2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/dma-mapping.h>
19 #include "ar9003_mac.h"
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
37 /* Shifts in ar5008_phy.c and ar9003_phy.c are equal for all revisions */
38 #define ATH9K_PWRTBL_11NA_OFDM_SHIFT 0
39 #define ATH9K_PWRTBL_11NG_OFDM_SHIFT 4
40 #define ATH9K_PWRTBL_11NA_HT_SHIFT 8
41 #define ATH9K_PWRTBL_11NG_HT_SHIFT 12
44 static u16 bits_per_symbol
[][2] = {
46 { 26, 54 }, /* 0: BPSK */
47 { 52, 108 }, /* 1: QPSK 1/2 */
48 { 78, 162 }, /* 2: QPSK 3/4 */
49 { 104, 216 }, /* 3: 16-QAM 1/2 */
50 { 156, 324 }, /* 4: 16-QAM 3/4 */
51 { 208, 432 }, /* 5: 64-QAM 2/3 */
52 { 234, 486 }, /* 6: 64-QAM 3/4 */
53 { 260, 540 }, /* 7: 64-QAM 5/6 */
56 static void ath_tx_send_normal(struct ath_softc
*sc
, struct ath_txq
*txq
,
57 struct ath_atx_tid
*tid
, struct sk_buff
*skb
);
58 static void ath_tx_complete(struct ath_softc
*sc
, struct sk_buff
*skb
,
59 int tx_flags
, struct ath_txq
*txq
,
60 struct ieee80211_sta
*sta
);
61 static void ath_tx_complete_buf(struct ath_softc
*sc
, struct ath_buf
*bf
,
62 struct ath_txq
*txq
, struct list_head
*bf_q
,
63 struct ieee80211_sta
*sta
,
64 struct ath_tx_status
*ts
, int txok
);
65 static void ath_tx_txqaddbuf(struct ath_softc
*sc
, struct ath_txq
*txq
,
66 struct list_head
*head
, bool internal
);
67 static void ath_tx_rc_status(struct ath_softc
*sc
, struct ath_buf
*bf
,
68 struct ath_tx_status
*ts
, int nframes
, int nbad
,
70 static void ath_tx_update_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
72 static struct ath_buf
*ath_tx_setup_buffer(struct ath_softc
*sc
,
74 struct ath_atx_tid
*tid
,
76 static int ath_tx_prepare(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
77 struct ath_tx_control
*txctl
);
86 /*********************/
87 /* Aggregation logic */
88 /*********************/
90 static void ath_tx_status(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
92 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
93 struct ieee80211_sta
*sta
= info
->status
.status_driver_data
[0];
95 if (info
->flags
& (IEEE80211_TX_CTL_REQ_TX_STATUS
|
96 IEEE80211_TX_STATUS_EOSP
)) {
97 ieee80211_tx_status_skb(hw
, skb
);
102 ieee80211_tx_status_noskb(hw
, sta
, info
);
107 void ath_txq_unlock_complete(struct ath_softc
*sc
, struct ath_txq
*txq
)
108 __releases(&txq
->axq_lock
)
110 struct ieee80211_hw
*hw
= sc
->hw
;
111 struct sk_buff_head q
;
114 __skb_queue_head_init(&q
);
115 skb_queue_splice_init(&txq
->complete_q
, &q
);
116 spin_unlock_bh(&txq
->axq_lock
);
118 while ((skb
= __skb_dequeue(&q
)))
119 ath_tx_status(hw
, skb
);
122 void ath_tx_queue_tid(struct ath_softc
*sc
, struct ath_atx_tid
*tid
)
124 struct ieee80211_txq
*queue
=
125 container_of((void *)tid
, struct ieee80211_txq
, drv_priv
);
127 ieee80211_schedule_txq(sc
->hw
, queue
);
130 void ath9k_wake_tx_queue(struct ieee80211_hw
*hw
, struct ieee80211_txq
*queue
)
132 struct ath_softc
*sc
= hw
->priv
;
133 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
134 struct ath_atx_tid
*tid
= (struct ath_atx_tid
*) queue
->drv_priv
;
135 struct ath_txq
*txq
= tid
->txq
;
137 ath_dbg(common
, QUEUE
, "Waking TX queue: %pM (%d)\n",
138 queue
->sta
? queue
->sta
->addr
: queue
->vif
->addr
,
141 ath_txq_lock(sc
, txq
);
142 ath_txq_schedule(sc
, txq
);
143 ath_txq_unlock(sc
, txq
);
146 static struct ath_frame_info
*get_frame_info(struct sk_buff
*skb
)
148 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
149 BUILD_BUG_ON(sizeof(struct ath_frame_info
) >
150 sizeof(tx_info
->status
.status_driver_data
));
151 return (struct ath_frame_info
*) &tx_info
->status
.status_driver_data
[0];
154 static void ath_send_bar(struct ath_atx_tid
*tid
, u16 seqno
)
159 ieee80211_send_bar(tid
->an
->vif
, tid
->an
->sta
->addr
, tid
->tidno
,
160 seqno
<< IEEE80211_SEQ_SEQ_SHIFT
);
163 static bool ath_merge_ratetbl(struct ieee80211_sta
*sta
, struct ath_buf
*bf
,
164 struct ieee80211_tx_info
*tx_info
)
166 struct ieee80211_sta_rates
*ratetbl
;
172 ratetbl
= rcu_dereference(sta
->rates
);
176 if (tx_info
->control
.rates
[0].idx
< 0 ||
177 tx_info
->control
.rates
[0].count
== 0)
181 bf
->rates
[0] = tx_info
->control
.rates
[0];
185 for ( ; i
< IEEE80211_TX_MAX_RATES
; i
++) {
186 bf
->rates
[i
].idx
= ratetbl
->rate
[i
].idx
;
187 bf
->rates
[i
].flags
= ratetbl
->rate
[i
].flags
;
188 if (tx_info
->control
.use_rts
)
189 bf
->rates
[i
].count
= ratetbl
->rate
[i
].count_rts
;
190 else if (tx_info
->control
.use_cts_prot
)
191 bf
->rates
[i
].count
= ratetbl
->rate
[i
].count_cts
;
193 bf
->rates
[i
].count
= ratetbl
->rate
[i
].count
;
199 static void ath_set_rates(struct ieee80211_vif
*vif
, struct ieee80211_sta
*sta
,
202 struct ieee80211_tx_info
*tx_info
;
204 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
206 if (!ath_merge_ratetbl(sta
, bf
, tx_info
))
207 ieee80211_get_tx_rates(vif
, sta
, bf
->bf_mpdu
, bf
->rates
,
208 ARRAY_SIZE(bf
->rates
));
211 static void ath_txq_skb_done(struct ath_softc
*sc
, struct ath_txq
*txq
,
214 struct ath_frame_info
*fi
= get_frame_info(skb
);
220 txq
= sc
->tx
.txq_map
[q
];
221 if (WARN_ON(--txq
->pending_frames
< 0))
222 txq
->pending_frames
= 0;
226 static struct ath_atx_tid
*
227 ath_get_skb_tid(struct ath_softc
*sc
, struct ath_node
*an
, struct sk_buff
*skb
)
229 u8 tidno
= skb
->priority
& IEEE80211_QOS_CTL_TID_MASK
;
230 return ATH_AN_2_TID(an
, tidno
);
234 ath_tid_pull(struct ath_atx_tid
*tid
, struct sk_buff
**skbuf
)
236 struct ieee80211_txq
*txq
= container_of((void*)tid
, struct ieee80211_txq
, drv_priv
);
237 struct ath_softc
*sc
= tid
->an
->sc
;
238 struct ieee80211_hw
*hw
= sc
->hw
;
239 struct ath_tx_control txctl
= {
244 struct ath_frame_info
*fi
;
247 skb
= ieee80211_tx_dequeue(hw
, txq
);
251 ret
= ath_tx_prepare(hw
, skb
, &txctl
);
253 ieee80211_free_txskb(hw
, skb
);
257 q
= skb_get_queue_mapping(skb
);
258 if (tid
->txq
== sc
->tx
.txq_map
[q
]) {
259 fi
= get_frame_info(skb
);
261 ++tid
->txq
->pending_frames
;
268 static int ath_tid_dequeue(struct ath_atx_tid
*tid
,
269 struct sk_buff
**skb
)
272 *skb
= __skb_dequeue(&tid
->retry_q
);
274 ret
= ath_tid_pull(tid
, skb
);
279 static void ath_tx_flush_tid(struct ath_softc
*sc
, struct ath_atx_tid
*tid
)
281 struct ath_txq
*txq
= tid
->txq
;
284 struct list_head bf_head
;
285 struct ath_tx_status ts
;
286 struct ath_frame_info
*fi
;
287 bool sendbar
= false;
289 INIT_LIST_HEAD(&bf_head
);
291 memset(&ts
, 0, sizeof(ts
));
293 while ((skb
= __skb_dequeue(&tid
->retry_q
))) {
294 fi
= get_frame_info(skb
);
297 ath_txq_skb_done(sc
, txq
, skb
);
298 ieee80211_free_txskb(sc
->hw
, skb
);
302 if (fi
->baw_tracked
) {
303 ath_tx_update_baw(sc
, tid
, bf
);
307 list_add_tail(&bf
->list
, &bf_head
);
308 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, NULL
, &ts
, 0);
312 ath_txq_unlock(sc
, txq
);
313 ath_send_bar(tid
, tid
->seq_start
);
314 ath_txq_lock(sc
, txq
);
318 static void ath_tx_update_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
321 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
322 u16 seqno
= bf
->bf_state
.seqno
;
325 if (!fi
->baw_tracked
)
328 index
= ATH_BA_INDEX(tid
->seq_start
, seqno
);
329 cindex
= (tid
->baw_head
+ index
) & (ATH_TID_MAX_BUFS
- 1);
331 __clear_bit(cindex
, tid
->tx_buf
);
333 while (tid
->baw_head
!= tid
->baw_tail
&& !test_bit(tid
->baw_head
, tid
->tx_buf
)) {
334 INCR(tid
->seq_start
, IEEE80211_SEQ_MAX
);
335 INCR(tid
->baw_head
, ATH_TID_MAX_BUFS
);
336 if (tid
->bar_index
>= 0)
341 static void ath_tx_addto_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
344 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
345 u16 seqno
= bf
->bf_state
.seqno
;
351 index
= ATH_BA_INDEX(tid
->seq_start
, seqno
);
352 cindex
= (tid
->baw_head
+ index
) & (ATH_TID_MAX_BUFS
- 1);
353 __set_bit(cindex
, tid
->tx_buf
);
356 if (index
>= ((tid
->baw_tail
- tid
->baw_head
) &
357 (ATH_TID_MAX_BUFS
- 1))) {
358 tid
->baw_tail
= cindex
;
359 INCR(tid
->baw_tail
, ATH_TID_MAX_BUFS
);
363 static void ath_tid_drain(struct ath_softc
*sc
, struct ath_txq
*txq
,
364 struct ath_atx_tid
*tid
)
369 struct list_head bf_head
;
370 struct ath_tx_status ts
;
371 struct ath_frame_info
*fi
;
373 memset(&ts
, 0, sizeof(ts
));
374 INIT_LIST_HEAD(&bf_head
);
376 while (ath_tid_dequeue(tid
, &skb
) == 0) {
377 fi
= get_frame_info(skb
);
381 ath_tx_complete(sc
, skb
, ATH_TX_ERROR
, txq
, NULL
);
385 list_add_tail(&bf
->list
, &bf_head
);
386 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, NULL
, &ts
, 0);
390 static void ath_tx_set_retry(struct ath_softc
*sc
, struct ath_txq
*txq
,
391 struct sk_buff
*skb
, int count
)
393 struct ath_frame_info
*fi
= get_frame_info(skb
);
394 struct ath_buf
*bf
= fi
->bf
;
395 struct ieee80211_hdr
*hdr
;
396 int prev
= fi
->retries
;
398 TX_STAT_INC(sc
, txq
->axq_qnum
, a_retries
);
399 fi
->retries
+= count
;
404 hdr
= (struct ieee80211_hdr
*)skb
->data
;
405 hdr
->frame_control
|= cpu_to_le16(IEEE80211_FCTL_RETRY
);
406 dma_sync_single_for_device(sc
->dev
, bf
->bf_buf_addr
,
407 sizeof(*hdr
), DMA_TO_DEVICE
);
410 static struct ath_buf
*ath_tx_get_buffer(struct ath_softc
*sc
)
412 struct ath_buf
*bf
= NULL
;
414 spin_lock_bh(&sc
->tx
.txbuflock
);
416 if (unlikely(list_empty(&sc
->tx
.txbuf
))) {
417 spin_unlock_bh(&sc
->tx
.txbuflock
);
421 bf
= list_first_entry(&sc
->tx
.txbuf
, struct ath_buf
, list
);
424 spin_unlock_bh(&sc
->tx
.txbuflock
);
429 static void ath_tx_return_buffer(struct ath_softc
*sc
, struct ath_buf
*bf
)
431 spin_lock_bh(&sc
->tx
.txbuflock
);
432 list_add_tail(&bf
->list
, &sc
->tx
.txbuf
);
433 spin_unlock_bh(&sc
->tx
.txbuflock
);
436 static struct ath_buf
* ath_clone_txbuf(struct ath_softc
*sc
, struct ath_buf
*bf
)
440 tbf
= ath_tx_get_buffer(sc
);
444 ATH_TXBUF_RESET(tbf
);
446 tbf
->bf_mpdu
= bf
->bf_mpdu
;
447 tbf
->bf_buf_addr
= bf
->bf_buf_addr
;
448 memcpy(tbf
->bf_desc
, bf
->bf_desc
, sc
->sc_ah
->caps
.tx_desc_len
);
449 tbf
->bf_state
= bf
->bf_state
;
450 tbf
->bf_state
.stale
= false;
455 static void ath_tx_count_frames(struct ath_softc
*sc
, struct ath_buf
*bf
,
456 struct ath_tx_status
*ts
, int txok
,
457 int *nframes
, int *nbad
)
460 u32 ba
[WME_BA_BMP_SIZE
>> 5];
467 isaggr
= bf_isaggr(bf
);
468 memset(ba
, 0, WME_BA_BMP_SIZE
>> 3);
471 seq_st
= ts
->ts_seqnum
;
472 memcpy(ba
, &ts
->ba
, WME_BA_BMP_SIZE
>> 3);
476 ba_index
= ATH_BA_INDEX(seq_st
, bf
->bf_state
.seqno
);
479 if (!txok
|| (isaggr
&& !ATH_BA_ISSET(ba
, ba_index
)))
487 static void ath_tx_complete_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
488 struct ath_buf
*bf
, struct list_head
*bf_q
,
489 struct ieee80211_sta
*sta
,
490 struct ath_atx_tid
*tid
,
491 struct ath_tx_status
*ts
, int txok
)
493 struct ath_node
*an
= NULL
;
495 struct ieee80211_tx_info
*tx_info
;
496 struct ath_buf
*bf_next
, *bf_last
= bf
->bf_lastbf
;
497 struct list_head bf_head
;
498 struct sk_buff_head bf_pending
;
499 u16 seq_st
= 0, acked_cnt
= 0, txfail_cnt
= 0, seq_first
;
500 u32 ba
[WME_BA_BMP_SIZE
>> 5];
501 int isaggr
, txfail
, txpending
, sendbar
= 0, needreset
= 0, nbad
= 0;
502 bool rc_update
= true, isba
;
503 struct ieee80211_tx_rate rates
[4];
504 struct ath_frame_info
*fi
;
506 bool flush
= !!(ts
->ts_status
& ATH9K_TX_FLUSH
);
511 tx_info
= IEEE80211_SKB_CB(skb
);
513 memcpy(rates
, bf
->rates
, sizeof(rates
));
515 retries
= ts
->ts_longretry
+ 1;
516 for (i
= 0; i
< ts
->ts_rateindex
; i
++)
517 retries
+= rates
[i
].count
;
520 INIT_LIST_HEAD(&bf_head
);
522 bf_next
= bf
->bf_next
;
524 if (!bf
->bf_state
.stale
|| bf_next
!= NULL
)
525 list_move_tail(&bf
->list
, &bf_head
);
527 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, NULL
, ts
, 0);
534 an
= (struct ath_node
*)sta
->drv_priv
;
535 seq_first
= tid
->seq_start
;
536 isba
= ts
->ts_flags
& ATH9K_TX_BA
;
539 * The hardware occasionally sends a tx status for the wrong TID.
540 * In this case, the BA status cannot be considered valid and all
541 * subframes need to be retransmitted
543 * Only BlockAcks have a TID and therefore normal Acks cannot be
546 if (isba
&& tid
->tidno
!= ts
->tid
)
549 isaggr
= bf_isaggr(bf
);
550 memset(ba
, 0, WME_BA_BMP_SIZE
>> 3);
552 if (isaggr
&& txok
) {
553 if (ts
->ts_flags
& ATH9K_TX_BA
) {
554 seq_st
= ts
->ts_seqnum
;
555 memcpy(ba
, &ts
->ba
, WME_BA_BMP_SIZE
>> 3);
558 * AR5416 can become deaf/mute when BA
559 * issue happens. Chip needs to be reset.
560 * But AP code may have sychronization issues
561 * when perform internal reset in this routine.
562 * Only enable reset in STA mode for now.
564 if (sc
->sc_ah
->opmode
== NL80211_IFTYPE_STATION
)
569 __skb_queue_head_init(&bf_pending
);
571 ath_tx_count_frames(sc
, bf
, ts
, txok
, &nframes
, &nbad
);
573 u16 seqno
= bf
->bf_state
.seqno
;
575 txfail
= txpending
= sendbar
= 0;
576 bf_next
= bf
->bf_next
;
579 tx_info
= IEEE80211_SKB_CB(skb
);
580 fi
= get_frame_info(skb
);
582 if (!BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, seqno
) ||
585 * Outside of the current BlockAck window,
586 * maybe part of a previous session
589 } else if (ATH_BA_ISSET(ba
, ATH_BA_INDEX(seq_st
, seqno
))) {
590 /* transmit completion, subframe is
591 * acked by block ack */
593 } else if (!isaggr
&& txok
) {
594 /* transmit completion */
598 } else if (fi
->retries
< ATH_MAX_SW_RETRIES
) {
599 if (txok
|| !an
->sleeping
)
600 ath_tx_set_retry(sc
, txq
, bf
->bf_mpdu
,
607 bar_index
= max_t(int, bar_index
,
608 ATH_BA_INDEX(seq_first
, seqno
));
612 * Make sure the last desc is reclaimed if it
613 * not a holding desc.
615 INIT_LIST_HEAD(&bf_head
);
616 if (bf_next
!= NULL
|| !bf_last
->bf_state
.stale
)
617 list_move_tail(&bf
->list
, &bf_head
);
621 * complete the acked-ones/xretried ones; update
624 ath_tx_update_baw(sc
, tid
, bf
);
626 if (rc_update
&& (acked_cnt
== 1 || txfail_cnt
== 1)) {
627 memcpy(tx_info
->control
.rates
, rates
, sizeof(rates
));
628 ath_tx_rc_status(sc
, bf
, ts
, nframes
, nbad
, txok
);
630 if (bf
== bf
->bf_lastbf
)
631 ath_dynack_sample_tx_ts(sc
->sc_ah
,
636 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, sta
, ts
,
639 if (tx_info
->flags
& IEEE80211_TX_STATUS_EOSP
) {
640 tx_info
->flags
&= ~IEEE80211_TX_STATUS_EOSP
;
641 ieee80211_sta_eosp(sta
);
643 /* retry the un-acked ones */
644 if (bf
->bf_next
== NULL
&& bf_last
->bf_state
.stale
) {
647 tbf
= ath_clone_txbuf(sc
, bf_last
);
649 * Update tx baw and complete the
650 * frame with failed status if we
654 ath_tx_update_baw(sc
, tid
, bf
);
656 ath_tx_complete_buf(sc
, bf
, txq
,
659 bar_index
= max_t(int, bar_index
,
660 ATH_BA_INDEX(seq_first
, seqno
));
668 * Put this buffer to the temporary pending
669 * queue to retain ordering
671 __skb_queue_tail(&bf_pending
, skb
);
677 /* prepend un-acked frames to the beginning of the pending frame queue */
678 if (!skb_queue_empty(&bf_pending
)) {
680 ieee80211_sta_set_buffered(sta
, tid
->tidno
, true);
682 skb_queue_splice_tail(&bf_pending
, &tid
->retry_q
);
684 ath_tx_queue_tid(sc
, tid
);
685 if (ts
->ts_status
& (ATH9K_TXERR_FILT
| ATH9K_TXERR_XRETRY
))
686 tid
->clear_ps_filter
= true;
690 if (bar_index
>= 0) {
691 u16 bar_seq
= ATH_BA_INDEX2SEQ(seq_first
, bar_index
);
693 if (BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, bar_seq
))
694 tid
->bar_index
= ATH_BA_INDEX(tid
->seq_start
, bar_seq
);
696 ath_txq_unlock(sc
, txq
);
697 ath_send_bar(tid
, ATH_BA_INDEX2SEQ(seq_first
, bar_index
+ 1));
698 ath_txq_lock(sc
, txq
);
702 ath9k_queue_reset(sc
, RESET_TYPE_TX_ERROR
);
705 static bool bf_is_ampdu_not_probing(struct ath_buf
*bf
)
707 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
708 return bf_isampdu(bf
) && !(info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
);
711 static void ath_tx_count_airtime(struct ath_softc
*sc
,
712 struct ieee80211_sta
*sta
,
714 struct ath_tx_status
*ts
,
720 airtime
+= ts
->duration
* (ts
->ts_longretry
+ 1);
721 for(i
= 0; i
< ts
->ts_rateindex
; i
++) {
722 int rate_dur
= ath9k_hw_get_duration(sc
->sc_ah
, bf
->bf_desc
, i
);
723 airtime
+= rate_dur
* bf
->rates
[i
].count
;
726 ieee80211_sta_register_airtime(sta
, tid
, airtime
, 0);
729 static void ath_tx_process_buffer(struct ath_softc
*sc
, struct ath_txq
*txq
,
730 struct ath_tx_status
*ts
, struct ath_buf
*bf
,
731 struct list_head
*bf_head
)
733 struct ieee80211_hw
*hw
= sc
->hw
;
734 struct ieee80211_tx_info
*info
;
735 struct ieee80211_sta
*sta
;
736 struct ieee80211_hdr
*hdr
;
737 struct ath_atx_tid
*tid
= NULL
;
740 txok
= !(ts
->ts_status
& ATH9K_TXERR_MASK
);
741 flush
= !!(ts
->ts_status
& ATH9K_TX_FLUSH
);
742 txq
->axq_tx_inprogress
= false;
745 if (bf_is_ampdu_not_probing(bf
))
746 txq
->axq_ampdu_depth
--;
748 ts
->duration
= ath9k_hw_get_duration(sc
->sc_ah
, bf
->bf_desc
,
751 hdr
= (struct ieee80211_hdr
*) bf
->bf_mpdu
->data
;
752 sta
= ieee80211_find_sta_by_ifaddr(hw
, hdr
->addr1
, hdr
->addr2
);
754 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
755 tid
= ath_get_skb_tid(sc
, an
, bf
->bf_mpdu
);
756 ath_tx_count_airtime(sc
, sta
, bf
, ts
, tid
->tidno
);
757 if (ts
->ts_status
& (ATH9K_TXERR_FILT
| ATH9K_TXERR_XRETRY
))
758 tid
->clear_ps_filter
= true;
761 if (!bf_isampdu(bf
)) {
763 info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
764 memcpy(info
->control
.rates
, bf
->rates
,
765 sizeof(info
->control
.rates
));
766 ath_tx_rc_status(sc
, bf
, ts
, 1, txok
? 0 : 1, txok
);
767 ath_dynack_sample_tx_ts(sc
->sc_ah
, bf
->bf_mpdu
, ts
,
770 ath_tx_complete_buf(sc
, bf
, txq
, bf_head
, sta
, ts
, txok
);
772 ath_tx_complete_aggr(sc
, txq
, bf
, bf_head
, sta
, tid
, ts
, txok
);
775 ath_txq_schedule(sc
, txq
);
778 static bool ath_lookup_legacy(struct ath_buf
*bf
)
781 struct ieee80211_tx_info
*tx_info
;
782 struct ieee80211_tx_rate
*rates
;
786 tx_info
= IEEE80211_SKB_CB(skb
);
787 rates
= tx_info
->control
.rates
;
789 for (i
= 0; i
< 4; i
++) {
790 if (!rates
[i
].count
|| rates
[i
].idx
< 0)
793 if (!(rates
[i
].flags
& IEEE80211_TX_RC_MCS
))
800 static u32
ath_lookup_rate(struct ath_softc
*sc
, struct ath_buf
*bf
,
801 struct ath_atx_tid
*tid
)
804 struct ieee80211_tx_info
*tx_info
;
805 struct ieee80211_tx_rate
*rates
;
806 u32 max_4ms_framelen
, frmlen
;
807 u16 aggr_limit
, bt_aggr_limit
, legacy
= 0;
808 int q
= tid
->txq
->mac80211_qnum
;
812 tx_info
= IEEE80211_SKB_CB(skb
);
816 * Find the lowest frame length among the rate series that will have a
817 * 4ms (or TXOP limited) transmit duration.
819 max_4ms_framelen
= ATH_AMPDU_LIMIT_MAX
;
821 for (i
= 0; i
< 4; i
++) {
827 if (!(rates
[i
].flags
& IEEE80211_TX_RC_MCS
)) {
832 if (rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
837 if (rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
)
840 frmlen
= sc
->tx
.max_aggr_framelen
[q
][modeidx
][rates
[i
].idx
];
841 max_4ms_framelen
= min(max_4ms_framelen
, frmlen
);
845 * limit aggregate size by the minimum rate if rate selected is
846 * not a probe rate, if rate selected is a probe rate then
847 * avoid aggregation of this packet.
849 if (tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
|| legacy
)
852 aggr_limit
= min(max_4ms_framelen
, (u32
)ATH_AMPDU_LIMIT_MAX
);
855 * Override the default aggregation limit for BTCOEX.
857 bt_aggr_limit
= ath9k_btcoex_aggr_limit(sc
, max_4ms_framelen
);
859 aggr_limit
= bt_aggr_limit
;
861 if (tid
->an
->maxampdu
)
862 aggr_limit
= min(aggr_limit
, tid
->an
->maxampdu
);
868 * Returns the number of delimiters to be added to
869 * meet the minimum required mpdudensity.
871 static int ath_compute_num_delims(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
872 struct ath_buf
*bf
, u16 frmlen
,
875 #define FIRST_DESC_NDELIMS 60
876 u32 nsymbits
, nsymbols
;
879 int width
, streams
, half_gi
, ndelim
, mindelim
;
880 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
882 /* Select standard number of delimiters based on frame length alone */
883 ndelim
= ATH_AGGR_GET_NDELIM(frmlen
);
886 * If encryption enabled, hardware requires some more padding between
888 * TODO - this could be improved to be dependent on the rate.
889 * The hardware can keep up at lower rates, but not higher rates
891 if ((fi
->keyix
!= ATH9K_TXKEYIX_INVALID
) &&
892 !(sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
))
893 ndelim
+= ATH_AGGR_ENCRYPTDELIM
;
896 * Add delimiter when using RTS/CTS with aggregation
897 * and non enterprise AR9003 card
899 if (first_subfrm
&& !AR_SREV_9580_10_OR_LATER(sc
->sc_ah
) &&
900 (sc
->sc_ah
->ent_mode
& AR_ENT_OTP_MIN_PKT_SIZE_DISABLE
))
901 ndelim
= max(ndelim
, FIRST_DESC_NDELIMS
);
904 * Convert desired mpdu density from microeconds to bytes based
905 * on highest rate in rate series (i.e. first rate) to determine
906 * required minimum length for subframe. Take into account
907 * whether high rate is 20 or 40Mhz and half or full GI.
909 * If there is no mpdu density restriction, no further calculation
913 if (tid
->an
->mpdudensity
== 0)
916 rix
= bf
->rates
[0].idx
;
917 flags
= bf
->rates
[0].flags
;
918 width
= (flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
) ? 1 : 0;
919 half_gi
= (flags
& IEEE80211_TX_RC_SHORT_GI
) ? 1 : 0;
922 nsymbols
= NUM_SYMBOLS_PER_USEC_HALFGI(tid
->an
->mpdudensity
);
924 nsymbols
= NUM_SYMBOLS_PER_USEC(tid
->an
->mpdudensity
);
929 streams
= HT_RC_2_STREAMS(rix
);
930 nsymbits
= bits_per_symbol
[rix
% 8][width
] * streams
;
931 minlen
= (nsymbols
* nsymbits
) / BITS_PER_BYTE
;
933 if (frmlen
< minlen
) {
934 mindelim
= (minlen
- frmlen
) / ATH_AGGR_DELIM_SZ
;
935 ndelim
= max(mindelim
, ndelim
);
942 ath_tx_get_tid_subframe(struct ath_softc
*sc
, struct ath_txq
*txq
,
943 struct ath_atx_tid
*tid
, struct ath_buf
**buf
)
945 struct ieee80211_tx_info
*tx_info
;
946 struct ath_frame_info
*fi
;
948 struct sk_buff
*skb
, *first_skb
= NULL
;
953 ret
= ath_tid_dequeue(tid
, &skb
);
957 fi
= get_frame_info(skb
);
960 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
962 bf
->bf_state
.stale
= false;
965 ath_txq_skb_done(sc
, txq
, skb
);
966 ieee80211_free_txskb(sc
->hw
, skb
);
973 tx_info
= IEEE80211_SKB_CB(skb
);
974 tx_info
->flags
&= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT
|
975 IEEE80211_TX_STATUS_EOSP
);
978 * No aggregation session is running, but there may be frames
979 * from a previous session or a failed attempt in the queue.
980 * Send them out as normal data frames
983 tx_info
->flags
&= ~IEEE80211_TX_CTL_AMPDU
;
985 if (!(tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
)) {
986 bf
->bf_state
.bf_type
= 0;
990 bf
->bf_state
.bf_type
= BUF_AMPDU
| BUF_AGGR
;
991 seqno
= bf
->bf_state
.seqno
;
993 /* do not step over block-ack window */
994 if (!BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, seqno
)) {
995 __skb_queue_tail(&tid
->retry_q
, skb
);
997 /* If there are other skbs in the retry q, they are
998 * probably within the BAW, so loop immediately to get
999 * one of them. Otherwise the queue can get stuck. */
1000 if (!skb_queue_is_first(&tid
->retry_q
, skb
) &&
1001 !WARN_ON(skb
== first_skb
)) {
1002 if(!first_skb
) /* infinite loop prevention */
1006 return -EINPROGRESS
;
1009 if (tid
->bar_index
> ATH_BA_INDEX(tid
->seq_start
, seqno
)) {
1010 struct ath_tx_status ts
= {};
1011 struct list_head bf_head
;
1013 INIT_LIST_HEAD(&bf_head
);
1014 list_add(&bf
->list
, &bf_head
);
1015 ath_tx_update_baw(sc
, tid
, bf
);
1016 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, NULL
, &ts
, 0);
1021 ath_tx_addto_baw(sc
, tid
, bf
);
1031 ath_tx_form_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
1032 struct ath_atx_tid
*tid
, struct list_head
*bf_q
,
1033 struct ath_buf
*bf_first
)
1035 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1036 struct ath_buf
*bf
= bf_first
, *bf_prev
= NULL
;
1037 int nframes
= 0, ndelim
, ret
;
1038 u16 aggr_limit
= 0, al
= 0, bpad
= 0,
1039 al_delta
, h_baw
= tid
->baw_size
/ 2;
1040 struct ieee80211_tx_info
*tx_info
;
1041 struct ath_frame_info
*fi
;
1042 struct sk_buff
*skb
;
1046 aggr_limit
= ath_lookup_rate(sc
, bf
, tid
);
1051 fi
= get_frame_info(skb
);
1053 /* do not exceed aggregation limit */
1054 al_delta
= ATH_AGGR_DELIM_SZ
+ fi
->framelen
;
1056 if (aggr_limit
< al
+ bpad
+ al_delta
||
1057 ath_lookup_legacy(bf
) || nframes
>= h_baw
)
1060 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1061 if ((tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
) ||
1062 !(tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
))
1066 /* add padding for previous frame to aggregation length */
1067 al
+= bpad
+ al_delta
;
1070 * Get the delimiters needed to meet the MPDU
1071 * density for this node.
1073 ndelim
= ath_compute_num_delims(sc
, tid
, bf_first
, fi
->framelen
,
1075 bpad
= PADBYTES(al_delta
) + (ndelim
<< 2);
1080 /* link buffers of this frame to the aggregate */
1081 bf
->bf_state
.ndelim
= ndelim
;
1083 list_add_tail(&bf
->list
, bf_q
);
1085 bf_prev
->bf_next
= bf
;
1089 ret
= ath_tx_get_tid_subframe(sc
, txq
, tid
, &bf
);
1095 __skb_queue_tail(&tid
->retry_q
, bf
->bf_mpdu
);
1098 bf
->bf_lastbf
= bf_prev
;
1100 if (bf
== bf_prev
) {
1101 al
= get_frame_info(bf
->bf_mpdu
)->framelen
;
1102 bf
->bf_state
.bf_type
= BUF_AMPDU
;
1104 TX_STAT_INC(sc
, txq
->axq_qnum
, a_aggr
);
1113 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1114 * width - 0 for 20 MHz, 1 for 40 MHz
1115 * half_gi - to use 4us v/s 3.6 us for symbol time
1117 u32
ath_pkt_duration(struct ath_softc
*sc
, u8 rix
, int pktlen
,
1118 int width
, int half_gi
, bool shortPreamble
)
1120 u32 nbits
, nsymbits
, duration
, nsymbols
;
1123 /* find number of symbols: PLCP + data */
1124 streams
= HT_RC_2_STREAMS(rix
);
1125 nbits
= (pktlen
<< 3) + OFDM_PLCP_BITS
;
1126 nsymbits
= bits_per_symbol
[rix
% 8][width
] * streams
;
1127 nsymbols
= (nbits
+ nsymbits
- 1) / nsymbits
;
1130 duration
= SYMBOL_TIME(nsymbols
);
1132 duration
= SYMBOL_TIME_HALFGI(nsymbols
);
1134 /* addup duration for legacy/ht training and signal fields */
1135 duration
+= L_STF
+ L_LTF
+ L_SIG
+ HT_SIG
+ HT_STF
+ HT_LTF(streams
);
1140 static int ath_max_framelen(int usec
, int mcs
, bool ht40
, bool sgi
)
1142 int streams
= HT_RC_2_STREAMS(mcs
);
1146 usec
-= L_STF
+ L_LTF
+ L_SIG
+ HT_SIG
+ HT_STF
+ HT_LTF(streams
);
1147 symbols
= sgi
? TIME_SYMBOLS_HALFGI(usec
) : TIME_SYMBOLS(usec
);
1148 bits
= symbols
* bits_per_symbol
[mcs
% 8][ht40
] * streams
;
1149 bits
-= OFDM_PLCP_BITS
;
1157 void ath_update_max_aggr_framelen(struct ath_softc
*sc
, int queue
, int txop
)
1159 u16
*cur_ht20
, *cur_ht20_sgi
, *cur_ht40
, *cur_ht40_sgi
;
1162 /* 4ms is the default (and maximum) duration */
1163 if (!txop
|| txop
> 4096)
1166 cur_ht20
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT20
];
1167 cur_ht20_sgi
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT20_SGI
];
1168 cur_ht40
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT40
];
1169 cur_ht40_sgi
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT40_SGI
];
1170 for (mcs
= 0; mcs
< 32; mcs
++) {
1171 cur_ht20
[mcs
] = ath_max_framelen(txop
, mcs
, false, false);
1172 cur_ht20_sgi
[mcs
] = ath_max_framelen(txop
, mcs
, false, true);
1173 cur_ht40
[mcs
] = ath_max_framelen(txop
, mcs
, true, false);
1174 cur_ht40_sgi
[mcs
] = ath_max_framelen(txop
, mcs
, true, true);
1178 static u8
ath_get_rate_txpower(struct ath_softc
*sc
, struct ath_buf
*bf
,
1179 u8 rateidx
, bool is_40
, bool is_cck
, bool is_mcs
)
1182 struct sk_buff
*skb
;
1183 struct ath_frame_info
*fi
;
1184 struct ieee80211_tx_info
*info
;
1185 struct ath_hw
*ah
= sc
->sc_ah
;
1186 bool is_2ghz
, is_5ghz
, use_stbc
;
1188 if (sc
->tx99_state
|| !ah
->tpc_enabled
)
1189 return MAX_RATE_POWER
;
1192 fi
= get_frame_info(skb
);
1193 info
= IEEE80211_SKB_CB(skb
);
1195 is_2ghz
= info
->band
== NL80211_BAND_2GHZ
;
1196 is_5ghz
= info
->band
== NL80211_BAND_5GHZ
;
1197 use_stbc
= is_mcs
&& rateidx
< 8 && (info
->flags
&
1198 IEEE80211_TX_CTL_STBC
);
1201 rateidx
+= is_5ghz
? ATH9K_PWRTBL_11NA_HT_SHIFT
1202 : ATH9K_PWRTBL_11NG_HT_SHIFT
;
1203 else if (is_2ghz
&& !is_cck
)
1204 rateidx
+= ATH9K_PWRTBL_11NG_OFDM_SHIFT
;
1206 rateidx
+= ATH9K_PWRTBL_11NA_OFDM_SHIFT
;
1208 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
1209 int txpower
= fi
->tx_power
;
1213 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
1214 u16 eeprom_rev
= ah
->eep_ops
->get_eeprom_rev(ah
);
1216 if (eeprom_rev
>= AR5416_EEP_MINOR_VER_2
) {
1217 struct modal_eep_header
*pmodal
;
1219 pmodal
= &eep
->modalHeader
[is_2ghz
];
1220 power_ht40delta
= pmodal
->ht40PowerIncForPdadc
;
1222 power_ht40delta
= 2;
1224 txpower
+= power_ht40delta
;
1227 if (AR_SREV_9287(ah
) || AR_SREV_9285(ah
) ||
1229 txpower
-= 2 * AR9287_PWR_TABLE_OFFSET_DB
;
1230 } else if (AR_SREV_9280_20_OR_LATER(ah
)) {
1233 power_offset
= ah
->eep_ops
->get_eeprom(ah
,
1234 EEP_PWR_TABLE_OFFSET
);
1235 txpower
-= 2 * power_offset
;
1238 if (OLC_FOR_AR9280_20_LATER(ah
) && is_cck
)
1241 txpower
= max(txpower
, 0);
1242 max_power
= min_t(u8
, ah
->tx_power
[rateidx
], txpower
);
1244 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1245 * max_power is set to 0, frames are transmitted at max
1248 if (!max_power
&& !AR_SREV_9280_20_OR_LATER(ah
))
1250 } else if (!bf
->bf_state
.bfs_paprd
) {
1252 max_power
= min_t(u8
, ah
->tx_power_stbc
[rateidx
],
1255 max_power
= min_t(u8
, ah
->tx_power
[rateidx
],
1258 max_power
= ah
->paprd_training_power
;
1264 static void ath_buf_set_rate(struct ath_softc
*sc
, struct ath_buf
*bf
,
1265 struct ath_tx_info
*info
, int len
, bool rts
)
1267 struct ath_hw
*ah
= sc
->sc_ah
;
1268 struct ath_common
*common
= ath9k_hw_common(ah
);
1269 struct sk_buff
*skb
;
1270 struct ieee80211_tx_info
*tx_info
;
1271 struct ieee80211_tx_rate
*rates
;
1272 const struct ieee80211_rate
*rate
;
1273 struct ieee80211_hdr
*hdr
;
1274 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
1275 u32 rts_thresh
= sc
->hw
->wiphy
->rts_threshold
;
1280 tx_info
= IEEE80211_SKB_CB(skb
);
1282 hdr
= (struct ieee80211_hdr
*)skb
->data
;
1284 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1285 info
->dur_update
= !ieee80211_is_pspoll(hdr
->frame_control
);
1286 info
->rtscts_rate
= fi
->rtscts_rate
;
1288 for (i
= 0; i
< ARRAY_SIZE(bf
->rates
); i
++) {
1289 bool is_40
, is_sgi
, is_sp
, is_cck
;
1292 if (!rates
[i
].count
|| (rates
[i
].idx
< 0))
1296 info
->rates
[i
].Tries
= rates
[i
].count
;
1299 * Handle RTS threshold for unaggregated HT frames.
1301 if (bf_isampdu(bf
) && !bf_isaggr(bf
) &&
1302 (rates
[i
].flags
& IEEE80211_TX_RC_MCS
) &&
1303 unlikely(rts_thresh
!= (u32
) -1)) {
1304 if (!rts_thresh
|| (len
> rts_thresh
))
1308 if (rts
|| rates
[i
].flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
1309 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_RTS_CTS
;
1310 info
->flags
|= ATH9K_TXDESC_RTSENA
;
1311 } else if (rates
[i
].flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
1312 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_RTS_CTS
;
1313 info
->flags
|= ATH9K_TXDESC_CTSENA
;
1316 if (rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
1317 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_2040
;
1318 if (rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
)
1319 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_HALFGI
;
1321 is_sgi
= !!(rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
);
1322 is_40
= !!(rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
);
1323 is_sp
= !!(rates
[i
].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
);
1325 if (rates
[i
].flags
& IEEE80211_TX_RC_MCS
) {
1327 info
->rates
[i
].Rate
= rix
| 0x80;
1328 info
->rates
[i
].ChSel
= ath_txchainmask_reduction(sc
,
1329 ah
->txchainmask
, info
->rates
[i
].Rate
);
1330 info
->rates
[i
].PktDuration
= ath_pkt_duration(sc
, rix
, len
,
1331 is_40
, is_sgi
, is_sp
);
1332 if (rix
< 8 && (tx_info
->flags
& IEEE80211_TX_CTL_STBC
))
1333 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_STBC
;
1334 if (rix
>= 8 && fi
->dyn_smps
) {
1335 info
->rates
[i
].RateFlags
|=
1336 ATH9K_RATESERIES_RTS_CTS
;
1337 info
->flags
|= ATH9K_TXDESC_CTSENA
;
1340 info
->txpower
[i
] = ath_get_rate_txpower(sc
, bf
, rix
,
1341 is_40
, false, true);
1346 rate
= &common
->sbands
[tx_info
->band
].bitrates
[rates
[i
].idx
];
1347 if ((tx_info
->band
== NL80211_BAND_2GHZ
) &&
1348 !(rate
->flags
& IEEE80211_RATE_ERP_G
))
1349 phy
= WLAN_RC_PHY_CCK
;
1351 phy
= WLAN_RC_PHY_OFDM
;
1353 info
->rates
[i
].Rate
= rate
->hw_value
;
1354 if (rate
->hw_value_short
) {
1355 if (rates
[i
].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
1356 info
->rates
[i
].Rate
|= rate
->hw_value_short
;
1361 if (bf
->bf_state
.bfs_paprd
)
1362 info
->rates
[i
].ChSel
= ah
->txchainmask
;
1364 info
->rates
[i
].ChSel
= ath_txchainmask_reduction(sc
,
1365 ah
->txchainmask
, info
->rates
[i
].Rate
);
1367 info
->rates
[i
].PktDuration
= ath9k_hw_computetxtime(sc
->sc_ah
,
1368 phy
, rate
->bitrate
* 100, len
, rix
, is_sp
);
1370 is_cck
= IS_CCK_RATE(info
->rates
[i
].Rate
);
1371 info
->txpower
[i
] = ath_get_rate_txpower(sc
, bf
, rix
, false,
1375 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1376 if (bf_isaggr(bf
) && (len
> sc
->sc_ah
->caps
.rts_aggr_limit
))
1377 info
->flags
&= ~ATH9K_TXDESC_RTSENA
;
1379 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1380 if (info
->flags
& ATH9K_TXDESC_RTSENA
)
1381 info
->flags
&= ~ATH9K_TXDESC_CTSENA
;
1384 static enum ath9k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
1386 struct ieee80211_hdr
*hdr
;
1387 enum ath9k_pkt_type htype
;
1390 hdr
= (struct ieee80211_hdr
*)skb
->data
;
1391 fc
= hdr
->frame_control
;
1393 if (ieee80211_is_beacon(fc
))
1394 htype
= ATH9K_PKT_TYPE_BEACON
;
1395 else if (ieee80211_is_probe_resp(fc
))
1396 htype
= ATH9K_PKT_TYPE_PROBE_RESP
;
1397 else if (ieee80211_is_atim(fc
))
1398 htype
= ATH9K_PKT_TYPE_ATIM
;
1399 else if (ieee80211_is_pspoll(fc
))
1400 htype
= ATH9K_PKT_TYPE_PSPOLL
;
1402 htype
= ATH9K_PKT_TYPE_NORMAL
;
1407 static void ath_tx_fill_desc(struct ath_softc
*sc
, struct ath_buf
*bf
,
1408 struct ath_txq
*txq
, int len
)
1410 struct ath_hw
*ah
= sc
->sc_ah
;
1411 struct ath_buf
*bf_first
= NULL
;
1412 struct ath_tx_info info
;
1413 u32 rts_thresh
= sc
->hw
->wiphy
->rts_threshold
;
1416 memset(&info
, 0, sizeof(info
));
1417 info
.is_first
= true;
1418 info
.is_last
= true;
1419 info
.qcu
= txq
->axq_qnum
;
1422 struct sk_buff
*skb
= bf
->bf_mpdu
;
1423 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1424 struct ath_frame_info
*fi
= get_frame_info(skb
);
1425 bool aggr
= !!(bf
->bf_state
.bf_type
& BUF_AGGR
);
1427 info
.type
= get_hw_packet_type(skb
);
1429 info
.link
= bf
->bf_next
->bf_daddr
;
1431 info
.link
= (sc
->tx99_state
) ? bf
->bf_daddr
: 0;
1436 if (!sc
->tx99_state
)
1437 info
.flags
= ATH9K_TXDESC_INTREQ
;
1438 if ((tx_info
->flags
& IEEE80211_TX_CTL_CLEAR_PS_FILT
) ||
1439 txq
== sc
->tx
.uapsdq
)
1440 info
.flags
|= ATH9K_TXDESC_CLRDMASK
;
1442 if (tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
1443 info
.flags
|= ATH9K_TXDESC_NOACK
;
1444 if (tx_info
->flags
& IEEE80211_TX_CTL_LDPC
)
1445 info
.flags
|= ATH9K_TXDESC_LDPC
;
1447 if (bf
->bf_state
.bfs_paprd
)
1448 info
.flags
|= (u32
) bf
->bf_state
.bfs_paprd
<<
1449 ATH9K_TXDESC_PAPRD_S
;
1452 * mac80211 doesn't handle RTS threshold for HT because
1453 * the decision has to be taken based on AMPDU length
1454 * and aggregation is done entirely inside ath9k.
1455 * Set the RTS/CTS flag for the first subframe based
1458 if (aggr
&& (bf
== bf_first
) &&
1459 unlikely(rts_thresh
!= (u32
) -1)) {
1461 * "len" is the size of the entire AMPDU.
1463 if (!rts_thresh
|| (len
> rts_thresh
))
1470 ath_buf_set_rate(sc
, bf
, &info
, len
, rts
);
1473 info
.buf_addr
[0] = bf
->bf_buf_addr
;
1474 info
.buf_len
[0] = skb
->len
;
1475 info
.pkt_len
= fi
->framelen
;
1476 info
.keyix
= fi
->keyix
;
1477 info
.keytype
= fi
->keytype
;
1481 info
.aggr
= AGGR_BUF_FIRST
;
1482 else if (bf
== bf_first
->bf_lastbf
)
1483 info
.aggr
= AGGR_BUF_LAST
;
1485 info
.aggr
= AGGR_BUF_MIDDLE
;
1487 info
.ndelim
= bf
->bf_state
.ndelim
;
1488 info
.aggr_len
= len
;
1491 if (bf
== bf_first
->bf_lastbf
)
1494 ath9k_hw_set_txdesc(ah
, bf
->bf_desc
, &info
);
1500 ath_tx_form_burst(struct ath_softc
*sc
, struct ath_txq
*txq
,
1501 struct ath_atx_tid
*tid
, struct list_head
*bf_q
,
1502 struct ath_buf
*bf_first
)
1504 struct ath_buf
*bf
= bf_first
, *bf_prev
= NULL
;
1505 int nframes
= 0, ret
;
1508 struct ieee80211_tx_info
*tx_info
;
1511 list_add_tail(&bf
->list
, bf_q
);
1513 bf_prev
->bf_next
= bf
;
1519 ret
= ath_tx_get_tid_subframe(sc
, txq
, tid
, &bf
);
1523 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1524 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
1525 __skb_queue_tail(&tid
->retry_q
, bf
->bf_mpdu
);
1529 ath_set_rates(tid
->an
->vif
, tid
->an
->sta
, bf
);
1533 static int ath_tx_sched_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
1534 struct ath_atx_tid
*tid
)
1536 struct ath_buf
*bf
= NULL
;
1537 struct ieee80211_tx_info
*tx_info
;
1538 struct list_head bf_q
;
1539 int aggr_len
= 0, ret
;
1542 INIT_LIST_HEAD(&bf_q
);
1544 ret
= ath_tx_get_tid_subframe(sc
, txq
, tid
, &bf
);
1548 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1549 aggr
= !!(tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
);
1550 if ((aggr
&& txq
->axq_ampdu_depth
>= ATH_AGGR_MIN_QDEPTH
) ||
1551 (!aggr
&& txq
->axq_depth
>= ATH_NON_AGGR_MIN_QDEPTH
)) {
1552 __skb_queue_tail(&tid
->retry_q
, bf
->bf_mpdu
);
1556 ath_set_rates(tid
->an
->vif
, tid
->an
->sta
, bf
);
1558 aggr_len
= ath_tx_form_aggr(sc
, txq
, tid
, &bf_q
, bf
);
1560 ath_tx_form_burst(sc
, txq
, tid
, &bf_q
, bf
);
1562 if (list_empty(&bf_q
))
1565 if (tid
->clear_ps_filter
|| tid
->an
->no_ps_filter
) {
1566 tid
->clear_ps_filter
= false;
1567 tx_info
->flags
|= IEEE80211_TX_CTL_CLEAR_PS_FILT
;
1570 ath_tx_fill_desc(sc
, bf
, txq
, aggr_len
);
1571 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, false);
1575 int ath_tx_aggr_start(struct ath_softc
*sc
, struct ieee80211_sta
*sta
,
1578 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1579 struct ath_atx_tid
*txtid
;
1580 struct ath_txq
*txq
;
1581 struct ath_node
*an
;
1584 ath_dbg(common
, XMIT
, "%s called\n", __func__
);
1586 an
= (struct ath_node
*)sta
->drv_priv
;
1587 txtid
= ATH_AN_2_TID(an
, tid
);
1590 ath_txq_lock(sc
, txq
);
1592 /* update ampdu factor/density, they may have changed. This may happen
1593 * in HT IBSS when a beacon with HT-info is received after the station
1594 * has already been added.
1596 if (sta
->deflink
.ht_cap
.ht_supported
) {
1597 an
->maxampdu
= (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR
+
1598 sta
->deflink
.ht_cap
.ampdu_factor
)) - 1;
1599 density
= ath9k_parse_mpdudensity(sta
->deflink
.ht_cap
.ampdu_density
);
1600 an
->mpdudensity
= density
;
1603 txtid
->active
= true;
1604 *ssn
= txtid
->seq_start
= txtid
->seq_next
;
1605 txtid
->bar_index
= -1;
1607 memset(txtid
->tx_buf
, 0, sizeof(txtid
->tx_buf
));
1608 txtid
->baw_head
= txtid
->baw_tail
= 0;
1610 ath_txq_unlock_complete(sc
, txq
);
1615 void ath_tx_aggr_stop(struct ath_softc
*sc
, struct ieee80211_sta
*sta
, u16 tid
)
1617 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1618 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
1619 struct ath_atx_tid
*txtid
= ATH_AN_2_TID(an
, tid
);
1620 struct ath_txq
*txq
= txtid
->txq
;
1622 ath_dbg(common
, XMIT
, "%s called\n", __func__
);
1624 ath_txq_lock(sc
, txq
);
1625 txtid
->active
= false;
1626 ath_tx_flush_tid(sc
, txtid
);
1627 ath_txq_unlock_complete(sc
, txq
);
1630 void ath_tx_aggr_sleep(struct ieee80211_sta
*sta
, struct ath_softc
*sc
,
1631 struct ath_node
*an
)
1633 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1634 struct ath_atx_tid
*tid
;
1637 ath_dbg(common
, XMIT
, "%s called\n", __func__
);
1639 for (tidno
= 0; tidno
< IEEE80211_NUM_TIDS
; tidno
++) {
1640 tid
= ath_node_to_tid(an
, tidno
);
1642 if (!skb_queue_empty(&tid
->retry_q
))
1643 ieee80211_sta_set_buffered(sta
, tid
->tidno
, true);
1648 void ath_tx_aggr_wakeup(struct ath_softc
*sc
, struct ath_node
*an
)
1650 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1651 struct ath_atx_tid
*tid
;
1652 struct ath_txq
*txq
;
1655 ath_dbg(common
, XMIT
, "%s called\n", __func__
);
1657 for (tidno
= 0; tidno
< IEEE80211_NUM_TIDS
; tidno
++) {
1658 tid
= ath_node_to_tid(an
, tidno
);
1661 ath_txq_lock(sc
, txq
);
1662 tid
->clear_ps_filter
= true;
1663 if (!skb_queue_empty(&tid
->retry_q
)) {
1664 ath_tx_queue_tid(sc
, tid
);
1665 ath_txq_schedule(sc
, txq
);
1667 ath_txq_unlock_complete(sc
, txq
);
1674 ath9k_set_moredata(struct ath_softc
*sc
, struct ath_buf
*bf
, bool val
)
1676 struct ieee80211_hdr
*hdr
;
1677 __le16 mask
, mask_val
;
1679 mask
= cpu_to_le16(IEEE80211_FCTL_MOREDATA
);
1686 hdr
= (struct ieee80211_hdr
*) bf
->bf_mpdu
->data
;
1687 if ((hdr
->frame_control
& mask
) != mask_val
) {
1688 hdr
->frame_control
= (hdr
->frame_control
& ~mask
) | mask_val
;
1689 dma_sync_single_for_device(sc
->dev
, bf
->bf_buf_addr
,
1690 sizeof(*hdr
), DMA_TO_DEVICE
);
1694 void ath9k_release_buffered_frames(struct ieee80211_hw
*hw
,
1695 struct ieee80211_sta
*sta
,
1696 u16 tids
, int nframes
,
1697 enum ieee80211_frame_release_type reason
,
1700 struct ath_softc
*sc
= hw
->priv
;
1701 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
1702 struct ath_txq
*txq
= sc
->tx
.uapsdq
;
1703 struct ieee80211_tx_info
*info
;
1704 struct list_head bf_q
;
1705 struct ath_buf
*bf_tail
= NULL
, *bf
= NULL
;
1708 INIT_LIST_HEAD(&bf_q
);
1709 for (i
= 0; tids
&& nframes
; i
++, tids
>>= 1) {
1710 struct ath_atx_tid
*tid
;
1715 tid
= ATH_AN_2_TID(an
, i
);
1717 ath_txq_lock(sc
, tid
->txq
);
1718 while (nframes
> 0) {
1719 ret
= ath_tx_get_tid_subframe(sc
, sc
->tx
.uapsdq
,
1724 ath9k_set_moredata(sc
, bf
, true);
1725 list_add_tail(&bf
->list
, &bf_q
);
1726 ath_set_rates(tid
->an
->vif
, tid
->an
->sta
, bf
);
1728 bf
->bf_state
.bf_type
&= ~BUF_AGGR
;
1730 bf_tail
->bf_next
= bf
;
1734 TX_STAT_INC(sc
, txq
->axq_qnum
, a_queued_hw
);
1736 if (an
->sta
&& skb_queue_empty(&tid
->retry_q
))
1737 ieee80211_sta_set_buffered(an
->sta
, i
, false);
1739 ath_txq_unlock_complete(sc
, tid
->txq
);
1742 if (list_empty(&bf_q
))
1746 ath9k_set_moredata(sc
, bf_tail
, false);
1748 info
= IEEE80211_SKB_CB(bf_tail
->bf_mpdu
);
1749 info
->flags
|= IEEE80211_TX_STATUS_EOSP
;
1751 bf
= list_first_entry(&bf_q
, struct ath_buf
, list
);
1752 ath_txq_lock(sc
, txq
);
1753 ath_tx_fill_desc(sc
, bf
, txq
, 0);
1754 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, false);
1755 ath_txq_unlock(sc
, txq
);
1758 /********************/
1759 /* Queue Management */
1760 /********************/
1762 struct ath_txq
*ath_txq_setup(struct ath_softc
*sc
, int qtype
, int subtype
)
1764 struct ath_hw
*ah
= sc
->sc_ah
;
1765 struct ath9k_tx_queue_info qi
;
1766 static const int subtype_txq_to_hwq
[] = {
1767 [IEEE80211_AC_BE
] = ATH_TXQ_AC_BE
,
1768 [IEEE80211_AC_BK
] = ATH_TXQ_AC_BK
,
1769 [IEEE80211_AC_VI
] = ATH_TXQ_AC_VI
,
1770 [IEEE80211_AC_VO
] = ATH_TXQ_AC_VO
,
1774 memset(&qi
, 0, sizeof(qi
));
1775 qi
.tqi_subtype
= subtype_txq_to_hwq
[subtype
];
1776 qi
.tqi_aifs
= ATH9K_TXQ_USEDEFAULT
;
1777 qi
.tqi_cwmin
= ATH9K_TXQ_USEDEFAULT
;
1778 qi
.tqi_cwmax
= ATH9K_TXQ_USEDEFAULT
;
1779 qi
.tqi_physCompBuf
= 0;
1782 * Enable interrupts only for EOL and DESC conditions.
1783 * We mark tx descriptors to receive a DESC interrupt
1784 * when a tx queue gets deep; otherwise waiting for the
1785 * EOL to reap descriptors. Note that this is done to
1786 * reduce interrupt load and this only defers reaping
1787 * descriptors, never transmitting frames. Aside from
1788 * reducing interrupts this also permits more concurrency.
1789 * The only potential downside is if the tx queue backs
1790 * up in which case the top half of the kernel may backup
1791 * due to a lack of tx descriptors.
1793 * The UAPSD queue is an exception, since we take a desc-
1794 * based intr on the EOSP frames.
1796 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) {
1797 qi
.tqi_qflags
= TXQ_FLAG_TXINT_ENABLE
;
1799 if (qtype
== ATH9K_TX_QUEUE_UAPSD
)
1800 qi
.tqi_qflags
= TXQ_FLAG_TXDESCINT_ENABLE
;
1802 qi
.tqi_qflags
= TXQ_FLAG_TXEOLINT_ENABLE
|
1803 TXQ_FLAG_TXDESCINT_ENABLE
;
1805 axq_qnum
= ath9k_hw_setuptxqueue(ah
, qtype
, &qi
);
1806 if (axq_qnum
== -1) {
1808 * NB: don't print a message, this happens
1809 * normally on parts with too few tx queues
1813 if (!ATH_TXQ_SETUP(sc
, axq_qnum
)) {
1814 struct ath_txq
*txq
= &sc
->tx
.txq
[axq_qnum
];
1816 txq
->axq_qnum
= axq_qnum
;
1817 txq
->mac80211_qnum
= -1;
1818 txq
->axq_link
= NULL
;
1819 __skb_queue_head_init(&txq
->complete_q
);
1820 INIT_LIST_HEAD(&txq
->axq_q
);
1821 spin_lock_init(&txq
->axq_lock
);
1823 txq
->axq_ampdu_depth
= 0;
1824 txq
->axq_tx_inprogress
= false;
1825 sc
->tx
.txqsetup
|= 1<<axq_qnum
;
1827 txq
->txq_headidx
= txq
->txq_tailidx
= 0;
1828 for (i
= 0; i
< ATH_TXFIFO_DEPTH
; i
++)
1829 INIT_LIST_HEAD(&txq
->txq_fifo
[i
]);
1831 return &sc
->tx
.txq
[axq_qnum
];
1834 int ath_txq_update(struct ath_softc
*sc
, int qnum
,
1835 struct ath9k_tx_queue_info
*qinfo
)
1837 struct ath_hw
*ah
= sc
->sc_ah
;
1839 struct ath9k_tx_queue_info qi
;
1841 BUG_ON(sc
->tx
.txq
[qnum
].axq_qnum
!= qnum
);
1843 ath9k_hw_get_txq_props(ah
, qnum
, &qi
);
1844 qi
.tqi_aifs
= qinfo
->tqi_aifs
;
1845 qi
.tqi_cwmin
= qinfo
->tqi_cwmin
;
1846 qi
.tqi_cwmax
= qinfo
->tqi_cwmax
;
1847 qi
.tqi_burstTime
= qinfo
->tqi_burstTime
;
1848 qi
.tqi_readyTime
= qinfo
->tqi_readyTime
;
1850 if (!ath9k_hw_set_txq_props(ah
, qnum
, &qi
)) {
1851 ath_err(ath9k_hw_common(sc
->sc_ah
),
1852 "Unable to update hardware queue %u!\n", qnum
);
1855 ath9k_hw_resettxqueue(ah
, qnum
);
1861 int ath_cabq_update(struct ath_softc
*sc
)
1863 struct ath9k_tx_queue_info qi
;
1864 struct ath_beacon_config
*cur_conf
= &sc
->cur_chan
->beacon
;
1865 int qnum
= sc
->beacon
.cabq
->axq_qnum
;
1867 ath9k_hw_get_txq_props(sc
->sc_ah
, qnum
, &qi
);
1869 qi
.tqi_readyTime
= (TU_TO_USEC(cur_conf
->beacon_interval
) *
1870 ATH_CABQ_READY_TIME
) / 100;
1871 ath_txq_update(sc
, qnum
, &qi
);
1876 static void ath_drain_txq_list(struct ath_softc
*sc
, struct ath_txq
*txq
,
1877 struct list_head
*list
)
1879 struct ath_buf
*bf
, *lastbf
;
1880 struct list_head bf_head
;
1881 struct ath_tx_status ts
;
1883 memset(&ts
, 0, sizeof(ts
));
1884 ts
.ts_status
= ATH9K_TX_FLUSH
;
1885 INIT_LIST_HEAD(&bf_head
);
1887 while (!list_empty(list
)) {
1888 bf
= list_first_entry(list
, struct ath_buf
, list
);
1890 if (bf
->bf_state
.stale
) {
1891 list_del(&bf
->list
);
1893 ath_tx_return_buffer(sc
, bf
);
1897 lastbf
= bf
->bf_lastbf
;
1898 list_cut_position(&bf_head
, list
, &lastbf
->list
);
1899 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
1904 * Drain a given TX queue (could be Beacon or Data)
1906 * This assumes output has been stopped and
1907 * we do not need to block ath_tx_tasklet.
1909 void ath_draintxq(struct ath_softc
*sc
, struct ath_txq
*txq
)
1912 ath_txq_lock(sc
, txq
);
1914 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) {
1915 int idx
= txq
->txq_tailidx
;
1917 while (!list_empty(&txq
->txq_fifo
[idx
])) {
1918 ath_drain_txq_list(sc
, txq
, &txq
->txq_fifo
[idx
]);
1920 INCR(idx
, ATH_TXFIFO_DEPTH
);
1922 txq
->txq_tailidx
= idx
;
1925 txq
->axq_link
= NULL
;
1926 txq
->axq_tx_inprogress
= false;
1927 ath_drain_txq_list(sc
, txq
, &txq
->axq_q
);
1929 ath_txq_unlock_complete(sc
, txq
);
1933 bool ath_drain_all_txq(struct ath_softc
*sc
)
1935 struct ath_hw
*ah
= sc
->sc_ah
;
1936 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1937 struct ath_txq
*txq
;
1941 if (test_bit(ATH_OP_INVALID
, &common
->op_flags
))
1944 ath9k_hw_abort_tx_dma(ah
);
1946 /* Check if any queue remains active */
1947 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1948 if (!ATH_TXQ_SETUP(sc
, i
))
1951 if (!sc
->tx
.txq
[i
].axq_depth
)
1954 if (ath9k_hw_numtxpending(ah
, sc
->tx
.txq
[i
].axq_qnum
))
1959 RESET_STAT_INC(sc
, RESET_TX_DMA_ERROR
);
1960 ath_dbg(common
, RESET
,
1961 "Failed to stop TX DMA, queues=0x%03x!\n", npend
);
1964 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1965 if (!ATH_TXQ_SETUP(sc
, i
))
1968 txq
= &sc
->tx
.txq
[i
];
1969 ath_draintxq(sc
, txq
);
1975 void ath_tx_cleanupq(struct ath_softc
*sc
, struct ath_txq
*txq
)
1977 ath9k_hw_releasetxqueue(sc
->sc_ah
, txq
->axq_qnum
);
1978 sc
->tx
.txqsetup
&= ~(1<<txq
->axq_qnum
);
1981 /* For each acq entry, for each tid, try to schedule packets
1982 * for transmit until ampdu_depth has reached min Q depth.
1984 void ath_txq_schedule(struct ath_softc
*sc
, struct ath_txq
*txq
)
1986 struct ieee80211_hw
*hw
= sc
->hw
;
1987 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1988 struct ieee80211_txq
*queue
;
1989 struct ath_atx_tid
*tid
;
1992 if (txq
->mac80211_qnum
< 0)
1995 if (test_bit(ATH_OP_HW_RESET
, &common
->op_flags
))
1998 ieee80211_txq_schedule_start(hw
, txq
->mac80211_qnum
);
1999 spin_lock_bh(&sc
->chan_lock
);
2002 if (sc
->cur_chan
->stopped
)
2005 while ((queue
= ieee80211_next_txq(hw
, txq
->mac80211_qnum
))) {
2008 tid
= (struct ath_atx_tid
*)queue
->drv_priv
;
2010 ret
= ath_tx_sched_aggr(sc
, txq
, tid
);
2011 ath_dbg(common
, QUEUE
, "ath_tx_sched_aggr returned %d\n", ret
);
2013 force
= !skb_queue_empty(&tid
->retry_q
);
2014 ieee80211_return_txq(hw
, queue
, force
);
2019 spin_unlock_bh(&sc
->chan_lock
);
2020 ieee80211_txq_schedule_end(hw
, txq
->mac80211_qnum
);
2023 void ath_txq_schedule_all(struct ath_softc
*sc
)
2025 struct ath_txq
*txq
;
2028 for (i
= 0; i
< IEEE80211_NUM_ACS
; i
++) {
2029 txq
= sc
->tx
.txq_map
[i
];
2031 spin_lock_bh(&txq
->axq_lock
);
2032 ath_txq_schedule(sc
, txq
);
2033 spin_unlock_bh(&txq
->axq_lock
);
2042 * Insert a chain of ath_buf (descriptors) on a txq and
2043 * assume the descriptors are already chained together by caller.
2045 static void ath_tx_txqaddbuf(struct ath_softc
*sc
, struct ath_txq
*txq
,
2046 struct list_head
*head
, bool internal
)
2048 struct ath_hw
*ah
= sc
->sc_ah
;
2049 struct ath_common
*common
= ath9k_hw_common(ah
);
2050 struct ath_buf
*bf
, *bf_last
;
2051 bool puttxbuf
= false;
2055 * Insert the frame on the outbound list and
2056 * pass it on to the hardware.
2059 if (list_empty(head
))
2062 edma
= !!(ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
);
2063 bf
= list_first_entry(head
, struct ath_buf
, list
);
2064 bf_last
= list_entry(head
->prev
, struct ath_buf
, list
);
2066 ath_dbg(common
, QUEUE
, "qnum: %d, txq depth: %d\n",
2067 txq
->axq_qnum
, txq
->axq_depth
);
2069 if (edma
&& list_empty(&txq
->txq_fifo
[txq
->txq_headidx
])) {
2070 list_splice_tail_init(head
, &txq
->txq_fifo
[txq
->txq_headidx
]);
2071 INCR(txq
->txq_headidx
, ATH_TXFIFO_DEPTH
);
2074 list_splice_tail_init(head
, &txq
->axq_q
);
2076 if (txq
->axq_link
) {
2077 ath9k_hw_set_desc_link(ah
, txq
->axq_link
, bf
->bf_daddr
);
2078 ath_dbg(common
, XMIT
, "link[%u] (%p)=%llx (%p)\n",
2079 txq
->axq_qnum
, txq
->axq_link
,
2080 ito64(bf
->bf_daddr
), bf
->bf_desc
);
2084 txq
->axq_link
= bf_last
->bf_desc
;
2088 TX_STAT_INC(sc
, txq
->axq_qnum
, puttxbuf
);
2089 ath9k_hw_puttxbuf(ah
, txq
->axq_qnum
, bf
->bf_daddr
);
2090 ath_dbg(common
, XMIT
, "TXDP[%u] = %llx (%p)\n",
2091 txq
->axq_qnum
, ito64(bf
->bf_daddr
), bf
->bf_desc
);
2094 if (!edma
|| sc
->tx99_state
) {
2095 TX_STAT_INC(sc
, txq
->axq_qnum
, txstart
);
2096 ath9k_hw_txstart(ah
, txq
->axq_qnum
);
2102 if (bf_is_ampdu_not_probing(bf
))
2103 txq
->axq_ampdu_depth
++;
2105 bf_last
= bf
->bf_lastbf
;
2106 bf
= bf_last
->bf_next
;
2107 bf_last
->bf_next
= NULL
;
2112 static void ath_tx_send_normal(struct ath_softc
*sc
, struct ath_txq
*txq
,
2113 struct ath_atx_tid
*tid
, struct sk_buff
*skb
)
2115 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2116 struct ath_frame_info
*fi
= get_frame_info(skb
);
2117 struct list_head bf_head
;
2118 struct ath_buf
*bf
= fi
->bf
;
2120 INIT_LIST_HEAD(&bf_head
);
2121 list_add_tail(&bf
->list
, &bf_head
);
2122 bf
->bf_state
.bf_type
= 0;
2123 if (tid
&& (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
)) {
2124 bf
->bf_state
.bf_type
= BUF_AMPDU
;
2125 ath_tx_addto_baw(sc
, tid
, bf
);
2130 ath_tx_fill_desc(sc
, bf
, txq
, fi
->framelen
);
2131 ath_tx_txqaddbuf(sc
, txq
, &bf_head
, false);
2132 TX_STAT_INC(sc
, txq
->axq_qnum
, queued
);
2135 static void setup_frame_info(struct ieee80211_hw
*hw
,
2136 struct ieee80211_sta
*sta
,
2137 struct sk_buff
*skb
,
2140 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2141 struct ieee80211_key_conf
*hw_key
= tx_info
->control
.hw_key
;
2142 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2143 const struct ieee80211_rate
*rate
;
2144 struct ath_frame_info
*fi
= get_frame_info(skb
);
2145 struct ath_node
*an
= NULL
;
2146 enum ath9k_key_type keytype
;
2147 bool short_preamble
= false;
2151 * We check if Short Preamble is needed for the CTS rate by
2152 * checking the BSS's global flag.
2153 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2155 if (tx_info
->control
.vif
&&
2156 tx_info
->control
.vif
->bss_conf
.use_short_preamble
)
2157 short_preamble
= true;
2159 rate
= ieee80211_get_rts_cts_rate(hw
, tx_info
);
2160 keytype
= ath9k_cmn_get_hw_crypto_keytype(skb
);
2163 an
= (struct ath_node
*) sta
->drv_priv
;
2165 if (tx_info
->control
.vif
) {
2166 struct ieee80211_vif
*vif
= tx_info
->control
.vif
;
2167 if (vif
->bss_conf
.txpower
== INT_MIN
)
2169 txpower
= 2 * vif
->bss_conf
.txpower
;
2171 struct ath_softc
*sc
;
2175 txpower
= sc
->cur_chan
->cur_txpower
;
2178 memset(fi
, 0, sizeof(*fi
));
2181 fi
->keyix
= hw_key
->hw_key_idx
;
2182 else if (an
&& ieee80211_is_data(hdr
->frame_control
) && an
->ps_key
> 0)
2183 fi
->keyix
= an
->ps_key
;
2185 fi
->keyix
= ATH9K_TXKEYIX_INVALID
;
2186 fi
->dyn_smps
= sta
&& sta
->deflink
.smps_mode
== IEEE80211_SMPS_DYNAMIC
;
2187 fi
->keytype
= keytype
;
2188 fi
->framelen
= framelen
;
2189 fi
->tx_power
= txpower
;
2193 fi
->rtscts_rate
= rate
->hw_value
;
2195 fi
->rtscts_rate
|= rate
->hw_value_short
;
2198 u8
ath_txchainmask_reduction(struct ath_softc
*sc
, u8 chainmask
, u32 rate
)
2200 struct ath_hw
*ah
= sc
->sc_ah
;
2201 struct ath9k_channel
*curchan
= ah
->curchan
;
2203 if ((ah
->caps
.hw_caps
& ATH9K_HW_CAP_APM
) && IS_CHAN_5GHZ(curchan
) &&
2204 (chainmask
== 0x7) && (rate
< 0x90))
2206 else if (AR_SREV_9462(ah
) && ath9k_hw_btcoex_is_enabled(ah
) &&
2214 * Assign a descriptor (and sequence number if necessary,
2215 * and map buffer for DMA. Frees skb on error
2217 static struct ath_buf
*ath_tx_setup_buffer(struct ath_softc
*sc
,
2218 struct ath_txq
*txq
,
2219 struct ath_atx_tid
*tid
,
2220 struct sk_buff
*skb
)
2222 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2223 struct ath_frame_info
*fi
= get_frame_info(skb
);
2224 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2229 bf
= ath_tx_get_buffer(sc
);
2231 ath_dbg(common
, XMIT
, "TX buffers are full\n");
2235 ATH_TXBUF_RESET(bf
);
2237 if (tid
&& ieee80211_is_data_present(hdr
->frame_control
)) {
2238 fragno
= le16_to_cpu(hdr
->seq_ctrl
) & IEEE80211_SCTL_FRAG
;
2239 seqno
= tid
->seq_next
;
2240 hdr
->seq_ctrl
= cpu_to_le16(tid
->seq_next
<< IEEE80211_SEQ_SEQ_SHIFT
);
2243 hdr
->seq_ctrl
|= cpu_to_le16(fragno
);
2245 if (!ieee80211_has_morefrags(hdr
->frame_control
))
2246 INCR(tid
->seq_next
, IEEE80211_SEQ_MAX
);
2248 bf
->bf_state
.seqno
= seqno
;
2253 bf
->bf_buf_addr
= dma_map_single(sc
->dev
, skb
->data
,
2254 skb
->len
, DMA_TO_DEVICE
);
2255 if (unlikely(dma_mapping_error(sc
->dev
, bf
->bf_buf_addr
))) {
2257 bf
->bf_buf_addr
= 0;
2258 ath_err(ath9k_hw_common(sc
->sc_ah
),
2259 "dma_mapping_error() on TX\n");
2260 ath_tx_return_buffer(sc
, bf
);
2269 void ath_assign_seq(struct ath_common
*common
, struct sk_buff
*skb
)
2271 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2272 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2273 struct ieee80211_vif
*vif
= info
->control
.vif
;
2274 struct ath_vif
*avp
;
2276 if (!(info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
2282 avp
= (struct ath_vif
*)vif
->drv_priv
;
2284 if (info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
)
2285 avp
->seq_no
+= 0x10;
2287 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
2288 hdr
->seq_ctrl
|= cpu_to_le16(avp
->seq_no
);
2291 static int ath_tx_prepare(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2292 struct ath_tx_control
*txctl
)
2294 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2295 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2296 struct ieee80211_sta
*sta
= txctl
->sta
;
2297 struct ieee80211_vif
*vif
= info
->control
.vif
;
2298 struct ath_vif
*avp
;
2299 struct ath_softc
*sc
= hw
->priv
;
2300 int frmlen
= skb
->len
+ FCS_LEN
;
2301 int padpos
, padsize
;
2303 /* NOTE: sta can be NULL according to net/mac80211.h */
2305 txctl
->an
= (struct ath_node
*)sta
->drv_priv
;
2306 else if (vif
&& ieee80211_is_data(hdr
->frame_control
)) {
2307 avp
= (void *)vif
->drv_priv
;
2308 txctl
->an
= &avp
->mcast_node
;
2311 if (info
->control
.hw_key
)
2312 frmlen
+= info
->control
.hw_key
->icv_len
;
2314 ath_assign_seq(ath9k_hw_common(sc
->sc_ah
), skb
);
2316 if ((vif
&& vif
->type
!= NL80211_IFTYPE_AP
&&
2317 vif
->type
!= NL80211_IFTYPE_AP_VLAN
) ||
2318 !ieee80211_is_data(hdr
->frame_control
))
2319 info
->flags
|= IEEE80211_TX_CTL_CLEAR_PS_FILT
;
2321 /* Add the padding after the header if this is not already done */
2322 padpos
= ieee80211_hdrlen(hdr
->frame_control
);
2323 padsize
= padpos
& 3;
2324 if (padsize
&& skb
->len
> padpos
) {
2325 if (skb_headroom(skb
) < padsize
)
2328 skb_push(skb
, padsize
);
2329 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
2332 setup_frame_info(hw
, sta
, skb
, frmlen
);
2337 /* Upon failure caller should free skb */
2338 int ath_tx_start(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2339 struct ath_tx_control
*txctl
)
2341 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2342 struct ieee80211_sta
*sta
= txctl
->sta
;
2343 struct ieee80211_vif
*vif
= info
->control
.vif
;
2344 struct ath_frame_info
*fi
= get_frame_info(skb
);
2345 struct ath_softc
*sc
= hw
->priv
;
2346 struct ath_txq
*txq
= txctl
->txq
;
2347 struct ath_atx_tid
*tid
= NULL
;
2348 struct ath_node
*an
= NULL
;
2353 ps_resp
= !!(info
->control
.flags
& IEEE80211_TX_CTRL_PS_RESPONSE
);
2355 ret
= ath_tx_prepare(hw
, skb
, txctl
);
2360 * At this point, the vif, hw_key and sta pointers in the tx control
2361 * info are no longer valid (overwritten by the ath_frame_info data.
2364 q
= skb_get_queue_mapping(skb
);
2367 txq
= sc
->tx
.uapsdq
;
2370 an
= (struct ath_node
*) sta
->drv_priv
;
2371 tid
= ath_get_skb_tid(sc
, an
, skb
);
2374 ath_txq_lock(sc
, txq
);
2375 if (txq
== sc
->tx
.txq_map
[q
]) {
2377 ++txq
->pending_frames
;
2380 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
2382 ath_txq_skb_done(sc
, txq
, skb
);
2384 dev_kfree_skb_any(skb
);
2386 ieee80211_free_txskb(sc
->hw
, skb
);
2390 bf
->bf_state
.bfs_paprd
= txctl
->paprd
;
2393 bf
->bf_state
.bfs_paprd_timestamp
= jiffies
;
2395 ath_set_rates(vif
, sta
, bf
);
2396 ath_tx_send_normal(sc
, txq
, tid
, skb
);
2399 ath_txq_unlock(sc
, txq
);
2404 void ath_tx_cabq(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
,
2405 struct sk_buff
*skb
)
2407 struct ath_softc
*sc
= hw
->priv
;
2408 struct ath_tx_control txctl
= {
2409 .txq
= sc
->beacon
.cabq
2411 struct ath_tx_info info
= {};
2412 struct ath_buf
*bf_tail
= NULL
;
2419 sc
->cur_chan
->beacon
.beacon_interval
* 1000 *
2420 sc
->cur_chan
->beacon
.dtim_period
/ ATH_BCBUF
;
2423 struct ath_frame_info
*fi
= get_frame_info(skb
);
2425 if (ath_tx_prepare(hw
, skb
, &txctl
))
2428 bf
= ath_tx_setup_buffer(sc
, txctl
.txq
, NULL
, skb
);
2433 ath_set_rates(vif
, NULL
, bf
);
2434 ath_buf_set_rate(sc
, bf
, &info
, fi
->framelen
, false);
2435 duration
+= info
.rates
[0].PktDuration
;
2437 bf_tail
->bf_next
= bf
;
2439 list_add_tail(&bf
->list
, &bf_q
);
2443 if (duration
> max_duration
)
2446 skb
= ieee80211_get_buffered_bc(hw
, vif
);
2450 ieee80211_free_txskb(hw
, skb
);
2452 if (list_empty(&bf_q
))
2455 bf
= list_last_entry(&bf_q
, struct ath_buf
, list
);
2456 ath9k_set_moredata(sc
, bf
, false);
2458 bf
= list_first_entry(&bf_q
, struct ath_buf
, list
);
2459 ath_txq_lock(sc
, txctl
.txq
);
2460 ath_tx_fill_desc(sc
, bf
, txctl
.txq
, 0);
2461 ath_tx_txqaddbuf(sc
, txctl
.txq
, &bf_q
, false);
2462 TX_STAT_INC(sc
, txctl
.txq
->axq_qnum
, queued
);
2463 ath_txq_unlock(sc
, txctl
.txq
);
2470 static void ath_tx_complete(struct ath_softc
*sc
, struct sk_buff
*skb
,
2471 int tx_flags
, struct ath_txq
*txq
,
2472 struct ieee80211_sta
*sta
)
2474 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2475 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2476 struct ieee80211_hdr
* hdr
= (struct ieee80211_hdr
*)skb
->data
;
2477 int padpos
, padsize
;
2478 unsigned long flags
;
2480 ath_dbg(common
, XMIT
, "TX complete: skb: %p\n", skb
);
2482 if (sc
->sc_ah
->caldata
)
2483 set_bit(PAPRD_PACKET_SENT
, &sc
->sc_ah
->caldata
->cal_flags
);
2485 if (!(tx_flags
& ATH_TX_ERROR
)) {
2486 if (tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
2487 tx_info
->flags
|= IEEE80211_TX_STAT_NOACK_TRANSMITTED
;
2489 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
2492 if (tx_info
->flags
& IEEE80211_TX_CTL_REQ_TX_STATUS
) {
2493 padpos
= ieee80211_hdrlen(hdr
->frame_control
);
2494 padsize
= padpos
& 3;
2495 if (padsize
&& skb
->len
>padpos
+padsize
) {
2497 * Remove MAC header padding before giving the frame back to
2500 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
2501 skb_pull(skb
, padsize
);
2505 spin_lock_irqsave(&sc
->sc_pm_lock
, flags
);
2506 if ((sc
->ps_flags
& PS_WAIT_FOR_TX_ACK
) && !txq
->axq_depth
) {
2507 sc
->ps_flags
&= ~PS_WAIT_FOR_TX_ACK
;
2509 "Going back to sleep after having received TX status (0x%lx)\n",
2510 sc
->ps_flags
& (PS_WAIT_FOR_BEACON
|
2512 PS_WAIT_FOR_PSPOLL_DATA
|
2513 PS_WAIT_FOR_TX_ACK
));
2515 spin_unlock_irqrestore(&sc
->sc_pm_lock
, flags
);
2517 ath_txq_skb_done(sc
, txq
, skb
);
2518 tx_info
->status
.status_driver_data
[0] = sta
;
2519 __skb_queue_tail(&txq
->complete_q
, skb
);
2522 static void ath_tx_complete_buf(struct ath_softc
*sc
, struct ath_buf
*bf
,
2523 struct ath_txq
*txq
, struct list_head
*bf_q
,
2524 struct ieee80211_sta
*sta
,
2525 struct ath_tx_status
*ts
, int txok
)
2527 struct sk_buff
*skb
= bf
->bf_mpdu
;
2528 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2529 unsigned long flags
;
2533 tx_flags
|= ATH_TX_ERROR
;
2535 if (ts
->ts_status
& ATH9K_TXERR_FILT
)
2536 tx_info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
2538 dma_unmap_single(sc
->dev
, bf
->bf_buf_addr
, skb
->len
, DMA_TO_DEVICE
);
2539 bf
->bf_buf_addr
= 0;
2541 goto skip_tx_complete
;
2543 if (bf
->bf_state
.bfs_paprd
) {
2544 if (time_after(jiffies
,
2545 bf
->bf_state
.bfs_paprd_timestamp
+
2546 msecs_to_jiffies(ATH_PAPRD_TIMEOUT
)))
2547 dev_kfree_skb_any(skb
);
2549 complete(&sc
->paprd_complete
);
2551 ath_debug_stat_tx(sc
, bf
, ts
, txq
, tx_flags
);
2552 ath_tx_complete(sc
, skb
, tx_flags
, txq
, sta
);
2555 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2556 * accidentally reference it later.
2561 * Return the list of ath_buf of this mpdu to free queue
2563 spin_lock_irqsave(&sc
->tx
.txbuflock
, flags
);
2564 list_splice_tail_init(bf_q
, &sc
->tx
.txbuf
);
2565 spin_unlock_irqrestore(&sc
->tx
.txbuflock
, flags
);
2568 static void ath_clear_tx_status(struct ieee80211_tx_info
*tx_info
)
2570 void *ptr
= &tx_info
->status
;
2572 memset(ptr
+ sizeof(tx_info
->status
.rates
), 0,
2573 sizeof(tx_info
->status
) -
2574 sizeof(tx_info
->status
.rates
) -
2575 sizeof(tx_info
->status
.status_driver_data
));
2578 static void ath_tx_rc_status(struct ath_softc
*sc
, struct ath_buf
*bf
,
2579 struct ath_tx_status
*ts
, int nframes
, int nbad
,
2582 struct sk_buff
*skb
= bf
->bf_mpdu
;
2583 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2584 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2585 struct ieee80211_hw
*hw
= sc
->hw
;
2586 struct ath_hw
*ah
= sc
->sc_ah
;
2589 ath_clear_tx_status(tx_info
);
2592 tx_info
->status
.ack_signal
= ts
->ts_rssi
;
2594 tx_rateindex
= ts
->ts_rateindex
;
2595 WARN_ON(tx_rateindex
>= hw
->max_rates
);
2597 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
2598 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
;
2600 BUG_ON(nbad
> nframes
);
2602 tx_info
->status
.ampdu_len
= nframes
;
2603 tx_info
->status
.ampdu_ack_len
= nframes
- nbad
;
2605 tx_info
->status
.rates
[tx_rateindex
].count
= ts
->ts_longretry
+ 1;
2607 for (i
= tx_rateindex
+ 1; i
< hw
->max_rates
; i
++) {
2608 tx_info
->status
.rates
[i
].count
= 0;
2609 tx_info
->status
.rates
[i
].idx
= -1;
2612 if ((ts
->ts_status
& ATH9K_TXERR_FILT
) == 0 &&
2613 (tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
) == 0) {
2615 * If an underrun error is seen assume it as an excessive
2616 * retry only if max frame trigger level has been reached
2617 * (2 KB for single stream, and 4 KB for dual stream).
2618 * Adjust the long retry as if the frame was tried
2619 * hw->max_rate_tries times to affect how rate control updates
2620 * PER for the failed rate.
2621 * In case of congestion on the bus penalizing this type of
2622 * underruns should help hardware actually transmit new frames
2623 * successfully by eventually preferring slower rates.
2624 * This itself should also alleviate congestion on the bus.
2626 if (unlikely(ts
->ts_flags
& (ATH9K_TX_DATA_UNDERRUN
|
2627 ATH9K_TX_DELIM_UNDERRUN
)) &&
2628 ieee80211_is_data(hdr
->frame_control
) &&
2629 ah
->tx_trig_level
>= sc
->sc_ah
->config
.max_txtrig_level
)
2630 tx_info
->status
.rates
[tx_rateindex
].count
=
2635 static void ath_tx_processq(struct ath_softc
*sc
, struct ath_txq
*txq
)
2637 struct ath_hw
*ah
= sc
->sc_ah
;
2638 struct ath_common
*common
= ath9k_hw_common(ah
);
2639 struct ath_buf
*bf
, *lastbf
, *bf_held
= NULL
;
2640 struct list_head bf_head
;
2641 struct ath_desc
*ds
;
2642 struct ath_tx_status ts
;
2645 ath_dbg(common
, QUEUE
, "tx queue %d (%x), link %p\n",
2646 txq
->axq_qnum
, ath9k_hw_gettxbuf(sc
->sc_ah
, txq
->axq_qnum
),
2649 ath_txq_lock(sc
, txq
);
2651 if (test_bit(ATH_OP_HW_RESET
, &common
->op_flags
))
2654 if (list_empty(&txq
->axq_q
)) {
2655 txq
->axq_link
= NULL
;
2656 ath_txq_schedule(sc
, txq
);
2659 bf
= list_first_entry(&txq
->axq_q
, struct ath_buf
, list
);
2662 * There is a race condition that a BH gets scheduled
2663 * after sw writes TxE and before hw re-load the last
2664 * descriptor to get the newly chained one.
2665 * Software must keep the last DONE descriptor as a
2666 * holding descriptor - software does so by marking
2667 * it with the STALE flag.
2670 if (bf
->bf_state
.stale
) {
2672 if (list_is_last(&bf_held
->list
, &txq
->axq_q
))
2675 bf
= list_entry(bf_held
->list
.next
, struct ath_buf
,
2679 lastbf
= bf
->bf_lastbf
;
2680 ds
= lastbf
->bf_desc
;
2682 memset(&ts
, 0, sizeof(ts
));
2683 status
= ath9k_hw_txprocdesc(ah
, ds
, &ts
);
2684 if (status
== -EINPROGRESS
)
2687 TX_STAT_INC(sc
, txq
->axq_qnum
, txprocdesc
);
2690 * Remove ath_buf's of the same transmit unit from txq,
2691 * however leave the last descriptor back as the holding
2692 * descriptor for hw.
2694 lastbf
->bf_state
.stale
= true;
2695 INIT_LIST_HEAD(&bf_head
);
2696 if (!list_is_singular(&lastbf
->list
))
2697 list_cut_position(&bf_head
,
2698 &txq
->axq_q
, lastbf
->list
.prev
);
2701 list_del(&bf_held
->list
);
2702 ath_tx_return_buffer(sc
, bf_held
);
2705 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
2707 ath_txq_unlock_complete(sc
, txq
);
2710 void ath_tx_tasklet(struct ath_softc
*sc
)
2712 struct ath_hw
*ah
= sc
->sc_ah
;
2713 u32 qcumask
= ((1 << ATH9K_NUM_TX_QUEUES
) - 1) & ah
->intr_txqs
;
2717 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
2718 if (ATH_TXQ_SETUP(sc
, i
) && (qcumask
& (1 << i
)))
2719 ath_tx_processq(sc
, &sc
->tx
.txq
[i
]);
2724 void ath_tx_edma_tasklet(struct ath_softc
*sc
)
2726 struct ath_tx_status ts
;
2727 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2728 struct ath_hw
*ah
= sc
->sc_ah
;
2729 struct ath_txq
*txq
;
2730 struct ath_buf
*bf
, *lastbf
;
2731 struct list_head bf_head
;
2732 struct list_head
*fifo_list
;
2737 if (test_bit(ATH_OP_HW_RESET
, &common
->op_flags
))
2740 status
= ath9k_hw_txprocdesc(ah
, NULL
, (void *)&ts
);
2741 if (status
== -EINPROGRESS
)
2743 if (status
== -EIO
) {
2744 ath_dbg(common
, XMIT
, "Error processing tx status\n");
2748 /* Process beacon completions separately */
2749 if (ts
.qid
== sc
->beacon
.beaconq
) {
2750 sc
->beacon
.tx_processed
= true;
2751 sc
->beacon
.tx_last
= !(ts
.ts_status
& ATH9K_TXERR_MASK
);
2753 if (ath9k_is_chanctx_enabled()) {
2754 ath_chanctx_event(sc
, NULL
,
2755 ATH_CHANCTX_EVENT_BEACON_SENT
);
2758 ath9k_csa_update(sc
);
2762 txq
= &sc
->tx
.txq
[ts
.qid
];
2764 ath_txq_lock(sc
, txq
);
2766 TX_STAT_INC(sc
, txq
->axq_qnum
, txprocdesc
);
2768 fifo_list
= &txq
->txq_fifo
[txq
->txq_tailidx
];
2769 if (list_empty(fifo_list
)) {
2770 ath_txq_unlock(sc
, txq
);
2774 bf
= list_first_entry(fifo_list
, struct ath_buf
, list
);
2775 if (bf
->bf_state
.stale
) {
2776 list_del(&bf
->list
);
2777 ath_tx_return_buffer(sc
, bf
);
2778 bf
= list_first_entry(fifo_list
, struct ath_buf
, list
);
2781 lastbf
= bf
->bf_lastbf
;
2783 INIT_LIST_HEAD(&bf_head
);
2784 if (list_is_last(&lastbf
->list
, fifo_list
)) {
2785 list_splice_tail_init(fifo_list
, &bf_head
);
2786 INCR(txq
->txq_tailidx
, ATH_TXFIFO_DEPTH
);
2788 if (!list_empty(&txq
->axq_q
)) {
2789 struct list_head bf_q
;
2791 INIT_LIST_HEAD(&bf_q
);
2792 txq
->axq_link
= NULL
;
2793 list_splice_tail_init(&txq
->axq_q
, &bf_q
);
2794 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, true);
2797 lastbf
->bf_state
.stale
= true;
2799 list_cut_position(&bf_head
, fifo_list
,
2803 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
2804 ath_txq_unlock_complete(sc
, txq
);
2813 static int ath_txstatus_setup(struct ath_softc
*sc
, int size
)
2815 struct ath_descdma
*dd
= &sc
->txsdma
;
2816 u8 txs_len
= sc
->sc_ah
->caps
.txs_len
;
2818 dd
->dd_desc_len
= size
* txs_len
;
2819 dd
->dd_desc
= dmam_alloc_coherent(sc
->dev
, dd
->dd_desc_len
,
2820 &dd
->dd_desc_paddr
, GFP_KERNEL
);
2827 static int ath_tx_edma_init(struct ath_softc
*sc
)
2831 err
= ath_txstatus_setup(sc
, ATH_TXSTATUS_RING_SIZE
);
2833 ath9k_hw_setup_statusring(sc
->sc_ah
, sc
->txsdma
.dd_desc
,
2834 sc
->txsdma
.dd_desc_paddr
,
2835 ATH_TXSTATUS_RING_SIZE
);
2840 int ath_tx_init(struct ath_softc
*sc
, int nbufs
)
2842 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2845 spin_lock_init(&sc
->tx
.txbuflock
);
2847 error
= ath_descdma_setup(sc
, &sc
->tx
.txdma
, &sc
->tx
.txbuf
,
2851 "Failed to allocate tx descriptors: %d\n", error
);
2855 error
= ath_descdma_setup(sc
, &sc
->beacon
.bdma
, &sc
->beacon
.bbuf
,
2856 "beacon", ATH_BCBUF
, 1, 1);
2859 "Failed to allocate beacon descriptors: %d\n", error
);
2863 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
)
2864 error
= ath_tx_edma_init(sc
);
2869 void ath_tx_node_init(struct ath_softc
*sc
, struct ath_node
*an
)
2871 struct ath_atx_tid
*tid
;
2874 for (tidno
= 0; tidno
< IEEE80211_NUM_TIDS
; tidno
++) {
2875 tid
= ath_node_to_tid(an
, tidno
);
2878 tid
->seq_start
= tid
->seq_next
= 0;
2879 tid
->baw_size
= WME_MAX_BA
;
2880 tid
->baw_head
= tid
->baw_tail
= 0;
2881 tid
->active
= false;
2882 tid
->clear_ps_filter
= true;
2883 __skb_queue_head_init(&tid
->retry_q
);
2884 INIT_LIST_HEAD(&tid
->list
);
2885 acno
= TID_TO_WME_AC(tidno
);
2886 tid
->txq
= sc
->tx
.txq_map
[acno
];
2889 break; /* just one multicast ath_atx_tid */
2893 void ath_tx_node_cleanup(struct ath_softc
*sc
, struct ath_node
*an
)
2895 struct ath_atx_tid
*tid
;
2896 struct ath_txq
*txq
;
2901 for (tidno
= 0; tidno
< IEEE80211_NUM_TIDS
; tidno
++) {
2902 tid
= ath_node_to_tid(an
, tidno
);
2905 ath_txq_lock(sc
, txq
);
2907 if (!list_empty(&tid
->list
))
2908 list_del_init(&tid
->list
);
2910 ath_tid_drain(sc
, txq
, tid
);
2911 tid
->active
= false;
2913 ath_txq_unlock(sc
, txq
);
2916 break; /* just one multicast ath_atx_tid */
2922 #ifdef CONFIG_ATH9K_TX99
2924 int ath9k_tx99_send(struct ath_softc
*sc
, struct sk_buff
*skb
,
2925 struct ath_tx_control
*txctl
)
2927 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2928 struct ath_frame_info
*fi
= get_frame_info(skb
);
2929 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2931 int padpos
, padsize
;
2933 padpos
= ieee80211_hdrlen(hdr
->frame_control
);
2934 padsize
= padpos
& 3;
2936 if (padsize
&& skb
->len
> padpos
) {
2937 if (skb_headroom(skb
) < padsize
) {
2938 ath_dbg(common
, XMIT
,
2939 "tx99 padding failed\n");
2943 skb_push(skb
, padsize
);
2944 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
2947 fi
->keyix
= ATH9K_TXKEYIX_INVALID
;
2948 fi
->framelen
= skb
->len
+ FCS_LEN
;
2949 fi
->keytype
= ATH9K_KEY_TYPE_CLEAR
;
2951 bf
= ath_tx_setup_buffer(sc
, txctl
->txq
, NULL
, skb
);
2953 ath_dbg(common
, XMIT
, "tx99 buffer setup failed\n");
2957 ath_set_rates(sc
->tx99_vif
, NULL
, bf
);
2959 ath9k_hw_set_desc_link(sc
->sc_ah
, bf
->bf_desc
, bf
->bf_daddr
);
2960 ath9k_hw_tx99_start(sc
->sc_ah
, txctl
->txq
->axq_qnum
);
2962 ath_tx_send_normal(sc
, txctl
->txq
, NULL
, skb
);
2967 #endif /* CONFIG_ATH9K_TX99 */