drm: add modifiers for MediaTek tiled formats
[drm/drm-misc.git] / drivers / nvmem / core.c
blobd6494dfc20a7324bde6415776dcabbb0bfdd334b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
22 #include "internals.h"
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
26 #define FLAG_COMPAT BIT(0)
27 struct nvmem_cell_entry {
28 const char *name;
29 int offset;
30 size_t raw_len;
31 int bytes;
32 int bit_offset;
33 int nbits;
34 nvmem_cell_post_process_t read_post_process;
35 void *priv;
36 struct device_node *np;
37 struct nvmem_device *nvmem;
38 struct list_head node;
41 struct nvmem_cell {
42 struct nvmem_cell_entry *entry;
43 const char *id;
44 int index;
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 void *val, size_t bytes)
61 if (nvmem->reg_read)
62 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
64 return -EINVAL;
67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 void *val, size_t bytes)
70 int ret;
72 if (nvmem->reg_write) {
73 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 return ret;
79 return -EINVAL;
82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 unsigned int offset, void *val,
84 size_t bytes, int write)
87 unsigned int end = offset + bytes;
88 unsigned int kend, ksize;
89 const struct nvmem_keepout *keepout = nvmem->keepout;
90 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 int rc;
94 * Skip all keepouts before the range being accessed.
95 * Keepouts are sorted.
97 while ((keepout < keepoutend) && (keepout->end <= offset))
98 keepout++;
100 while ((offset < end) && (keepout < keepoutend)) {
101 /* Access the valid portion before the keepout. */
102 if (offset < keepout->start) {
103 kend = min(end, keepout->start);
104 ksize = kend - offset;
105 if (write)
106 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 else
108 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
110 if (rc)
111 return rc;
113 offset += ksize;
114 val += ksize;
118 * Now we're aligned to the start of this keepout zone. Go
119 * through it.
121 kend = min(end, keepout->end);
122 ksize = kend - offset;
123 if (!write)
124 memset(val, keepout->value, ksize);
126 val += ksize;
127 offset += ksize;
128 keepout++;
132 * If we ran out of keepouts but there's still stuff to do, send it
133 * down directly
135 if (offset < end) {
136 ksize = end - offset;
137 if (write)
138 return __nvmem_reg_write(nvmem, offset, val, ksize);
139 else
140 return __nvmem_reg_read(nvmem, offset, val, ksize);
143 return 0;
146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 void *val, size_t bytes)
149 if (!nvmem->nkeepout)
150 return __nvmem_reg_read(nvmem, offset, val, bytes);
152 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 void *val, size_t bytes)
158 if (!nvmem->nkeepout)
159 return __nvmem_reg_write(nvmem, offset, val, bytes);
161 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 [NVMEM_TYPE_UNKNOWN] = "Unknown",
167 [NVMEM_TYPE_EEPROM] = "EEPROM",
168 [NVMEM_TYPE_OTP] = "OTP",
169 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 [NVMEM_TYPE_FRAM] = "FRAM",
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
177 static ssize_t type_show(struct device *dev,
178 struct device_attribute *attr, char *buf)
180 struct nvmem_device *nvmem = to_nvmem_device(dev);
182 return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
185 static DEVICE_ATTR_RO(type);
187 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 char *buf)
190 struct nvmem_device *nvmem = to_nvmem_device(dev);
192 return sysfs_emit(buf, "%d\n", nvmem->read_only);
195 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 const char *buf, size_t count)
198 struct nvmem_device *nvmem = to_nvmem_device(dev);
199 int ret = kstrtobool(buf, &nvmem->read_only);
201 if (ret < 0)
202 return ret;
204 return count;
207 static DEVICE_ATTR_RW(force_ro);
209 static struct attribute *nvmem_attrs[] = {
210 &dev_attr_force_ro.attr,
211 &dev_attr_type.attr,
212 NULL,
215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 struct bin_attribute *attr, char *buf,
217 loff_t pos, size_t count)
219 struct device *dev;
220 struct nvmem_device *nvmem;
221 int rc;
223 if (attr->private)
224 dev = attr->private;
225 else
226 dev = kobj_to_dev(kobj);
227 nvmem = to_nvmem_device(dev);
229 if (!IS_ALIGNED(pos, nvmem->stride))
230 return -EINVAL;
232 if (count < nvmem->word_size)
233 return -EINVAL;
235 count = round_down(count, nvmem->word_size);
237 if (!nvmem->reg_read)
238 return -EPERM;
240 rc = nvmem_reg_read(nvmem, pos, buf, count);
242 if (rc)
243 return rc;
245 return count;
248 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 struct bin_attribute *attr, char *buf,
250 loff_t pos, size_t count)
252 struct device *dev;
253 struct nvmem_device *nvmem;
254 int rc;
256 if (attr->private)
257 dev = attr->private;
258 else
259 dev = kobj_to_dev(kobj);
260 nvmem = to_nvmem_device(dev);
262 if (!IS_ALIGNED(pos, nvmem->stride))
263 return -EINVAL;
265 if (count < nvmem->word_size)
266 return -EINVAL;
268 count = round_down(count, nvmem->word_size);
270 if (!nvmem->reg_write || nvmem->read_only)
271 return -EPERM;
273 rc = nvmem_reg_write(nvmem, pos, buf, count);
275 if (rc)
276 return rc;
278 return count;
281 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
283 umode_t mode = 0400;
285 if (!nvmem->root_only)
286 mode |= 0044;
288 if (!nvmem->read_only)
289 mode |= 0200;
291 if (!nvmem->reg_write)
292 mode &= ~0200;
294 if (!nvmem->reg_read)
295 mode &= ~0444;
297 return mode;
300 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 const struct bin_attribute *attr,
302 int i)
304 struct device *dev = kobj_to_dev(kobj);
305 struct nvmem_device *nvmem = to_nvmem_device(dev);
307 return nvmem_bin_attr_get_umode(nvmem);
310 static size_t nvmem_bin_attr_size(struct kobject *kobj,
311 const struct bin_attribute *attr,
312 int i)
314 struct device *dev = kobj_to_dev(kobj);
315 struct nvmem_device *nvmem = to_nvmem_device(dev);
317 return nvmem->size;
320 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
321 struct attribute *attr, int i)
323 struct device *dev = kobj_to_dev(kobj);
324 struct nvmem_device *nvmem = to_nvmem_device(dev);
327 * If the device has no .reg_write operation, do not allow
328 * configuration as read-write.
329 * If the device is set as read-only by configuration, it
330 * can be forced into read-write mode using the 'force_ro'
331 * attribute.
333 if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
334 return 0; /* Attribute not visible */
336 return attr->mode;
339 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
340 const char *id, int index);
342 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
343 struct bin_attribute *attr, char *buf,
344 loff_t pos, size_t count)
346 struct nvmem_cell_entry *entry;
347 struct nvmem_cell *cell = NULL;
348 size_t cell_sz, read_len;
349 void *content;
351 entry = attr->private;
352 cell = nvmem_create_cell(entry, entry->name, 0);
353 if (IS_ERR(cell))
354 return PTR_ERR(cell);
356 if (!cell)
357 return -EINVAL;
359 content = nvmem_cell_read(cell, &cell_sz);
360 if (IS_ERR(content)) {
361 read_len = PTR_ERR(content);
362 goto destroy_cell;
365 read_len = min_t(unsigned int, cell_sz - pos, count);
366 memcpy(buf, content + pos, read_len);
367 kfree(content);
369 destroy_cell:
370 kfree_const(cell->id);
371 kfree(cell);
373 return read_len;
376 /* default read/write permissions */
377 static struct bin_attribute bin_attr_rw_nvmem = {
378 .attr = {
379 .name = "nvmem",
380 .mode = 0644,
382 .read = bin_attr_nvmem_read,
383 .write = bin_attr_nvmem_write,
386 static struct bin_attribute *nvmem_bin_attributes[] = {
387 &bin_attr_rw_nvmem,
388 NULL,
391 static const struct attribute_group nvmem_bin_group = {
392 .bin_attrs = nvmem_bin_attributes,
393 .attrs = nvmem_attrs,
394 .is_bin_visible = nvmem_bin_attr_is_visible,
395 .bin_size = nvmem_bin_attr_size,
396 .is_visible = nvmem_attr_is_visible,
399 static const struct attribute_group *nvmem_dev_groups[] = {
400 &nvmem_bin_group,
401 NULL,
404 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
405 .attr = {
406 .name = "eeprom",
408 .read = bin_attr_nvmem_read,
409 .write = bin_attr_nvmem_write,
413 * nvmem_setup_compat() - Create an additional binary entry in
414 * drivers sys directory, to be backwards compatible with the older
415 * drivers/misc/eeprom drivers.
417 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
418 const struct nvmem_config *config)
420 int rval;
422 if (!config->compat)
423 return 0;
425 if (!config->base_dev)
426 return -EINVAL;
428 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
429 if (config->type == NVMEM_TYPE_FRAM)
430 nvmem->eeprom.attr.name = "fram";
431 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
432 nvmem->eeprom.size = nvmem->size;
433 #ifdef CONFIG_DEBUG_LOCK_ALLOC
434 nvmem->eeprom.attr.key = &eeprom_lock_key;
435 #endif
436 nvmem->eeprom.private = &nvmem->dev;
437 nvmem->base_dev = config->base_dev;
439 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
440 if (rval) {
441 dev_err(&nvmem->dev,
442 "Failed to create eeprom binary file %d\n", rval);
443 return rval;
446 nvmem->flags |= FLAG_COMPAT;
448 return 0;
451 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
452 const struct nvmem_config *config)
454 if (config->compat)
455 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
458 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
460 struct attribute_group group = {
461 .name = "cells",
463 struct nvmem_cell_entry *entry;
464 struct bin_attribute *attrs;
465 unsigned int ncells = 0, i = 0;
466 int ret = 0;
468 mutex_lock(&nvmem_mutex);
470 if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
471 goto unlock_mutex;
473 /* Allocate an array of attributes with a sentinel */
474 ncells = list_count_nodes(&nvmem->cells);
475 group.bin_attrs = devm_kcalloc(&nvmem->dev, ncells + 1,
476 sizeof(struct bin_attribute *), GFP_KERNEL);
477 if (!group.bin_attrs) {
478 ret = -ENOMEM;
479 goto unlock_mutex;
482 attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
483 if (!attrs) {
484 ret = -ENOMEM;
485 goto unlock_mutex;
488 /* Initialize each attribute to take the name and size of the cell */
489 list_for_each_entry(entry, &nvmem->cells, node) {
490 sysfs_bin_attr_init(&attrs[i]);
491 attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
492 "%s@%x,%x", entry->name,
493 entry->offset,
494 entry->bit_offset);
495 attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
496 attrs[i].size = entry->bytes;
497 attrs[i].read = &nvmem_cell_attr_read;
498 attrs[i].private = entry;
499 if (!attrs[i].attr.name) {
500 ret = -ENOMEM;
501 goto unlock_mutex;
504 group.bin_attrs[i] = &attrs[i];
505 i++;
508 ret = device_add_group(&nvmem->dev, &group);
509 if (ret)
510 goto unlock_mutex;
512 nvmem->sysfs_cells_populated = true;
514 unlock_mutex:
515 mutex_unlock(&nvmem_mutex);
517 return ret;
520 #else /* CONFIG_NVMEM_SYSFS */
522 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
523 const struct nvmem_config *config)
525 return -ENOSYS;
527 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
528 const struct nvmem_config *config)
532 #endif /* CONFIG_NVMEM_SYSFS */
534 static void nvmem_release(struct device *dev)
536 struct nvmem_device *nvmem = to_nvmem_device(dev);
538 ida_free(&nvmem_ida, nvmem->id);
539 gpiod_put(nvmem->wp_gpio);
540 kfree(nvmem);
543 static const struct device_type nvmem_provider_type = {
544 .release = nvmem_release,
547 static struct bus_type nvmem_bus_type = {
548 .name = "nvmem",
551 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
553 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
554 mutex_lock(&nvmem_mutex);
555 list_del(&cell->node);
556 mutex_unlock(&nvmem_mutex);
557 of_node_put(cell->np);
558 kfree_const(cell->name);
559 kfree(cell);
562 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
564 struct nvmem_cell_entry *cell, *p;
566 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
567 nvmem_cell_entry_drop(cell);
570 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
572 mutex_lock(&nvmem_mutex);
573 list_add_tail(&cell->node, &cell->nvmem->cells);
574 mutex_unlock(&nvmem_mutex);
575 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
578 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
579 const struct nvmem_cell_info *info,
580 struct nvmem_cell_entry *cell)
582 cell->nvmem = nvmem;
583 cell->offset = info->offset;
584 cell->raw_len = info->raw_len ?: info->bytes;
585 cell->bytes = info->bytes;
586 cell->name = info->name;
587 cell->read_post_process = info->read_post_process;
588 cell->priv = info->priv;
590 cell->bit_offset = info->bit_offset;
591 cell->nbits = info->nbits;
592 cell->np = info->np;
594 if (cell->nbits)
595 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
596 BITS_PER_BYTE);
598 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
599 dev_err(&nvmem->dev,
600 "cell %s unaligned to nvmem stride %d\n",
601 cell->name ?: "<unknown>", nvmem->stride);
602 return -EINVAL;
605 return 0;
608 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
609 const struct nvmem_cell_info *info,
610 struct nvmem_cell_entry *cell)
612 int err;
614 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
615 if (err)
616 return err;
618 cell->name = kstrdup_const(info->name, GFP_KERNEL);
619 if (!cell->name)
620 return -ENOMEM;
622 return 0;
626 * nvmem_add_one_cell() - Add one cell information to an nvmem device
628 * @nvmem: nvmem device to add cells to.
629 * @info: nvmem cell info to add to the device
631 * Return: 0 or negative error code on failure.
633 int nvmem_add_one_cell(struct nvmem_device *nvmem,
634 const struct nvmem_cell_info *info)
636 struct nvmem_cell_entry *cell;
637 int rval;
639 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
640 if (!cell)
641 return -ENOMEM;
643 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
644 if (rval) {
645 kfree(cell);
646 return rval;
649 nvmem_cell_entry_add(cell);
651 return 0;
653 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
656 * nvmem_add_cells() - Add cell information to an nvmem device
658 * @nvmem: nvmem device to add cells to.
659 * @info: nvmem cell info to add to the device
660 * @ncells: number of cells in info
662 * Return: 0 or negative error code on failure.
664 static int nvmem_add_cells(struct nvmem_device *nvmem,
665 const struct nvmem_cell_info *info,
666 int ncells)
668 int i, rval;
670 for (i = 0; i < ncells; i++) {
671 rval = nvmem_add_one_cell(nvmem, &info[i]);
672 if (rval)
673 return rval;
676 return 0;
680 * nvmem_register_notifier() - Register a notifier block for nvmem events.
682 * @nb: notifier block to be called on nvmem events.
684 * Return: 0 on success, negative error number on failure.
686 int nvmem_register_notifier(struct notifier_block *nb)
688 return blocking_notifier_chain_register(&nvmem_notifier, nb);
690 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
693 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
695 * @nb: notifier block to be unregistered.
697 * Return: 0 on success, negative error number on failure.
699 int nvmem_unregister_notifier(struct notifier_block *nb)
701 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
703 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
705 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
707 const struct nvmem_cell_info *info;
708 struct nvmem_cell_table *table;
709 struct nvmem_cell_entry *cell;
710 int rval = 0, i;
712 mutex_lock(&nvmem_cell_mutex);
713 list_for_each_entry(table, &nvmem_cell_tables, node) {
714 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
715 for (i = 0; i < table->ncells; i++) {
716 info = &table->cells[i];
718 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
719 if (!cell) {
720 rval = -ENOMEM;
721 goto out;
724 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
725 if (rval) {
726 kfree(cell);
727 goto out;
730 nvmem_cell_entry_add(cell);
735 out:
736 mutex_unlock(&nvmem_cell_mutex);
737 return rval;
740 static struct nvmem_cell_entry *
741 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
743 struct nvmem_cell_entry *iter, *cell = NULL;
745 mutex_lock(&nvmem_mutex);
746 list_for_each_entry(iter, &nvmem->cells, node) {
747 if (strcmp(cell_id, iter->name) == 0) {
748 cell = iter;
749 break;
752 mutex_unlock(&nvmem_mutex);
754 return cell;
757 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
759 unsigned int cur = 0;
760 const struct nvmem_keepout *keepout = nvmem->keepout;
761 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
763 while (keepout < keepoutend) {
764 /* Ensure keepouts are sorted and don't overlap. */
765 if (keepout->start < cur) {
766 dev_err(&nvmem->dev,
767 "Keepout regions aren't sorted or overlap.\n");
769 return -ERANGE;
772 if (keepout->end < keepout->start) {
773 dev_err(&nvmem->dev,
774 "Invalid keepout region.\n");
776 return -EINVAL;
780 * Validate keepouts (and holes between) don't violate
781 * word_size constraints.
783 if ((keepout->end - keepout->start < nvmem->word_size) ||
784 ((keepout->start != cur) &&
785 (keepout->start - cur < nvmem->word_size))) {
787 dev_err(&nvmem->dev,
788 "Keepout regions violate word_size constraints.\n");
790 return -ERANGE;
793 /* Validate keepouts don't violate stride (alignment). */
794 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
795 !IS_ALIGNED(keepout->end, nvmem->stride)) {
797 dev_err(&nvmem->dev,
798 "Keepout regions violate stride.\n");
800 return -EINVAL;
803 cur = keepout->end;
804 keepout++;
807 return 0;
810 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
812 struct device *dev = &nvmem->dev;
813 struct device_node *child;
814 const __be32 *addr;
815 int len, ret;
817 for_each_child_of_node(np, child) {
818 struct nvmem_cell_info info = {0};
820 addr = of_get_property(child, "reg", &len);
821 if (!addr)
822 continue;
823 if (len < 2 * sizeof(u32)) {
824 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
825 of_node_put(child);
826 return -EINVAL;
829 info.offset = be32_to_cpup(addr++);
830 info.bytes = be32_to_cpup(addr);
831 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
833 addr = of_get_property(child, "bits", &len);
834 if (addr && len == (2 * sizeof(u32))) {
835 info.bit_offset = be32_to_cpup(addr++);
836 info.nbits = be32_to_cpup(addr);
837 if (info.bit_offset >= BITS_PER_BYTE || info.nbits < 1) {
838 dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
839 of_node_put(child);
840 return -EINVAL;
844 info.np = of_node_get(child);
846 if (nvmem->fixup_dt_cell_info)
847 nvmem->fixup_dt_cell_info(nvmem, &info);
849 ret = nvmem_add_one_cell(nvmem, &info);
850 kfree(info.name);
851 if (ret) {
852 of_node_put(child);
853 return ret;
857 return 0;
860 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
862 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
865 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
867 struct device_node *layout_np;
868 int err = 0;
870 layout_np = of_nvmem_layout_get_container(nvmem);
871 if (!layout_np)
872 return 0;
874 if (of_device_is_compatible(layout_np, "fixed-layout"))
875 err = nvmem_add_cells_from_dt(nvmem, layout_np);
877 of_node_put(layout_np);
879 return err;
882 int nvmem_layout_register(struct nvmem_layout *layout)
884 int ret;
886 if (!layout->add_cells)
887 return -EINVAL;
889 /* Populate the cells */
890 ret = layout->add_cells(layout);
891 if (ret)
892 return ret;
894 #ifdef CONFIG_NVMEM_SYSFS
895 ret = nvmem_populate_sysfs_cells(layout->nvmem);
896 if (ret) {
897 nvmem_device_remove_all_cells(layout->nvmem);
898 return ret;
900 #endif
902 return 0;
904 EXPORT_SYMBOL_GPL(nvmem_layout_register);
906 void nvmem_layout_unregister(struct nvmem_layout *layout)
908 /* Keep the API even with an empty stub in case we need it later */
910 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
913 * nvmem_register() - Register a nvmem device for given nvmem_config.
914 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
916 * @config: nvmem device configuration with which nvmem device is created.
918 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
919 * on success.
922 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
924 struct nvmem_device *nvmem;
925 int rval;
927 if (!config->dev)
928 return ERR_PTR(-EINVAL);
930 if (!config->reg_read && !config->reg_write)
931 return ERR_PTR(-EINVAL);
933 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
934 if (!nvmem)
935 return ERR_PTR(-ENOMEM);
937 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
938 if (rval < 0) {
939 kfree(nvmem);
940 return ERR_PTR(rval);
943 nvmem->id = rval;
945 nvmem->dev.type = &nvmem_provider_type;
946 nvmem->dev.bus = &nvmem_bus_type;
947 nvmem->dev.parent = config->dev;
949 device_initialize(&nvmem->dev);
951 if (!config->ignore_wp)
952 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
953 GPIOD_OUT_HIGH);
954 if (IS_ERR(nvmem->wp_gpio)) {
955 rval = PTR_ERR(nvmem->wp_gpio);
956 nvmem->wp_gpio = NULL;
957 goto err_put_device;
960 kref_init(&nvmem->refcnt);
961 INIT_LIST_HEAD(&nvmem->cells);
962 nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
964 nvmem->owner = config->owner;
965 if (!nvmem->owner && config->dev->driver)
966 nvmem->owner = config->dev->driver->owner;
967 nvmem->stride = config->stride ?: 1;
968 nvmem->word_size = config->word_size ?: 1;
969 nvmem->size = config->size;
970 nvmem->root_only = config->root_only;
971 nvmem->priv = config->priv;
972 nvmem->type = config->type;
973 nvmem->reg_read = config->reg_read;
974 nvmem->reg_write = config->reg_write;
975 nvmem->keepout = config->keepout;
976 nvmem->nkeepout = config->nkeepout;
977 if (config->of_node)
978 nvmem->dev.of_node = config->of_node;
979 else
980 nvmem->dev.of_node = config->dev->of_node;
982 switch (config->id) {
983 case NVMEM_DEVID_NONE:
984 rval = dev_set_name(&nvmem->dev, "%s", config->name);
985 break;
986 case NVMEM_DEVID_AUTO:
987 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
988 break;
989 default:
990 rval = dev_set_name(&nvmem->dev, "%s%d",
991 config->name ? : "nvmem",
992 config->name ? config->id : nvmem->id);
993 break;
996 if (rval)
997 goto err_put_device;
999 nvmem->read_only = device_property_present(config->dev, "read-only") ||
1000 config->read_only || !nvmem->reg_write;
1002 #ifdef CONFIG_NVMEM_SYSFS
1003 nvmem->dev.groups = nvmem_dev_groups;
1004 #endif
1006 if (nvmem->nkeepout) {
1007 rval = nvmem_validate_keepouts(nvmem);
1008 if (rval)
1009 goto err_put_device;
1012 if (config->compat) {
1013 rval = nvmem_sysfs_setup_compat(nvmem, config);
1014 if (rval)
1015 goto err_put_device;
1018 if (config->cells) {
1019 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1020 if (rval)
1021 goto err_remove_cells;
1024 rval = nvmem_add_cells_from_table(nvmem);
1025 if (rval)
1026 goto err_remove_cells;
1028 if (config->add_legacy_fixed_of_cells) {
1029 rval = nvmem_add_cells_from_legacy_of(nvmem);
1030 if (rval)
1031 goto err_remove_cells;
1034 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1035 if (rval)
1036 goto err_remove_cells;
1038 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1040 rval = device_add(&nvmem->dev);
1041 if (rval)
1042 goto err_remove_cells;
1044 rval = nvmem_populate_layout(nvmem);
1045 if (rval)
1046 goto err_remove_dev;
1048 #ifdef CONFIG_NVMEM_SYSFS
1049 rval = nvmem_populate_sysfs_cells(nvmem);
1050 if (rval)
1051 goto err_destroy_layout;
1052 #endif
1054 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1056 return nvmem;
1058 #ifdef CONFIG_NVMEM_SYSFS
1059 err_destroy_layout:
1060 nvmem_destroy_layout(nvmem);
1061 #endif
1062 err_remove_dev:
1063 device_del(&nvmem->dev);
1064 err_remove_cells:
1065 nvmem_device_remove_all_cells(nvmem);
1066 if (config->compat)
1067 nvmem_sysfs_remove_compat(nvmem, config);
1068 err_put_device:
1069 put_device(&nvmem->dev);
1071 return ERR_PTR(rval);
1073 EXPORT_SYMBOL_GPL(nvmem_register);
1075 static void nvmem_device_release(struct kref *kref)
1077 struct nvmem_device *nvmem;
1079 nvmem = container_of(kref, struct nvmem_device, refcnt);
1081 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1083 if (nvmem->flags & FLAG_COMPAT)
1084 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1086 nvmem_device_remove_all_cells(nvmem);
1087 nvmem_destroy_layout(nvmem);
1088 device_unregister(&nvmem->dev);
1092 * nvmem_unregister() - Unregister previously registered nvmem device
1094 * @nvmem: Pointer to previously registered nvmem device.
1096 void nvmem_unregister(struct nvmem_device *nvmem)
1098 if (nvmem)
1099 kref_put(&nvmem->refcnt, nvmem_device_release);
1101 EXPORT_SYMBOL_GPL(nvmem_unregister);
1103 static void devm_nvmem_unregister(void *nvmem)
1105 nvmem_unregister(nvmem);
1109 * devm_nvmem_register() - Register a managed nvmem device for given
1110 * nvmem_config.
1111 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1113 * @dev: Device that uses the nvmem device.
1114 * @config: nvmem device configuration with which nvmem device is created.
1116 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1117 * on success.
1119 struct nvmem_device *devm_nvmem_register(struct device *dev,
1120 const struct nvmem_config *config)
1122 struct nvmem_device *nvmem;
1123 int ret;
1125 nvmem = nvmem_register(config);
1126 if (IS_ERR(nvmem))
1127 return nvmem;
1129 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1130 if (ret)
1131 return ERR_PTR(ret);
1133 return nvmem;
1135 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1137 static struct nvmem_device *__nvmem_device_get(void *data,
1138 int (*match)(struct device *dev, const void *data))
1140 struct nvmem_device *nvmem = NULL;
1141 struct device *dev;
1143 mutex_lock(&nvmem_mutex);
1144 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1145 if (dev)
1146 nvmem = to_nvmem_device(dev);
1147 mutex_unlock(&nvmem_mutex);
1148 if (!nvmem)
1149 return ERR_PTR(-EPROBE_DEFER);
1151 if (!try_module_get(nvmem->owner)) {
1152 dev_err(&nvmem->dev,
1153 "could not increase module refcount for cell %s\n",
1154 nvmem_dev_name(nvmem));
1156 put_device(&nvmem->dev);
1157 return ERR_PTR(-EINVAL);
1160 kref_get(&nvmem->refcnt);
1162 return nvmem;
1165 static void __nvmem_device_put(struct nvmem_device *nvmem)
1167 put_device(&nvmem->dev);
1168 module_put(nvmem->owner);
1169 kref_put(&nvmem->refcnt, nvmem_device_release);
1172 #if IS_ENABLED(CONFIG_OF)
1174 * of_nvmem_device_get() - Get nvmem device from a given id
1176 * @np: Device tree node that uses the nvmem device.
1177 * @id: nvmem name from nvmem-names property.
1179 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1180 * on success.
1182 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1185 struct device_node *nvmem_np;
1186 struct nvmem_device *nvmem;
1187 int index = 0;
1189 if (id)
1190 index = of_property_match_string(np, "nvmem-names", id);
1192 nvmem_np = of_parse_phandle(np, "nvmem", index);
1193 if (!nvmem_np)
1194 return ERR_PTR(-ENOENT);
1196 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1197 of_node_put(nvmem_np);
1198 return nvmem;
1200 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1201 #endif
1204 * nvmem_device_get() - Get nvmem device from a given id
1206 * @dev: Device that uses the nvmem device.
1207 * @dev_name: name of the requested nvmem device.
1209 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1210 * on success.
1212 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1214 if (dev->of_node) { /* try dt first */
1215 struct nvmem_device *nvmem;
1217 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1219 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1220 return nvmem;
1224 return __nvmem_device_get((void *)dev_name, device_match_name);
1226 EXPORT_SYMBOL_GPL(nvmem_device_get);
1229 * nvmem_device_find() - Find nvmem device with matching function
1231 * @data: Data to pass to match function
1232 * @match: Callback function to check device
1234 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1235 * on success.
1237 struct nvmem_device *nvmem_device_find(void *data,
1238 int (*match)(struct device *dev, const void *data))
1240 return __nvmem_device_get(data, match);
1242 EXPORT_SYMBOL_GPL(nvmem_device_find);
1244 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1246 struct nvmem_device **nvmem = res;
1248 if (WARN_ON(!nvmem || !*nvmem))
1249 return 0;
1251 return *nvmem == data;
1254 static void devm_nvmem_device_release(struct device *dev, void *res)
1256 nvmem_device_put(*(struct nvmem_device **)res);
1260 * devm_nvmem_device_put() - put already got nvmem device
1262 * @dev: Device that uses the nvmem device.
1263 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1264 * that needs to be released.
1266 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1268 int ret;
1270 ret = devres_release(dev, devm_nvmem_device_release,
1271 devm_nvmem_device_match, nvmem);
1273 WARN_ON(ret);
1275 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1278 * nvmem_device_put() - put already got nvmem device
1280 * @nvmem: pointer to nvmem device that needs to be released.
1282 void nvmem_device_put(struct nvmem_device *nvmem)
1284 __nvmem_device_put(nvmem);
1286 EXPORT_SYMBOL_GPL(nvmem_device_put);
1289 * devm_nvmem_device_get() - Get nvmem device of device form a given id
1291 * @dev: Device that requests the nvmem device.
1292 * @id: name id for the requested nvmem device.
1294 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1295 * on success. The nvmem_device will be freed by the automatically once the
1296 * device is freed.
1298 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1300 struct nvmem_device **ptr, *nvmem;
1302 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1303 if (!ptr)
1304 return ERR_PTR(-ENOMEM);
1306 nvmem = nvmem_device_get(dev, id);
1307 if (!IS_ERR(nvmem)) {
1308 *ptr = nvmem;
1309 devres_add(dev, ptr);
1310 } else {
1311 devres_free(ptr);
1314 return nvmem;
1316 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1318 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1319 const char *id, int index)
1321 struct nvmem_cell *cell;
1322 const char *name = NULL;
1324 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1325 if (!cell)
1326 return ERR_PTR(-ENOMEM);
1328 if (id) {
1329 name = kstrdup_const(id, GFP_KERNEL);
1330 if (!name) {
1331 kfree(cell);
1332 return ERR_PTR(-ENOMEM);
1336 cell->id = name;
1337 cell->entry = entry;
1338 cell->index = index;
1340 return cell;
1343 static struct nvmem_cell *
1344 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1346 struct nvmem_cell_entry *cell_entry;
1347 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1348 struct nvmem_cell_lookup *lookup;
1349 struct nvmem_device *nvmem;
1350 const char *dev_id;
1352 if (!dev)
1353 return ERR_PTR(-EINVAL);
1355 dev_id = dev_name(dev);
1357 mutex_lock(&nvmem_lookup_mutex);
1359 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1360 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1361 (strcmp(lookup->con_id, con_id) == 0)) {
1362 /* This is the right entry. */
1363 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1364 device_match_name);
1365 if (IS_ERR(nvmem)) {
1366 /* Provider may not be registered yet. */
1367 cell = ERR_CAST(nvmem);
1368 break;
1371 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1372 lookup->cell_name);
1373 if (!cell_entry) {
1374 __nvmem_device_put(nvmem);
1375 cell = ERR_PTR(-ENOENT);
1376 } else {
1377 cell = nvmem_create_cell(cell_entry, con_id, 0);
1378 if (IS_ERR(cell))
1379 __nvmem_device_put(nvmem);
1381 break;
1385 mutex_unlock(&nvmem_lookup_mutex);
1386 return cell;
1389 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1391 if (nvmem->layout && nvmem->layout->dev.driver)
1392 module_put(nvmem->layout->dev.driver->owner);
1395 #if IS_ENABLED(CONFIG_OF)
1396 static struct nvmem_cell_entry *
1397 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1399 struct nvmem_cell_entry *iter, *cell = NULL;
1401 mutex_lock(&nvmem_mutex);
1402 list_for_each_entry(iter, &nvmem->cells, node) {
1403 if (np == iter->np) {
1404 cell = iter;
1405 break;
1408 mutex_unlock(&nvmem_mutex);
1410 return cell;
1413 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1415 if (!nvmem->layout)
1416 return 0;
1418 if (!nvmem->layout->dev.driver ||
1419 !try_module_get(nvmem->layout->dev.driver->owner))
1420 return -EPROBE_DEFER;
1422 return 0;
1426 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1428 * @np: Device tree node that uses the nvmem cell.
1429 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1430 * for the cell at index 0 (the lone cell with no accompanying
1431 * nvmem-cell-names property).
1433 * Return: Will be an ERR_PTR() on error or a valid pointer
1434 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1435 * nvmem_cell_put().
1437 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1439 struct device_node *cell_np, *nvmem_np;
1440 struct nvmem_device *nvmem;
1441 struct nvmem_cell_entry *cell_entry;
1442 struct nvmem_cell *cell;
1443 struct of_phandle_args cell_spec;
1444 int index = 0;
1445 int cell_index = 0;
1446 int ret;
1448 /* if cell name exists, find index to the name */
1449 if (id)
1450 index = of_property_match_string(np, "nvmem-cell-names", id);
1452 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1453 "#nvmem-cell-cells",
1454 index, &cell_spec);
1455 if (ret)
1456 return ERR_PTR(-ENOENT);
1458 if (cell_spec.args_count > 1)
1459 return ERR_PTR(-EINVAL);
1461 cell_np = cell_spec.np;
1462 if (cell_spec.args_count)
1463 cell_index = cell_spec.args[0];
1465 nvmem_np = of_get_parent(cell_np);
1466 if (!nvmem_np) {
1467 of_node_put(cell_np);
1468 return ERR_PTR(-EINVAL);
1471 /* nvmem layouts produce cells within the nvmem-layout container */
1472 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1473 nvmem_np = of_get_next_parent(nvmem_np);
1474 if (!nvmem_np) {
1475 of_node_put(cell_np);
1476 return ERR_PTR(-EINVAL);
1480 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1481 of_node_put(nvmem_np);
1482 if (IS_ERR(nvmem)) {
1483 of_node_put(cell_np);
1484 return ERR_CAST(nvmem);
1487 ret = nvmem_layout_module_get_optional(nvmem);
1488 if (ret) {
1489 of_node_put(cell_np);
1490 __nvmem_device_put(nvmem);
1491 return ERR_PTR(ret);
1494 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1495 of_node_put(cell_np);
1496 if (!cell_entry) {
1497 __nvmem_device_put(nvmem);
1498 nvmem_layout_module_put(nvmem);
1499 if (nvmem->layout)
1500 return ERR_PTR(-EPROBE_DEFER);
1501 else
1502 return ERR_PTR(-ENOENT);
1505 cell = nvmem_create_cell(cell_entry, id, cell_index);
1506 if (IS_ERR(cell)) {
1507 __nvmem_device_put(nvmem);
1508 nvmem_layout_module_put(nvmem);
1511 return cell;
1513 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1514 #endif
1517 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1519 * @dev: Device that requests the nvmem cell.
1520 * @id: nvmem cell name to get (this corresponds with the name from the
1521 * nvmem-cell-names property for DT systems and with the con_id from
1522 * the lookup entry for non-DT systems).
1524 * Return: Will be an ERR_PTR() on error or a valid pointer
1525 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1526 * nvmem_cell_put().
1528 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1530 struct nvmem_cell *cell;
1532 if (dev->of_node) { /* try dt first */
1533 cell = of_nvmem_cell_get(dev->of_node, id);
1534 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1535 return cell;
1538 /* NULL cell id only allowed for device tree; invalid otherwise */
1539 if (!id)
1540 return ERR_PTR(-EINVAL);
1542 return nvmem_cell_get_from_lookup(dev, id);
1544 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1546 static void devm_nvmem_cell_release(struct device *dev, void *res)
1548 nvmem_cell_put(*(struct nvmem_cell **)res);
1552 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1554 * @dev: Device that requests the nvmem cell.
1555 * @id: nvmem cell name id to get.
1557 * Return: Will be an ERR_PTR() on error or a valid pointer
1558 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1559 * automatically once the device is freed.
1561 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1563 struct nvmem_cell **ptr, *cell;
1565 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1566 if (!ptr)
1567 return ERR_PTR(-ENOMEM);
1569 cell = nvmem_cell_get(dev, id);
1570 if (!IS_ERR(cell)) {
1571 *ptr = cell;
1572 devres_add(dev, ptr);
1573 } else {
1574 devres_free(ptr);
1577 return cell;
1579 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1581 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1583 struct nvmem_cell **c = res;
1585 if (WARN_ON(!c || !*c))
1586 return 0;
1588 return *c == data;
1592 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1593 * from devm_nvmem_cell_get.
1595 * @dev: Device that requests the nvmem cell.
1596 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1598 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1600 int ret;
1602 ret = devres_release(dev, devm_nvmem_cell_release,
1603 devm_nvmem_cell_match, cell);
1605 WARN_ON(ret);
1607 EXPORT_SYMBOL(devm_nvmem_cell_put);
1610 * nvmem_cell_put() - Release previously allocated nvmem cell.
1612 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1614 void nvmem_cell_put(struct nvmem_cell *cell)
1616 struct nvmem_device *nvmem = cell->entry->nvmem;
1618 if (cell->id)
1619 kfree_const(cell->id);
1621 kfree(cell);
1622 __nvmem_device_put(nvmem);
1623 nvmem_layout_module_put(nvmem);
1625 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1627 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1629 u8 *p, *b;
1630 int i, extra, bit_offset = cell->bit_offset;
1632 p = b = buf;
1633 if (bit_offset) {
1634 /* First shift */
1635 *b++ >>= bit_offset;
1637 /* setup rest of the bytes if any */
1638 for (i = 1; i < cell->bytes; i++) {
1639 /* Get bits from next byte and shift them towards msb */
1640 *p |= *b << (BITS_PER_BYTE - bit_offset);
1642 p = b;
1643 *b++ >>= bit_offset;
1645 } else {
1646 /* point to the msb */
1647 p += cell->bytes - 1;
1650 /* result fits in less bytes */
1651 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1652 while (--extra >= 0)
1653 *p-- = 0;
1655 /* clear msb bits if any leftover in the last byte */
1656 if (cell->nbits % BITS_PER_BYTE)
1657 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1660 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1661 struct nvmem_cell_entry *cell,
1662 void *buf, size_t *len, const char *id, int index)
1664 int rc;
1666 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1668 if (rc)
1669 return rc;
1671 /* shift bits in-place */
1672 if (cell->bit_offset || cell->nbits)
1673 nvmem_shift_read_buffer_in_place(cell, buf);
1675 if (cell->read_post_process) {
1676 rc = cell->read_post_process(cell->priv, id, index,
1677 cell->offset, buf, cell->raw_len);
1678 if (rc)
1679 return rc;
1682 if (len)
1683 *len = cell->bytes;
1685 return 0;
1689 * nvmem_cell_read() - Read a given nvmem cell
1691 * @cell: nvmem cell to be read.
1692 * @len: pointer to length of cell which will be populated on successful read;
1693 * can be NULL.
1695 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1696 * buffer should be freed by the consumer with a kfree().
1698 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1700 struct nvmem_cell_entry *entry = cell->entry;
1701 struct nvmem_device *nvmem = entry->nvmem;
1702 u8 *buf;
1703 int rc;
1705 if (!nvmem)
1706 return ERR_PTR(-EINVAL);
1708 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1709 if (!buf)
1710 return ERR_PTR(-ENOMEM);
1712 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1713 if (rc) {
1714 kfree(buf);
1715 return ERR_PTR(rc);
1718 return buf;
1720 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1722 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1723 u8 *_buf, int len)
1725 struct nvmem_device *nvmem = cell->nvmem;
1726 int i, rc, nbits, bit_offset = cell->bit_offset;
1727 u8 v, *p, *buf, *b, pbyte, pbits;
1729 nbits = cell->nbits;
1730 buf = kzalloc(cell->bytes, GFP_KERNEL);
1731 if (!buf)
1732 return ERR_PTR(-ENOMEM);
1734 memcpy(buf, _buf, len);
1735 p = b = buf;
1737 if (bit_offset) {
1738 pbyte = *b;
1739 *b <<= bit_offset;
1741 /* setup the first byte with lsb bits from nvmem */
1742 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1743 if (rc)
1744 goto err;
1745 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1747 /* setup rest of the byte if any */
1748 for (i = 1; i < cell->bytes; i++) {
1749 /* Get last byte bits and shift them towards lsb */
1750 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1751 pbyte = *b;
1752 p = b;
1753 *b <<= bit_offset;
1754 *b++ |= pbits;
1758 /* if it's not end on byte boundary */
1759 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1760 /* setup the last byte with msb bits from nvmem */
1761 rc = nvmem_reg_read(nvmem,
1762 cell->offset + cell->bytes - 1, &v, 1);
1763 if (rc)
1764 goto err;
1765 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1769 return buf;
1770 err:
1771 kfree(buf);
1772 return ERR_PTR(rc);
1775 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1777 struct nvmem_device *nvmem = cell->nvmem;
1778 int rc;
1780 if (!nvmem || nvmem->read_only ||
1781 (cell->bit_offset == 0 && len != cell->bytes))
1782 return -EINVAL;
1785 * Any cells which have a read_post_process hook are read-only because
1786 * we cannot reverse the operation and it might affect other cells,
1787 * too.
1789 if (cell->read_post_process)
1790 return -EINVAL;
1792 if (cell->bit_offset || cell->nbits) {
1793 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1794 if (IS_ERR(buf))
1795 return PTR_ERR(buf);
1798 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1800 /* free the tmp buffer */
1801 if (cell->bit_offset || cell->nbits)
1802 kfree(buf);
1804 if (rc)
1805 return rc;
1807 return len;
1811 * nvmem_cell_write() - Write to a given nvmem cell
1813 * @cell: nvmem cell to be written.
1814 * @buf: Buffer to be written.
1815 * @len: length of buffer to be written to nvmem cell.
1817 * Return: length of bytes written or negative on failure.
1819 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1821 return __nvmem_cell_entry_write(cell->entry, buf, len);
1824 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1826 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1827 void *val, size_t count)
1829 struct nvmem_cell *cell;
1830 void *buf;
1831 size_t len;
1833 cell = nvmem_cell_get(dev, cell_id);
1834 if (IS_ERR(cell))
1835 return PTR_ERR(cell);
1837 buf = nvmem_cell_read(cell, &len);
1838 if (IS_ERR(buf)) {
1839 nvmem_cell_put(cell);
1840 return PTR_ERR(buf);
1842 if (len != count) {
1843 kfree(buf);
1844 nvmem_cell_put(cell);
1845 return -EINVAL;
1847 memcpy(val, buf, count);
1848 kfree(buf);
1849 nvmem_cell_put(cell);
1851 return 0;
1855 * nvmem_cell_read_u8() - Read a cell value as a u8
1857 * @dev: Device that requests the nvmem cell.
1858 * @cell_id: Name of nvmem cell to read.
1859 * @val: pointer to output value.
1861 * Return: 0 on success or negative errno.
1863 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1865 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1867 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1870 * nvmem_cell_read_u16() - Read a cell value as a u16
1872 * @dev: Device that requests the nvmem cell.
1873 * @cell_id: Name of nvmem cell to read.
1874 * @val: pointer to output value.
1876 * Return: 0 on success or negative errno.
1878 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1880 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1882 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1885 * nvmem_cell_read_u32() - Read a cell value as a u32
1887 * @dev: Device that requests the nvmem cell.
1888 * @cell_id: Name of nvmem cell to read.
1889 * @val: pointer to output value.
1891 * Return: 0 on success or negative errno.
1893 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1895 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1897 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1900 * nvmem_cell_read_u64() - Read a cell value as a u64
1902 * @dev: Device that requests the nvmem cell.
1903 * @cell_id: Name of nvmem cell to read.
1904 * @val: pointer to output value.
1906 * Return: 0 on success or negative errno.
1908 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1910 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1912 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1914 static const void *nvmem_cell_read_variable_common(struct device *dev,
1915 const char *cell_id,
1916 size_t max_len, size_t *len)
1918 struct nvmem_cell *cell;
1919 int nbits;
1920 void *buf;
1922 cell = nvmem_cell_get(dev, cell_id);
1923 if (IS_ERR(cell))
1924 return cell;
1926 nbits = cell->entry->nbits;
1927 buf = nvmem_cell_read(cell, len);
1928 nvmem_cell_put(cell);
1929 if (IS_ERR(buf))
1930 return buf;
1933 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1934 * the length of the real data. Throw away the extra junk.
1936 if (nbits)
1937 *len = DIV_ROUND_UP(nbits, 8);
1939 if (*len > max_len) {
1940 kfree(buf);
1941 return ERR_PTR(-ERANGE);
1944 return buf;
1948 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1950 * @dev: Device that requests the nvmem cell.
1951 * @cell_id: Name of nvmem cell to read.
1952 * @val: pointer to output value.
1954 * Return: 0 on success or negative errno.
1956 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1957 u32 *val)
1959 size_t len;
1960 const u8 *buf;
1961 int i;
1963 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1964 if (IS_ERR(buf))
1965 return PTR_ERR(buf);
1967 /* Copy w/ implicit endian conversion */
1968 *val = 0;
1969 for (i = 0; i < len; i++)
1970 *val |= buf[i] << (8 * i);
1972 kfree(buf);
1974 return 0;
1976 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1979 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1981 * @dev: Device that requests the nvmem cell.
1982 * @cell_id: Name of nvmem cell to read.
1983 * @val: pointer to output value.
1985 * Return: 0 on success or negative errno.
1987 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1988 u64 *val)
1990 size_t len;
1991 const u8 *buf;
1992 int i;
1994 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1995 if (IS_ERR(buf))
1996 return PTR_ERR(buf);
1998 /* Copy w/ implicit endian conversion */
1999 *val = 0;
2000 for (i = 0; i < len; i++)
2001 *val |= (uint64_t)buf[i] << (8 * i);
2003 kfree(buf);
2005 return 0;
2007 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
2010 * nvmem_device_cell_read() - Read a given nvmem device and cell
2012 * @nvmem: nvmem device to read from.
2013 * @info: nvmem cell info to be read.
2014 * @buf: buffer pointer which will be populated on successful read.
2016 * Return: length of successful bytes read on success and negative
2017 * error code on error.
2019 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2020 struct nvmem_cell_info *info, void *buf)
2022 struct nvmem_cell_entry cell;
2023 int rc;
2024 ssize_t len;
2026 if (!nvmem)
2027 return -EINVAL;
2029 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2030 if (rc)
2031 return rc;
2033 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2034 if (rc)
2035 return rc;
2037 return len;
2039 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2042 * nvmem_device_cell_write() - Write cell to a given nvmem device
2044 * @nvmem: nvmem device to be written to.
2045 * @info: nvmem cell info to be written.
2046 * @buf: buffer to be written to cell.
2048 * Return: length of bytes written or negative error code on failure.
2050 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2051 struct nvmem_cell_info *info, void *buf)
2053 struct nvmem_cell_entry cell;
2054 int rc;
2056 if (!nvmem)
2057 return -EINVAL;
2059 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2060 if (rc)
2061 return rc;
2063 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2065 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2068 * nvmem_device_read() - Read from a given nvmem device
2070 * @nvmem: nvmem device to read from.
2071 * @offset: offset in nvmem device.
2072 * @bytes: number of bytes to read.
2073 * @buf: buffer pointer which will be populated on successful read.
2075 * Return: length of successful bytes read on success and negative
2076 * error code on error.
2078 int nvmem_device_read(struct nvmem_device *nvmem,
2079 unsigned int offset,
2080 size_t bytes, void *buf)
2082 int rc;
2084 if (!nvmem)
2085 return -EINVAL;
2087 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2089 if (rc)
2090 return rc;
2092 return bytes;
2094 EXPORT_SYMBOL_GPL(nvmem_device_read);
2097 * nvmem_device_write() - Write cell to a given nvmem device
2099 * @nvmem: nvmem device to be written to.
2100 * @offset: offset in nvmem device.
2101 * @bytes: number of bytes to write.
2102 * @buf: buffer to be written.
2104 * Return: length of bytes written or negative error code on failure.
2106 int nvmem_device_write(struct nvmem_device *nvmem,
2107 unsigned int offset,
2108 size_t bytes, void *buf)
2110 int rc;
2112 if (!nvmem)
2113 return -EINVAL;
2115 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2117 if (rc)
2118 return rc;
2121 return bytes;
2123 EXPORT_SYMBOL_GPL(nvmem_device_write);
2126 * nvmem_add_cell_table() - register a table of cell info entries
2128 * @table: table of cell info entries
2130 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2132 mutex_lock(&nvmem_cell_mutex);
2133 list_add_tail(&table->node, &nvmem_cell_tables);
2134 mutex_unlock(&nvmem_cell_mutex);
2136 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2139 * nvmem_del_cell_table() - remove a previously registered cell info table
2141 * @table: table of cell info entries
2143 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2145 mutex_lock(&nvmem_cell_mutex);
2146 list_del(&table->node);
2147 mutex_unlock(&nvmem_cell_mutex);
2149 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2152 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2154 * @entries: array of cell lookup entries
2155 * @nentries: number of cell lookup entries in the array
2157 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2159 int i;
2161 mutex_lock(&nvmem_lookup_mutex);
2162 for (i = 0; i < nentries; i++)
2163 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2164 mutex_unlock(&nvmem_lookup_mutex);
2166 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2169 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2170 * entries
2172 * @entries: array of cell lookup entries
2173 * @nentries: number of cell lookup entries in the array
2175 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2177 int i;
2179 mutex_lock(&nvmem_lookup_mutex);
2180 for (i = 0; i < nentries; i++)
2181 list_del(&entries[i].node);
2182 mutex_unlock(&nvmem_lookup_mutex);
2184 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2187 * nvmem_dev_name() - Get the name of a given nvmem device.
2189 * @nvmem: nvmem device.
2191 * Return: name of the nvmem device.
2193 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2195 return dev_name(&nvmem->dev);
2197 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2200 * nvmem_dev_size() - Get the size of a given nvmem device.
2202 * @nvmem: nvmem device.
2204 * Return: size of the nvmem device.
2206 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2208 return nvmem->size;
2210 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2212 static int __init nvmem_init(void)
2214 int ret;
2216 ret = bus_register(&nvmem_bus_type);
2217 if (ret)
2218 return ret;
2220 ret = nvmem_layout_bus_register();
2221 if (ret)
2222 bus_unregister(&nvmem_bus_type);
2224 return ret;
2227 static void __exit nvmem_exit(void)
2229 nvmem_layout_bus_unregister();
2230 bus_unregister(&nvmem_bus_type);
2233 subsys_initcall(nvmem_init);
2234 module_exit(nvmem_exit);
2236 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2237 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2238 MODULE_DESCRIPTION("nvmem Driver Core");