drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / nvme / target / rdma.c
blob1afd93026f9bf0481de5910e84502078d5912766
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/nvme.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/wait.h>
18 #include <linux/inet.h>
19 #include <linux/unaligned.h>
21 #include <rdma/ib_verbs.h>
22 #include <rdma/rdma_cm.h>
23 #include <rdma/rw.h>
24 #include <rdma/ib_cm.h>
26 #include <linux/nvme-rdma.h>
27 #include "nvmet.h"
30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
33 #define NVMET_RDMA_MAX_INLINE_SGE 4
34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
36 /* Assume mpsmin == device_page_size == 4KB */
37 #define NVMET_RDMA_MAX_MDTS 8
38 #define NVMET_RDMA_MAX_METADATA_MDTS 5
40 #define NVMET_RDMA_BACKLOG 128
42 #define NVMET_RDMA_DISCRETE_RSP_TAG -1
44 struct nvmet_rdma_srq;
46 struct nvmet_rdma_cmd {
47 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
48 struct ib_cqe cqe;
49 struct ib_recv_wr wr;
50 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
51 struct nvme_command *nvme_cmd;
52 struct nvmet_rdma_queue *queue;
53 struct nvmet_rdma_srq *nsrq;
56 enum {
57 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
60 struct nvmet_rdma_rsp {
61 struct ib_sge send_sge;
62 struct ib_cqe send_cqe;
63 struct ib_send_wr send_wr;
65 struct nvmet_rdma_cmd *cmd;
66 struct nvmet_rdma_queue *queue;
68 struct ib_cqe read_cqe;
69 struct ib_cqe write_cqe;
70 struct rdma_rw_ctx rw;
72 struct nvmet_req req;
74 bool allocated;
75 u8 n_rdma;
76 u32 flags;
77 u32 invalidate_rkey;
79 struct list_head wait_list;
80 int tag;
83 enum nvmet_rdma_queue_state {
84 NVMET_RDMA_Q_CONNECTING,
85 NVMET_RDMA_Q_LIVE,
86 NVMET_RDMA_Q_DISCONNECTING,
89 struct nvmet_rdma_queue {
90 struct rdma_cm_id *cm_id;
91 struct ib_qp *qp;
92 struct nvmet_port *port;
93 struct ib_cq *cq;
94 atomic_t sq_wr_avail;
95 struct nvmet_rdma_device *dev;
96 struct nvmet_rdma_srq *nsrq;
97 spinlock_t state_lock;
98 enum nvmet_rdma_queue_state state;
99 struct nvmet_cq nvme_cq;
100 struct nvmet_sq nvme_sq;
102 struct nvmet_rdma_rsp *rsps;
103 struct sbitmap rsp_tags;
104 struct nvmet_rdma_cmd *cmds;
106 struct work_struct release_work;
107 struct list_head rsp_wait_list;
108 struct list_head rsp_wr_wait_list;
109 spinlock_t rsp_wr_wait_lock;
111 int idx;
112 int host_qid;
113 int comp_vector;
114 int recv_queue_size;
115 int send_queue_size;
117 struct list_head queue_list;
120 struct nvmet_rdma_port {
121 struct nvmet_port *nport;
122 struct sockaddr_storage addr;
123 struct rdma_cm_id *cm_id;
124 struct delayed_work repair_work;
127 struct nvmet_rdma_srq {
128 struct ib_srq *srq;
129 struct nvmet_rdma_cmd *cmds;
130 struct nvmet_rdma_device *ndev;
133 struct nvmet_rdma_device {
134 struct ib_device *device;
135 struct ib_pd *pd;
136 struct nvmet_rdma_srq **srqs;
137 int srq_count;
138 size_t srq_size;
139 struct kref ref;
140 struct list_head entry;
141 int inline_data_size;
142 int inline_page_count;
145 static bool nvmet_rdma_use_srq;
146 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
147 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
149 static int srq_size_set(const char *val, const struct kernel_param *kp);
150 static const struct kernel_param_ops srq_size_ops = {
151 .set = srq_size_set,
152 .get = param_get_int,
155 static int nvmet_rdma_srq_size = 1024;
156 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
157 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
159 static DEFINE_IDA(nvmet_rdma_queue_ida);
160 static LIST_HEAD(nvmet_rdma_queue_list);
161 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
163 static LIST_HEAD(device_list);
164 static DEFINE_MUTEX(device_list_mutex);
166 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
167 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
169 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
170 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
171 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
172 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
173 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
174 struct nvmet_rdma_rsp *r);
175 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
176 struct nvmet_rdma_rsp *r,
177 int tag);
179 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
181 static int srq_size_set(const char *val, const struct kernel_param *kp)
183 int n = 0, ret;
185 ret = kstrtoint(val, 10, &n);
186 if (ret != 0 || n < 256)
187 return -EINVAL;
189 return param_set_int(val, kp);
192 static int num_pages(int len)
194 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
197 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
199 return nvme_is_write(rsp->req.cmd) &&
200 rsp->req.transfer_len &&
201 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
204 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
206 return !nvme_is_write(rsp->req.cmd) &&
207 rsp->req.transfer_len &&
208 !rsp->req.cqe->status &&
209 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
212 static inline struct nvmet_rdma_rsp *
213 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
215 struct nvmet_rdma_rsp *rsp = NULL;
216 int tag;
218 tag = sbitmap_get(&queue->rsp_tags);
219 if (tag >= 0)
220 rsp = &queue->rsps[tag];
222 if (unlikely(!rsp)) {
223 int ret;
225 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
226 if (unlikely(!rsp))
227 return NULL;
228 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp,
229 NVMET_RDMA_DISCRETE_RSP_TAG);
230 if (unlikely(ret)) {
231 kfree(rsp);
232 return NULL;
236 return rsp;
239 static inline void
240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
242 if (unlikely(rsp->tag == NVMET_RDMA_DISCRETE_RSP_TAG)) {
243 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
244 kfree(rsp);
245 return;
248 sbitmap_clear_bit(&rsp->queue->rsp_tags, rsp->tag);
251 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
252 struct nvmet_rdma_cmd *c)
254 struct scatterlist *sg;
255 struct ib_sge *sge;
256 int i;
258 if (!ndev->inline_data_size)
259 return;
261 sg = c->inline_sg;
262 sge = &c->sge[1];
264 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
265 if (sge->length)
266 ib_dma_unmap_page(ndev->device, sge->addr,
267 sge->length, DMA_FROM_DEVICE);
268 if (sg_page(sg))
269 __free_page(sg_page(sg));
273 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
274 struct nvmet_rdma_cmd *c)
276 struct scatterlist *sg;
277 struct ib_sge *sge;
278 struct page *pg;
279 int len;
280 int i;
282 if (!ndev->inline_data_size)
283 return 0;
285 sg = c->inline_sg;
286 sg_init_table(sg, ndev->inline_page_count);
287 sge = &c->sge[1];
288 len = ndev->inline_data_size;
290 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
291 pg = alloc_page(GFP_KERNEL);
292 if (!pg)
293 goto out_err;
294 sg_assign_page(sg, pg);
295 sge->addr = ib_dma_map_page(ndev->device,
296 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
297 if (ib_dma_mapping_error(ndev->device, sge->addr))
298 goto out_err;
299 sge->length = min_t(int, len, PAGE_SIZE);
300 sge->lkey = ndev->pd->local_dma_lkey;
301 len -= sge->length;
304 return 0;
305 out_err:
306 for (; i >= 0; i--, sg--, sge--) {
307 if (sge->length)
308 ib_dma_unmap_page(ndev->device, sge->addr,
309 sge->length, DMA_FROM_DEVICE);
310 if (sg_page(sg))
311 __free_page(sg_page(sg));
313 return -ENOMEM;
316 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
317 struct nvmet_rdma_cmd *c, bool admin)
319 /* NVMe command / RDMA RECV */
320 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
321 if (!c->nvme_cmd)
322 goto out;
324 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
325 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
326 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
327 goto out_free_cmd;
329 c->sge[0].length = sizeof(*c->nvme_cmd);
330 c->sge[0].lkey = ndev->pd->local_dma_lkey;
332 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
333 goto out_unmap_cmd;
335 c->cqe.done = nvmet_rdma_recv_done;
337 c->wr.wr_cqe = &c->cqe;
338 c->wr.sg_list = c->sge;
339 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
341 return 0;
343 out_unmap_cmd:
344 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
345 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
346 out_free_cmd:
347 kfree(c->nvme_cmd);
349 out:
350 return -ENOMEM;
353 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
354 struct nvmet_rdma_cmd *c, bool admin)
356 if (!admin)
357 nvmet_rdma_free_inline_pages(ndev, c);
358 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
359 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
360 kfree(c->nvme_cmd);
363 static struct nvmet_rdma_cmd *
364 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
365 int nr_cmds, bool admin)
367 struct nvmet_rdma_cmd *cmds;
368 int ret = -EINVAL, i;
370 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
371 if (!cmds)
372 goto out;
374 for (i = 0; i < nr_cmds; i++) {
375 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
376 if (ret)
377 goto out_free;
380 return cmds;
382 out_free:
383 while (--i >= 0)
384 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
385 kfree(cmds);
386 out:
387 return ERR_PTR(ret);
390 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
391 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
393 int i;
395 for (i = 0; i < nr_cmds; i++)
396 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
397 kfree(cmds);
400 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
401 struct nvmet_rdma_rsp *r, int tag)
403 /* NVMe CQE / RDMA SEND */
404 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
405 if (!r->req.cqe)
406 goto out;
408 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
409 sizeof(*r->req.cqe), DMA_TO_DEVICE);
410 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
411 goto out_free_rsp;
413 if (ib_dma_pci_p2p_dma_supported(ndev->device))
414 r->req.p2p_client = &ndev->device->dev;
415 r->send_sge.length = sizeof(*r->req.cqe);
416 r->send_sge.lkey = ndev->pd->local_dma_lkey;
418 r->send_cqe.done = nvmet_rdma_send_done;
420 r->send_wr.wr_cqe = &r->send_cqe;
421 r->send_wr.sg_list = &r->send_sge;
422 r->send_wr.num_sge = 1;
423 r->send_wr.send_flags = IB_SEND_SIGNALED;
425 /* Data In / RDMA READ */
426 r->read_cqe.done = nvmet_rdma_read_data_done;
427 /* Data Out / RDMA WRITE */
428 r->write_cqe.done = nvmet_rdma_write_data_done;
429 r->tag = tag;
431 return 0;
433 out_free_rsp:
434 kfree(r->req.cqe);
435 out:
436 return -ENOMEM;
439 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
440 struct nvmet_rdma_rsp *r)
442 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
443 sizeof(*r->req.cqe), DMA_TO_DEVICE);
444 kfree(r->req.cqe);
447 static int
448 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
450 struct nvmet_rdma_device *ndev = queue->dev;
451 int nr_rsps = queue->recv_queue_size * 2;
452 int ret = -ENOMEM, i;
454 if (sbitmap_init_node(&queue->rsp_tags, nr_rsps, -1, GFP_KERNEL,
455 NUMA_NO_NODE, false, true))
456 goto out;
458 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
459 GFP_KERNEL);
460 if (!queue->rsps)
461 goto out_free_sbitmap;
463 for (i = 0; i < nr_rsps; i++) {
464 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
466 ret = nvmet_rdma_alloc_rsp(ndev, rsp, i);
467 if (ret)
468 goto out_free;
471 return 0;
473 out_free:
474 while (--i >= 0)
475 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]);
476 kfree(queue->rsps);
477 out_free_sbitmap:
478 sbitmap_free(&queue->rsp_tags);
479 out:
480 return ret;
483 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
485 struct nvmet_rdma_device *ndev = queue->dev;
486 int i, nr_rsps = queue->recv_queue_size * 2;
488 for (i = 0; i < nr_rsps; i++)
489 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]);
490 kfree(queue->rsps);
491 sbitmap_free(&queue->rsp_tags);
494 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
495 struct nvmet_rdma_cmd *cmd)
497 int ret;
499 ib_dma_sync_single_for_device(ndev->device,
500 cmd->sge[0].addr, cmd->sge[0].length,
501 DMA_FROM_DEVICE);
503 if (cmd->nsrq)
504 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
505 else
506 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
508 if (unlikely(ret))
509 pr_err("post_recv cmd failed\n");
511 return ret;
514 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
516 spin_lock(&queue->rsp_wr_wait_lock);
517 while (!list_empty(&queue->rsp_wr_wait_list)) {
518 struct nvmet_rdma_rsp *rsp;
519 bool ret;
521 rsp = list_entry(queue->rsp_wr_wait_list.next,
522 struct nvmet_rdma_rsp, wait_list);
523 list_del(&rsp->wait_list);
525 spin_unlock(&queue->rsp_wr_wait_lock);
526 ret = nvmet_rdma_execute_command(rsp);
527 spin_lock(&queue->rsp_wr_wait_lock);
529 if (!ret) {
530 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
531 break;
534 spin_unlock(&queue->rsp_wr_wait_lock);
537 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
539 struct ib_mr_status mr_status;
540 int ret;
541 u16 status = 0;
543 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
544 if (ret) {
545 pr_err("ib_check_mr_status failed, ret %d\n", ret);
546 return NVME_SC_INVALID_PI;
549 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
550 switch (mr_status.sig_err.err_type) {
551 case IB_SIG_BAD_GUARD:
552 status = NVME_SC_GUARD_CHECK;
553 break;
554 case IB_SIG_BAD_REFTAG:
555 status = NVME_SC_REFTAG_CHECK;
556 break;
557 case IB_SIG_BAD_APPTAG:
558 status = NVME_SC_APPTAG_CHECK;
559 break;
561 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
562 mr_status.sig_err.err_type,
563 mr_status.sig_err.expected,
564 mr_status.sig_err.actual);
567 return status;
570 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
571 struct nvme_command *cmd, struct ib_sig_domain *domain,
572 u16 control, u8 pi_type)
574 domain->sig_type = IB_SIG_TYPE_T10_DIF;
575 domain->sig.dif.bg_type = IB_T10DIF_CRC;
576 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
577 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
578 if (control & NVME_RW_PRINFO_PRCHK_REF)
579 domain->sig.dif.ref_remap = true;
581 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat);
582 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm);
583 domain->sig.dif.app_escape = true;
584 if (pi_type == NVME_NS_DPS_PI_TYPE3)
585 domain->sig.dif.ref_escape = true;
588 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
589 struct ib_sig_attrs *sig_attrs)
591 struct nvme_command *cmd = req->cmd;
592 u16 control = le16_to_cpu(cmd->rw.control);
593 u8 pi_type = req->ns->pi_type;
594 struct blk_integrity *bi;
596 bi = bdev_get_integrity(req->ns->bdev);
598 memset(sig_attrs, 0, sizeof(*sig_attrs));
600 if (control & NVME_RW_PRINFO_PRACT) {
601 /* for WRITE_INSERT/READ_STRIP no wire domain */
602 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
603 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
604 pi_type);
605 /* Clear the PRACT bit since HCA will generate/verify the PI */
606 control &= ~NVME_RW_PRINFO_PRACT;
607 cmd->rw.control = cpu_to_le16(control);
608 /* PI is added by the HW */
609 req->transfer_len += req->metadata_len;
610 } else {
611 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
612 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
613 pi_type);
614 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
615 pi_type);
618 if (control & NVME_RW_PRINFO_PRCHK_REF)
619 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
620 if (control & NVME_RW_PRINFO_PRCHK_GUARD)
621 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
622 if (control & NVME_RW_PRINFO_PRCHK_APP)
623 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
626 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
627 struct ib_sig_attrs *sig_attrs)
629 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
630 struct nvmet_req *req = &rsp->req;
631 int ret;
633 if (req->metadata_len)
634 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
635 cm_id->port_num, req->sg, req->sg_cnt,
636 req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
637 addr, key, nvmet_data_dir(req));
638 else
639 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
640 req->sg, req->sg_cnt, 0, addr, key,
641 nvmet_data_dir(req));
643 return ret;
646 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
648 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
649 struct nvmet_req *req = &rsp->req;
651 if (req->metadata_len)
652 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
653 cm_id->port_num, req->sg, req->sg_cnt,
654 req->metadata_sg, req->metadata_sg_cnt,
655 nvmet_data_dir(req));
656 else
657 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
658 req->sg, req->sg_cnt, nvmet_data_dir(req));
661 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
663 struct nvmet_rdma_queue *queue = rsp->queue;
665 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
667 if (rsp->n_rdma)
668 nvmet_rdma_rw_ctx_destroy(rsp);
670 if (rsp->req.sg != rsp->cmd->inline_sg)
671 nvmet_req_free_sgls(&rsp->req);
673 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
674 nvmet_rdma_process_wr_wait_list(queue);
676 nvmet_rdma_put_rsp(rsp);
679 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
681 if (queue->nvme_sq.ctrl) {
682 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
683 } else {
685 * we didn't setup the controller yet in case
686 * of admin connect error, just disconnect and
687 * cleanup the queue
689 nvmet_rdma_queue_disconnect(queue);
693 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
695 struct nvmet_rdma_rsp *rsp =
696 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
697 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
699 nvmet_rdma_release_rsp(rsp);
701 if (unlikely(wc->status != IB_WC_SUCCESS &&
702 wc->status != IB_WC_WR_FLUSH_ERR)) {
703 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
704 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
705 nvmet_rdma_error_comp(queue);
709 static void nvmet_rdma_queue_response(struct nvmet_req *req)
711 struct nvmet_rdma_rsp *rsp =
712 container_of(req, struct nvmet_rdma_rsp, req);
713 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
714 struct ib_send_wr *first_wr;
716 if (rsp->invalidate_rkey) {
717 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
718 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
719 } else {
720 rsp->send_wr.opcode = IB_WR_SEND;
723 if (nvmet_rdma_need_data_out(rsp)) {
724 if (rsp->req.metadata_len)
725 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
726 cm_id->port_num, &rsp->write_cqe, NULL);
727 else
728 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
729 cm_id->port_num, NULL, &rsp->send_wr);
730 } else {
731 first_wr = &rsp->send_wr;
734 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
736 ib_dma_sync_single_for_device(rsp->queue->dev->device,
737 rsp->send_sge.addr, rsp->send_sge.length,
738 DMA_TO_DEVICE);
740 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
741 pr_err("sending cmd response failed\n");
742 nvmet_rdma_release_rsp(rsp);
746 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
748 struct nvmet_rdma_rsp *rsp =
749 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
750 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
751 u16 status = 0;
753 WARN_ON(rsp->n_rdma <= 0);
754 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
755 rsp->n_rdma = 0;
757 if (unlikely(wc->status != IB_WC_SUCCESS)) {
758 nvmet_rdma_rw_ctx_destroy(rsp);
759 nvmet_req_uninit(&rsp->req);
760 nvmet_rdma_release_rsp(rsp);
761 if (wc->status != IB_WC_WR_FLUSH_ERR) {
762 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
763 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
764 nvmet_rdma_error_comp(queue);
766 return;
769 if (rsp->req.metadata_len)
770 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
771 nvmet_rdma_rw_ctx_destroy(rsp);
773 if (unlikely(status))
774 nvmet_req_complete(&rsp->req, status);
775 else
776 rsp->req.execute(&rsp->req);
779 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
781 struct nvmet_rdma_rsp *rsp =
782 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
783 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
784 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
785 u16 status;
787 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
788 return;
790 WARN_ON(rsp->n_rdma <= 0);
791 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
792 rsp->n_rdma = 0;
794 if (unlikely(wc->status != IB_WC_SUCCESS)) {
795 nvmet_rdma_rw_ctx_destroy(rsp);
796 nvmet_req_uninit(&rsp->req);
797 nvmet_rdma_release_rsp(rsp);
798 if (wc->status != IB_WC_WR_FLUSH_ERR) {
799 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
800 ib_wc_status_msg(wc->status), wc->status);
801 nvmet_rdma_error_comp(queue);
803 return;
807 * Upon RDMA completion check the signature status
808 * - if succeeded send good NVMe response
809 * - if failed send bad NVMe response with appropriate error
811 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
812 if (unlikely(status))
813 rsp->req.cqe->status = cpu_to_le16(status << 1);
814 nvmet_rdma_rw_ctx_destroy(rsp);
816 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
817 pr_err("sending cmd response failed\n");
818 nvmet_rdma_release_rsp(rsp);
822 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
823 u64 off)
825 int sg_count = num_pages(len);
826 struct scatterlist *sg;
827 int i;
829 sg = rsp->cmd->inline_sg;
830 for (i = 0; i < sg_count; i++, sg++) {
831 if (i < sg_count - 1)
832 sg_unmark_end(sg);
833 else
834 sg_mark_end(sg);
835 sg->offset = off;
836 sg->length = min_t(int, len, PAGE_SIZE - off);
837 len -= sg->length;
838 if (!i)
839 off = 0;
842 rsp->req.sg = rsp->cmd->inline_sg;
843 rsp->req.sg_cnt = sg_count;
846 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
848 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
849 u64 off = le64_to_cpu(sgl->addr);
850 u32 len = le32_to_cpu(sgl->length);
852 if (!nvme_is_write(rsp->req.cmd)) {
853 rsp->req.error_loc =
854 offsetof(struct nvme_common_command, opcode);
855 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
858 if (off + len > rsp->queue->dev->inline_data_size) {
859 pr_err("invalid inline data offset!\n");
860 return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
863 /* no data command? */
864 if (!len)
865 return 0;
867 nvmet_rdma_use_inline_sg(rsp, len, off);
868 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
869 rsp->req.transfer_len += len;
870 return 0;
873 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
874 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
876 u64 addr = le64_to_cpu(sgl->addr);
877 u32 key = get_unaligned_le32(sgl->key);
878 struct ib_sig_attrs sig_attrs;
879 int ret;
881 rsp->req.transfer_len = get_unaligned_le24(sgl->length);
883 /* no data command? */
884 if (!rsp->req.transfer_len)
885 return 0;
887 if (rsp->req.metadata_len)
888 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
890 ret = nvmet_req_alloc_sgls(&rsp->req);
891 if (unlikely(ret < 0))
892 goto error_out;
894 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
895 if (unlikely(ret < 0))
896 goto error_out;
897 rsp->n_rdma += ret;
899 if (invalidate)
900 rsp->invalidate_rkey = key;
902 return 0;
904 error_out:
905 rsp->req.transfer_len = 0;
906 return NVME_SC_INTERNAL;
909 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
911 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
913 switch (sgl->type >> 4) {
914 case NVME_SGL_FMT_DATA_DESC:
915 switch (sgl->type & 0xf) {
916 case NVME_SGL_FMT_OFFSET:
917 return nvmet_rdma_map_sgl_inline(rsp);
918 default:
919 pr_err("invalid SGL subtype: %#x\n", sgl->type);
920 rsp->req.error_loc =
921 offsetof(struct nvme_common_command, dptr);
922 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
924 case NVME_KEY_SGL_FMT_DATA_DESC:
925 switch (sgl->type & 0xf) {
926 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
927 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
928 case NVME_SGL_FMT_ADDRESS:
929 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
930 default:
931 pr_err("invalid SGL subtype: %#x\n", sgl->type);
932 rsp->req.error_loc =
933 offsetof(struct nvme_common_command, dptr);
934 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
936 default:
937 pr_err("invalid SGL type: %#x\n", sgl->type);
938 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
939 return NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR;
943 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
945 struct nvmet_rdma_queue *queue = rsp->queue;
947 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
948 &queue->sq_wr_avail) < 0)) {
949 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
950 1 + rsp->n_rdma, queue->idx,
951 queue->nvme_sq.ctrl->cntlid);
952 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
953 return false;
956 if (nvmet_rdma_need_data_in(rsp)) {
957 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
958 queue->cm_id->port_num, &rsp->read_cqe, NULL))
959 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
960 } else {
961 rsp->req.execute(&rsp->req);
964 return true;
967 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
968 struct nvmet_rdma_rsp *cmd)
970 u16 status;
972 ib_dma_sync_single_for_cpu(queue->dev->device,
973 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
974 DMA_FROM_DEVICE);
975 ib_dma_sync_single_for_cpu(queue->dev->device,
976 cmd->send_sge.addr, cmd->send_sge.length,
977 DMA_TO_DEVICE);
979 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
980 &queue->nvme_sq, &nvmet_rdma_ops))
981 return;
983 status = nvmet_rdma_map_sgl(cmd);
984 if (status)
985 goto out_err;
987 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
988 spin_lock(&queue->rsp_wr_wait_lock);
989 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
990 spin_unlock(&queue->rsp_wr_wait_lock);
993 return;
995 out_err:
996 nvmet_req_complete(&cmd->req, status);
999 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1001 struct nvmet_rdma_cmd *cmd =
1002 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1003 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1004 struct nvmet_rdma_rsp *rsp;
1006 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1007 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1008 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1009 wc->wr_cqe, ib_wc_status_msg(wc->status),
1010 wc->status);
1011 nvmet_rdma_error_comp(queue);
1013 return;
1016 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1017 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1018 nvmet_rdma_error_comp(queue);
1019 return;
1022 cmd->queue = queue;
1023 rsp = nvmet_rdma_get_rsp(queue);
1024 if (unlikely(!rsp)) {
1026 * we get here only under memory pressure,
1027 * silently drop and have the host retry
1028 * as we can't even fail it.
1030 nvmet_rdma_post_recv(queue->dev, cmd);
1031 return;
1033 rsp->queue = queue;
1034 rsp->cmd = cmd;
1035 rsp->flags = 0;
1036 rsp->req.cmd = cmd->nvme_cmd;
1037 rsp->req.port = queue->port;
1038 rsp->n_rdma = 0;
1039 rsp->invalidate_rkey = 0;
1041 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1042 unsigned long flags;
1044 spin_lock_irqsave(&queue->state_lock, flags);
1045 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1046 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1047 else
1048 nvmet_rdma_put_rsp(rsp);
1049 spin_unlock_irqrestore(&queue->state_lock, flags);
1050 return;
1053 nvmet_rdma_handle_command(queue, rsp);
1056 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1058 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1059 false);
1060 ib_destroy_srq(nsrq->srq);
1062 kfree(nsrq);
1065 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1067 int i;
1069 if (!ndev->srqs)
1070 return;
1072 for (i = 0; i < ndev->srq_count; i++)
1073 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1075 kfree(ndev->srqs);
1078 static struct nvmet_rdma_srq *
1079 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1081 struct ib_srq_init_attr srq_attr = { NULL, };
1082 size_t srq_size = ndev->srq_size;
1083 struct nvmet_rdma_srq *nsrq;
1084 struct ib_srq *srq;
1085 int ret, i;
1087 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1088 if (!nsrq)
1089 return ERR_PTR(-ENOMEM);
1091 srq_attr.attr.max_wr = srq_size;
1092 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1093 srq_attr.attr.srq_limit = 0;
1094 srq_attr.srq_type = IB_SRQT_BASIC;
1095 srq = ib_create_srq(ndev->pd, &srq_attr);
1096 if (IS_ERR(srq)) {
1097 ret = PTR_ERR(srq);
1098 goto out_free;
1101 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1102 if (IS_ERR(nsrq->cmds)) {
1103 ret = PTR_ERR(nsrq->cmds);
1104 goto out_destroy_srq;
1107 nsrq->srq = srq;
1108 nsrq->ndev = ndev;
1110 for (i = 0; i < srq_size; i++) {
1111 nsrq->cmds[i].nsrq = nsrq;
1112 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1113 if (ret)
1114 goto out_free_cmds;
1117 return nsrq;
1119 out_free_cmds:
1120 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1121 out_destroy_srq:
1122 ib_destroy_srq(srq);
1123 out_free:
1124 kfree(nsrq);
1125 return ERR_PTR(ret);
1128 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1130 int i, ret;
1132 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1134 * If SRQs aren't supported we just go ahead and use normal
1135 * non-shared receive queues.
1137 pr_info("SRQ requested but not supported.\n");
1138 return 0;
1141 ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1142 nvmet_rdma_srq_size);
1143 ndev->srq_count = min(ndev->device->num_comp_vectors,
1144 ndev->device->attrs.max_srq);
1146 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1147 if (!ndev->srqs)
1148 return -ENOMEM;
1150 for (i = 0; i < ndev->srq_count; i++) {
1151 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1152 if (IS_ERR(ndev->srqs[i])) {
1153 ret = PTR_ERR(ndev->srqs[i]);
1154 goto err_srq;
1158 return 0;
1160 err_srq:
1161 while (--i >= 0)
1162 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1163 kfree(ndev->srqs);
1164 return ret;
1167 static void nvmet_rdma_free_dev(struct kref *ref)
1169 struct nvmet_rdma_device *ndev =
1170 container_of(ref, struct nvmet_rdma_device, ref);
1172 mutex_lock(&device_list_mutex);
1173 list_del(&ndev->entry);
1174 mutex_unlock(&device_list_mutex);
1176 nvmet_rdma_destroy_srqs(ndev);
1177 ib_dealloc_pd(ndev->pd);
1179 kfree(ndev);
1182 static struct nvmet_rdma_device *
1183 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1185 struct nvmet_rdma_port *port = cm_id->context;
1186 struct nvmet_port *nport = port->nport;
1187 struct nvmet_rdma_device *ndev;
1188 int inline_page_count;
1189 int inline_sge_count;
1190 int ret;
1192 mutex_lock(&device_list_mutex);
1193 list_for_each_entry(ndev, &device_list, entry) {
1194 if (ndev->device->node_guid == cm_id->device->node_guid &&
1195 kref_get_unless_zero(&ndev->ref))
1196 goto out_unlock;
1199 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1200 if (!ndev)
1201 goto out_err;
1203 inline_page_count = num_pages(nport->inline_data_size);
1204 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1205 cm_id->device->attrs.max_recv_sge) - 1;
1206 if (inline_page_count > inline_sge_count) {
1207 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1208 nport->inline_data_size, cm_id->device->name,
1209 inline_sge_count * PAGE_SIZE);
1210 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1211 inline_page_count = inline_sge_count;
1213 ndev->inline_data_size = nport->inline_data_size;
1214 ndev->inline_page_count = inline_page_count;
1216 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1217 IBK_INTEGRITY_HANDOVER)) {
1218 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1219 cm_id->device->name);
1220 nport->pi_enable = false;
1223 ndev->device = cm_id->device;
1224 kref_init(&ndev->ref);
1226 ndev->pd = ib_alloc_pd(ndev->device, 0);
1227 if (IS_ERR(ndev->pd))
1228 goto out_free_dev;
1230 if (nvmet_rdma_use_srq) {
1231 ret = nvmet_rdma_init_srqs(ndev);
1232 if (ret)
1233 goto out_free_pd;
1236 list_add(&ndev->entry, &device_list);
1237 out_unlock:
1238 mutex_unlock(&device_list_mutex);
1239 pr_debug("added %s.\n", ndev->device->name);
1240 return ndev;
1242 out_free_pd:
1243 ib_dealloc_pd(ndev->pd);
1244 out_free_dev:
1245 kfree(ndev);
1246 out_err:
1247 mutex_unlock(&device_list_mutex);
1248 return NULL;
1251 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1253 struct ib_qp_init_attr qp_attr = { };
1254 struct nvmet_rdma_device *ndev = queue->dev;
1255 int nr_cqe, ret, i, factor;
1258 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1260 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1262 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1263 queue->comp_vector, IB_POLL_WORKQUEUE);
1264 if (IS_ERR(queue->cq)) {
1265 ret = PTR_ERR(queue->cq);
1266 pr_err("failed to create CQ cqe= %d ret= %d\n",
1267 nr_cqe + 1, ret);
1268 goto out;
1271 qp_attr.qp_context = queue;
1272 qp_attr.event_handler = nvmet_rdma_qp_event;
1273 qp_attr.send_cq = queue->cq;
1274 qp_attr.recv_cq = queue->cq;
1275 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1276 qp_attr.qp_type = IB_QPT_RC;
1277 /* +1 for drain */
1278 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1279 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1280 1 << NVMET_RDMA_MAX_MDTS);
1281 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1282 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1283 ndev->device->attrs.max_send_sge);
1285 if (queue->nsrq) {
1286 qp_attr.srq = queue->nsrq->srq;
1287 } else {
1288 /* +1 for drain */
1289 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1290 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1293 if (queue->port->pi_enable && queue->host_qid)
1294 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1296 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1297 if (ret) {
1298 pr_err("failed to create_qp ret= %d\n", ret);
1299 goto err_destroy_cq;
1301 queue->qp = queue->cm_id->qp;
1303 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1305 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1306 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1307 qp_attr.cap.max_send_wr, queue->cm_id);
1309 if (!queue->nsrq) {
1310 for (i = 0; i < queue->recv_queue_size; i++) {
1311 queue->cmds[i].queue = queue;
1312 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1313 if (ret)
1314 goto err_destroy_qp;
1318 out:
1319 return ret;
1321 err_destroy_qp:
1322 rdma_destroy_qp(queue->cm_id);
1323 err_destroy_cq:
1324 ib_cq_pool_put(queue->cq, nr_cqe + 1);
1325 goto out;
1328 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1330 ib_drain_qp(queue->qp);
1331 if (queue->cm_id)
1332 rdma_destroy_id(queue->cm_id);
1333 ib_destroy_qp(queue->qp);
1334 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1335 queue->send_queue_size + 1);
1338 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1340 pr_debug("freeing queue %d\n", queue->idx);
1342 nvmet_sq_destroy(&queue->nvme_sq);
1344 nvmet_rdma_destroy_queue_ib(queue);
1345 if (!queue->nsrq) {
1346 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1347 queue->recv_queue_size,
1348 !queue->host_qid);
1350 nvmet_rdma_free_rsps(queue);
1351 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1352 kfree(queue);
1355 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1357 struct nvmet_rdma_queue *queue =
1358 container_of(w, struct nvmet_rdma_queue, release_work);
1359 struct nvmet_rdma_device *dev = queue->dev;
1361 nvmet_rdma_free_queue(queue);
1363 kref_put(&dev->ref, nvmet_rdma_free_dev);
1366 static int
1367 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1368 struct nvmet_rdma_queue *queue)
1370 struct nvme_rdma_cm_req *req;
1372 req = (struct nvme_rdma_cm_req *)conn->private_data;
1373 if (!req || conn->private_data_len == 0)
1374 return NVME_RDMA_CM_INVALID_LEN;
1376 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1377 return NVME_RDMA_CM_INVALID_RECFMT;
1379 queue->host_qid = le16_to_cpu(req->qid);
1382 * req->hsqsize corresponds to our recv queue size plus 1
1383 * req->hrqsize corresponds to our send queue size
1385 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1386 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1388 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1389 return NVME_RDMA_CM_INVALID_HSQSIZE;
1391 /* XXX: Should we enforce some kind of max for IO queues? */
1393 return 0;
1396 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1397 enum nvme_rdma_cm_status status)
1399 struct nvme_rdma_cm_rej rej;
1401 pr_debug("rejecting connect request: status %d (%s)\n",
1402 status, nvme_rdma_cm_msg(status));
1404 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1405 rej.sts = cpu_to_le16(status);
1407 return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1408 IB_CM_REJ_CONSUMER_DEFINED);
1411 static struct nvmet_rdma_queue *
1412 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1413 struct rdma_cm_id *cm_id,
1414 struct rdma_cm_event *event)
1416 struct nvmet_rdma_port *port = cm_id->context;
1417 struct nvmet_rdma_queue *queue;
1418 int ret;
1420 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1421 if (!queue) {
1422 ret = NVME_RDMA_CM_NO_RSC;
1423 goto out_reject;
1426 ret = nvmet_sq_init(&queue->nvme_sq);
1427 if (ret) {
1428 ret = NVME_RDMA_CM_NO_RSC;
1429 goto out_free_queue;
1432 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1433 if (ret)
1434 goto out_destroy_sq;
1437 * Schedules the actual release because calling rdma_destroy_id from
1438 * inside a CM callback would trigger a deadlock. (great API design..)
1440 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1441 queue->dev = ndev;
1442 queue->cm_id = cm_id;
1443 queue->port = port->nport;
1445 spin_lock_init(&queue->state_lock);
1446 queue->state = NVMET_RDMA_Q_CONNECTING;
1447 INIT_LIST_HEAD(&queue->rsp_wait_list);
1448 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1449 spin_lock_init(&queue->rsp_wr_wait_lock);
1450 INIT_LIST_HEAD(&queue->queue_list);
1452 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
1453 if (queue->idx < 0) {
1454 ret = NVME_RDMA_CM_NO_RSC;
1455 goto out_destroy_sq;
1459 * Spread the io queues across completion vectors,
1460 * but still keep all admin queues on vector 0.
1462 queue->comp_vector = !queue->host_qid ? 0 :
1463 queue->idx % ndev->device->num_comp_vectors;
1466 ret = nvmet_rdma_alloc_rsps(queue);
1467 if (ret) {
1468 ret = NVME_RDMA_CM_NO_RSC;
1469 goto out_ida_remove;
1472 if (ndev->srqs) {
1473 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1474 } else {
1475 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1476 queue->recv_queue_size,
1477 !queue->host_qid);
1478 if (IS_ERR(queue->cmds)) {
1479 ret = NVME_RDMA_CM_NO_RSC;
1480 goto out_free_responses;
1484 ret = nvmet_rdma_create_queue_ib(queue);
1485 if (ret) {
1486 pr_err("%s: creating RDMA queue failed (%d).\n",
1487 __func__, ret);
1488 ret = NVME_RDMA_CM_NO_RSC;
1489 goto out_free_cmds;
1492 return queue;
1494 out_free_cmds:
1495 if (!queue->nsrq) {
1496 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1497 queue->recv_queue_size,
1498 !queue->host_qid);
1500 out_free_responses:
1501 nvmet_rdma_free_rsps(queue);
1502 out_ida_remove:
1503 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1504 out_destroy_sq:
1505 nvmet_sq_destroy(&queue->nvme_sq);
1506 out_free_queue:
1507 kfree(queue);
1508 out_reject:
1509 nvmet_rdma_cm_reject(cm_id, ret);
1510 return NULL;
1513 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1515 struct nvmet_rdma_queue *queue = priv;
1517 switch (event->event) {
1518 case IB_EVENT_COMM_EST:
1519 rdma_notify(queue->cm_id, event->event);
1520 break;
1521 case IB_EVENT_QP_LAST_WQE_REACHED:
1522 pr_debug("received last WQE reached event for queue=0x%p\n",
1523 queue);
1524 break;
1525 default:
1526 pr_err("received IB QP event: %s (%d)\n",
1527 ib_event_msg(event->event), event->event);
1528 break;
1532 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1533 struct nvmet_rdma_queue *queue,
1534 struct rdma_conn_param *p)
1536 struct rdma_conn_param param = { };
1537 struct nvme_rdma_cm_rep priv = { };
1538 int ret = -ENOMEM;
1540 param.rnr_retry_count = 7;
1541 param.flow_control = 1;
1542 param.initiator_depth = min_t(u8, p->initiator_depth,
1543 queue->dev->device->attrs.max_qp_init_rd_atom);
1544 param.private_data = &priv;
1545 param.private_data_len = sizeof(priv);
1546 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1547 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1549 ret = rdma_accept(cm_id, &param);
1550 if (ret)
1551 pr_err("rdma_accept failed (error code = %d)\n", ret);
1553 return ret;
1556 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1557 struct rdma_cm_event *event)
1559 struct nvmet_rdma_device *ndev;
1560 struct nvmet_rdma_queue *queue;
1561 int ret = -EINVAL;
1563 ndev = nvmet_rdma_find_get_device(cm_id);
1564 if (!ndev) {
1565 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1566 return -ECONNREFUSED;
1569 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1570 if (!queue) {
1571 ret = -ENOMEM;
1572 goto put_device;
1575 if (queue->host_qid == 0) {
1576 struct nvmet_rdma_queue *q;
1577 int pending = 0;
1579 /* Check for pending controller teardown */
1580 mutex_lock(&nvmet_rdma_queue_mutex);
1581 list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) {
1582 if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl &&
1583 q->state == NVMET_RDMA_Q_DISCONNECTING)
1584 pending++;
1586 mutex_unlock(&nvmet_rdma_queue_mutex);
1587 if (pending > NVMET_RDMA_BACKLOG)
1588 return NVME_SC_CONNECT_CTRL_BUSY;
1591 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1592 if (ret) {
1594 * Don't destroy the cm_id in free path, as we implicitly
1595 * destroy the cm_id here with non-zero ret code.
1597 queue->cm_id = NULL;
1598 goto free_queue;
1601 mutex_lock(&nvmet_rdma_queue_mutex);
1602 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1603 mutex_unlock(&nvmet_rdma_queue_mutex);
1605 return 0;
1607 free_queue:
1608 nvmet_rdma_free_queue(queue);
1609 put_device:
1610 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1612 return ret;
1615 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1617 unsigned long flags;
1619 spin_lock_irqsave(&queue->state_lock, flags);
1620 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1621 pr_warn("trying to establish a connected queue\n");
1622 goto out_unlock;
1624 queue->state = NVMET_RDMA_Q_LIVE;
1626 while (!list_empty(&queue->rsp_wait_list)) {
1627 struct nvmet_rdma_rsp *cmd;
1629 cmd = list_first_entry(&queue->rsp_wait_list,
1630 struct nvmet_rdma_rsp, wait_list);
1631 list_del(&cmd->wait_list);
1633 spin_unlock_irqrestore(&queue->state_lock, flags);
1634 nvmet_rdma_handle_command(queue, cmd);
1635 spin_lock_irqsave(&queue->state_lock, flags);
1638 out_unlock:
1639 spin_unlock_irqrestore(&queue->state_lock, flags);
1642 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1644 bool disconnect = false;
1645 unsigned long flags;
1647 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1649 spin_lock_irqsave(&queue->state_lock, flags);
1650 switch (queue->state) {
1651 case NVMET_RDMA_Q_CONNECTING:
1652 while (!list_empty(&queue->rsp_wait_list)) {
1653 struct nvmet_rdma_rsp *rsp;
1655 rsp = list_first_entry(&queue->rsp_wait_list,
1656 struct nvmet_rdma_rsp,
1657 wait_list);
1658 list_del(&rsp->wait_list);
1659 nvmet_rdma_put_rsp(rsp);
1661 fallthrough;
1662 case NVMET_RDMA_Q_LIVE:
1663 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1664 disconnect = true;
1665 break;
1666 case NVMET_RDMA_Q_DISCONNECTING:
1667 break;
1669 spin_unlock_irqrestore(&queue->state_lock, flags);
1671 if (disconnect) {
1672 rdma_disconnect(queue->cm_id);
1673 queue_work(nvmet_wq, &queue->release_work);
1677 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1679 bool disconnect = false;
1681 mutex_lock(&nvmet_rdma_queue_mutex);
1682 if (!list_empty(&queue->queue_list)) {
1683 list_del_init(&queue->queue_list);
1684 disconnect = true;
1686 mutex_unlock(&nvmet_rdma_queue_mutex);
1688 if (disconnect)
1689 __nvmet_rdma_queue_disconnect(queue);
1692 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1693 struct nvmet_rdma_queue *queue)
1695 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1697 mutex_lock(&nvmet_rdma_queue_mutex);
1698 if (!list_empty(&queue->queue_list))
1699 list_del_init(&queue->queue_list);
1700 mutex_unlock(&nvmet_rdma_queue_mutex);
1702 pr_err("failed to connect queue %d\n", queue->idx);
1703 queue_work(nvmet_wq, &queue->release_work);
1707 * nvmet_rdma_device_removal() - Handle RDMA device removal
1708 * @cm_id: rdma_cm id, used for nvmet port
1709 * @queue: nvmet rdma queue (cm id qp_context)
1711 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1712 * to unplug. Note that this event can be generated on a normal
1713 * queue cm_id and/or a device bound listener cm_id (where in this
1714 * case queue will be null).
1716 * We registered an ib_client to handle device removal for queues,
1717 * so we only need to handle the listening port cm_ids. In this case
1718 * we nullify the priv to prevent double cm_id destruction and destroying
1719 * the cm_id implicitely by returning a non-zero rc to the callout.
1721 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1722 struct nvmet_rdma_queue *queue)
1724 struct nvmet_rdma_port *port;
1726 if (queue) {
1728 * This is a queue cm_id. we have registered
1729 * an ib_client to handle queues removal
1730 * so don't interfear and just return.
1732 return 0;
1735 port = cm_id->context;
1738 * This is a listener cm_id. Make sure that
1739 * future remove_port won't invoke a double
1740 * cm_id destroy. use atomic xchg to make sure
1741 * we don't compete with remove_port.
1743 if (xchg(&port->cm_id, NULL) != cm_id)
1744 return 0;
1747 * We need to return 1 so that the core will destroy
1748 * it's own ID. What a great API design..
1750 return 1;
1753 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1754 struct rdma_cm_event *event)
1756 struct nvmet_rdma_queue *queue = NULL;
1757 int ret = 0;
1759 if (cm_id->qp)
1760 queue = cm_id->qp->qp_context;
1762 pr_debug("%s (%d): status %d id %p\n",
1763 rdma_event_msg(event->event), event->event,
1764 event->status, cm_id);
1766 switch (event->event) {
1767 case RDMA_CM_EVENT_CONNECT_REQUEST:
1768 ret = nvmet_rdma_queue_connect(cm_id, event);
1769 break;
1770 case RDMA_CM_EVENT_ESTABLISHED:
1771 nvmet_rdma_queue_established(queue);
1772 break;
1773 case RDMA_CM_EVENT_ADDR_CHANGE:
1774 if (!queue) {
1775 struct nvmet_rdma_port *port = cm_id->context;
1777 queue_delayed_work(nvmet_wq, &port->repair_work, 0);
1778 break;
1780 fallthrough;
1781 case RDMA_CM_EVENT_DISCONNECTED:
1782 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1783 nvmet_rdma_queue_disconnect(queue);
1784 break;
1785 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1786 ret = nvmet_rdma_device_removal(cm_id, queue);
1787 break;
1788 case RDMA_CM_EVENT_REJECTED:
1789 pr_debug("Connection rejected: %s\n",
1790 rdma_reject_msg(cm_id, event->status));
1791 fallthrough;
1792 case RDMA_CM_EVENT_UNREACHABLE:
1793 case RDMA_CM_EVENT_CONNECT_ERROR:
1794 nvmet_rdma_queue_connect_fail(cm_id, queue);
1795 break;
1796 default:
1797 pr_err("received unrecognized RDMA CM event %d\n",
1798 event->event);
1799 break;
1802 return ret;
1805 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1807 struct nvmet_rdma_queue *queue, *n;
1809 mutex_lock(&nvmet_rdma_queue_mutex);
1810 list_for_each_entry_safe(queue, n, &nvmet_rdma_queue_list, queue_list) {
1811 if (queue->nvme_sq.ctrl != ctrl)
1812 continue;
1813 list_del_init(&queue->queue_list);
1814 __nvmet_rdma_queue_disconnect(queue);
1816 mutex_unlock(&nvmet_rdma_queue_mutex);
1819 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1821 struct nvmet_rdma_queue *queue, *tmp;
1822 struct nvmet_port *nport = port->nport;
1824 mutex_lock(&nvmet_rdma_queue_mutex);
1825 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1826 queue_list) {
1827 if (queue->port != nport)
1828 continue;
1830 list_del_init(&queue->queue_list);
1831 __nvmet_rdma_queue_disconnect(queue);
1833 mutex_unlock(&nvmet_rdma_queue_mutex);
1836 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1838 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1840 if (cm_id)
1841 rdma_destroy_id(cm_id);
1844 * Destroy the remaining queues, which are not belong to any
1845 * controller yet. Do it here after the RDMA-CM was destroyed
1846 * guarantees that no new queue will be created.
1848 nvmet_rdma_destroy_port_queues(port);
1851 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1853 struct sockaddr *addr = (struct sockaddr *)&port->addr;
1854 struct rdma_cm_id *cm_id;
1855 int ret;
1857 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1858 RDMA_PS_TCP, IB_QPT_RC);
1859 if (IS_ERR(cm_id)) {
1860 pr_err("CM ID creation failed\n");
1861 return PTR_ERR(cm_id);
1865 * Allow both IPv4 and IPv6 sockets to bind a single port
1866 * at the same time.
1868 ret = rdma_set_afonly(cm_id, 1);
1869 if (ret) {
1870 pr_err("rdma_set_afonly failed (%d)\n", ret);
1871 goto out_destroy_id;
1874 ret = rdma_bind_addr(cm_id, addr);
1875 if (ret) {
1876 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1877 goto out_destroy_id;
1880 ret = rdma_listen(cm_id, NVMET_RDMA_BACKLOG);
1881 if (ret) {
1882 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1883 goto out_destroy_id;
1886 port->cm_id = cm_id;
1887 return 0;
1889 out_destroy_id:
1890 rdma_destroy_id(cm_id);
1891 return ret;
1894 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1896 struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1897 struct nvmet_rdma_port, repair_work);
1898 int ret;
1900 nvmet_rdma_disable_port(port);
1901 ret = nvmet_rdma_enable_port(port);
1902 if (ret)
1903 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
1906 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1908 struct nvmet_rdma_port *port;
1909 __kernel_sa_family_t af;
1910 int ret;
1912 port = kzalloc(sizeof(*port), GFP_KERNEL);
1913 if (!port)
1914 return -ENOMEM;
1916 nport->priv = port;
1917 port->nport = nport;
1918 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1920 switch (nport->disc_addr.adrfam) {
1921 case NVMF_ADDR_FAMILY_IP4:
1922 af = AF_INET;
1923 break;
1924 case NVMF_ADDR_FAMILY_IP6:
1925 af = AF_INET6;
1926 break;
1927 default:
1928 pr_err("address family %d not supported\n",
1929 nport->disc_addr.adrfam);
1930 ret = -EINVAL;
1931 goto out_free_port;
1934 if (nport->inline_data_size < 0) {
1935 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1936 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1937 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1938 nport->inline_data_size,
1939 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1940 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1943 if (nport->max_queue_size < 0) {
1944 nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE;
1945 } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) {
1946 pr_warn("max_queue_size %u is too large, reducing to %u\n",
1947 nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE);
1948 nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
1951 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1952 nport->disc_addr.trsvcid, &port->addr);
1953 if (ret) {
1954 pr_err("malformed ip/port passed: %s:%s\n",
1955 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1956 goto out_free_port;
1959 ret = nvmet_rdma_enable_port(port);
1960 if (ret)
1961 goto out_free_port;
1963 pr_info("enabling port %d (%pISpcs)\n",
1964 le16_to_cpu(nport->disc_addr.portid),
1965 (struct sockaddr *)&port->addr);
1967 return 0;
1969 out_free_port:
1970 kfree(port);
1971 return ret;
1974 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1976 struct nvmet_rdma_port *port = nport->priv;
1978 cancel_delayed_work_sync(&port->repair_work);
1979 nvmet_rdma_disable_port(port);
1980 kfree(port);
1983 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1984 struct nvmet_port *nport, char *traddr)
1986 struct nvmet_rdma_port *port = nport->priv;
1987 struct rdma_cm_id *cm_id = port->cm_id;
1989 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1990 struct nvmet_rdma_rsp *rsp =
1991 container_of(req, struct nvmet_rdma_rsp, req);
1992 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1993 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1995 sprintf(traddr, "%pISc", addr);
1996 } else {
1997 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2001 static ssize_t nvmet_rdma_host_port_addr(struct nvmet_ctrl *ctrl,
2002 char *traddr, size_t traddr_len)
2004 struct nvmet_sq *nvme_sq = ctrl->sqs[0];
2005 struct nvmet_rdma_queue *queue =
2006 container_of(nvme_sq, struct nvmet_rdma_queue, nvme_sq);
2008 return snprintf(traddr, traddr_len, "%pISc",
2009 (struct sockaddr *)&queue->cm_id->route.addr.dst_addr);
2012 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
2014 if (ctrl->pi_support)
2015 return NVMET_RDMA_MAX_METADATA_MDTS;
2016 return NVMET_RDMA_MAX_MDTS;
2019 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2021 if (ctrl->pi_support)
2022 return NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
2023 return NVME_RDMA_MAX_QUEUE_SIZE;
2026 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2027 .owner = THIS_MODULE,
2028 .type = NVMF_TRTYPE_RDMA,
2029 .msdbd = 1,
2030 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2031 .add_port = nvmet_rdma_add_port,
2032 .remove_port = nvmet_rdma_remove_port,
2033 .queue_response = nvmet_rdma_queue_response,
2034 .delete_ctrl = nvmet_rdma_delete_ctrl,
2035 .disc_traddr = nvmet_rdma_disc_port_addr,
2036 .host_traddr = nvmet_rdma_host_port_addr,
2037 .get_mdts = nvmet_rdma_get_mdts,
2038 .get_max_queue_size = nvmet_rdma_get_max_queue_size,
2041 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2043 struct nvmet_rdma_queue *queue, *tmp;
2044 struct nvmet_rdma_device *ndev;
2045 bool found = false;
2047 mutex_lock(&device_list_mutex);
2048 list_for_each_entry(ndev, &device_list, entry) {
2049 if (ndev->device == ib_device) {
2050 found = true;
2051 break;
2054 mutex_unlock(&device_list_mutex);
2056 if (!found)
2057 return;
2060 * IB Device that is used by nvmet controllers is being removed,
2061 * delete all queues using this device.
2063 mutex_lock(&nvmet_rdma_queue_mutex);
2064 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2065 queue_list) {
2066 if (queue->dev->device != ib_device)
2067 continue;
2069 pr_info("Removing queue %d\n", queue->idx);
2070 list_del_init(&queue->queue_list);
2071 __nvmet_rdma_queue_disconnect(queue);
2073 mutex_unlock(&nvmet_rdma_queue_mutex);
2075 flush_workqueue(nvmet_wq);
2078 static struct ib_client nvmet_rdma_ib_client = {
2079 .name = "nvmet_rdma",
2080 .remove = nvmet_rdma_remove_one
2083 static int __init nvmet_rdma_init(void)
2085 int ret;
2087 ret = ib_register_client(&nvmet_rdma_ib_client);
2088 if (ret)
2089 return ret;
2091 ret = nvmet_register_transport(&nvmet_rdma_ops);
2092 if (ret)
2093 goto err_ib_client;
2095 return 0;
2097 err_ib_client:
2098 ib_unregister_client(&nvmet_rdma_ib_client);
2099 return ret;
2102 static void __exit nvmet_rdma_exit(void)
2104 nvmet_unregister_transport(&nvmet_rdma_ops);
2105 ib_unregister_client(&nvmet_rdma_ib_client);
2106 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2107 ida_destroy(&nvmet_rdma_queue_ida);
2110 module_init(nvmet_rdma_init);
2111 module_exit(nvmet_rdma_exit);
2113 MODULE_DESCRIPTION("NVMe target RDMA transport driver");
2114 MODULE_LICENSE("GPL v2");
2115 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */