devices do not handle
423 * well the case of two concurrent reads/writes due to the latency
424 * involved. During one read/write another read/write can be issued
425 * on another CPU while the previous read/write may still be working
426 * on our hardware, if we hit this case the hardware poops in a loop.
427 * We prevent this by serializing reads and writes.
429 * This issue is not present on PCI-Express devices or pre-AR5416
430 * devices (legacy, 802.11abg).
432 if (num_possible_cpus() > 1)
433 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
435 if (NR_CPUS
> 1 && ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
436 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
437 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
) || AR_SREV_9287(ah
)) &&
438 !ah
->is_pciexpress
)) {
439 ah
->config
.serialize_regmode
= SER_REG_MODE_ON
;
441 ah
->config
.serialize_regmode
= SER_REG_MODE_OFF
;
445 ath_dbg(common
, RESET
, "serialize_regmode is %d\n",
446 ah
->config
.serialize_regmode
);
448 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
449 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
451 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
454 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
456 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
458 regulatory
->country_code
= CTRY_DEFAULT
;
459 regulatory
->power_limit
= MAX_COMBINED_POWER
;
461 ah
->hw_version
.magic
= AR5416_MAGIC
;
462 ah
->hw_version
.subvendorid
= 0;
464 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
|
465 AR_STA_ID1_MCAST_KSRCH
;
466 if (AR_SREV_9100(ah
))
467 ah
->sta_id1_defaults
|= AR_STA_ID1_AR9100_BA_FIX
;
470 ah
->globaltxtimeout
= (u32
) -1;
471 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
472 ah
->htc_reset_init
= true;
474 ah
->tpc_enabled
= false;
476 ah
->ani_function
= ATH9K_ANI_ALL
;
477 if (!AR_SREV_9300_20_OR_LATER(ah
))
478 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
480 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
481 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
483 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
486 static void ath9k_hw_init_macaddr(struct ath_hw
*ah
)
488 struct ath_common
*common
= ath9k_hw_common(ah
);
491 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
493 /* MAC address may already be loaded via NVMEM */
494 if (is_valid_ether_addr(common
->macaddr
))
497 for (i
= 0; i
< 3; i
++) {
498 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
499 common
->macaddr
[2 * i
] = eeval
>> 8;
500 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
503 if (is_valid_ether_addr(common
->macaddr
))
506 ath_err(common
, "eeprom contains invalid mac address: %pM\n",
509 eth_random_addr(common
->macaddr
);
510 ath_err(common
, "random mac address will be used: %pM\n",
516 static int ath9k_hw_post_init(struct ath_hw
*ah
)
518 struct ath_common
*common
= ath9k_hw_common(ah
);
521 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
522 if (!ath9k_hw_chip_test(ah
))
526 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
527 ecode
= ar9002_hw_rf_claim(ah
);
532 ecode
= ath9k_hw_eeprom_init(ah
);
536 ath_dbg(ath9k_hw_common(ah
), CONFIG
, "Eeprom VER: %d, REV: %d\n",
537 ah
->eep_ops
->get_eeprom_ver(ah
),
538 ah
->eep_ops
->get_eeprom_rev(ah
));
540 ath9k_hw_ani_init(ah
);
543 * EEPROM needs to be initialized before we do this.
544 * This is required for regulatory compliance.
546 if (AR_SREV_9300_20_OR_LATER(ah
)) {
547 u16 regdmn
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
548 if ((regdmn
& 0xF0) == CTL_FCC
) {
549 ah
->nf_2g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ
;
550 ah
->nf_5g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ
;
557 static int ath9k_hw_attach_ops(struct ath_hw
*ah
)
559 if (!AR_SREV_9300_20_OR_LATER(ah
))
560 return ar9002_hw_attach_ops(ah
);
562 ar9003_hw_attach_ops(ah
);
566 /* Called for all hardware families */
567 static int __ath9k_hw_init(struct ath_hw
*ah
)
569 struct ath_common
*common
= ath9k_hw_common(ah
);
572 if (!ath9k_hw_read_revisions(ah
)) {
573 ath_err(common
, "Could not read hardware revisions");
577 switch (ah
->hw_version
.macVersion
) {
578 case AR_SREV_VERSION_5416_PCI
:
579 case AR_SREV_VERSION_5416_PCIE
:
580 case AR_SREV_VERSION_9160
:
581 case AR_SREV_VERSION_9100
:
582 case AR_SREV_VERSION_9280
:
583 case AR_SREV_VERSION_9285
:
584 case AR_SREV_VERSION_9287
:
585 case AR_SREV_VERSION_9271
:
586 case AR_SREV_VERSION_9300
:
587 case AR_SREV_VERSION_9330
:
588 case AR_SREV_VERSION_9485
:
589 case AR_SREV_VERSION_9340
:
590 case AR_SREV_VERSION_9462
:
591 case AR_SREV_VERSION_9550
:
592 case AR_SREV_VERSION_9565
:
593 case AR_SREV_VERSION_9531
:
594 case AR_SREV_VERSION_9561
:
598 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
599 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
604 * Read back AR_WA(ah) into a permanent copy and set bits 14 and 17.
605 * We need to do this to avoid RMW of this register. We cannot
606 * read the reg when chip is asleep.
608 if (AR_SREV_9300_20_OR_LATER(ah
)) {
609 ah
->WARegVal
= REG_READ(ah
, AR_WA(ah
));
610 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
611 AR_WA_ASPM_TIMER_BASED_DISABLE
);
614 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
615 ath_err(common
, "Couldn't reset chip\n");
619 if (AR_SREV_9565(ah
)) {
620 ah
->WARegVal
|= AR_WA_BIT22
;
621 REG_WRITE(ah
, AR_WA(ah
), ah
->WARegVal
);
624 ath9k_hw_init_defaults(ah
);
625 ath9k_hw_init_config(ah
);
627 r
= ath9k_hw_attach_ops(ah
);
631 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
632 ath_err(common
, "Couldn't wakeup chip\n");
636 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
) || AR_SREV_9340(ah
) ||
637 AR_SREV_9330(ah
) || AR_SREV_9550(ah
))
638 ah
->is_pciexpress
= false;
640 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
641 ath9k_hw_init_cal_settings(ah
);
643 if (!ah
->is_pciexpress
)
644 ath9k_hw_disablepcie(ah
);
646 r
= ath9k_hw_post_init(ah
);
650 ath9k_hw_init_mode_gain_regs(ah
);
651 r
= ath9k_hw_fill_cap_info(ah
);
655 ath9k_hw_init_macaddr(ah
);
656 ath9k_hw_init_hang_checks(ah
);
658 common
->state
= ATH_HW_INITIALIZED
;
663 int ath9k_hw_init(struct ath_hw
*ah
)
666 struct ath_common
*common
= ath9k_hw_common(ah
);
668 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
669 switch (ah
->hw_version
.devid
) {
670 case AR5416_DEVID_PCI
:
671 case AR5416_DEVID_PCIE
:
672 case AR5416_AR9100_DEVID
:
673 case AR9160_DEVID_PCI
:
674 case AR9280_DEVID_PCI
:
675 case AR9280_DEVID_PCIE
:
676 case AR9285_DEVID_PCIE
:
677 case AR9287_DEVID_PCI
:
678 case AR9287_DEVID_PCIE
:
679 case AR2427_DEVID_PCIE
:
680 case AR9300_DEVID_PCIE
:
681 case AR9300_DEVID_AR9485_PCIE
:
682 case AR9300_DEVID_AR9330
:
683 case AR9300_DEVID_AR9340
:
684 case AR9300_DEVID_QCA955X
:
685 case AR9300_DEVID_AR9580
:
686 case AR9300_DEVID_AR9462
:
687 case AR9485_DEVID_AR1111
:
688 case AR9300_DEVID_AR9565
:
689 case AR9300_DEVID_AR953X
:
690 case AR9300_DEVID_QCA956X
:
693 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
695 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
696 ah
->hw_version
.devid
);
700 ret
= __ath9k_hw_init(ah
);
703 "Unable to initialize hardware; initialization status: %d\n",
712 EXPORT_SYMBOL(ath9k_hw_init
);
714 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
716 ENABLE_REGWRITE_BUFFER(ah
);
718 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
719 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
721 REG_WRITE(ah
, AR_QOS_NO_ACK
,
722 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
723 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
724 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
726 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
727 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
728 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
729 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
730 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
732 REGWRITE_BUFFER_FLUSH(ah
);
735 u32
ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
737 struct ath_common
*common
= ath9k_hw_common(ah
);
740 REG_CLR_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
742 REG_SET_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
744 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0) {
748 if (WARN_ON_ONCE(i
>= 100)) {
749 ath_err(common
, "PLL4 measurement not done\n");
756 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
758 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
760 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
761 struct ath9k_channel
*chan
)
765 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
767 if (AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
768 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
769 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
770 AR_CH0_BB_DPLL2_PLL_PWD
, 0x1);
771 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
772 AR_CH0_DPLL2_KD
, 0x40);
773 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
774 AR_CH0_DPLL2_KI
, 0x4);
776 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
777 AR_CH0_BB_DPLL1_REFDIV
, 0x5);
778 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
779 AR_CH0_BB_DPLL1_NINI
, 0x58);
780 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
781 AR_CH0_BB_DPLL1_NFRAC
, 0x0);
783 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
784 AR_CH0_BB_DPLL2_OUTDIV
, 0x1);
785 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
786 AR_CH0_BB_DPLL2_LOCAL_PLL
, 0x1);
787 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
788 AR_CH0_BB_DPLL2_EN_NEGTRIG
, 0x1);
790 /* program BB PLL phase_shift to 0x6 */
791 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
792 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x6);
794 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
795 AR_CH0_BB_DPLL2_PLL_PWD
, 0x0);
797 } else if (AR_SREV_9330(ah
)) {
798 u32 ddr_dpll2
, pll_control2
, kd
;
800 if (ah
->is_clk_25mhz
) {
801 ddr_dpll2
= 0x18e82f01;
802 pll_control2
= 0xe04a3d;
805 ddr_dpll2
= 0x19e82f01;
806 pll_control2
= 0x886666;
810 /* program DDR PLL ki and kd value */
811 REG_WRITE(ah
, AR_CH0_DDR_DPLL2
, ddr_dpll2
);
813 /* program DDR PLL phase_shift */
814 REG_RMW_FIELD(ah
, AR_CH0_DDR_DPLL3
,
815 AR_CH0_DPLL3_PHASE_SHIFT
, 0x1);
817 REG_WRITE(ah
, AR_RTC_PLL_CONTROL(ah
),
818 pll
| AR_RTC_9300_PLL_BYPASS
);
821 /* program refdiv, nint, frac to RTC register */
822 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, pll_control2
);
824 /* program BB PLL kd and ki value */
825 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KD
, kd
);
826 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KI
, 0x06);
828 /* program BB PLL phase_shift */
829 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
830 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x1);
831 } else if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
833 u32 regval
, pll2_divint
, pll2_divfrac
, refdiv
;
835 REG_WRITE(ah
, AR_RTC_PLL_CONTROL(ah
),
836 pll
| AR_RTC_9300_SOC_PLL_BYPASS
);
839 REG_SET_BIT(ah
, AR_PHY_PLL_MODE
, 0x1 << 16);
842 if (ah
->is_clk_25mhz
) {
843 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
845 pll2_divfrac
= 0xa3d2;
849 pll2_divfrac
= 0x1eb85;
853 if (AR_SREV_9340(ah
)) {
859 pll2_divfrac
= (AR_SREV_9531(ah
) ||
866 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
867 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
868 regval
|= (0x1 << 22);
870 regval
|= (0x1 << 16);
871 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
874 REG_WRITE(ah
, AR_PHY_PLL_CONTROL
, (refdiv
<< 27) |
875 (pll2_divint
<< 18) | pll2_divfrac
);
878 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
879 if (AR_SREV_9340(ah
))
880 regval
= (regval
& 0x80071fff) |
885 else if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
886 regval
= (regval
& 0x01c00fff) |
892 if (AR_SREV_9531(ah
))
893 regval
|= (0x6 << 12);
895 regval
= (regval
& 0x80071fff) |
900 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
902 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
903 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
904 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xffbfffff);
906 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
907 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xfffeffff);
912 if (AR_SREV_9565(ah
))
914 REG_WRITE(ah
, AR_RTC_PLL_CONTROL(ah
), pll
);
916 if (AR_SREV_9485(ah
) || AR_SREV_9340(ah
) || AR_SREV_9330(ah
) ||
920 /* Switch the core clock for ar9271 to 117Mhz */
921 if (AR_SREV_9271(ah
)) {
923 REG_WRITE(ah
, 0x50040, 0x304);
926 udelay(RTC_PLL_SETTLE_DELAY
);
928 REG_WRITE(ah
, AR_RTC_SLEEP_CLK(ah
), AR_RTC_FORCE_DERIVED_CLK
);
931 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
932 enum nl80211_iftype opmode
)
934 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
935 u32 imr_reg
= AR_IMR_TXERR
|
942 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
944 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
946 if (AR_SREV_9300_20_OR_LATER(ah
)) {
947 imr_reg
|= AR_IMR_RXOK_HP
;
948 if (ah
->config
.rx_intr_mitigation
) {
949 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
950 msi_cfg
|= AR_INTCFG_MSI_RXINTM
| AR_INTCFG_MSI_RXMINTR
;
952 imr_reg
|= AR_IMR_RXOK_LP
;
953 msi_cfg
|= AR_INTCFG_MSI_RXOK
;
956 if (ah
->config
.rx_intr_mitigation
) {
957 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
958 msi_cfg
|= AR_INTCFG_MSI_RXINTM
| AR_INTCFG_MSI_RXMINTR
;
960 imr_reg
|= AR_IMR_RXOK
;
961 msi_cfg
|= AR_INTCFG_MSI_RXOK
;
965 if (ah
->config
.tx_intr_mitigation
) {
966 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
967 msi_cfg
|= AR_INTCFG_MSI_TXINTM
| AR_INTCFG_MSI_TXMINTR
;
969 imr_reg
|= AR_IMR_TXOK
;
970 msi_cfg
|= AR_INTCFG_MSI_TXOK
;
973 ENABLE_REGWRITE_BUFFER(ah
);
975 REG_WRITE(ah
, AR_IMR
, imr_reg
);
976 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
977 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
979 if (ah
->msi_enabled
) {
980 ah
->msi_reg
= REG_READ(ah
, AR_PCIE_MSI(ah
));
981 ah
->msi_reg
|= AR_PCIE_MSI_HW_DBI_WR_EN
;
982 ah
->msi_reg
&= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64
;
983 REG_WRITE(ah
, AR_INTCFG
, msi_cfg
);
984 ath_dbg(ath9k_hw_common(ah
), ANY
,
985 "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
986 REG_READ(ah
, AR_INTCFG
), msi_cfg
);
989 if (!AR_SREV_9100(ah
)) {
990 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE(ah
), 0xFFFFFFFF);
991 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE(ah
), sync_default
);
992 REG_WRITE(ah
, AR_INTR_SYNC_MASK(ah
), 0);
995 REGWRITE_BUFFER_FLUSH(ah
);
997 if (AR_SREV_9300_20_OR_LATER(ah
)) {
998 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE(ah
), 0);
999 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK(ah
), 0);
1000 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE(ah
), 0);
1001 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK(ah
), 0);
1005 static void ath9k_hw_set_sifs_time(struct ath_hw
*ah
, u32 us
)
1007 u32 val
= ath9k_hw_mac_to_clks(ah
, us
- 2);
1008 val
= min(val
, (u32
) 0xFFFF);
1009 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
, val
);
1012 void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
1014 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1015 val
= min(val
, (u32
) 0xFFFF);
1016 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
1019 void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
1021 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1022 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
1023 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
1026 void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
1028 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1029 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
1030 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
1033 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
1036 ath_dbg(ath9k_hw_common(ah
), XMIT
, "bad global tx timeout %u\n",
1038 ah
->globaltxtimeout
= (u32
) -1;
1041 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
1042 ah
->globaltxtimeout
= tu
;
1047 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
1049 struct ath_common
*common
= ath9k_hw_common(ah
);
1050 const struct ath9k_channel
*chan
= ah
->curchan
;
1051 int acktimeout
, ctstimeout
, ack_offset
= 0;
1054 int rx_lat
= 0, tx_lat
= 0, eifs
= 0, ack_shift
= 0;
1057 ath_dbg(ath9k_hw_common(ah
), RESET
, "ah->misc_mode 0x%x\n",
1063 if (ah
->misc_mode
!= 0)
1064 REG_SET_BIT(ah
, AR_PCU_MISC
, ah
->misc_mode
);
1066 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1072 if (IS_CHAN_5GHZ(chan
))
1077 if (IS_CHAN_HALF_RATE(chan
)) {
1081 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1088 } else if (IS_CHAN_QUARTER_RATE(chan
)) {
1090 rx_lat
= (rx_lat
* 4) - 1;
1092 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1100 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1101 eifs
= AR_D_GBL_IFS_EIFS_ASYNC_FIFO
;
1102 reg
= AR_USEC_ASYNC_FIFO
;
1104 eifs
= REG_READ(ah
, AR_D_GBL_IFS_EIFS
)/
1106 reg
= REG_READ(ah
, AR_USEC
);
1108 rx_lat
= MS(reg
, AR_USEC_RX_LAT
);
1109 tx_lat
= MS(reg
, AR_USEC_TX_LAT
);
1111 slottime
= ah
->slottime
;
1114 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1115 slottime
+= 3 * ah
->coverage_class
;
1116 acktimeout
= slottime
+ sifstime
+ ack_offset
;
1117 ctstimeout
= acktimeout
;
1120 * Workaround for early ACK timeouts, add an offset to match the
1121 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1122 * This was initially only meant to work around an issue with delayed
1123 * BA frames in some implementations, but it has been found to fix ACK
1124 * timeout issues in other cases as well.
1126 if (IS_CHAN_2GHZ(chan
) &&
1127 !IS_CHAN_HALF_RATE(chan
) && !IS_CHAN_QUARTER_RATE(chan
)) {
1128 acktimeout
+= 64 - sifstime
- ah
->slottime
;
1129 ctstimeout
+= 48 - sifstime
- ah
->slottime
;
1132 if (ah
->dynack
.enabled
) {
1133 acktimeout
= ah
->dynack
.ackto
;
1134 ctstimeout
= acktimeout
;
1135 slottime
= (acktimeout
- 3) / 2;
1137 ah
->dynack
.ackto
= acktimeout
;
1140 ath9k_hw_set_sifs_time(ah
, sifstime
);
1141 ath9k_hw_setslottime(ah
, slottime
);
1142 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
1143 ath9k_hw_set_cts_timeout(ah
, ctstimeout
);
1144 if (ah
->globaltxtimeout
!= (u32
) -1)
1145 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1147 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, ath9k_hw_mac_to_clks(ah
, eifs
));
1148 REG_RMW(ah
, AR_USEC
,
1149 (common
->clockrate
- 1) |
1150 SM(rx_lat
, AR_USEC_RX_LAT
) |
1151 SM(tx_lat
, AR_USEC_TX_LAT
),
1152 AR_USEC_TX_LAT
| AR_USEC_RX_LAT
| AR_USEC_USEC
);
1154 if (IS_CHAN_HALF_RATE(chan
) || IS_CHAN_QUARTER_RATE(chan
))
1155 REG_RMW(ah
, AR_TXSIFS
,
1156 sifstime
| SM(ack_shift
, AR_TXSIFS_ACK_SHIFT
),
1157 (AR_TXSIFS_TIME
| AR_TXSIFS_ACK_SHIFT
));
1159 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
1161 void ath9k_hw_deinit(struct ath_hw
*ah
)
1163 struct ath_common
*common
= ath9k_hw_common(ah
);
1165 if (common
->state
< ATH_HW_INITIALIZED
)
1168 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1170 EXPORT_SYMBOL(ath9k_hw_deinit
);
1176 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
1178 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1180 if (IS_CHAN_2GHZ(chan
))
1188 /****************************************/
1189 /* Reset and Channel Switching Routines */
1190 /****************************************/
1192 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1194 struct ath_common
*common
= ath9k_hw_common(ah
);
1197 ENABLE_REGWRITE_BUFFER(ah
);
1200 * set AHB_MODE not to do cacheline prefetches
1202 if (!AR_SREV_9300_20_OR_LATER(ah
))
1203 REG_SET_BIT(ah
, AR_AHB_MODE
, AR_AHB_PREFETCH_RD_EN
);
1206 * let mac dma reads be in 128 byte chunks
1208 REG_RMW(ah
, AR_TXCFG
, AR_TXCFG_DMASZ_128B
, AR_TXCFG_DMASZ_MASK
);
1210 REGWRITE_BUFFER_FLUSH(ah
);
1213 * Restore TX Trigger Level to its pre-reset value.
1214 * The initial value depends on whether aggregation is enabled, and is
1215 * adjusted whenever underruns are detected.
1217 if (!AR_SREV_9300_20_OR_LATER(ah
))
1218 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1220 ENABLE_REGWRITE_BUFFER(ah
);
1223 * let mac dma writes be in 128 byte chunks
1225 REG_RMW(ah
, AR_RXCFG
, AR_RXCFG_DMASZ_128B
, AR_RXCFG_DMASZ_MASK
);
1228 * Setup receive FIFO threshold to hold off TX activities
1230 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1232 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1233 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
1234 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
1236 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
1237 ah
->caps
.rx_status_len
);
1241 * reduce the number of usable entries in PCU TXBUF to avoid
1242 * wrap around issues.
1244 if (AR_SREV_9285(ah
)) {
1245 /* For AR9285 the number of Fifos are reduced to half.
1246 * So set the usable tx buf size also to half to
1247 * avoid data/delimiter underruns
1249 txbuf_size
= AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
;
1250 } else if (AR_SREV_9340_13_OR_LATER(ah
)) {
1251 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1252 txbuf_size
= AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE
;
1254 txbuf_size
= AR_PCU_TXBUF_CTRL_USABLE_SIZE
;
1257 if (!AR_SREV_9271(ah
))
1258 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
, txbuf_size
);
1260 REGWRITE_BUFFER_FLUSH(ah
);
1262 if (AR_SREV_9300_20_OR_LATER(ah
))
1263 ath9k_hw_reset_txstatus_ring(ah
);
1266 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1268 u32 mask
= AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
;
1269 u32 set
= AR_STA_ID1_KSRCH_MODE
;
1271 ENABLE_REG_RMW_BUFFER(ah
);
1273 case NL80211_IFTYPE_ADHOC
:
1274 if (!AR_SREV_9340_13(ah
)) {
1275 set
|= AR_STA_ID1_ADHOC
;
1276 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1280 case NL80211_IFTYPE_OCB
:
1281 case NL80211_IFTYPE_MESH_POINT
:
1282 case NL80211_IFTYPE_AP
:
1283 set
|= AR_STA_ID1_STA_AP
;
1285 case NL80211_IFTYPE_STATION
:
1286 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1289 if (!ah
->is_monitoring
)
1293 REG_RMW(ah
, AR_STA_ID1
, set
, mask
);
1294 REG_RMW_BUFFER_FLUSH(ah
);
1297 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1298 u32
*coef_mantissa
, u32
*coef_exponent
)
1300 u32 coef_exp
, coef_man
;
1302 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1303 if ((coef_scaled
>> coef_exp
) & 0x1)
1306 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1308 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1310 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1311 *coef_exponent
= coef_exp
- 16;
1315 * call external reset function to reset WMAC if:
1316 * - doing a cold reset
1317 * - we have pending frames in the TX queues.
1319 static bool ath9k_hw_ar9330_reset_war(struct ath_hw
*ah
, int type
)
1323 for (i
= 0; i
< AR_NUM_QCU
; i
++) {
1324 npend
= ath9k_hw_numtxpending(ah
, i
);
1329 if (ah
->external_reset
&&
1330 (npend
|| type
== ATH9K_RESET_COLD
)) {
1333 ath_dbg(ath9k_hw_common(ah
), RESET
,
1334 "reset MAC via external reset\n");
1336 reset_err
= ah
->external_reset();
1338 ath_err(ath9k_hw_common(ah
),
1339 "External reset failed, err=%d\n",
1344 REG_WRITE(ah
, AR_RTC_RESET(ah
), 1);
1350 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1355 if (AR_SREV_9100(ah
)) {
1356 REG_RMW_FIELD(ah
, AR_RTC_DERIVED_CLK(ah
),
1357 AR_RTC_DERIVED_CLK_PERIOD
, 1);
1358 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK(ah
));
1361 ENABLE_REGWRITE_BUFFER(ah
);
1363 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1364 REG_WRITE(ah
, AR_WA(ah
), ah
->WARegVal
);
1368 REG_WRITE(ah
, AR_RTC_FORCE_WAKE(ah
), AR_RTC_FORCE_WAKE_EN
|
1369 AR_RTC_FORCE_WAKE_ON_INT
);
1371 if (AR_SREV_9100(ah
)) {
1372 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1373 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1375 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE(ah
));
1376 if (AR_SREV_9340(ah
))
1377 tmpReg
&= AR9340_INTR_SYNC_LOCAL_TIMEOUT
;
1379 tmpReg
&= AR_INTR_SYNC_LOCAL_TIMEOUT
|
1380 AR_INTR_SYNC_RADM_CPL_TIMEOUT
;
1384 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE(ah
), 0);
1387 if (!AR_SREV_9300_20_OR_LATER(ah
))
1389 REG_WRITE(ah
, AR_RC
, val
);
1391 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1392 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1394 rst_flags
= AR_RTC_RC_MAC_WARM
;
1395 if (type
== ATH9K_RESET_COLD
)
1396 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1399 if (AR_SREV_9330(ah
)) {
1400 if (!ath9k_hw_ar9330_reset_war(ah
, type
))
1404 if (ath9k_hw_mci_is_enabled(ah
))
1405 ar9003_mci_check_gpm_offset(ah
);
1407 /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1410 if (AR_SREV_9300(ah
) || AR_SREV_9580(ah
)) {
1411 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_HALT_REQ
);
1412 ath9k_hw_wait(ah
, AR_CFG
, AR_CFG_HALT_ACK
, AR_CFG_HALT_ACK
,
1413 20 * AH_WAIT_TIMEOUT
);
1414 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_HALT_REQ
);
1417 REG_WRITE(ah
, AR_RTC_RC(ah
), rst_flags
);
1419 REGWRITE_BUFFER_FLUSH(ah
);
1421 if (AR_SREV_9300_20_OR_LATER(ah
))
1423 else if (AR_SREV_9100(ah
))
1428 REG_WRITE(ah
, AR_RTC_RC(ah
), 0);
1429 if (!ath9k_hw_wait(ah
, AR_RTC_RC(ah
), AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1430 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC stuck in MAC reset\n");
1434 if (!AR_SREV_9100(ah
))
1435 REG_WRITE(ah
, AR_RC
, 0);
1437 if (AR_SREV_9100(ah
))
1443 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1445 ENABLE_REGWRITE_BUFFER(ah
);
1447 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1448 REG_WRITE(ah
, AR_WA(ah
), ah
->WARegVal
);
1452 REG_WRITE(ah
, AR_RTC_FORCE_WAKE(ah
), AR_RTC_FORCE_WAKE_EN
|
1453 AR_RTC_FORCE_WAKE_ON_INT
);
1455 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1456 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1458 REG_WRITE(ah
, AR_RTC_RESET(ah
), 0);
1460 REGWRITE_BUFFER_FLUSH(ah
);
1464 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1465 REG_WRITE(ah
, AR_RC
, 0);
1467 REG_WRITE(ah
, AR_RTC_RESET(ah
), 1);
1469 if (!ath9k_hw_wait(ah
,
1471 AR_RTC_STATUS_M(ah
),
1474 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC not waking up\n");
1478 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1481 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1485 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1486 REG_WRITE(ah
, AR_WA(ah
), ah
->WARegVal
);
1490 REG_WRITE(ah
, AR_RTC_FORCE_WAKE(ah
),
1491 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1493 if (!ah
->reset_power_on
)
1494 type
= ATH9K_RESET_POWER_ON
;
1497 case ATH9K_RESET_POWER_ON
:
1498 ret
= ath9k_hw_set_reset_power_on(ah
);
1500 ah
->reset_power_on
= true;
1502 case ATH9K_RESET_WARM
:
1503 case ATH9K_RESET_COLD
:
1504 ret
= ath9k_hw_set_reset(ah
, type
);
1513 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1514 struct ath9k_channel
*chan
)
1516 int reset_type
= ATH9K_RESET_WARM
;
1518 if (AR_SREV_9280(ah
)) {
1519 if (ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
1520 reset_type
= ATH9K_RESET_POWER_ON
;
1522 reset_type
= ATH9K_RESET_COLD
;
1523 } else if (ah
->chip_fullsleep
|| REG_READ(ah
, AR_Q_TXE
) ||
1524 (REG_READ(ah
, AR_CR
) & AR_CR_RXE(ah
)))
1525 reset_type
= ATH9K_RESET_COLD
;
1527 if (!ath9k_hw_set_reset_reg(ah
, reset_type
))
1530 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1533 ah
->chip_fullsleep
= false;
1535 if (AR_SREV_9330(ah
))
1536 ar9003_hw_internal_regulator_apply(ah
);
1537 ath9k_hw_init_pll(ah
, chan
);
1542 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1543 struct ath9k_channel
*chan
)
1545 struct ath_common
*common
= ath9k_hw_common(ah
);
1546 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1547 bool band_switch
= false, mode_diff
= false;
1548 u8 ini_reloaded
= 0;
1552 if (pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) {
1553 u32 flags_diff
= chan
->channelFlags
^ ah
->curchan
->channelFlags
;
1554 band_switch
= !!(flags_diff
& CHANNEL_5GHZ
);
1555 mode_diff
= !!(flags_diff
& ~CHANNEL_HT
);
1558 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1559 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1560 ath_dbg(common
, QUEUE
,
1561 "Transmit frames pending on queue %d\n", qnum
);
1566 if (!ath9k_hw_rfbus_req(ah
)) {
1567 ath_err(common
, "Could not kill baseband RX\n");
1571 if (band_switch
|| mode_diff
) {
1572 ath9k_hw_mark_phy_inactive(ah
);
1576 ath9k_hw_init_pll(ah
, chan
);
1578 if (ath9k_hw_fast_chan_change(ah
, chan
, &ini_reloaded
)) {
1579 ath_err(common
, "Failed to do fast channel change\n");
1584 ath9k_hw_set_channel_regs(ah
, chan
);
1586 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1588 ath_err(common
, "Failed to set channel\n");
1591 ath9k_hw_set_clockrate(ah
);
1592 ath9k_hw_apply_txpower(ah
, chan
, false);
1594 ath9k_hw_set_delta_slope(ah
, chan
);
1595 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1597 if (band_switch
|| ini_reloaded
)
1598 ah
->eep_ops
->set_board_values(ah
, chan
);
1600 ath9k_hw_init_bb(ah
, chan
);
1601 ath9k_hw_rfbus_done(ah
);
1603 if (band_switch
|| ini_reloaded
) {
1604 ah
->ah_flags
|= AH_FASTCC
;
1605 ath9k_hw_init_cal(ah
, chan
);
1606 ah
->ah_flags
&= ~AH_FASTCC
;
1612 static void ath9k_hw_apply_gpio_override(struct ath_hw
*ah
)
1614 u32 gpio_mask
= ah
->gpio_mask
;
1617 for (i
= 0; gpio_mask
; i
++, gpio_mask
>>= 1) {
1618 if (!(gpio_mask
& 1))
1621 ath9k_hw_gpio_request_out(ah
, i
, NULL
,
1622 AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1623 ath9k_hw_set_gpio(ah
, i
, !!(ah
->gpio_val
& BIT(i
)));
1627 void ath9k_hw_check_nav(struct ath_hw
*ah
)
1629 struct ath_common
*common
= ath9k_hw_common(ah
);
1632 val
= REG_READ(ah
, AR_NAV
);
1633 if (val
!= 0xdeadbeef && val
> 0x7fff) {
1634 ath_dbg(common
, BSTUCK
, "Abnormal NAV: 0x%x\n", val
);
1635 REG_WRITE(ah
, AR_NAV
, 0);
1638 EXPORT_SYMBOL(ath9k_hw_check_nav
);
1640 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1645 /* Check if chip failed to wake up */
1646 if (REG_READ(ah
, AR_CFG
) == 0xdeadbeef)
1649 if (AR_SREV_9300(ah
))
1650 return !ath9k_hw_detect_mac_hang(ah
);
1652 if (AR_SREV_9285_12_OR_LATER(ah
))
1655 last_val
= REG_READ(ah
, AR_OBS_BUS_1
);
1657 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1658 if (reg
!= last_val
)
1663 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1666 switch (reg
& 0x7E000B00) {
1674 } while (count
-- > 0);
1678 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1680 static void ath9k_hw_init_mfp(struct ath_hw
*ah
)
1682 /* Setup MFP options for CCMP */
1683 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1684 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1685 * frames when constructing CCMP AAD. */
1686 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1688 if (AR_SREV_9271(ah
) || AR_DEVID_7010(ah
))
1689 ah
->sw_mgmt_crypto_tx
= true;
1691 ah
->sw_mgmt_crypto_tx
= false;
1692 ah
->sw_mgmt_crypto_rx
= false;
1693 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1694 /* Disable hardware crypto for management frames */
1695 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1696 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1697 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1698 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1699 ah
->sw_mgmt_crypto_tx
= true;
1700 ah
->sw_mgmt_crypto_rx
= true;
1702 ah
->sw_mgmt_crypto_tx
= true;
1703 ah
->sw_mgmt_crypto_rx
= true;
1707 static void ath9k_hw_reset_opmode(struct ath_hw
*ah
,
1708 u32 macStaId1
, u32 saveDefAntenna
)
1710 struct ath_common
*common
= ath9k_hw_common(ah
);
1712 ENABLE_REGWRITE_BUFFER(ah
);
1714 REG_RMW(ah
, AR_STA_ID1
, macStaId1
1715 | AR_STA_ID1_RTS_USE_DEF
1716 | ah
->sta_id1_defaults
,
1717 ~AR_STA_ID1_SADH_MASK
);
1718 ath_hw_setbssidmask(common
);
1719 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1720 ath9k_hw_write_associd(ah
);
1721 REG_WRITE(ah
, AR_ISR
, ~0);
1722 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1724 REGWRITE_BUFFER_FLUSH(ah
);
1726 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1729 static void ath9k_hw_init_queues(struct ath_hw
*ah
)
1733 ENABLE_REGWRITE_BUFFER(ah
);
1735 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1736 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1738 REGWRITE_BUFFER_FLUSH(ah
);
1741 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1742 ath9k_hw_resettxqueue(ah
, i
);
1746 * For big endian systems turn on swapping for descriptors
1748 static void ath9k_hw_init_desc(struct ath_hw
*ah
)
1750 struct ath_common
*common
= ath9k_hw_common(ah
);
1752 if (AR_SREV_9100(ah
)) {
1754 mask
= REG_READ(ah
, AR_CFG
);
1755 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1756 ath_dbg(common
, RESET
, "CFG Byte Swap Set 0x%x\n",
1759 mask
= INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1760 REG_WRITE(ah
, AR_CFG
, mask
);
1761 ath_dbg(common
, RESET
, "Setting CFG 0x%x\n",
1762 REG_READ(ah
, AR_CFG
));
1765 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1766 /* Configure AR9271 target WLAN */
1767 if (AR_SREV_9271(ah
))
1768 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1770 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1773 else if (AR_SREV_9330(ah
) || AR_SREV_9340(ah
) ||
1774 AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
1776 REG_RMW(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
, 0);
1778 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1784 * Fast channel change:
1785 * (Change synthesizer based on channel freq without resetting chip)
1787 static int ath9k_hw_do_fastcc(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1789 struct ath_common
*common
= ath9k_hw_common(ah
);
1790 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1793 if (AR_SREV_9280(ah
) && common
->bus_ops
->ath_bus_type
== ATH_PCI
)
1796 if (ah
->chip_fullsleep
)
1802 if (chan
->channel
== ah
->curchan
->channel
)
1805 if ((ah
->curchan
->channelFlags
| chan
->channelFlags
) &
1806 (CHANNEL_HALF
| CHANNEL_QUARTER
))
1810 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1812 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) &&
1813 ((chan
->channelFlags
^ ah
->curchan
->channelFlags
) & ~CHANNEL_HT
))
1816 if (!ath9k_hw_check_alive(ah
))
1820 * For AR9462, make sure that calibration data for
1821 * re-using are present.
1823 if (AR_SREV_9462(ah
) && (ah
->caldata
&&
1824 (!test_bit(TXIQCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1825 !test_bit(TXCLCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1826 !test_bit(RTT_DONE
, &ah
->caldata
->cal_flags
))))
1829 ath_dbg(common
, RESET
, "FastChannelChange for %d -> %d\n",
1830 ah
->curchan
->channel
, chan
->channel
);
1832 ret
= ath9k_hw_channel_change(ah
, chan
);
1836 if (ath9k_hw_mci_is_enabled(ah
))
1837 ar9003_mci_2g5g_switch(ah
, false);
1839 ath9k_hw_loadnf(ah
, ah
->curchan
);
1840 ath9k_hw_start_nfcal(ah
, true);
1842 if (AR_SREV_9271(ah
))
1843 ar9002_hw_load_ani_reg(ah
, chan
);
1850 u32
ath9k_hw_get_tsf_offset(struct timespec64
*last
, struct timespec64
*cur
)
1852 struct timespec64 ts
;
1856 ktime_get_raw_ts64(&ts
);
1860 usec
= cur
->tv_sec
* 1000000ULL + cur
->tv_nsec
/ 1000;
1861 usec
-= last
->tv_sec
* 1000000ULL + last
->tv_nsec
/ 1000;
1865 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset
);
1867 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1868 struct ath9k_hw_cal_data
*caldata
, bool fastcc
)
1870 struct ath_common
*common
= ath9k_hw_common(ah
);
1874 struct timespec64 tsf_ts
;
1878 bool start_mci_reset
= false;
1879 bool save_fullsleep
= ah
->chip_fullsleep
;
1881 if (ath9k_hw_mci_is_enabled(ah
)) {
1882 start_mci_reset
= ar9003_mci_start_reset(ah
, chan
);
1883 if (start_mci_reset
)
1887 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1890 if (ah
->curchan
&& !ah
->chip_fullsleep
)
1891 ath9k_hw_getnf(ah
, ah
->curchan
);
1893 ah
->caldata
= caldata
;
1894 if (caldata
&& (chan
->channel
!= caldata
->channel
||
1895 chan
->channelFlags
!= caldata
->channelFlags
)) {
1896 /* Operating channel changed, reset channel calibration data */
1897 memset(caldata
, 0, sizeof(*caldata
));
1898 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1899 } else if (caldata
) {
1900 clear_bit(PAPRD_PACKET_SENT
, &caldata
->cal_flags
);
1902 ah
->noise
= ath9k_hw_getchan_noise(ah
, chan
, chan
->noisefloor
);
1905 r
= ath9k_hw_do_fastcc(ah
, chan
);
1910 if (ath9k_hw_mci_is_enabled(ah
))
1911 ar9003_mci_stop_bt(ah
, save_fullsleep
);
1913 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1914 if (saveDefAntenna
== 0)
1917 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1919 /* Save TSF before chip reset, a cold reset clears it */
1920 ktime_get_raw_ts64(&tsf_ts
);
1921 tsf
= ath9k_hw_gettsf64(ah
);
1923 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1924 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1925 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1927 ath9k_hw_mark_phy_inactive(ah
);
1929 ah
->paprd_table_write_done
= false;
1931 /* Only required on the first reset */
1932 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1934 AR9271_RESET_POWER_DOWN_CONTROL
,
1935 AR9271_RADIO_RF_RST
);
1939 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1940 ath_err(common
, "Chip reset failed\n");
1944 /* Only required on the first reset */
1945 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1946 ah
->htc_reset_init
= false;
1948 AR9271_RESET_POWER_DOWN_CONTROL
,
1949 AR9271_GATE_MAC_CTL
);
1954 tsf_offset
= ath9k_hw_get_tsf_offset(&tsf_ts
, NULL
);
1955 ath9k_hw_settsf64(ah
, tsf
+ tsf_offset
);
1957 if (AR_SREV_9280_20_OR_LATER(ah
))
1958 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL(ah
), AR_GPIO_JTAG_DISABLE
);
1960 if (!AR_SREV_9300_20_OR_LATER(ah
))
1961 ar9002_hw_enable_async_fifo(ah
);
1963 r
= ath9k_hw_process_ini(ah
, chan
);
1967 ath9k_hw_set_rfmode(ah
, chan
);
1969 if (ath9k_hw_mci_is_enabled(ah
))
1970 ar9003_mci_reset(ah
, false, IS_CHAN_2GHZ(chan
), save_fullsleep
);
1973 * Some AR91xx SoC devices frequently fail to accept TSF writes
1974 * right after the chip reset. When that happens, write a new
1975 * value after the initvals have been applied.
1977 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1978 tsf_offset
= ath9k_hw_get_tsf_offset(&tsf_ts
, NULL
);
1979 ath9k_hw_settsf64(ah
, tsf
+ tsf_offset
);
1982 ath9k_hw_init_mfp(ah
);
1984 ath9k_hw_set_delta_slope(ah
, chan
);
1985 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1986 ah
->eep_ops
->set_board_values(ah
, chan
);
1988 ath9k_hw_reset_opmode(ah
, macStaId1
, saveDefAntenna
);
1990 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1994 ath9k_hw_set_clockrate(ah
);
1996 ath9k_hw_init_queues(ah
);
1997 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1998 ath9k_hw_ani_cache_ini_regs(ah
);
1999 ath9k_hw_init_qos(ah
);
2001 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
2002 ath9k_hw_gpio_request_in(ah
, ah
->rfkill_gpio
, "ath9k-rfkill");
2004 ath9k_hw_init_global_settings(ah
);
2006 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
2007 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
2008 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
2009 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
2010 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
2011 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2012 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
2015 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PRESERVE_SEQNUM
);
2017 ath9k_hw_set_dma(ah
);
2019 if (!ath9k_hw_mci_is_enabled(ah
))
2020 REG_WRITE(ah
, AR_OBS(ah
), 8);
2022 ENABLE_REG_RMW_BUFFER(ah
);
2023 if (ah
->config
.rx_intr_mitigation
) {
2024 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, ah
->config
.rimt_last
);
2025 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, ah
->config
.rimt_first
);
2028 if (ah
->config
.tx_intr_mitigation
) {
2029 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
2030 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
2032 REG_RMW_BUFFER_FLUSH(ah
);
2034 ath9k_hw_init_bb(ah
, chan
);
2037 clear_bit(TXIQCAL_DONE
, &caldata
->cal_flags
);
2038 clear_bit(TXCLCAL_DONE
, &caldata
->cal_flags
);
2040 if (!ath9k_hw_init_cal(ah
, chan
))
2043 if (ath9k_hw_mci_is_enabled(ah
) && ar9003_mci_end_reset(ah
, chan
, caldata
))
2046 ENABLE_REGWRITE_BUFFER(ah
);
2048 ath9k_hw_restore_chainmask(ah
);
2049 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
2051 REGWRITE_BUFFER_FLUSH(ah
);
2053 ath9k_hw_gen_timer_start_tsf2(ah
);
2055 ath9k_hw_init_desc(ah
);
2057 if (ath9k_hw_btcoex_is_enabled(ah
))
2058 ath9k_hw_btcoex_enable(ah
);
2060 if (ath9k_hw_mci_is_enabled(ah
))
2061 ar9003_mci_check_bt(ah
);
2063 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2064 ath9k_hw_loadnf(ah
, chan
);
2065 ath9k_hw_start_nfcal(ah
, true);
2068 if (AR_SREV_9300_20_OR_LATER(ah
))
2069 ar9003_hw_bb_watchdog_config(ah
);
2071 if (ah
->config
.hw_hang_checks
& HW_PHYRESTART_CLC_WAR
)
2072 ar9003_hw_disable_phy_restart(ah
);
2074 ath9k_hw_apply_gpio_override(ah
);
2076 if (AR_SREV_9565(ah
) && common
->bt_ant_diversity
)
2077 REG_SET_BIT(ah
, AR_BTCOEX_WL_LNADIV
, AR_BTCOEX_WL_LNADIV_FORCE_ON
);
2079 if (ah
->hw
->conf
.radar_enabled
) {
2080 /* set HW specific DFS configuration */
2081 ah
->radar_conf
.ext_channel
= IS_CHAN_HT40(chan
);
2082 ath9k_hw_set_radar_params(ah
);
2087 EXPORT_SYMBOL(ath9k_hw_reset
);
2089 /******************************/
2090 /* Power Management (Chipset) */
2091 /******************************/
2094 * Notify Power Mgt is disabled in self-generated frames.
2095 * If requested, force chip to sleep.
2097 static void ath9k_set_power_sleep(struct ath_hw
*ah
)
2099 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2101 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2102 REG_CLR_BIT(ah
, AR_TIMER_MODE
, 0xff);
2103 REG_CLR_BIT(ah
, AR_NDP2_TIMER_MODE
, 0xff);
2104 REG_CLR_BIT(ah
, AR_SLP32_INC
, 0xfffff);
2105 /* xxx Required for WLAN only case ? */
2106 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, 0);
2111 * Clear the RTC force wake bit to allow the
2112 * mac to go to sleep.
2114 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE(ah
), AR_RTC_FORCE_WAKE_EN
);
2116 if (ath9k_hw_mci_is_enabled(ah
))
2119 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
2120 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
2122 /* Shutdown chip. Active low */
2123 if (!AR_SREV_5416(ah
) && !AR_SREV_9271(ah
)) {
2124 REG_CLR_BIT(ah
, AR_RTC_RESET(ah
), AR_RTC_RESET_EN
);
2128 /* Clear Bit 14 of AR_WA(ah) after putting chip into Full Sleep mode. */
2129 if (AR_SREV_9300_20_OR_LATER(ah
))
2130 REG_WRITE(ah
, AR_WA(ah
), ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2134 * Notify Power Management is enabled in self-generating
2135 * frames. If request, set power mode of chip to
2136 * auto/normal. Duration in units of 128us (1/8 TU).
2138 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
)
2140 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2142 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2144 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
2145 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2146 REG_WRITE(ah
, AR_RTC_FORCE_WAKE(ah
),
2147 AR_RTC_FORCE_WAKE_ON_INT
);
2150 /* When chip goes into network sleep, it could be waken
2151 * up by MCI_INT interrupt caused by BT's HW messages
2152 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2153 * rate (~100us). This will cause chip to leave and
2154 * re-enter network sleep mode frequently, which in
2155 * consequence will have WLAN MCI HW to generate lots of
2156 * SYS_WAKING and SYS_SLEEPING messages which will make
2157 * BT CPU to busy to process.
2159 if (ath9k_hw_mci_is_enabled(ah
))
2160 REG_CLR_BIT(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
,
2161 AR_MCI_INTERRUPT_RX_HW_MSG_MASK
);
2163 * Clear the RTC force wake bit to allow the
2164 * mac to go to sleep.
2166 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE(ah
), AR_RTC_FORCE_WAKE_EN
);
2168 if (ath9k_hw_mci_is_enabled(ah
))
2172 /* Clear Bit 14 of AR_WA(ah) after putting chip into Net Sleep mode. */
2173 if (AR_SREV_9300_20_OR_LATER(ah
))
2174 REG_WRITE(ah
, AR_WA(ah
), ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2177 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
)
2182 /* Set Bits 14 and 17 of AR_WA(ah) before powering on the chip. */
2183 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2184 REG_WRITE(ah
, AR_WA(ah
), ah
->WARegVal
);
2188 if ((REG_READ(ah
, AR_RTC_STATUS(ah
)) &
2189 AR_RTC_STATUS_M(ah
)) == AR_RTC_STATUS_SHUTDOWN
) {
2190 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
2193 if (!AR_SREV_9300_20_OR_LATER(ah
))
2194 ath9k_hw_init_pll(ah
, NULL
);
2196 if (AR_SREV_9100(ah
))
2197 REG_SET_BIT(ah
, AR_RTC_RESET(ah
),
2200 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE(ah
),
2201 AR_RTC_FORCE_WAKE_EN
);
2202 if (AR_SREV_9100(ah
))
2207 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2208 val
= REG_READ(ah
, AR_RTC_STATUS(ah
)) & AR_RTC_STATUS_M(ah
);
2209 if (val
== AR_RTC_STATUS_ON
)
2212 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE(ah
),
2213 AR_RTC_FORCE_WAKE_EN
);
2216 ath_err(ath9k_hw_common(ah
),
2217 "Failed to wakeup in %uus\n",
2218 POWER_UP_TIME
/ 20);
2222 if (ath9k_hw_mci_is_enabled(ah
))
2223 ar9003_mci_set_power_awake(ah
);
2225 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2230 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2232 struct ath_common
*common
= ath9k_hw_common(ah
);
2234 static const char *modes
[] = {
2241 if (ah
->power_mode
== mode
)
2244 ath_dbg(common
, RESET
, "%s -> %s\n",
2245 modes
[ah
->power_mode
], modes
[mode
]);
2248 case ATH9K_PM_AWAKE
:
2249 status
= ath9k_hw_set_power_awake(ah
);
2251 case ATH9K_PM_FULL_SLEEP
:
2252 if (ath9k_hw_mci_is_enabled(ah
))
2253 ar9003_mci_set_full_sleep(ah
);
2255 ath9k_set_power_sleep(ah
);
2256 ah
->chip_fullsleep
= true;
2258 case ATH9K_PM_NETWORK_SLEEP
:
2259 ath9k_set_power_network_sleep(ah
);
2262 ath_err(common
, "Unknown power mode %u\n", mode
);
2265 ah
->power_mode
= mode
;
2268 * XXX: If this warning never comes up after a while then
2269 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2270 * ath9k_hw_setpower() return type void.
2273 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
2274 ATH_DBG_WARN_ON_ONCE(!status
);
2278 EXPORT_SYMBOL(ath9k_hw_setpower
);
2280 /*******************/
2281 /* Beacon Handling */
2282 /*******************/
2284 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
2288 ENABLE_REGWRITE_BUFFER(ah
);
2290 switch (ah
->opmode
) {
2291 case NL80211_IFTYPE_ADHOC
:
2292 REG_SET_BIT(ah
, AR_TXCFG
,
2293 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
2295 case NL80211_IFTYPE_MESH_POINT
:
2296 case NL80211_IFTYPE_AP
:
2297 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, next_beacon
);
2298 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, next_beacon
-
2299 TU_TO_USEC(ah
->config
.dma_beacon_response_time
));
2300 REG_WRITE(ah
, AR_NEXT_SWBA
, next_beacon
-
2301 TU_TO_USEC(ah
->config
.sw_beacon_response_time
));
2303 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
2306 ath_dbg(ath9k_hw_common(ah
), BEACON
,
2307 "%s: unsupported opmode: %d\n", __func__
, ah
->opmode
);
2311 REG_WRITE(ah
, AR_BEACON_PERIOD
, beacon_period
);
2312 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, beacon_period
);
2313 REG_WRITE(ah
, AR_SWBA_PERIOD
, beacon_period
);
2315 REGWRITE_BUFFER_FLUSH(ah
);
2317 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
2319 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
2321 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
2322 const struct ath9k_beacon_state
*bs
)
2324 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
2325 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2326 struct ath_common
*common
= ath9k_hw_common(ah
);
2328 ENABLE_REGWRITE_BUFFER(ah
);
2330 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, bs
->bs_nexttbtt
);
2331 REG_WRITE(ah
, AR_BEACON_PERIOD
, bs
->bs_intval
);
2332 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, bs
->bs_intval
);
2334 REGWRITE_BUFFER_FLUSH(ah
);
2336 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
2337 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
2339 beaconintval
= bs
->bs_intval
;
2341 if (bs
->bs_sleepduration
> beaconintval
)
2342 beaconintval
= bs
->bs_sleepduration
;
2344 dtimperiod
= bs
->bs_dtimperiod
;
2345 if (bs
->bs_sleepduration
> dtimperiod
)
2346 dtimperiod
= bs
->bs_sleepduration
;
2348 if (beaconintval
== dtimperiod
)
2349 nextTbtt
= bs
->bs_nextdtim
;
2351 nextTbtt
= bs
->bs_nexttbtt
;
2353 ath_dbg(common
, BEACON
, "next DTIM %u\n", bs
->bs_nextdtim
);
2354 ath_dbg(common
, BEACON
, "next beacon %u\n", nextTbtt
);
2355 ath_dbg(common
, BEACON
, "beacon period %u\n", beaconintval
);
2356 ath_dbg(common
, BEACON
, "DTIM period %u\n", dtimperiod
);
2358 ENABLE_REGWRITE_BUFFER(ah
);
2360 REG_WRITE(ah
, AR_NEXT_DTIM
, bs
->bs_nextdtim
- SLEEP_SLOP
);
2361 REG_WRITE(ah
, AR_NEXT_TIM
, nextTbtt
- SLEEP_SLOP
);
2363 REG_WRITE(ah
, AR_SLEEP1
,
2364 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
2365 | AR_SLEEP1_ASSUME_DTIM
);
2367 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
2368 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
2370 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
2372 REG_WRITE(ah
, AR_SLEEP2
,
2373 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
2375 REG_WRITE(ah
, AR_TIM_PERIOD
, beaconintval
);
2376 REG_WRITE(ah
, AR_DTIM_PERIOD
, dtimperiod
);
2378 REGWRITE_BUFFER_FLUSH(ah
);
2380 REG_SET_BIT(ah
, AR_TIMER_MODE
,
2381 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
2384 /* TSF Out of Range Threshold */
2385 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
2387 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
2389 /*******************/
2390 /* HW Capabilities */
2391 /*******************/
2393 static u8
fixup_chainmask(u8 chip_chainmask
, u8 eeprom_chainmask
)
2395 eeprom_chainmask
&= chip_chainmask
;
2396 if (eeprom_chainmask
)
2397 return eeprom_chainmask
;
2399 return chip_chainmask
;
2403 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2404 * @ah: the atheros hardware data structure
2406 * We enable DFS support upstream on chipsets which have passed a series
2407 * of tests. The testing requirements are going to be documented. Desired
2408 * test requirements are documented at:
2410 * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2412 * Once a new chipset gets properly tested an individual commit can be used
2413 * to document the testing for DFS for that chipset.
2415 static bool ath9k_hw_dfs_tested(struct ath_hw
*ah
)
2418 switch (ah
->hw_version
.macVersion
) {
2419 /* for temporary testing DFS with 9280 */
2420 case AR_SREV_VERSION_9280
:
2421 /* AR9580 will likely be our first target to get testing on */
2422 case AR_SREV_VERSION_9580
:
2429 static void ath9k_gpio_cap_init(struct ath_hw
*ah
)
2431 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2433 if (AR_SREV_9271(ah
)) {
2434 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
2435 pCap
->gpio_mask
= AR9271_GPIO_MASK
;
2436 } else if (AR_DEVID_7010(ah
)) {
2437 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
2438 pCap
->gpio_mask
= AR7010_GPIO_MASK
;
2439 } else if (AR_SREV_9287(ah
)) {
2440 pCap
->num_gpio_pins
= AR9287_NUM_GPIO
;
2441 pCap
->gpio_mask
= AR9287_GPIO_MASK
;
2442 } else if (AR_SREV_9285(ah
)) {
2443 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
2444 pCap
->gpio_mask
= AR9285_GPIO_MASK
;
2445 } else if (AR_SREV_9280(ah
)) {
2446 pCap
->num_gpio_pins
= AR9280_NUM_GPIO
;
2447 pCap
->gpio_mask
= AR9280_GPIO_MASK
;
2448 } else if (AR_SREV_9300(ah
)) {
2449 pCap
->num_gpio_pins
= AR9300_NUM_GPIO
;
2450 pCap
->gpio_mask
= AR9300_GPIO_MASK
;
2451 } else if (AR_SREV_9330(ah
)) {
2452 pCap
->num_gpio_pins
= AR9330_NUM_GPIO
;
2453 pCap
->gpio_mask
= AR9330_GPIO_MASK
;
2454 } else if (AR_SREV_9340(ah
)) {
2455 pCap
->num_gpio_pins
= AR9340_NUM_GPIO
;
2456 pCap
->gpio_mask
= AR9340_GPIO_MASK
;
2457 } else if (AR_SREV_9462(ah
)) {
2458 pCap
->num_gpio_pins
= AR9462_NUM_GPIO
;
2459 pCap
->gpio_mask
= AR9462_GPIO_MASK
;
2460 } else if (AR_SREV_9485(ah
)) {
2461 pCap
->num_gpio_pins
= AR9485_NUM_GPIO
;
2462 pCap
->gpio_mask
= AR9485_GPIO_MASK
;
2463 } else if (AR_SREV_9531(ah
)) {
2464 pCap
->num_gpio_pins
= AR9531_NUM_GPIO
;
2465 pCap
->gpio_mask
= AR9531_GPIO_MASK
;
2466 } else if (AR_SREV_9550(ah
)) {
2467 pCap
->num_gpio_pins
= AR9550_NUM_GPIO
;
2468 pCap
->gpio_mask
= AR9550_GPIO_MASK
;
2469 } else if (AR_SREV_9561(ah
)) {
2470 pCap
->num_gpio_pins
= AR9561_NUM_GPIO
;
2471 pCap
->gpio_mask
= AR9561_GPIO_MASK
;
2472 } else if (AR_SREV_9565(ah
)) {
2473 pCap
->num_gpio_pins
= AR9565_NUM_GPIO
;
2474 pCap
->gpio_mask
= AR9565_GPIO_MASK
;
2475 } else if (AR_SREV_9580(ah
)) {
2476 pCap
->num_gpio_pins
= AR9580_NUM_GPIO
;
2477 pCap
->gpio_mask
= AR9580_GPIO_MASK
;
2479 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
2480 pCap
->gpio_mask
= AR_GPIO_MASK
;
2484 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
2486 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2487 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2488 struct ath_common
*common
= ath9k_hw_common(ah
);
2491 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
2493 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
2494 regulatory
->current_rd
= eeval
;
2496 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
2497 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
2498 if (regulatory
->current_rd
== 0x64 ||
2499 regulatory
->current_rd
== 0x65)
2500 regulatory
->current_rd
+= 5;
2501 else if (regulatory
->current_rd
== 0x41)
2502 regulatory
->current_rd
= 0x43;
2503 ath_dbg(common
, REGULATORY
, "regdomain mapped to 0x%x\n",
2504 regulatory
->current_rd
);
2507 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
2509 if (eeval
& AR5416_OPFLAGS_11A
) {
2510 if (ah
->disable_5ghz
)
2511 ath_warn(common
, "disabling 5GHz band\n");
2513 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
2516 if (eeval
& AR5416_OPFLAGS_11G
) {
2517 if (ah
->disable_2ghz
)
2518 ath_warn(common
, "disabling 2GHz band\n");
2520 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
2523 if ((pCap
->hw_caps
& (ATH9K_HW_CAP_2GHZ
| ATH9K_HW_CAP_5GHZ
)) == 0) {
2524 ath_err(common
, "both bands are disabled\n");
2528 ath9k_gpio_cap_init(ah
);
2530 if (AR_SREV_9485(ah
) ||
2534 pCap
->chip_chainmask
= 1;
2535 else if (!AR_SREV_9280_20_OR_LATER(ah
))
2536 pCap
->chip_chainmask
= 7;
2537 else if (!AR_SREV_9300_20_OR_LATER(ah
) ||
2541 pCap
->chip_chainmask
= 3;
2543 pCap
->chip_chainmask
= 7;
2545 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
2547 * For AR9271 we will temporarilly uses the rx chainmax as read from
2550 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
2551 !(eeval
& AR5416_OPFLAGS_11A
) &&
2552 !(AR_SREV_9271(ah
)))
2553 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2554 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
2555 else if (AR_SREV_9100(ah
))
2556 pCap
->rx_chainmask
= 0x7;
2558 /* Use rx_chainmask from EEPROM. */
2559 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
2561 pCap
->tx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->tx_chainmask
);
2562 pCap
->rx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->rx_chainmask
);
2563 ah
->txchainmask
= pCap
->tx_chainmask
;
2564 ah
->rxchainmask
= pCap
->rx_chainmask
;
2566 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
2568 /* enable key search for every frame in an aggregate */
2569 if (AR_SREV_9300_20_OR_LATER(ah
))
2570 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
2572 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
2574 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
2575 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
2577 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
2579 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
))
2580 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
2582 pCap
->rts_aggr_limit
= (8 * 1024);
2584 #ifdef CONFIG_ATH9K_RFKILL
2585 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
2586 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
2588 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
2589 ah
->rfkill_polarity
=
2590 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
2592 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
2595 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
2596 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
2598 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
2600 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
2601 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
2603 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
2605 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2606 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
2607 if (!AR_SREV_9330(ah
) && !AR_SREV_9485(ah
) &&
2608 !AR_SREV_9561(ah
) && !AR_SREV_9565(ah
))
2609 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
2611 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
2612 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
2613 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
2614 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
2615 pCap
->txs_len
= sizeof(struct ar9003_txs
);
2617 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
2618 if (AR_SREV_9280_20(ah
))
2619 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
2622 if (AR_SREV_9300_20_OR_LATER(ah
))
2623 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
2625 if (AR_SREV_9561(ah
))
2626 ah
->ent_mode
= 0x3BDA000;
2627 else if (AR_SREV_9300_20_OR_LATER(ah
))
2628 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
2630 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
2631 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
2633 if (AR_SREV_9285(ah
)) {
2634 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2636 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2637 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1)) {
2638 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2639 ath_info(common
, "Enable LNA combining\n");
2644 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2645 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2646 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2649 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
2650 ant_div_ctl1
= ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2651 if ((ant_div_ctl1
>> 0x6) == 0x3) {
2652 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2653 ath_info(common
, "Enable LNA combining\n");
2657 if (ath9k_hw_dfs_tested(ah
))
2658 pCap
->hw_caps
|= ATH9K_HW_CAP_DFS
;
2660 tx_chainmask
= pCap
->tx_chainmask
;
2661 rx_chainmask
= pCap
->rx_chainmask
;
2662 while (tx_chainmask
|| rx_chainmask
) {
2663 if (tx_chainmask
& BIT(0))
2664 pCap
->max_txchains
++;
2665 if (rx_chainmask
& BIT(0))
2666 pCap
->max_rxchains
++;
2672 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2673 if (!(ah
->ent_mode
& AR_ENT_OTP_49GHZ_DISABLE
))
2674 pCap
->hw_caps
|= ATH9K_HW_CAP_MCI
;
2676 if (AR_SREV_9462_20_OR_LATER(ah
))
2677 pCap
->hw_caps
|= ATH9K_HW_CAP_RTT
;
2680 if (AR_SREV_9300_20_OR_LATER(ah
) &&
2681 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
2682 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
2684 #ifdef CONFIG_ATH9K_WOW
2685 if (AR_SREV_9462_20_OR_LATER(ah
) || AR_SREV_9565_11_OR_LATER(ah
))
2686 ah
->wow
.max_patterns
= MAX_NUM_PATTERN
;
2688 ah
->wow
.max_patterns
= MAX_NUM_PATTERN_LEGACY
;
2694 /****************************/
2695 /* GPIO / RFKILL / Antennae */
2696 /****************************/
2698 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
, u32 gpio
, u32 type
)
2701 u32 gpio_shift
, tmp
;
2704 addr
= AR_GPIO_OUTPUT_MUX3(ah
);
2706 addr
= AR_GPIO_OUTPUT_MUX2(ah
);
2708 addr
= AR_GPIO_OUTPUT_MUX1(ah
);
2710 gpio_shift
= (gpio
% 6) * 5;
2712 if (AR_SREV_9280_20_OR_LATER(ah
) ||
2713 (addr
!= AR_GPIO_OUTPUT_MUX1(ah
))) {
2714 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2715 (0x1f << gpio_shift
));
2717 tmp
= REG_READ(ah
, addr
);
2718 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2719 tmp
&= ~(0x1f << gpio_shift
);
2720 tmp
|= (type
<< gpio_shift
);
2721 REG_WRITE(ah
, addr
, tmp
);
2725 /* BSP should set the corresponding MUX register correctly.
2727 static void ath9k_hw_gpio_cfg_soc(struct ath_hw
*ah
, u32 gpio
, bool out
,
2732 if (ah
->caps
.gpio_requested
& BIT(gpio
))
2735 err
= devm_gpio_request_one(ah
->dev
, gpio
, out
? GPIOF_OUT_INIT_LOW
: GPIOF_IN
, label
);
2737 ath_err(ath9k_hw_common(ah
), "request GPIO%d failed:%d\n",
2742 ah
->caps
.gpio_requested
|= BIT(gpio
);
2745 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw
*ah
, u32 gpio
, bool out
,
2748 u32 gpio_set
, gpio_shift
= gpio
;
2750 if (AR_DEVID_7010(ah
)) {
2752 AR7010_GPIO_OE_AS_OUTPUT
: AR7010_GPIO_OE_AS_INPUT
;
2753 REG_RMW(ah
, AR7010_GPIO_OE
, gpio_set
<< gpio_shift
,
2754 AR7010_GPIO_OE_MASK
<< gpio_shift
);
2755 } else if (AR_SREV_SOC(ah
)) {
2756 gpio_set
= out
? 1 : 0;
2757 REG_RMW(ah
, AR_GPIO_OE_OUT(ah
), gpio_set
<< gpio_shift
,
2758 gpio_set
<< gpio_shift
);
2760 gpio_shift
= gpio
<< 1;
2762 AR_GPIO_OE_OUT_DRV_ALL
: AR_GPIO_OE_OUT_DRV_NO
;
2763 REG_RMW(ah
, AR_GPIO_OE_OUT(ah
), gpio_set
<< gpio_shift
,
2764 AR_GPIO_OE_OUT_DRV
<< gpio_shift
);
2767 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2771 static void ath9k_hw_gpio_request(struct ath_hw
*ah
, u32 gpio
, bool out
,
2772 const char *label
, u32 ah_signal_type
)
2774 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2776 if (BIT(gpio
) & ah
->caps
.gpio_mask
)
2777 ath9k_hw_gpio_cfg_wmac(ah
, gpio
, out
, ah_signal_type
);
2778 else if (AR_SREV_SOC(ah
))
2779 ath9k_hw_gpio_cfg_soc(ah
, gpio
, out
, label
);
2784 void ath9k_hw_gpio_request_in(struct ath_hw
*ah
, u32 gpio
, const char *label
)
2786 ath9k_hw_gpio_request(ah
, gpio
, false, label
, 0);
2788 EXPORT_SYMBOL(ath9k_hw_gpio_request_in
);
2790 void ath9k_hw_gpio_request_out(struct ath_hw
*ah
, u32 gpio
, const char *label
,
2793 ath9k_hw_gpio_request(ah
, gpio
, true, label
, ah_signal_type
);
2795 EXPORT_SYMBOL(ath9k_hw_gpio_request_out
);
2797 void ath9k_hw_gpio_free(struct ath_hw
*ah
, u32 gpio
)
2799 if (!AR_SREV_SOC(ah
))
2802 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2804 if (ah
->caps
.gpio_requested
& BIT(gpio
))
2805 ah
->caps
.gpio_requested
&= ~BIT(gpio
);
2807 EXPORT_SYMBOL(ath9k_hw_gpio_free
);
2809 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2811 u32 val
= 0xffffffff;
2813 #define MS_REG_READ(x, y) \
2814 (MS(REG_READ(ah, AR_GPIO_IN_OUT(ah)), x##_GPIO_IN_VAL) & BIT(y))
2816 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2818 if (BIT(gpio
) & ah
->caps
.gpio_mask
) {
2819 if (AR_SREV_9271(ah
))
2820 val
= MS_REG_READ(AR9271
, gpio
);
2821 else if (AR_SREV_9287(ah
))
2822 val
= MS_REG_READ(AR9287
, gpio
);
2823 else if (AR_SREV_9285(ah
))
2824 val
= MS_REG_READ(AR9285
, gpio
);
2825 else if (AR_SREV_9280(ah
))
2826 val
= MS_REG_READ(AR928X
, gpio
);
2827 else if (AR_DEVID_7010(ah
))
2828 val
= REG_READ(ah
, AR7010_GPIO_IN
) & BIT(gpio
);
2829 else if (AR_SREV_9300_20_OR_LATER(ah
))
2830 val
= REG_READ(ah
, AR_GPIO_IN(ah
)) & BIT(gpio
);
2832 val
= MS_REG_READ(AR
, gpio
);
2833 } else if (BIT(gpio
) & ah
->caps
.gpio_requested
) {
2834 val
= gpio_get_value(gpio
) & BIT(gpio
);
2841 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2843 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2845 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2847 if (AR_DEVID_7010(ah
) || AR_SREV_9271(ah
))
2852 if (BIT(gpio
) & ah
->caps
.gpio_mask
) {
2853 u32 out_addr
= AR_DEVID_7010(ah
) ?
2854 AR7010_GPIO_OUT
: AR_GPIO_IN_OUT(ah
);
2856 REG_RMW(ah
, out_addr
, val
<< gpio
, BIT(gpio
));
2857 } else if (BIT(gpio
) & ah
->caps
.gpio_requested
) {
2858 gpio_set_value(gpio
, val
);
2863 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2865 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2867 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2869 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2871 /*********************/
2872 /* General Operation */
2873 /*********************/
2875 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2877 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2878 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2880 if (phybits
& AR_PHY_ERR_RADAR
)
2881 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2882 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2883 bits
|= ATH9K_RX_FILTER_PHYERR
;
2887 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2889 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2893 ENABLE_REGWRITE_BUFFER(ah
);
2895 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2898 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2899 phybits
|= AR_PHY_ERR_RADAR
;
2900 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2901 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2902 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2905 REG_SET_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2907 REG_CLR_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2909 REGWRITE_BUFFER_FLUSH(ah
);
2911 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2913 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2915 if (ath9k_hw_mci_is_enabled(ah
))
2916 ar9003_mci_bt_gain_ctrl(ah
);
2918 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2921 ath9k_hw_init_pll(ah
, NULL
);
2922 ah
->htc_reset_init
= true;
2925 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2927 bool ath9k_hw_disable(struct ath_hw
*ah
)
2929 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2932 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2935 ath9k_hw_init_pll(ah
, NULL
);
2938 EXPORT_SYMBOL(ath9k_hw_disable
);
2940 static int get_antenna_gain(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2942 enum eeprom_param gain_param
;
2944 if (IS_CHAN_2GHZ(chan
))
2945 gain_param
= EEP_ANTENNA_GAIN_2G
;
2947 gain_param
= EEP_ANTENNA_GAIN_5G
;
2949 return ah
->eep_ops
->get_eeprom(ah
, gain_param
);
2952 void ath9k_hw_apply_txpower(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2955 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2956 struct ieee80211_channel
*channel
;
2957 int chan_pwr
, new_pwr
;
2964 ctl
= ath9k_regd_get_ctl(reg
, chan
);
2966 channel
= chan
->chan
;
2967 chan_pwr
= min_t(int, channel
->max_power
* 2, MAX_COMBINED_POWER
);
2968 new_pwr
= min_t(int, chan_pwr
, reg
->power_limit
);
2970 ah
->eep_ops
->set_txpower(ah
, chan
, ctl
,
2971 get_antenna_gain(ah
, chan
), new_pwr
, test
);
2974 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2976 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2977 struct ath9k_channel
*chan
= ah
->curchan
;
2978 struct ieee80211_channel
*channel
= chan
->chan
;
2980 reg
->power_limit
= min_t(u32
, limit
, MAX_COMBINED_POWER
);
2982 channel
->max_power
= MAX_COMBINED_POWER
/ 2;
2984 ath9k_hw_apply_txpower(ah
, chan
, test
);
2987 channel
->max_power
= DIV_ROUND_UP(reg
->max_power_level
, 2);
2989 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2991 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2993 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2995 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2997 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2999 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
3000 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
3002 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
3004 void ath9k_hw_write_associd(struct ath_hw
*ah
)
3006 struct ath_common
*common
= ath9k_hw_common(ah
);
3008 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
3009 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
3010 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
3012 EXPORT_SYMBOL(ath9k_hw_write_associd
);
3014 #define ATH9K_MAX_TSF_READ 10
3016 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
3018 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
3021 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
3022 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
3023 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
3024 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
3025 if (tsf_upper2
== tsf_upper1
)
3027 tsf_upper1
= tsf_upper2
;
3030 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
3032 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
3034 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
3036 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
3038 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
3039 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
3041 EXPORT_SYMBOL(ath9k_hw_settsf64
);
3043 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
3045 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
3046 AH_TSF_WRITE_TIMEOUT
))
3047 ath_dbg(ath9k_hw_common(ah
), RESET
,
3048 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3050 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
3052 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
3054 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, bool set
)
3057 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
3059 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
3061 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
3063 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
3067 if (IS_CHAN_HT40(chan
) && !ah
->config
.cwm_ignore_extcca
)
3068 macmode
= AR_2040_JOINED_RX_CLEAR
;
3072 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
3075 /* HW Generic timers configuration */
3077 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
3079 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3080 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3081 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3082 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3083 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3084 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3085 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3086 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3087 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
3088 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
3089 AR_NDP2_TIMER_MODE
, 0x0002},
3090 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
3091 AR_NDP2_TIMER_MODE
, 0x0004},
3092 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
3093 AR_NDP2_TIMER_MODE
, 0x0008},
3094 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
3095 AR_NDP2_TIMER_MODE
, 0x0010},
3096 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
3097 AR_NDP2_TIMER_MODE
, 0x0020},
3098 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
3099 AR_NDP2_TIMER_MODE
, 0x0040},
3100 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
3101 AR_NDP2_TIMER_MODE
, 0x0080}
3104 /* HW generic timer primitives */
3106 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
3108 return REG_READ(ah
, AR_TSF_L32
);
3110 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
3112 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw
*ah
)
3114 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3116 if (timer_table
->tsf2_enabled
) {
3117 REG_SET_BIT(ah
, AR_DIRECT_CONNECT
, AR_DC_AP_STA_EN
);
3118 REG_SET_BIT(ah
, AR_RESET_TSF
, AR_RESET_TSF2_ONCE
);
3122 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
3123 void (*trigger
)(void *),
3124 void (*overflow
)(void *),
3128 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3129 struct ath_gen_timer
*timer
;
3131 if ((timer_index
< AR_FIRST_NDP_TIMER
) ||
3132 (timer_index
>= ATH_MAX_GEN_TIMER
))
3135 if ((timer_index
> AR_FIRST_NDP_TIMER
) &&
3136 !AR_SREV_9300_20_OR_LATER(ah
))
3139 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
3143 /* allocate a hardware generic timer slot */
3144 timer_table
->timers
[timer_index
] = timer
;
3145 timer
->index
= timer_index
;
3146 timer
->trigger
= trigger
;
3147 timer
->overflow
= overflow
;
3150 if ((timer_index
> AR_FIRST_NDP_TIMER
) && !timer_table
->tsf2_enabled
) {
3151 timer_table
->tsf2_enabled
= true;
3152 ath9k_hw_gen_timer_start_tsf2(ah
);
3157 EXPORT_SYMBOL(ath_gen_timer_alloc
);
3159 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
3160 struct ath_gen_timer
*timer
,
3164 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3167 timer_table
->timer_mask
|= BIT(timer
->index
);
3170 * Program generic timer registers
3172 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
3174 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
3176 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3177 gen_tmr_configuration
[timer
->index
].mode_mask
);
3179 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3181 * Starting from AR9462, each generic timer can select which tsf
3182 * to use. But we still follow the old rule, 0 - 7 use tsf and
3185 if ((timer
->index
< AR_GEN_TIMER_BANK_1_LEN
))
3186 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3187 (1 << timer
->index
));
3189 REG_SET_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3190 (1 << timer
->index
));
3194 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3195 AR_IMR_S5_GENTIMER_TRIG
);
3196 if (timer
->overflow
)
3197 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3198 AR_IMR_S5_GENTIMER_THRESH
);
3200 REG_SET_BIT(ah
, AR_IMR_S5
, mask
);
3202 if ((ah
->imask
& ATH9K_INT_GENTIMER
) == 0) {
3203 ah
->imask
|= ATH9K_INT_GENTIMER
;
3204 ath9k_hw_set_interrupts(ah
);
3207 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
3209 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3211 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3213 /* Clear generic timer enable bits. */
3214 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3215 gen_tmr_configuration
[timer
->index
].mode_mask
);
3217 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3219 * Need to switch back to TSF if it was using TSF2.
3221 if ((timer
->index
>= AR_GEN_TIMER_BANK_1_LEN
)) {
3222 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3223 (1 << timer
->index
));
3227 /* Disable both trigger and thresh interrupt masks */
3228 REG_CLR_BIT(ah
, AR_IMR_S5
,
3229 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
3230 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
3232 timer_table
->timer_mask
&= ~BIT(timer
->index
);
3234 if (timer_table
->timer_mask
== 0) {
3235 ah
->imask
&= ~ATH9K_INT_GENTIMER
;
3236 ath9k_hw_set_interrupts(ah
);
3239 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
3241 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3243 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3245 /* free the hardware generic timer slot */
3246 timer_table
->timers
[timer
->index
] = NULL
;
3249 EXPORT_SYMBOL(ath_gen_timer_free
);
3252 * Generic Timer Interrupts handling
3254 void ath_gen_timer_isr(struct ath_hw
*ah
)
3256 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3257 struct ath_gen_timer
*timer
;
3258 unsigned long trigger_mask
, thresh_mask
;
3261 /* get hardware generic timer interrupt status */
3262 trigger_mask
= ah
->intr_gen_timer_trigger
;
3263 thresh_mask
= ah
->intr_gen_timer_thresh
;
3264 trigger_mask
&= timer_table
->timer_mask
;
3265 thresh_mask
&= timer_table
->timer_mask
;
3267 for_each_set_bit(index
, &thresh_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3268 timer
= timer_table
->timers
[index
];
3271 if (!timer
->overflow
)
3274 trigger_mask
&= ~BIT(index
);
3275 timer
->overflow(timer
->arg
);
3278 for_each_set_bit(index
, &trigger_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3279 timer
= timer_table
->timers
[index
];
3282 if (!timer
->trigger
)
3284 timer
->trigger(timer
->arg
);
3287 EXPORT_SYMBOL(ath_gen_timer_isr
);
3296 } ath_mac_bb_names
[] = {
3297 /* Devices with external radios */
3298 { AR_SREV_VERSION_5416_PCI
, "5416" },
3299 { AR_SREV_VERSION_5416_PCIE
, "5418" },
3300 { AR_SREV_VERSION_9100
, "9100" },
3301 { AR_SREV_VERSION_9160
, "9160" },
3302 /* Single-chip solutions */
3303 { AR_SREV_VERSION_9280
, "9280" },
3304 { AR_SREV_VERSION_9285
, "9285" },
3305 { AR_SREV_VERSION_9287
, "9287" },
3306 { AR_SREV_VERSION_9271
, "9271" },
3307 { AR_SREV_VERSION_9300
, "9300" },
3308 { AR_SREV_VERSION_9330
, "9330" },
3309 { AR_SREV_VERSION_9340
, "9340" },
3310 { AR_SREV_VERSION_9485
, "9485" },
3311 { AR_SREV_VERSION_9462
, "9462" },
3312 { AR_SREV_VERSION_9550
, "9550" },
3313 { AR_SREV_VERSION_9565
, "9565" },
3314 { AR_SREV_VERSION_9531
, "9531" },
3315 { AR_SREV_VERSION_9561
, "9561" },
3318 /* For devices with external radios */
3322 } ath_rf_names
[] = {
3324 { AR_RAD5133_SREV_MAJOR
, "5133" },
3325 { AR_RAD5122_SREV_MAJOR
, "5122" },
3326 { AR_RAD2133_SREV_MAJOR
, "2133" },
3327 { AR_RAD2122_SREV_MAJOR
, "2122" }
3331 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3333 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
3337 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
3338 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
3339 return ath_mac_bb_names
[i
].name
;
3347 * Return the RF name. "????" is returned if the RF is unknown.
3348 * Used for devices with external radios.
3350 static const char *ath9k_hw_rf_name(u16 rf_version
)
3354 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
3355 if (ath_rf_names
[i
].version
== rf_version
) {
3356 return ath_rf_names
[i
].name
;
3363 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
3367 /* chipsets >= AR9280 are single-chip */
3368 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3369 used
= scnprintf(hw_name
, len
,
3370 "Atheros AR%s Rev:%x",
3371 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3372 ah
->hw_version
.macRev
);
3375 used
= scnprintf(hw_name
, len
,
3376 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3377 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3378 ah
->hw_version
.macRev
,
3379 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
3380 & AR_RADIO_SREV_MAJOR
)),
3381 ah
->hw_version
.phyRev
);
3384 hw_name
[used
] = '\0';
3386 EXPORT_SYMBOL(ath9k_hw_name
);